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Abstract 

This dissertation presents a hierarchical model predictive control (MPC) framework 

for energy management onboard vehicle systems. High performance vehicle systems such as 

commercial and military aircraft, on- and off-road vehicles, and ships present a unique 

control challenge, where maximizing performance requires optimizing the generation, 

storage, distribution, and utilization of energy throughout the entire system and over the 

duration of operation. The proposed hierarchical approach decomposes control of the vehicle 

among multiple controllers operating at each level of the hierarchy. Each controller has a 

model of a corresponding portion of the system for predicting future behavior based on 

current and future control decisions and known disturbances. To capture the energy storage 

and power flow throughout the vehicle, a graph-based modeling framework is proposed, 

where vertices represent capacitive elements that store energy and edges represent paths for 

power flow between these capacitive elements. For systems with a general nonlinear form of 

power flow, closed-loop stability is established through local subsystem analysis based on 

passivity. The ability to assess system-wide stability from local subsystem analysis follows 

from the particular structure of the interconnections between each subsystem, their 

corresponding controller, and neighboring subsystems. For systems with a linear form of 

power flow, robust feasibility of state and actuator constraints is achieved using a constraint 

tightening approach when formulating each MPC controller. Finally, the hierarchical control 

framework is applied to an example thermal fluid system that represents the fuel thermal 

management system of an aircraft. Simulation and experimental results clearly demonstrate 

the benefits of the proposed hierarchical control approach and the practical applicability to 

real physical systems with nonlinear dynamics, unknown disturbances, and actuator delays.  
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Chapter 1     

Introduction 

1.1 Motivation and Background 

Electrification of power systems is a societal megatrend, especially for vehicle systems 

such as aircraft, on- and off-road vehicles, and ships. For example, the onboard power for both 

military and commercial aircraft has grown rapidly over the last several decades (Fig. 1.1) and 

this growth is expected to accelerate, with an anticipated order-of-magnitude increase in power 

over the next 10 years [1]. With the majority of this power dedicated to onboard electrical 

systems, managing the heat generated by these systems has already become a major barrier. With 

the fuel in the F-35 and the cockpits of army helicopters overheating [2], [3], these highly 

advanced systems are unable to achieve their intended function at the risk of navigation and 

flight control systems shutting down midflight. In fact, over 50% of military electronics failures 

are attributed to thermal management problems [4]. 

Technological growth is currently limited by inadequate thermal management, and 

intelligent coordinated control is a crucial part of overcoming this barrier. In the absence of 

system redesign, cooperative control of electrical and thermal systems is the key to overcoming 

these barriers and maximizing the capability of these systems and the overall vehicle. As the 

demand for both performance and efficiency of these systems grows, the optimization of power 

generation, storage, distribution, and utilization becomes vital. Each vehicle is a system-of-

systems, where power flow occurs in various modalities such as electrical, mechanical, thermal, 

and hydraulic. These systems interact with each other over a wide-range of timescales (Fig. 1.2) 

including the sub-millisecond time frame of voltage regulation in an electrical system [5] to the  
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Figure 1.1 Historical growth of onboard power for aircraft suggests effective power 

management will continue to be critical to the overall increase in capabilities of both 

military and commercial aircraft [6].  

minutes time frame of fuel temperature changes in a thermal system [7]. Due to the size and 

complexity of these systems, the system and control designs often occur in a “siloed” framework, 

where each system is designed in isolation with limited design consideration regarding the 

dynamic interactions between these systems [8]. 

Future system and control design must adopt an alternative design procedure where 

system and subsystem interactions are directly considered and exploited in the design in order to 

achieve greater performance and efficiency. With increasing electrification, the opportunity for 

maximizing the performance of the aircraft as a whole hinges on the ability to coordinate the 

electrical and thermal systems. Due to the complexity of these systems and the need for robust 

operation under component failures, a distributed control approach is required. In such an 

approach, various parts of the system are operated by dedicated controllers, which coordinate via 

communication to meet system-wide objectives. Such control approaches will not only increase 

the total power and power density of these systems, they will also make these systems easier, 

safer, and cheaper to operate.  
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Fig 1.2 Vehicle systems are a complex combination of interacting systems and subsystems 

over multiple timescales. 

1.2 Research Objectives 

1.2.1 Problem Statement 

Due to the long service life of many advanced vehicle systems, these systems are often 

tasked with operating well outside their initial intended design space. In the absence of system 

redesigns, the control system is responsible for improving vehicle capability, including 

increasing range, maximizing system operation duty-cycles, and expanding the overall operating 

envelop. 

What is needed is a model-based anticipatory control strategy that directly considers 

interactions between systems and can determine energy/power allocation strategies for each 

system over a wide range of timescales. The primary objective of this dissertation is the 

development and evaluation of a model predictive control (MPC) based hierarchical control 

strategy specifically designed to optimize the power flow throughout the systems and subsystems 

of a vehicle over multiple timescales. While the focus of this dissertation is on thermal 

management in aircraft, the proposed hierarchical framework is developed to be: 
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 widely applicable to heterogeneous power flow systems of various energy 

domains, architectures, and components, 

 scalable to large systems with many actuators, states, measurements, and control 

objectives, 

 robust to model and signal uncertainty, 

 high performance, via fast transient response, efficient operation, and constraint 

satisfaction, and 

 computationally efficient for reduced computational cost and faster control 

decisions.   

1.2.2 Dissertation Scope 

In order to meet this primary objective, five secondary objectives have been identified 

which define the scope of this dissertation and, when achieved, will provide a generic 

hierarchical control framework which can be adopted to improve the capabilities of a wide-range 

of vehicle systems. These five secondary objectives are: 

1. the formulation of a generic graph-based modeling framework that captures the 

energy storage and power flow dynamics in multiple energy domains and 

timescales with primary development and validation in the thermal domain, 

2. the definition of a hierarchical control development algorithm with a step-by-step 

procedure for generating a hierarchical controller, applicable to a wide-range of 

vehicle systems with different architectures,  

3. the formal analysis of the proposed hierarchical controller with respect to stability 

and robust feasibility, 

4. the evaluation of hierarchical control performance using a series of example 

systems including simple educational examples and more realistic examples 

representative of vehicle thermal management systems, and 

5. the experimental demonstration of a hierarchical controller to test the applicability 

of the proposed control approach to real-world thermal-fluid system dynamics 

including nonlinearity, unknown disturbances, and time delays.  
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Figure 1.3 Outline of developments required for the realization of hierarchical control of 

power flow in vehicle systems. 

1.3 Organization of Dissertation  

Fig. 1.3 shows an outline of the techniques, theory, and application development that is 

needed to realize the overall goal of this dissertation: hierarchical power management in vehicle 

systems. The boxes and arrows outlined in red represent the developments and connections 

presented in this dissertation, where the red number represents the corresponding Chapter 

number. Chapter 2 introduces the general class of power flow systems and the graph-based 

modeling framework used to capture the energy storage and routing throughout the vehicle 

system. The model-based hierarchical control framework is presented in Chapter 3 with detailed 

procedures for graph modeling, system decomposition, model reduction, controller structure 

design, and optimization problem formulation. The procedures presented in Chapters 2 and 3 

represent a set of generic techniques for modeling and control that are demonstrated through 

numerical simulation and built upon throughout the following Chapters. These generic modeling 

and control approaches are applied to a realistic thermal fluid system in simulation and 
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experiment in Chapters 6 and 7. Specific formulations of these general techniques are used in 

Chapters 4 and 5 and are tested in numerical simulation only. In particular, Chapter 4 analyzes 

the closed-loop stability for a specific class of nonlinear graph-based power flow systems using 

the notion of passivity. Using a constraint tightening procedure, Chapter 5 develops a robustly 

hierarchical controller for linear graph-based power flow systems that guarantees feasibility in 

the presence of model and disturbance signal uncertainty.  

 The three black boxes to the right of Fig. 1.3 represent additional developments that 

build upon the work presented in this dissertation, which are required to achieve highly 

functional hierarchical control of vehicle systems. The Experimental Demonstration block and 

arrow from Numerical Simulation are outlined with dashed red lines to denote the fact that the 

basic techniques from Chapter 2 and 3 have been demonstrated on an experimental system, while 

practical extensions are required to directly apply the theoretical results from Chapters 4 and 5 to 

the physical system in Chapters 6 and 7. These extensions are discussed in greater detail with the 

concluding remarks and future research directions provided in Chapter 8. 

1.4 Notation 

The symbol  denotes the set of real numbers. The notation  1, N  denotes the set of 

integers from 1 to N . A vector v  with elements iv  is defined as  iv v . Similarly, a matrix M  

with elements jkm  in the thj  row and thk  column is defined as jkM m    . For the scalar 

function  f x ,      | 0f x x f x   denotes the zero set of  f x . The eigenvalues of 

matrix 
nnA   are  k A ,  1,k n  and their real part is denoted  Re k A ,  1,k n . For 

sets , n , the Minkowski sum is  | ,x y x y     and for sets  , the 

Pontryagin difference is  |nx x   . For a set 
n  and the linear 

mapping : n mA  ,  |A Ax x . A set 
n  is robust positively invariant (RPI) 

for a system       1 ,x k f x k w k   if and only if for all x  and all w  it holds that 

    ,f x k w k  . The right inverse of 
n mA   is defined as  

1
† T TA A AA


 . 
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Chapter 2     

Graph-based Power Flow Systems 

2.1 Power Flow Systems 

Power flow systems are a wide class of systems where modeling and control is motivated 

by the need to manage the storage and routing of energy. Examples include thermal energy 

systems [9]–[11], water distribution networks [12]–[14], electrical power grids [15], [16], 

chemical process networks [17], [18], and multi-energy domain vehicle systems such as aircraft 

[19]–[21], mining equipment [22], [23], on- and off-road vehicles [24], [25]. In general, these 

systems function based on the storage, conversion, and routing of conserved quantities such as 

mass and energy. For example, electrical systems store energy in capacitors and batteries, route 

energy through wires using switches, and convert electrical energy into thermal energy in the 

form of heat. Thermal fluid systems conserve both mass and thermal energy which are stored in 

fluid tanks and heat exchangers, routed through pipes using pumps and valves, and reject heat to 

the surrounding environment. A key feature of power flow systems is the dynamic interaction 

between systems and subsystems of various energy domains through the conversion of conserved 

energy. 

For vehicle systems in particular, achieving peak performance often requires controlling 

various systems and subsystems at the limit of their operating envelopes. Thus, system operation 

is often characterized by operation against actuator and state constraints. Additionally, the 

operation of these systems is highly coupled. For example, an electrical system generates heat 

that is managed by the thermal system, but this thermal system uses electrical power to operate. 

Thus higher electrical power results in higher heat generation which results in more electrical 
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consumption by the thermal management system. Additionally, systems such as the electrical 

system and the hydraulic system on an aircraft both take power off the engine, creating a 

resource allocation problem based on the needs of each system and the maximum allowable 

power draw from the engine.  

The dynamics of each system and the interactions between systems of various energy 

domains occur over a wide range of timescales including the sub-millisecond time frame of 

voltage regulation in an electrical system [5] to the minutes time frame of fuel temperature 

changes in a thermal system [7]. Effectively controlling the power flow system at each timescale 

is critical to achieving robustness to disturbances and faults, maximizing transient performance, 

and preventing constraint violations.  

Due to the size and complexity of many power flow systems, the system and control 

designs often occur in a “siloed” framework, where each of the systems and subsystems is 

designed in isolation with limited design consideration regarding the interactions between these 

systems and energy domains. Future system and control design must adopt an alternative design 

procedure where the interactions are directly considered and exploited to achieve greater 

performance and efficiency. A unified modeling framework that captures the dynamics of system 

with multiple interacting energy domains is the enabling first step to achieving this coordination. 

2.2 Modeling Objectives 

Conventional approaches to modeling and control of complex system-of-systems are 

often limited to decentralized high-fidelity modeling and robust, low performance proportional-

integral and logic-based control [26]. The proposed model-based hierarchical control approach 

aims to improve performance through coordination among subsystems and timescales. With a 

hierarchical MPC framework, each controller in the hierarchy requires a model of the system 

dynamics under its control to predict future state trajectories and determine optimal control 

sequences. For many power flow systems, holistic modeling, analysis, and control design is 

inhibited by the complexity and size of the systems, especially when dynamics evolve over a 

wide range of timescales and energy domains. Thus the main desired features for a control-

oriented modeling framework are: 
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 modularity – such that large systems can be built from the combination of 

individual components, 

 energy domain agnostic – allowing systems with multiple, interacting energy 

domains to be represented using a single, unifying modeling framework, 

 timescale agnostic – providing a generic approach that captures dynamics over a 

wide range of dynamically interacting timescales, and  

 variable fidelity – both in terms of the number of states used to capture the 

dynamics of each component and the complexity of the relationships used to 

represent power flow (linear vs nonlinear vs bilinear). 

As shown in the following Sections, a graph-based modeling framework provides each of these 

features, resulting in an ideal framework for control-oriented modeling and the development of 

hierarchical controllers for power flow systems.  

2.3 Graph-based Modeling 

From a bond graph perspective [27], power is the product of effort and flow, P e f  . 

Typical forms of effort include force and torque in mechanical systems, voltage potential in 

electrical systems, pressure difference in hydraulic systems, and temperature difference in 

thermal systems. The corresponding forms of flow are linear or angular velocity, current, 

volumetric flow rate, and entropy flow rate, respectively. With power representing the transport 

of energy, each domain also has the ability to store energy in the form of linear or angular 

momentum, electrical charge, mass, or thermal energy.  

While bond graphs are a powerful tool and can be used to derive the governing 

differential equations for a dynamic system [27], an alternative, graph-based, system 

representation and modeling technique has been widely adopted. Compared to bond graphs, 

graph-based system model more readily captures the structure of the governing mass and energy 

conservation laws for these systems. As will be shown in Chapters 3-5, the structure of these 

graphs can be directly used for control architecture design and analysis. Graph-based modeling 

approaches have been used in a variety of application areas such as chemical processing plants 

[28], [29], building thermal systems [30], [31], electronic circuits [32], and flow control systems 

[33]. In this graph-based framework, vertices, or nodes, represent capacitive elements that store 
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energy and edges represent paths for power flow between these capacitive elements. The 

following Section presents the generic graph-based modeling formulation and Section 2.5 

demonstrates how this approach addresses each of the desired modeling features. 

2.4 Generic System Formulation 

Let a power flow system S  be represented by an oriented graph  ,= V E  of order vN  

with set of vertices    , 1,i vV v i N   and of size eN  with set of edges    , 1, .j eE e j N   

Each oriented edge je E  represents a path for power flow in S , where positive power jP  

flows from the tail vertex 
tail
jv  to the head vertex 

head
jv . Each vertex iv V  has an associated 

state ix  that represents the amount of energy stored in that vertex. Thus the dynamic for the state 

of each iv  satisfies the energy conservation equation 

 ,i i j j
in oute E e Ej ji i

C x P P

 

     (2.1) 

where 0iC   is the energy storage capacitance of vertex iv  and  |in head
i j j iE e v v   and 

 |out tail
i j j iE e v v   are the sets of edges oriented into and out of the vertex iv , respectively.  

The most general form for the algebraic relationship between the power flows along edge 

je  and the states 
tail
jx  and 

head
jx  is  

  , , ,tail head
j j j j jP f x x u   (2.2) 

where ju  is the actuator input associated with the edge. Common, increasingly simple, forms for 

this power flow relationship are the nonlinear, input affine form 

    , , ,tail head tail head
j j j j j j j jP f x x g x x u    (2.3) 

where jf  and jg  are nonlinear, the bilinear form 
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    , , ,tail head tail head
j j j j j j j jP f x x g x x u    (2.4) 

where jf  and jg  are linear, and the linear form 

 .tail head
j j j j j j j jP a x b x c u d      (2.5) 

In general, the system S  has states Nvx  that each satisfy (2.1) and power flows 

NeP  that each satisfy (2.2). The disturbances to S  consist of how power enters and exits the 

system with inlet power flows 
Nin sP   and sink states Nt tx  . As indicated by the dashed 

lines in Fig. 2.1, the inlet power flow edges are not included in . These power flows into the 

system are analogous to demand in the network flow literature [33], [34] and inflows from the 

compartmental systems literature [35].  

 

Figure 2.1 Notional system exemplifying the graph-based power flow representation with 

key power flows and states highlighted in red. Dashed lines indicate elements that serve as 

disturbances to the system.  

Also indicated by dashed lines in Fig. 2.1, the sink states are not states of S , but the sink 

vertices and the edges connecting S  to the sink vertices are included in . Power flows along 

this type of edge, denoted 
Nout tP  , each follow the relationship from (2.2). These sink 

vertices represent the surrounding environment and are referred to as external nodes in the 

compartmental systems literature [33]. Finally, each system has a subset 
Nin sx   of the states 

x  which represent the states directly affected by the inlet power flows 
inP .  
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Let 
 

,
N N Nv t e

i jM m
      be the incidence matrix of graph  [36] where 

 ,

1 if  is the tail of 

1 if  is the head of .

0 else

i j

i j i j

v e

m v e

 
 

  
 
 

  (2.6) 

Then, based on (2.1), the system dynamics are 

 ,
0

in

t

Cx D
MP P

x

   
     

  

  (2.7) 

where   iC diag C  is a diagonal matrix of the vertex capacitances and ,
N Nv s

i jD d
     

where 

  ,

1 if  is the head of 
.

0 else

in
i j

i j

v P
d

  
  
  

  (2.8) 

Since tx  are disturbances to the system, not states, M  is partitioned as 
M

M
M

 
  
 

, with 

N Nv eM


  and N Nt eM


 , resulting in 

 .inCx MP DP     (2.9) 

From this generic formulation, specific formulations are derived in Chapters 3-6. 

For this dissertation, all inputs ju  are assumed to be continuous between lower bound ju  

and upper bound ju . As discussed in Section 8.2, future work should extend the proposed 

modeling and hierarchical control approaches to systems with continuous as well as discrete 

actuators, where the possible inputs values form a set of discrete values, such as the on/off states 

of an electrical switch,  0,1ju  .  While the control optimization problem for a linear system 

with continuous actuators can be formed as a quadratic programming (QP) problem, controllers 

of systems with discrete actuators are formulated as mixed integer quadratic programming 

(MIQP) problems, which require significantly more computational resources to solve. 
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The system S  is assumed to have N  dynamic timescales, motivating the use of 

hierarchical control, where each level of the hierarchy is responsible for control decisions for a 

corresponding timescale. For a graph-based system, the timescales can be roughly identified by 

the capacitance of the vertices. Thus the state vector is subdivided as 

 1 2

T
T T T

Nx  
 
x x x   (2.10) 

where 
iNv

i x  denotes a vector of states with the thi  timescale, 
1

N i
v vi

N N


 , and 

j i kC C C   for j jx  x , i ix  x , k kx  x , j i k  . 

2.5 Modeling Features 

The following demonstrates the features that make a graph-based modeling framework 

well suited to modeling the dynamics of energy storage and power flow in a vehicle system. 

2.5.1 Modularity 

Each component of the system is modeled with a component graph of various vertices 

and edges and the overall system graph is simply constructed through the connection of the 

individual component graphs based on the system architecture. For a simple demonstration, 

consider the system in Fig. 2.2 consisting of a pump, cold plate heat exchanger, reservoir, and 

liquid-to-liquid heat exchanger.   

 

Figure 2.2 Simple example system used to demonstrate the modularity of a graph-based 

modeling framework.  

Pump

Cold Plate

Heat Exchanger

Liquid
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Heat Exchanger

Source

Sink



 14  

To capture the energy storage and transport in the system each component can be 

modeled as a graph where the states ix  represent temperatures and the power flows jP  represent 

the flow of energy. Fig. 2.3 shows the graphs used to capture the energy dynamics of each 

component. The temperature T  of the fluid in the reservoir is modeled with a single vertex. The 

fluid entering the reservoir adds energy at the rate 1 1
in

pP m c T  where 1T  is the temperature of 

the incoming fluid. The fluid exiting the reservoir removes energy at the rate 2
out

pP m c T . 

From a conservation perspective, the pump graph is identical to the reservoir graph. Only the 

capacitance C  associated with the vertices would be different. An additional source vertex and 

edge could be added to the pump graph to represent the heat added to the fluid due to 

inefficiencies of the pump. The cold plate heat exchanger is represented with 2 vertices 

representing the fluid temperature T  and the cold plate wall temperature wT . Energy enters the 

cold plate in the form of the heat load 2
inP Q  and the inlet fluid flow 1 1 1

in
pP m c T . Energy 

exits the cold plate with the outlet fluid flow 2
out

pP m c T . Energy is transferred between the 

two vertices of the cold plate through convection between the wall and the fluid 

 .s wP hA T T   The liquid-to-liquid heat exchanger is modeled similarly to the cold plate but 

with two liquids, a  and b , that exchange energy through the heat exchanger wall. 

 

Figure 2.3 Component graphs for each component in the example system.  
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Each solid lined vertex in Fig. 2.3 follows the conservation law from (2.1) and has a 

corresponding state ix  and capacitance iC . The dashed line vertices represent sources and sinks 

of power flow that correspond to the vertices of neighboring components in the system or 

external disturbances such as the surrounding environment. Each solid lined edge in Fig. 2.3 

follows the generic power flow equation from (2.2) that relates variables such as liquid 

properties, temperature, and mass flow rate to power flow. 

With the vertex and edge parameters defined for each individual component graph model, 

the entire system graph can be formulated based on the structure of component interconnections. 

Fig. 2.4 shows the system graph for the example system from Fig. 2.2. This system has 7 states, 

7vN  , 8 edges, 8eN  , two source power flows, 2sN  , and 1 sink power flow 1tN  . The 

ability to define the parameters for each vertex and edge individually, create component graphs, 

and combine component graphs to make system graphs provides the desired modularity and 

scalability. Further demonstration of this modeling approach is presented for an experimental 

thermal fluid system in Chapters 6. 

 

Figure 2.4 Example system graph.  

Note that a similar graph could be constructed to capture the mass conservation and fluid 

flow dynamics of the system. Chapters 6 demonstrates the relationship between the energy and 

mass conservation graphs when modeling and controlling a thermal fluid system. 

2.5.2 Energy Domain Agnostic 

A vertex represents the storage of energy regardless of whether it is thermal energy stored 

in the fuel of a fuel tank, electrical energy stored in a battery, mechanical energy stored in the 
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rotation of an engine, or pneumatic energy stored in a piston cylinder. An edge represents a path 

for energy to flow between capacitive elements. Only the equation used to capture the 

relationships between this power flow and the neighboring states and associated actuator input 

depend on the energy domain. This power flow equation can be made general enough to closely 

capture these relationships for multiple energy domains with a single relationship. 

The thermal fluid system from Section 2.5.1 provided an introduction to modeling a 

system as a graph. For a thermal system where the state x  represents a temperature T , the 

capacitance C  corresponds to the total thermal capacitance of the component, pC Vc  where 

the component has density  , volume V , and specific heat pc . For thermal systems, power 

flow generally takes one of two forms. Power flow due to advection, the transport of fluid, has 

the form pP mc T  where m  is the fluid flow rate. Power flow due to convection has the from 

 tail headP hA T T   where h  is the average heat transfer coefficient over area A  and 
tailT  

and 
headT  are the temperatures of the tail and head vertices for that edge. 

With the general form for power flow from (2.2), a large variety of power flow 

relationships of various energy domains can be captured within the graph-based modeling 

framework. While this dissertation primarily focuses on the development and analysis of 

hierarchical control for arbitrary graphs and the application to thermal fluid systems, ongoing 

and future work is extending this modeling approach to include electrical, pneumatic, hydraulic, 

and mechanical energy domains.  

2.5.3 Timescale Agnostic 

Each vertex iv  has an associated capacitance iC  which relates how the net power flow 

into a vertex affects the rate of change for the associated state ix  of that vertex. A large 

capacitance represents a dynamic with a slow timescale while a small capacitance represents a 

dynamic with a fast timescale. Thus a single graph can have vertices with capacitances of highly 

varying magnitude but these magnitudes do not affect the modeling approach or edge power flow 

equations. When determining timescales based on the magnitude of the capacitance, it is 
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important to consider the units and magnitude of the associated state, especially when including 

multiple energy domains in a single graph. 

2.5.4 Variable Fidelity 

A graph-based approach is a specific type of a lumped parameter approach where a single 

vertex, and associated state, is used to represent time-varying aspects of a component that might 

also vary spatially. For example, a single vertex could be used to represent the energy stored, and 

the corresponding temperature, of the walls of a heat exchanger. While in reality, the temperature 

of the walls can vary significantly by location between the inlet and outlet of the heat exchanger, 

a single representative temperature can often be used to capture the heat transfer dynamics for 

the heat exchanger. However, if additional model accuracy is required, additional vertices, and 

thus states, can be added to the graph model of the component. For example, the cold plate heat 

exchanger graph model from Fig. 2.3 represents the fluid temperature in the heat exchanger as a 

single vertex with a single temperature. However, in reality, the fluid is continuously changing 

temperature as it flows through the heat exchanger. Fig. 2.5 shows how additional vertices could 

be added to the heat exchanger graph model to increase the fidelity of the model.  

 

Figure 2.5 Two graph models for a cold plate heat exchanger, where the fluid temperature 

is either represents as a single lumped temperature T  or three distinct temperatures 

, ,a b cT T T  along the length of the heat exchanger.  

Additionally, a graph-based approach can achieve variable fidelity based on the form of 

the power flow equation for each edge. At the most general, this power flow is nonlinear. 

However, to be more amenable to analysis and controller development, bilinear and linear 

approximations of this power flow relationship can be used at the cost of model accuracy. For 

example the power flow for advection is pP mc T . If m  is considered the input u  for this 

power flow and T  is the state of the tail vertex, this power flow relationship is bilinear. If a 
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linear power flow relationship is desired, the bilinear power flow equation can be linearized 

about the nominal mass flow rate 0m  and temperature 0T  as  

 
   0 0 0 0 0 0

0 0 0 0

,

.

p p p p

p p p

P mc T m c T m c T T c T m m

m c T c T m m c T

     

  
  (2.11) 

2.6 Chapter Summary 

Based on the features of the generic graph-based modeling framework presented in this 

Chapter, Chapters 3-6 use specific graph formulations to: 

1. establish a generic hierarchical control development procedure, 

2. assess the stability of closed-loop graph-based nonlinear power flow systems, 

3. formulate and analyze a robustly feasible hierarchical control framework for linear 

systems, and 

4. demonstrate the generic approach on a realistic thermal fluid system, respectively. 

Each Chapter uses different example systems to best illustrate the specific contributions 

of each Chapter, demonstrating how this generic graph-based modeling framework can be easily 

tailored to specific classes of systems. 
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Chapter 3     

Hierarchical Model Predictive Control 

3.1 Conceptual Framework 

When a power flow system is decomposed as Fig. 1.2 does for an aircraft system, the 

dynamics and resulting control decisions form a natural hierarchy. The overall vehicle is 

composed of multiple systems (e.g. electrical, thermal, flight control, etc.) and each system is 

composed of multiple subsystems. A thermal management system, for example, may consist of a 

fuel system, an air conditioning system for the cockpit/cabin, a vapor compression system, 

and/or an air cycle machine. Each of these subsystems, contains multiple components such as 

pumps, valves, fans, and heat exchangers. Finally, many components have actuators and sensors 

that might have their own dynamics. This forms the five-level hierarchy shown in Fig. 1.2 where 

the levels are referred to as the Vehicle, System, Subsystem, Component, and Physical Levels. 

From this hierarchical decomposition of a system, the control decisions can be decomposed 

similarly, resulting in a hierarchical controller similar to the one shown in Fig. 3.1. While this 

structure is fairly generic, a control hierarchy can consist of more or fewer control levels, with 

varying numbers of controllers at each level and a single controller at the top. The term hierarchy 

refers to the communication structure where controllers only communicate with the controllers 

directly above and below them in the hierarchy. Thus controllers at the same level do not 

communicate, significantly reducing the total information communication throughout the 

hierarchy.  

 Starting from the bottom of Fig. 3.1, the power flow system (Plant) has dynamics that 

evolve continuously, potentially over a wide range of timescales and energy domains. The 
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bottom level of the hierarchical controller (Physical Level) determines the appropriate control 

signal to send to the system’s actuators to achieve the desired actuation. This desired actuation is 

the control decision made by the controller one level higher in the hierarchy (Component Level). 

At this level, each controller determines how to best utilize a corresponding component to 

achieve the desired performance determined by the subsystem controller one level higher in the 

hierarchy (Subsystem Level). The subsystem controllers are responsible for determining how a 

subsystem should operate to achieve the overall desired operation of the system. Similarly, the 

system controllers are responsible for determining how a system should operate to achieve the 

overall desired operation of the vehicle. The Vehicle Level controller uses information about the 

performance and efficiency objectives for the overall vehicle and any available information 

about know disturbances to coordinate the behaviors of the constitutive systems in achieving 

these objectives.  

 

Figure 3.1 Notional 5-level hierarchy with notional controller update rates for an electrical 

and thermal system.  
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In addition to this functional decomposition based on systems, subsystems, and 

components, the hierarchy also provides a temporal decomposition. As notionally indicated in 

Fig. 3.1, the update rate of the controllers at each level decreases for higher levels of the 

hierarchy. This allows each control level to effectively and efficiently determine state trajectories 

for dynamics with a corresponding timescale. Upper-level controllers utilize a slower update rate 

to better control slower dynamics in the system while lower-level controllers utilize a faster 

update rate to better control the faster dynamics. This matching of controller update rates with 

system dynamic timescales can provide significant control performance advantages, as discussed 

in the following Section. 

3.2 Hierarchical Control Advantages 

When compared to a centralized control approach, a hierarchical controller has two 

primary advantages relating to the temporal and functional decomposition of the power flow 

system. While the dynamics of the system occur over a wide range of timescales, a centralized 

MPC controller only has a single time step T  and a single number of discrete steps in the 

prediction horizon pN . The computational cost of the controller is directly affected by pN  and 

thus pN  is chosen based on the computational resources available. Therefore, T  becomes the 

primary decision variable when designing a centralized controller for a multi-timescale system.  

Assuming pN  is fixed, Fig. 3.2 demonstrates the effects of T . Consider a simple 

system consisting of a slow dynamic (e.g. the temperature of the fuel in a fuel tank, blue line in 

Fig. 3.2) and a fast dynamic (e.g. the temperature of a fuel cooled electrical load, pink line in Fig. 

3.2). Assume that a disturbance (red line in Fig. 3.2) affects the system which consists of a large 

pulse, which is known ahead of time, along with some small, high-frequency variations which 

are unknown. A MPC controller with a large T , and thus a long prediction horizon  pN T , 

observes the upcoming large pulse disturbance and can begin to precool the fuel as shown in Fig. 

3.2a. This precooling prevents the fuel temperature from reaching its maximum safe temperature 

(dashed line in Fig. 3.2). However, since the controller updates slowly, it cannot reject the high-

frequency disturbance that causes the fast dynamic state to deviate significantly from the desired 

value, which may be highly undesirable due to the additional thermal fatigue placed on the 
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electrical components. Alternatively, Fig. 3.2b shows the result of a controller with a small T . 

Now the controller is able to reject the high frequency disturbance but since the prediction 

horizon is short, the fuel tank is not sufficiently precooled, which results in a constraint violation 

due to the large pulse disturbance. A centralized controller with a small T  and a very large pN  

could potentially provide effective control in the presence of both types of disturbances. 

However, the excessive computational cost could render this approach infeasible in many 

applications, especially in vehicle systems where all controller computation is performed 

onboard using limited computation resources.  

 

Figure 3.2 The effects of T  on a centralized controller with regard to large known 

disturbances and small high-frequency unknown disturbances compared to a hierarchical 

control approach.  

A hierarchical control approach, however, uses the multiple levels of control in order to 

predict far into the future using large T  for the upper-level controllers as well as respond 

quickly to unknown disturbances using small T  for lower-level controllers. Thus pN  can be 

relatively small at each level of the hierarchy, reducing overall computational cost. Fig. 3.2c 
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shows how the hierarchical controller is able to combine the fast dynamic regulation 

performance of the small T  centralized control with the precooling and constraint satisfaction 

of the large T  centralized controller.  

The second primary advantage of a hierarchical controller relates to the functional 

partitioning of the system. As with decentralized and distributed controllers, no one controller in 

the hierarchy has a model of all the dynamics of the system. A centralized controller, which 

utilizes a model of the entire system, can make control decisions based on the known coupling 

throughout the system. Lack of knowledge of this coupling is what limits the performance and 

forces the iterative or conservative nature of many decentralized and distributed control 

approaches [37]. However, the proposed hierarchical control approach has the advantage of 

directly accounting for the coupling in the plant. Fig. 3.3 demonstrates how the coupling between 

two subsystems A and B is directly addressed in the proposed hierarchical framework. Power 

flows from state 1x  in subsystem A and enters subsystem B through state 2x . This power flow 

may be a function of 1x , 2x , and an actuation input u . Assume the input is determined by the 

controller for subsystem A. This power flow creates a coupling between the two subsystems. In 

decentralized control, the state 2x  in subsystem B would be treated as an unknown disturbance 

affecting subsystem A and the power flow would be an unknown disturbance affecting 

subsystem B. In the proposed hierarchical control framework, however, the power flow and the 

state 2x  are decision variables of the system-level controller. The desired value of 2x  is sent as a 

predicted disturbance to the controller for subsystem A and the desired power flow is sent as a 

predicted disturbance to the controller for subsystem B. To ensure consistency, the subsystem A 

controller is designed to track the desired power flow using the actuator input u  and the 

subsystem B  controller is designed to track the desired value for 2x  using the actuators in 

subsystem B  (not shown in Fig. 3.3). In this way, the hierarchical control framework, while 

decomposing the power flow system into systems and subsystems, is still able to directly 

consider the coupling between these systems and subsystems, resulting in significantly improved 

control performance compared to a decentralized approach.   
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Figure 3.3 A system with two interconnected subsystems used to demonstrate the ability of 

a hierarchical control framework to directly account for the coupling between systems and 

subsystems.  

The following Sections summarize the hierarchical control framework and then formalize 

the procedure by first decomposing and modeling a system as a graph and then detailing the 

hierarchical control framework and MPC controller development. 

3.3 Hierarchical Control Development Procedure 

The following algorithm summarizes the proposed procedure for modeling and 

hierarchical control of a multi-energy domain, multi-timescale power flow system. For notational 

simplicity and clarity, and without loss of generality, a three-level control hierarchy is assumed 

for a vehicle composed of systems and subsystems with slow, medium and fast dynamics.  

Hierarchical Control Development Algorithm 

1) Model the power flow system dynamics as a graph based on the procedure introduced in 

Chapter 2. 

2) Partition the graph into systems and subsystems and slow, medium, and fast dynamics. 

3) Construct new graphs to capture timescale relevant dynamics at the subsystem, system, 

and vehicle level. 

4) Identify necessary information communication throughout the hierarchy. 

5) Formulate the individual MPC controllers at each level. 

The details of each step in this process are presented in Sections 3.4-3.7 and applied for a 

numerical example in Section 3.8. 

System

Subsystem A Subsystem B

x1 x2

u
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3.4 Graph-based System Model 

Following the generic graph-based modeling framework presented in Chapter 2, the 

following specific formulation is used for this Chapter. A bilinear power flow relationship is 

assumed where  

    , ,tail head
j j j j j j j j jP u a b x c x d e E        (3.1) 

where , , ,j j j ja b c d  are parameters for each edge of the system. Each input ju  and each dynamic 

state ix  has upper and lower bounds of the form j j ju u u   and i i ix x x  . Bilinear power 

flow relationships are often found in power flow systems [38], [39], such as thermal systems 

where heat flow  1 2Q m T T   is proportional to a mass flow rate m  and a temperature 

difference between a source temperature 1T  and a sink temperature 2T . The power flow for the 

entire system is represented as the vector  

   ,
T
b c t

x
P u a M d

x

  
      

  

  (3.2) 

where ju u    , ja a    , and jd d     for je E , 
Nvx  are the states, 

Nt tx   are the 

sink values, and 
 

, ,
N N Nv t e

b c i jM m
      is a weighted incidence matrix where  

 ,

if  is the tail of 

if  is the head of .

0 else

j i j

i j j i j

b v e

m c v e

 
 

  
 
 

  (3.3) 

Due to the bilinearity in (3.2), the system dynamics cannot be represented as a linear state 

space equation. However, to keep the control optimization problem formulated in Section 3.7 

linear, a convex relaxation can be used where the vector P  serves as the decision variable, 

reducing the system to a system of integrators represented by (2.9), rewritten here as 

 .inCx MP DP     (3.4) 

 In the control formulation, (3.2) is incorporated as the set of linear constraints 
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    , , ,T T
b c b ct t

x x
u a M d P u a M d

x x

      
                

      

  (3.5) 

where    ,i iu u u u   for  je E , which ensures that the power flows determined by the 

controller can be realized with a set of inputs u u u  . Thus the bilinear plant dynamics can be 

represented as integrator dynamics with linear constraints used by the controller, and the 

nonlinearity is captured by calculating the inputs to the system as 

  
1

, .tail head
j j j j j j j j ju P b x c x d a e E


         (3.6) 

This plant representation is used to develop the centralized MPC controller used for comparison 

purposes in Section 3.8. To develop the hierarchical control framework, this centralized plant 

model must be partitioned to develop graphs used by each controller in the hierarchy. 

3.5 System Decomposition 

In order to develop a hierarchical controller, the power flow system, represented as an 

oriented graph , using the framework presented in Chapter 2, must be decomposed temporally 

and functionally. To demonstrate this decomposition, the example system shown in Fig. 3.4 is 

used throughout the remainder of this Chapter. The graph for this system has 12vN   vertices, 

18eN   edges, 2sN   source power flows, and 2tN   sinks. Based on the capacitances of the 

vertices, vertices with slow, medium, and fast dynamics are indicated by different colors. The 

overall vehicle system is decomposed into 2 systems, each containing 2 subsystems. Based on 

the three timescales and the number of systems and subsystems, the corresponding three-level 

hierarchical controller is shown in Fig. 3.5.  

In general, temporal partitioning is based on the timescale separation of the dynamics in 

the plant, represented by the magnitude of the vertex capacitances iC ,  1, vi N , as discussed in 

Section 2.4. For the three timescale example in this Chapter, it is convenient to refer to the 

dynamics as fast, medium, or slow. Note that when determining this temporal decomposition, it 

may be necessary to normalize the capacitances based on the magnitude of the corresponding 

state, especially when multiple energy domains are modeled. For example, the capacitance  
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Figure 3.4 Example system graph used to demonstrate the hierarchical control 

development and performance.  

 

Figure 3.5 Example three-level hierarchy, and corresponding information flow, with a 

single vehicle-level controller, two system-level controllers, and four subsystem-level 

controllers. 
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representing the inertia of an engine with the state corresponding to the angular velocity should 

be normalized when compared to the capacitance representing the thermal capacitance of a heat 

exchanger with the state corresponding to average temperature since the engine speed might 

change by thousands of RPM compared to heat exchanger temperature which might only change 

tens of degrees. 

The plant must also be partitioned spatially. Often this spatial partitioning is intuitive and 

can be derived from functionality, physical location, or energy domain. However, for plants 

where the partitioning is unclear, [40] presents several algorithms for optimal partitioning of 

systems for decentralized and distributed control. In general, for a control hierarchy with N  

levels, the thi  level of the hierarchy has in  controllers where 1 1n   and 1i in n  . As discussed 

in Section 8.2, future work should establish graph-based temporal and spatial partitioning 

procedures specifically for hierarchical control where partitioning optimizes the tradeoff between 

control performance and computational cost. System partitioning in this dissertation is performed 

manually to demonstrate hierarchical controller development and is not optimized to maximize 

performance. 

For the 3N   level example system from Fig. 3.4, the system is decomposed into the 

3 4Nn n   subsystems 
sub
iG  shown in Fig. 3.6. For these individual subsystem graphs, light 

gray vertices represent virtual sources and sinks where power flow is exchanged with a 

neighboring subsystem. Thus 
sub
iG  includes all edges of G  which are incident to the dynamic 

vertices of the subsystem, but no more.  

These subsystem graphs are used to create the models for the MPC controllers at the 

bottom level of the hierarchy in Fig. 3.5, following the procedure outlined in Section 3.7. The 

controllers at the upper levels of the hierarchy use a reduced system model, as discussed in the 

following Section, to minimize computational cost and improve the scalability of the control 

approach.  
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Figure 3.6 Individual subsystem graph representations for the example system. 

3.6 Graph-based Model Reduction 

For graph-based model reduction, the general idea is to use the in  subsystem reduced 

graphs at the thi  level to generate the reduced graphs at the 1i   level. However, the thN  level 

controllers do not use a reduced model as discussed in the previous Section, and thus this model 

reduction is only performed for levels 1N   through 1.  

Let the thj  subsystem at the 1i   level be an aggregation of neighboring subsystems at 

the thi  level. For the example from Fig. 3.4, the graph for system 1, 1
sys

G , is derived from 

reduced graphs for subsystems 1 and 2, while the graph for system 2, 2
sys

G , is derived from 

reduced graphs for subsystems 3 and 4. For each subsystem, the graph condensation is a two-step 

process where 1) the fast dynamic vertices are converted into algebraic vertices and 2) 

neighboring algebraic vertices are combined into a single vertex. Algebraic vertices iv  have no 

capacitance and thus must satisfy 

 0 .j k
in oute E e Ej ki i

P P

 

     (3.7) 

Once condensed, the reduced graphs for subsystems 1 and 2 and the reduced graphs for 

subsystems 3 and 4 are combined to create the graphs for system 1 and 2, 1
sys

G  and 2
sys

G , 
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respectively. It is important to note that if there are adjacent algebraic vertices in the resulting 

system graph, these vertices should not be combined, since the power flow between these 

vertices is critical to the coordination of the constitutive subsystems. As a result of this 

condensation, the system graphs only include vertices with slow and medium dynamics, as well 

as algebraic vertices. 

Fig. 3.7 shows the resulting system graphs 1
sys

G  and 2
sys

G . The two fast dynamic vertices 

of 1
subG  are converted into algebraic vertices (represented as white vertices) and condensed since 

2v  and 3v  are neighbors through 3e . The fast dynamic vertex 5v  in 2
subG  is also converted to an 

algebraic vertex. The resulting subsystem graphs were combined to produce 1
sys

G . As mentioned 

previously, the algebraic vertex 2,3v  is not combined with algebraic vertex 5v  since the 

controller for system 1 must determine the desired power flow along 4e  in order to address the 

coupling between subsystems 1 and 2 based on the previous discussion using Fig. 3.3. The same 

procedure is followed to generate 2
sys

G , where 7v  and 12v  are converted to algebraic vertices; 

however, no vertices are combined since there were no neighboring fast dynamic vertices in 

either subsystem 3 or 4. 

 

Figure 3.7 System graph representations for the example system. 
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graphs are combined to create the vehicle graph. The vehicle graph only includes vertices with 

slow dynamics and algebraic vertices. 

Fig. 3.8 shows the resulting graph vehG . The medium dynamic vertices of 1
sys

G  and 2
sys

G  

were converted to algebraic vertices and combined with neighboring algebraic vertices. Based on 

the structure of 1
sys

G  and 2
sys

G  all algebraic vertices were combined into a single algebraic vertex 

for each system. The two condensed system graphs were combined resulting in two algebraic 

vertices and the two slow dynamic vertices 6v  and 8v . Once again, the two algebraic vertices are 

not combined because the vehicle-level controller must determine the desired power flow along 

8e  and 9e  to address the coupling between systems 1 and 2. 

 

Figure 3.8 Vehicle graph representation for the example system. 

The sets and parameters identified for the entire system in Chapter 2 can be defined for 

each graph vehG , 
sys
iG , and 

sub
iG , where a superscript is used to denote the set or parameters for 

a particular graph (e.g. zx  is used to denote the vector of dynamic states for graph zG  in the 
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3.7 Controller Development 

Fig. 3.5 shows the three-level hierarchical control architecture used to control the 

example system from Fig. 3.4. In general, the vehicle-level receives preview information for 

upcoming disturbances. For the example system this refers to the predicted values for 1
inP , 2

inP , 

1
tx , and 2

tx . The vehicle-level controller then uses the dynamic representation of the system 

derived from vehG  to determine the desired states for the slow dynamic vertices. For the 

example system this corresponds to 6x  and 8x . The vehicle-level also determines the desired 

power flows for any edge that connects two systems as well as the desired states for the tail and 

head vertices for these edges. For the example system, these are the power flows along 8e  and 

9e  along with 2x , 7x , 5x , and 11x . The system-level controllers attempt to track these desired 

values. If a desired power flow is exiting the system, the system controller tries to track the 

desired power flow using knowledge of the desired value of the head vertex state sent from the 

vehicle-level controller. If a desired power flow is entering the system, this power flow is treated 

as a known disturbance to the system and the system controller tries to achieve the desired head 

vertex states sent from the vehicle-level controller. For the example system, the system 1 

controller tries to achieve the desired power flows along 8e  and 9e  using knowledge of the 

desired values 7x  and 11x . The system 2 controller tries to achieve the desired values for 7x  and 

11x  using knowledge of the desired power flow along 8e  and 9e . This approach helps to ensure 

consistency among the actions of the system-level controllers. The system-level also determines 

the desired values for the medium dynamic states, the desired power flow along edges 

connecting subsystems, and the tail and head vertex states for these edges. This process 

continues for the subsystem-level controllers. 

With the information communication architecture and desired control behavior defined, 

MPC controllers are used at each level of the hierarchy to achieve this coordination between 

systems and subsystems. One of the key features of the proposed hierarchical controller in this 

Chapter is that each MPC controller in the hierarchy has the same general form. This 

significantly simplifies the control design procedure and allows the hierarchical approach to be 
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readily scaled to larger systems with more levels of control. Controller z  solves the constrained 

quadratic program 
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and 
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The lifted vector  z zP k 
 

P  contains the decision variables corresponding to the power 

flows along the edges of the graph at every time step k  over the prediction horizon pN . The 

objective function includes six cost terms each defined at every time step of the prediction 
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horizon as well as five inequality constraints and four equality constraints. The initial state vector 

 0zx  equals the measured state of the system 0
zx . The six terms of the cost function, weighted 

by i , penalize  

1) tracking of desired stated values,  

2) power flow along edges,  

3) tracking of desired state values sent from the controller directly above in the hierarchy,  

4) tracking of desired power flows also sent from the controller directly above in the 

hierarchy,  

5) changes in power flows in time, and  

6) the slack variables used to ensure feasibility of the optimization problem when state 

constraint violation is unavoidable.  

The five inequality constraints bound 

1) the power flows from below based on the minimum achievable inputs,  

2) the power flows from above based on the maximum achievable inputs,  

3) the states from below,  

4) the states from above, and  

5) the slack variables to be positive.  

Finally, the two equality constraints provide 

1) the discretized system dynamics with a time step of zt  based on the corresponding 

graph for the particular controller,  

2) the algebraic relationships between power flows in the system,  

3) preview for the source disturbances provided by the controller directly above in the 

hierarchy, and  

4) preview of the sink disturbances also provided by the controller directly above in the 

hierarchy. 

While each controller has the same generic form, the exact controller formulation 

depends on the level of the controller in the hierarchy. Since there is no controller above the 

vehicle-level, the vehicle-level controller does not have 3J  or 4J  and does not receive the 

disturbance preview information in 3h  and 4h  from a controller.  If preview information is 
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available, this information must be provided directly to the vehicle-level controller as shown in 

Fig. 3.5. In addition to the MPC controller, the controllers at the lowest level in the hierarchy, the 

subsystem controllers in this Chapter, must also calculate the control inputs to be sent directly to 

the system. Eq. (3.6) is used to calculate the input signals based on the desired power flows at the 

first time step  1zP  and the measured states 0
zx . 

3.8 Numerical Example 

The following simulation results compare the control performance achieved by 

centralized, decentralized, and hierarchical control approaches. The example system from Fig. 

3.4 is used with the parameters listed at the end of the Chapter. All controllers have a prediction 

horizon of 20pN   steps. The centralized controller is evaluated using three different update 

rates of 1t  , 10, and 100 seconds corresponding to the update rates of the subsystem, system, 

and vehicle-level controllers in the hierarchical controller, 1subt  , 10syst  , and 

100,veht   respectively. The decentralized controller has an update rate of 1t   second and 

consists of the four subsystem-level controllers at the lowest level of the hierarchy without the 

system- and vehicle-level controllers. For brevity, the following figures only show the 

centralized control performance corresponding to an update rate of 10 seconds. Also, for clarity, 

only some of the vertex state trajectories are highlighted in Figs. 3.9 and 3.11 as indicated in the 

legends. 

First, the convergence properties of each control approach are evaluated. Fig. 3.9 shows 

the convergence performance of the centralized, decentralized, and hierarchical controllers where 

each vertex in the example system from Fig. 3.4 has an initial state of either 25 or 75 and all 

states are to be regulated at 50. As expected, the centralized controller, Fig. 3.9a, provides the 

fastest convergence utilizing complete knowledge of the coupling in the plant. The convergence 

results for the centralized controllers with update rates of 1 and 100 seconds are very similar to 

that shown in Fig. 3.9a. The decentralized controller, with no knowledge of the coupling between 

subsystems, converges much more slowly as shown in Fig. 3.9b. The hierarchical controller, Fig. 

3.9c, while not as effective as the centralized approach, performs significantly better than the 

decentralized controller, demonstrating how the system and vehicle-level controllers effectively 
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coordinate the actions of the subsystems. The spikes in 5x  and 7x  (cyan and black lines in Fig. 

3.9c) are due to an update in the desired power flow determined by the vehicle-level controller. 

These states are affected most significantly because they are in the set of fast dynamic vertices 

and are directly affected by the power flow out of other subsystems.  

 

Figure 3.9 Convergence results for centralized, decentralized, and hierarchical controllers. 

Next, the controller performance is evaluated for a scenario with time-varying source and 

sink disturbances. Fig. 3.10 shows the disturbance profiles for 1
inP , 2

inP , 1
tx , and 2

tx . Based on 

the power flow relationship for 17e , the change in 1
tx  results in a change in the maximum power 

flow to this sink from 50W to 75W. This disturbance is followed by an increase in inlet power 

1
inP  from 50W to 75W. The inlet power flow 2

inP  and the sink state 2
tx  are constant at 50. These 

disturbances are previewed by the centralized controller and the vehicle-level controller of the 

hierarchy. Each source and sink also has small unmeasured high-frequency deviations that are 

not included in the preview information. Fig. 3.11 shows the control results for the three different  
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Figure 3.10 Disturbance profiles. 

 

Figure 3.11 Disturbance rejection results for centralized, decentralized, and hierarchical 

controllers. 
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by blue). When the large power load enters the system from 400 to 600 seconds, these states 

0 200 400 600 800 1000
40

50

60

70

80

P1
in

P2
in

x1
t

x2
t

Time [s]

0 200 400 600 800 1000

40

60

80

100

0 200 400 600 800 1000

40

60

80

100

0 200 400 600 800 1000

40

60

80

100

a)

b)

c)

Central (Δt = 10s)

Decentral (Δt = 1s)

Hierarchical (Δt = 1,10,100s)

Time [s]

x1

x5

all other x

x6

x7

x8

x12



 38  

increase and settle near the desired value of 50. Also, note that 12x  (red line) is well regulated to 

the desired value of 50. The centralized controller with an update rate of 10t  , Fig. 3.11a, 

does not have as long of a prediction horizon as the vehicle-level controller and thus does not 

effectively use the extra sink capacity during 100 to 300 seconds resulting in minimal precooling 

of 6x  and 8x . The large power load then causes these states to rise well above the desired value 

of 50. Additionally, since the centralized controller has a larger update rate than the subsystem-

level controllers, the centralized controller is not able to reject the unmeasured disturbances as 

effectively, resulting in the large variations in 12x  (red line in Fig. 3.11a). Finally, as shown in 

Fig. 3.11b, the decentralized controller, while able to reject the unmeasured disturbances due to 

its fast update rate, is unable to precool 6x  and 8x  and is also unable to regulate 1x , 5x , and 7x  

(the magenta, cyan, and black lines in Fig. 3.11b) due to its lack of disturbance preview and 

subsystem coupling knowledge. The relative tracking performance for each controller is 

compared in Fig. 3.12, where the height of each bar ih  is calculated as 

  
1000

2

2
0

50 ,i

k

h x k


    (3.11) 

and then normalized compared to the hierarchical control approach. Thus a height of zero on this 

plot corresponds to perfect tracking. In Fig. 3.12, each bar is subdivided corresponding to the 

tracking error for 6x  and 8x  (blue area), 12x  (green area), and the states of the remaining 

vertices (red area). In general, the centralized controllers perform significantly better than the 

decentralized approach but have about twice the tracking error as the hierarchical approach. The 

majority of the tracking error for the centralized controller with an update rate of 1t   second 

comes from the inability to precool 6x  and 8x  (blue area), while the majority of the tracking 

error for the centralized controller with an update rate of 100t   seconds comes from the 

inability to regulate 12x  due to the unmeasured high-frequency disturbances (green area). The 

majority of the tracking error for the hierarchical control approach comes from the strategic 

precooling of 6x  and 8x . Due to the actuator constraints of the system and the magnitude of the 

disturbances, zero tracking error is infeasible for this scenario. Thus the hierarchical controller 
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determines the appropriate precooling to minimize the total tracking error before and after the 

large power load. 

 

Figure 3.12 Comparison of reference tracking error for centralized, decentralized, and 

hierarchical controllers. 

The hierarchical controller achieves this performance increase in a computationally 

efficient way. Fig. 3.13 shows the time required to solve the optimization problem at each time 

step throughout the simulation for the centralized controller with 10t   and each of the 

individual controllers within the hierarchical controller. The MPC optimization problems are 

formulated using the YALMIP Toolbox [41] and solved using the Gurobi optimization suite [42] 

run on a desktop computer with a 3.10 GHz Intel Xeon E31225 processor and 8 GB of RAM. By 

decomposing the control decisions for the system among coordinated controllers, the hierarchy 

reduces the computational cost of each controller by about 50% of the centralized controller. 

However, since there are more individual controllers in the hierarchy, the overall computational 

cost is higher. This would not necessarily be true for a larger system with more states and 

decision variables. Additionally, the hierarchical controller can take advantage of parallel 

processing while the centralized controller cannot. Future work should investigate how the 

increase in computational cost of hierarchical controllers compares that that of centralized 

controllers. 
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Figure 3.13 Comparison of controller computation times for the centralized controller with 

10t   and the hierarchical controllers. 

3.9 Chapter Summary 

A hierarchical control approach is well suited for controlling the complex multi-timescale 

power flow systems in vehicles. Vehicle-wide control performance is achieved through 

coordination among systems and subsystems at each timescale. This Chapter presented a generic 

hierarchical control development procedure and demonstrated the efficacy of the approach on a 

simulated example system. The following two Chapters further the development of hierarchical 

control by analyzing the theoretical properties of stability and robust feasibility. 
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Example System Parameters 

The following table contains the parameters for the example system in Fig. 3.4. 

xi Ci ei ai bi ci di 𝑢𝑖  𝑢𝑖  

1 0 1 1 1 0 0 0 0 

2 10 2 0 0 0 1 0 50 

3 1 3 0 0 0 1 0 50 

4 1 4 0 0 0 1 0 50 

5 0 5 0 0 0 1 0 50 

6 10 6 1 1 0 0 0 0 

7 1 7 0 0 0 1 0 50 

8 100 8 0 0 0 1 0 50 

9 1 9 0 0 0 1 0 50 

10 100 10 0 0 0 1 0 100 

11 10 11 0 0 0 1 0 50 

12 0 12 0 0 0 1 0 50 

13 10 13 0 0 0 1 0 50 

14 10 14 0 0  1 0 0 1 

15 1 15 0 0 0 1 0 50 

16 0 16 0 0 0 1 0 100 

  17 0 0 0 1 0 50 

  18 0 0 0 1 0 50 

  19 0 0 0 1 0 50 

  20 0 0 1 0 0 1 

 0, 100 1,16i ix x i     
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Chapter 4     

Passivity-based Stability 

4.1 Motivation 

For energy management onboard vehicle systems, controllers are tasks with maximizing 

performance through optimizing the generation, storage, distribution, and utilization of energy. 

As these controllers are designed more aggressively, guaranteeing stability of the closed-loop 

system becomes vital to safe and reliable operation. However, assessing closed-loop stability of a 

control hierarchy remains difficult due to the complex structure of interaction among individual 

controllers in the hierarchy. Despite the performance advantages of MPC, the general lack of 

closed-form control solution compounds this difficulty. Through analysis of the specific structure 

of graph-based power flow systems, this Chapter provides a formulation for augmenting each 

MPC controller at the lowest level of a hierarchical controller, using a local passivity constraint, 

which guarantees closed-loop stability for the overall system. 

4.2 Background 

When modeling power flow systems as a graph, the governing energy conservation laws 

suggest an inherent feature of these systems: passivity. The notion of passivity in system 

modeling and control originated from the physical principles of energy conservation and 

dissipation in electrical and mechanical systems [43] and has become a widely used and highly 

general methodology in nonlinear system analysis and control [44]–[46]. Thus, passivity-based 

control has been applied to a variety of power flow systems in centralized [30], [47], [48] and 

decentralized control architectures [49]. 
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Due to the numerous benefits of MPC, many centralized, passivity-based MPC 

formulations have been developed in the literature [50]–[54]. However, due to the complexity of 

many systems, including power flow systems, a centralized control approach may be 

computationally impractical and may not provide sufficient robustness to faults in the system. 

Thus, several distributed passivity-based MPC formulations have also been established [18], 

[55]. In these approaches, along with the system analysis in [56], [57], stability is assessed with a 

global, system-wide matrix condition that accounts for the subsystem interconnection topology 

and the gain of the coupling between subsystems. While this may be practical for some systems, 

the need to analyze global properties of the system is limiting and, as will be shown, unnecessary 

for guaranteeing closed-loop stability of graph-based power flow systems. 

The aim of this Chapter is to present a purely decentralized and easily implementable 

method for augmenting existing decentralized and hierarchical control frameworks that 

guarantees stability of the overall closed-loop system. The relative simplicity of the approach is 

enabled by exploiting the structure of power flow systems represented as graphs. The proposed 

approach identifies a set of inputs and outputs that render each subsystem passive. Neighboring 

subsystems form a negative feedback connection, establishing passivity of the overall system. 

While the approach relies on a graph-based representation of the system, a nonlinear, affine in 

control, power flow representation provides applicability to a wide class of systems. Actuator 

input and state constraints are considered, with slack variables on the state constraints to avoid 

infeasibility issues. Through the addition of a nonlinear constraint to each controller, the 

proposed approach provides simple implementation and reduced conservatism compared to 

standard passivity-based approaches. 

4.3 Nonlinear Graph System Model 

Following the general graph-modeling framework from Chapter 2, consider a power flow 

system composed of subN  interconnected subsystems  , 1,i subi NS . Each subsystem is 

represented by an oriented graph  ,i i i= V E  of order ,v iN  with set of vertices 

 , ,, 1,i i k v iV v k N     and of size ,e iN  with set of edges  , ,, 1,i i j e iE e j N    . Each 

oriented edge ,i j ie E  represents a path for power flow in iS , where positive power ,i jP  flows 
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from the tail vertex ,
tail
i jv  to the head vertex ,

head
i jv . Each vertex ,i k iv V  has an associated state 

,i kx  that represents the amount of energy stored in that vertex. Thus the dynamic for the state of 

each ,i kv  satisfies the energy conservation equation 

 , , , ,

, ,, ,

,i k i k i j i j
in oute E e Ei j i ji k i k

C x P P

 

     (4.1) 

where , 0i kC   is the energy storage capacitance of vertex ,i kv  and  , , , ,|in head
i k i j i j i kE e v v   and 

 , , , ,|out tail
i k i j i j i kE e v v   are the sets of edges oriented into and out of the vertex ,i kv . 

Assumption 4.1 

The power flow ,i jP  along edge ,i je  is defined as 

    , , , , , , , ,, , ,tail head tail head
i j i j i j i j i j i j i j i jP f x x g x x u    (4.2) 

where ,
tail
i jx  and ,

head
i jx  are the states of the tail and head vertices ,

tail
i jv  and ,

head
i jv , ,i ju  is an 

associated actuator input, and , ,, :i j i jf g   . Additionally, ,i jf  is Lipschitz, twice 

continuously differentiable, and  , 0,0 0i jf   while ,i jg  is continuous,  , 0,0 0i jg  , and the 

intersection of the zero sets of ,i jg  is the origin     , , ,, 0 .tail head
i j i j i j

j

g x x   

Fig. 4.1 shows a graph of an example subsystem iS  used to identify key components. For 

this example subsystem, there are three paths for power to enter or exit the subsystem. For the 

two dashed edges oriented into the subsystem, the power flow along these edges, denoted ,1
in

iP  

and ,2
in

iP , is treated as a disturbance to the subsystem and these edges are not included in i . The 

third path is represented by an edge oriented out of the subsystem, labeled ,1
out

iP . Power flow 

along this type of edge follows the relationship from (4.2), where now ,
head
i jx  is a sink vertex 

state ,1
t
ix . These sink states are not states of iS  and thus are disturbances to the subsystem, 
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representing the surrounding environment. Finally, as indicated in Fig. 4.1, each subsystem has a 

subset in
ix  of the states ix  that represent the states directly affected by the inlet power flows in

iP . 

 

Figure 4.1 Notional subsystem exemplifying the graph-based power flow representation 

with key power flows and states highlighted in red. Dashed lines indicate elements that 

serve as disturbances to the subsystem.  

Let ,i i jkM m     be the incidence matrix of graph i  [36] where 

 

, ,

, , ,

1 if  is the tail of 

1 if  is the head of .

0 else

i j i k

i jk i j i k

v e

m v e

 
 

  
 
 

  (4.3) 

Then, based on (4.1), the subsystem dynamics are  

 ,
0

i i i in
i i it

i

C x D
M P P

x

   
     

    

  (4.4) 

where ix  are the states of the dynamic vertices, 
t
ix  are the states of the sink vertices, 

 ,i i kC diag C   
 is a diagonal matrix of the capacitances of the dynamic vertices, iP  are the 

power flows along the edges of i , 
in

iP  are the source power flows entering iS , and 

,i i jkD d   
 is a matrix where 

iS

,1

in

iP

,2

in

iP

,1

out

iP

,1

in

ix

,2

in

ix

,1ix

,2ix

,3ix

,4ix
,5ix

,1iP

,2iP

,3iP

,4iP

,5iP
,6iP ,1

t

ix

i
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, ,

,

1 if  is the head of 
.

0 else

in
i j i k

i jk

v P
d

  
  
  

  (4.5) 

Since 
t
ix  are disturbances to the system, not states, iM  is partitioned as i

i
i

M
M

M

 
  
 

, with 

, ,N Nv i e i
iM


  and , ,N Nt i e i

iM


 , resulting in 

 .in
i i i i i iC x M P D P     (4.6) 

From (4.2), the vector of power flows in iS  is 

    , , ,t t
i i i i i i i iP F x x G x x u    (4.7) 

where    , , ,, ,t tail head
i i i i j i j i jF x x f x x 

 
 and     , , ,, ,t tail head

i i i i j i j i jG x x diag g x x 
 

. Thus the 

dynamics for iS  are 

    , , .t t in
i i i i i i i i i i i i iC x M F x x M G x x u D P      (4.8) 

Assumption 4.2 

Each subsystem of the form 

  
0

, ,
0

ii
i i i i i t

i

xC
x M F x x

I x

  
     

    
  (4.9) 

admits an equilibrium 
*
ix  for a set of nominal inputs 

*
iu  and disturbances 

,*in
iP , 

,*t
ix  and such 

an equilibrium is locally stable in the sense that the Jacobian matrix 

 
 

*

,
i i i

i
i x xi i

M F x
A

x



 


  (4.10) 

has eigenvalues such that  Re 0k iA k   .  
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Remark 4.1 

It is assumed that 
*
ix , 

*
iu , 

,*in
iP , 

,* 0t
ix  . If otherwise, the subsystem states, inputs, and 

disturbances can be shifted such that 
*
ix , 

*
iu , 

,*in
iP , 

,* 0t
ix  . Note that if  Re 0k iA   for 

some k , linearization fails to assess the stability of the system and a center manifold analysis 

may be employed [44]. 

 Remark 4.2 

From the notation introduced in [33], if each ,i jf  is restricted to be a g-type flow, with 

   , , , , , ,,tail head tail head
i j i j i j i j i j i jf x x f x x  , or a h-type flow, with    , , , , ,,tail head tail

i j i j i j i j i jf x x f x , and 

is smooth with positive derivative, stabilizability of the open-loop subsystem can be assessed 

based on the external connectivity of i . 

The overall power flow system S , with graph , is composed of N  interconnected 

subsystems iS ,  1,i N . Following the same procedure used to define the dynamics of each 

subsystem, the overall system dynamics are 

    , , ,t t inCx MF x x MG x x u DP      (4.11) 

where  ix x  and  iu u  are the states and inputs of the entire system. The inlet power flows 

 1 ,...,in in in
NP P P  are the power flows into system S , i.e. power flows that do not come from 

neighboring subsystems. These power flows directly affect the states  1 ,...,in in in
Nx x x . The sink 

states for the system  1 ,...,t t t
Nx x x  are the sink states from the individual subsystems that do 

not correspond to states of a neighboring subsystem. The power flows to these sink states are 

denoted  1 ,...,out out out
NP P P . 
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Definition 4.1 

A , -pathu v  on  ,V E  is a sequence of edges (regardless of orientation) connecting two 

distinct vertices ,u v V , not including any sink vertices as intermediate vertices. A graph  is 

connected if it has a , -pathu v  for each ,u v V . 

Assumption 4.3 

The graph  is connected. 

If  is not connected, the individual components of  are to be analyzed independently.  

Remark 4.3 

While the dynamics of the overall system are defined in (4.11), one of the key advantages of the 

proposed approach is that all assumptions and analysis are local to each subsystem. 

Development of the controller and assessing the closed-loop stability does not require analysis 

of the entire system. This can be advantageous when the size of the system prevents any type of 

centralized design or analysis and when analyzing plug-and-play systems [58], where subsystems 

may go on- and offline during operation. 

4.4 Main Results 

4.4.1 Passivity of Subsystems 

Definition 4.2 [44] 

The system H  with  ,x f x u ,  ,y h x u  where : n p nf    is locally Lipschitz, 

: n p ph    is continuous,  0,0 0f  , and  0,0 0h   is passive if there exists a 

continuously differentiable positive semidefinite function  V x  such that 

    , , , .T n pV
u y V f x u x u

x


   


  (4.12) 

If Tu y V  for only a neighborhood of the origin, H  is locally passive. 
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Fig. 4.2 shows the interconnection of subsystem iS  with “upstream” and “downstream” 

subsystems 1iS  and 1iS . The set of s
iN  power flows into iS  from 1iS  is denoted 

sNin i
iP   

and directly affects a corresponding set of states in iS , denoted as 
sNin i

ix  . The set of t
iN  

power flows out of iS  into 1iS  is denoted 
tNout i

iP   and directly affects a corresponding set 

of states in 1iS , denoted as 
tNt i

ix  . Note that, for the particular subsystem interactions shown 

in Fig. 4.2, 1
out in

i iP P  and 1
t t
i ix x  . The interconnection between these three subsystems is 

shown as a set of negative feedback connections in Fig. 4.3. For subsystem iS , the actuator 

inputs and passivity outputs are denoted iu  and iy , respectively, where iy  is a function of 

subsystem states ix  and neighboring states t
ix  and is strategically chosen below. 

 

Figure 4.2 Notional interconnection between three subsystems demonstrating the key 

interactions and relevant variables.  

Theorem 4.1 

A subsystem iS , represented by (4.8), is locally passive from iu  to iy  with 

 , ,

in in
i i

i i i i

t out
i i

P x

u u y y

x P

   
   

    
   
   

  (4.13) 

and  

   .T
i i i i iy G x M x    (4.14) 

1iS  iS 1iS 

in

iP

,2

in

ix

t

ix

out

iP,1

in

ix



 50  

 

Figure 4.3 Block diagram for the subsystems from Fig. 4.2.  

Proof. 

Consider the storage function 
1

2

T
i i i iV x C x . Taking the derivative and using (4.6) yields  

 .T T T in
i i i i i i i i i iV x C x x M P x D P      (4.15) 

Noting that 
in T
i i ix D x , (4.15) simplifies to 

   .
T

in in T
i i i i i iV x P x M P    (4.16) 

Adding and subtracting  
T

t out
i ix P , with 

out
i i iP M P  , results in  

       .
T T T

in in t out T t
i i i i i i i i i i iV x P x P x M P x M P       (4.17) 

 Using (4.7) and the definition for iy  in (4.14), iV  reduces to 

 
     

 

,

.

T T
in in t out T T

i i i i i i i i i i i

T T
i i i i i i

V x P x P y u x M F x

y u x M F x

    

 

  (4.18) 

By Assumption 4.2, there exists 0iA  such that  

iS
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   0T T
i i i i i i ix M F x x A x     (4.19) 

within a neighborhood of the equilibrium. Thus T
i i iV y u  within this neighborhood, proving the 

theorem.   

Establishing the connection between passivity and stability requires the system to be 

zero-state detectable (ZSD) [45]. 

Definition 4.3 [45] 

The system H  with zero input is  ,0x f x ,  ,0y h x , and 
nZ   is its largest positively 

invariant set contained in   | ,0 0nx y h x   . The system H  is zero-state detectable 

(ZSD) if 0x   is asymptotically stable conditionally to Z . If 0Z  , H  is zero-state observable 

(ZSO). 

Lemma 4.1 

The system (4.8) with outputs iy  is ZSO. 

Proof. 

Based on the definition of iM  in (4.3), the output vector is ,i i jy y    , where  

   , , , , , ,, ,tail head tail head
i j i j i j i j i j i jy g x x x x     (4.20) 

For ZSO, 0iy   only if 0ix  . Based on Assumption 4.1, there exists j  such that 

 , , ,, 0tail head
i j i j i jg x x   if , ,, 0tail head

i j i jx x  . Combined with the fact that , , 0tail head
i j i jx x j    only at 

the equilibrium 
* 0ix  , there exists j  such that , 0i jy   if 0ix  , which proves the system is 

ZSO, and thus also ZSD.  

Remark 4.4 

With the thj  output for iS  defined in (4.20), the passivity outputs reflect the physical structure of 

the system. For edge ,i je , the corresponding passivity output ,i jy  is a function of the difference 
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between the tail and head vertex states ,
tail
i jx  and ,

head
i jx  and the nonlinear gain ,i jg  between the 

input ,i ju  and power flow ,i jP . While physical meaning of this output depends on the particular 

power flow system, in general, the passivity output for each edge represents the disparity 

between the neighboring vertex states weighted by the corresponding input control authority. 

4.4.2 Passivity of the System     

With the passivity of each subsystem iS  established in Theorem 4.1, the structure of the 

interconnections between subsystems, as shown in Figs. 4.2 and 4.3, is used to assess the 

passivity of the overall open-loop system. 

Theorem 4.2 

Given a system S  composed of N  interacting subsystems iS , if each subsystem is passive from 

inputs iu  to outputs iy , then the overall open-loop system is passive from the inputs u  to the 

outputs y  with 

 , ,

in in

t out

P x

u u y y

x P

   
   

    
   
   

  (4.21) 

where  iu u  and  iy y  are all of the actuator inputs and passivity outputs for the system. 

Proof. 

The following proves the theorem by induction on the number of subsystems in S . Let  NS  

denote a system with N  subsystems. For the base case, 1N  , Theorem 4.1 establishes that a 

system comprised of a single subsystem iS  is passive from iu  to iy . For the induction step, let 

 1N S  be the union of a system  NS  with N  subsystems and a single subsystem rS , where 

  is a subgraph of . By the induction hypothesis, S  is passive from u  to y  and by Theorem 

4.1, rS  is passive from ru  to ry . Since, by Assumption 4.3,  is a connected graph, there exists 

at least one edge for power to flow between S  and rS . As shown in Fig. 4.3, each power flow 
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between neighboring subsystems forms a negative feedback connection. Therefore, S  is a 

system formed by the negative feedback of two passive systems and is itself passive.   

Example 4.1 

To demonstrate the result of Theorem 4.2, and the construction of vectors 
inP , inx , 

outP , and 

tx , consider the three interconnected subsystems shown in Figs. 4.2 and 4.3. Each subsystem 

has a storage function where 

  1, , 1 .T
k k kV y u k i i i       (4.22) 

The storage function for the system is 

 1 1,i i iV V V V      (4.23) 

and  

 

   

   

   

1 1 1 1 1 1

1 1 1 1 1 1 .

T
in in T t out

i i i i i i

T
in in T t out

i i i i i i

T
in in T t out

i i i i i i

V P x u y x P

P x u y x P

P x u y x P

     

     

    

   

  

  (4.24) 

Noting that 1
out in

i iP P  , 1
out in

i iP P , 1
in t
i ix x  , and 1

t in
i ix x  ,  

 

   

   

1 1 1 1 1 1 1 1 ,

,

,

T
in in T T T t out

i i i i i i i i i i

T
in in T t out

T

V P x u y u y u y x P

P x u y x P

u y

            

   



  (4.25) 

where 1
in in

iP P , 1
in in

ix x  , 1
out out

iP P , and 1
t t

ix x  . 

Remark 4.5 

Note that the cascaded structure shown in Figs. 4.2 and 4.3 is used purely for notational 

simplicity. The fact that the negative feedback connections, on which the proof of Theorem 4.2 is 



 54  

based, are formed on a per edge basis allows the stability of a system with any subsystem 

interconnection structure to be established from the passivity of each subsystem. 

4.4.3 Decentralized Closed-loop Stability 

The structured, passivity-preserving coupling between subsystems used to prove passivity 

of the open-loop system also allows for the independent design of MPC controllers for each 

subsystem. As shown in Fig. 4.4, each controller can be treated as another subsystem iC  in 

negative feedback with subsystem iS  through the inputs iu  and passivity outputs iy . Thus, 

passivity of the closed-loop system under decentralized control is achieved by enforcing 

passivity in each controller individually.   

 

Figure 4.4 Block diagram showing the negative feedback connection between the subsystem 

iS  and the controller iC . For clarity of presentation, controllers 1iC  and 1iC  for 

subsystems 1iS  and 1iS  are omitted from the diagram.  

Each controller iC  solves the following augmented nonlinear MPC optimization problem 

 
 

        
0

min , , ,
T

i i i i
ui

x u r s d    


   (4.26a) 
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. t .s  ,in
i i i i i iC x M P D P     (4.26b) 

    , , ,t t
i i i i i i i iP F x x G x x u    (4.26c) 

   ,00 ,i ix x   (4.26d) 

   ,T
i i i iy G x M x    (4.26e) 

      min max ,i i i i ix s x x s        (4.26f) 

    , 0, ,i iu T     (4.26g) 

    , , 0, ,T
i i i i iz u y z T       (4.26h) 

where the stage cost    is a positive definite function,  ir   is a set of references to be tracked, 

 is   are slack variables to ensure feasibility of the state constraints, and 

 min max
, , ,|i i i j i j i ju u u u j     with 

min max
, ,0i j i ju u  . Similar to [50], iz   represents the 

accumulation of passivity. When 0T
i iu y  , the excess passivity is stored by decreasing iz . This 

stored passivity can be depleted by allowing the system to operate with a deficiency of passivity 

for a finite amount of time, at which point i iz  , where i  is a predetermined constant, and 

the controller is required to enforce passivity once again. This integral form of passivity reduces 

the conservatism associated with the more conventional passivity-based MPC found in [52]. The 

following theorem shows how this passivity constraint guarantees stability of the closed-loop 

system. 

Theorem 4.3 

Given the system S  composed of N  passive subsystems iS , if each MPC controller 

 , 1,i i NC  is augmented with the passivity constraint, as in (4.26h), then the overall closed-

loop system remains stable. 



 56  

Proof. 

With the result from Theorem 4.2, the interconnection of the subsystems preserves passivity. 

Thus, when proving stability of the overall closed-loop system, it is sufficient to show that 

passivity is preserved for each subsystem iS  in negative feedback with the MPC controller iC , 

as shown in Fig. 4.4. As in [48], the proof consists of demonstrating feasibility of (4.26) and 

using this feasibility to show stability. From Theorem 2.28 in [45], when there is no throughput, 

i.e.  y h x , the feedback u y   achieves asymptotic stability if and only if the system is zero 

state detectable (ZSD). With ZSO established in Lemma 4.1, and thus also ZSD, it holds that 

i iu y   stabilizes (4.8). This property also holds true for i i iu y  , where 0i  . For any iy  

there exists 0i   such that i i i iu y   . Since i i iu y   is a stabilizing candidate control 

law with 0T T
i i i i i iz u y y y    , the constraint i iz   is always feasible. 

To prove stability, let  C i i ii
V z z    be a storage function for the controller iC , as is 

done in [50], where   0C ii
V z   since i iz  . Thus the storage function for the closed-loop 

subsystem is i Ci
V V  where 

 

   

,

,

.

T
i C i i ii

T T
i i i i

in
T T iin out

i i t
i

V V y u z

y u u y

P
x P

x

  

 

  
   
    

  (4.27) 

Thus the closed-loop subsystem is passive with respect to the inputs and outputs that couple 

subsystem iS  to neighboring subsystems. With each closed-loop subsystem preserving passivity, 

the overall closed-loop system remains passive and stable.   

Remark 4.6 

The passivity constraint (4.26h) is interpreted as a sector condition [44] as follows. The 

constraint  i iz    limits the time spent in the sector 0T
i iu y  . Based on the definition of ,i jy  

for each edge from (4.20), this sector restriction limits operation that would cause a positive 
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power flow from ,
tail
i jx  to ,

head
i jx  when , , 0head tail

i j i jx x   thus preventing this difference from 

growing further. Thus the controller must eventually make control decisions that prevents the 

difference between neighboring states from growing and, as proved in Theorem 4.3, such a 

control input always exists. 

Remark 4.7 

This approach differs from many of the approaches in literature [18], [55], [56], [59] which 

assess the stability of a system of subsystems based on stability criteria of a global matrix which 

captures the passivity/dissipativity properties of each subsystem, the network topology of the 

subsystems, and the gains of the coupling between subsystems. For example, in [55] input-

feedforward output-feedback passivity of each subsystem is quantified using parameters i  and 

i  where T T T
i i i i i i i iV u y u u y y    . Then passivity and stability of the entire system is 

established by evaluating the quasi-dominance of a matrix comprised of these i  and i . Thus 

determining stability requires analysis of the global system. The proposed approach leverages 

the specific structure of the coupling between subsystems, allowing passivity and stability of the 

system to be assessed locally for each subsystem without the need to analyze any global 

properties of the system. 

Remark 4.8 

This set of decentralized controllers can be thought of as a stability-assurance control layer 

similar to the supervisory stability layer (SSL) from [60]. Regardless of information or 

references sent to the individual decentralized controller, the passivity-based stability constraint 

will remain feasible and prevent the system from going unstable. 

4.4.4 Hierarchical Closed-loop Stability 

The decentralized control layer shown in Fig. 4.4 serves to guarantee stability of the 

overall system but may lead to unacceptable control performance due to the unknown effects of 

coupling between subsystems in the form of power flow from one subsystem to another. Thus, 

hierarchical control can be used to improve the overall control performance of the system in the 

form of additional control levels above the decentralized level, as shown in Fig. 4.5. The upper-
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level controllers 1,1C , 2,1 2C  are designed to account for the coupling between subsystems and 

send references to the low-level controllers 3,1 4C  to achieve better coordination among 

subsystems. 

Due to the stability guarantee of the low-level decentralized controllers, the upper-level 

controllers can be designed with only performance in mind and do not have to be augmented to 

achieve stability. This provides the control design engineer a large degree of flexibility in the 

formulation of the structure and individual controllers at the upper-levels of the hierarchy. 

 

Figure 4.5 Example hierarchical control structure used to improve control performance via 

coordination among subsystems. Only controllers 3,1 4C  require passivity constraints, 

forming a stability-assurance layer.  

4.5 Numerical Example 

The efficacy of the decentralized, passivity-based stability constraints is demonstrated 

with the following numerical example. Fig. 4.6 shows the graph of a fluid tank system, which 

has the same structure as the example system from Chapter 3. Each vertex iv  corresponds to a  

C3,1 C3,2 C3,3 C3,4
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Figure 4.6 Graph for example fluid tank system with four subsystems.  

fluid tank and has a state ix  which represents the height of the fluid in the tank in meters. For 

this hydraulic system, conservation of energy for each vertex from (4.1) corresponds to 

conservation of mass for each tank, 

 ,i i j j
in outj E j Ei i

A x m m

 

     (4.28) 

where 31000kg m   is the density of the fluid and 2 4i iA d  is the cross-sectional area of 

the tanks, all with diameter 0.1id m . The power flows from (4.2) corresponding to mass flow 

rate between the tanks. For flows between tanks controlled by pumps, as indicated in Fig. 4.6, 

the mass flow rate along edge je  is  

   ,head tail
j j leak j jm Disp k x x      (4.29) 

where 1Disp kg rev  is the displacement of the pump, j  is the variable pump speed in 

revolutions per second, and  0.005leakk kg m s   is a leakage coefficient. For flows between 

tanks controlled by valves, the mass flow rate along edge je  is 

  max ,tail head
j D j j jm C x x a    (4.30) 
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where  max 0.5 %DC kg m s    is the maximum discharge coefficient and ja  is the variable 

valve aperture in percent open. Based on these definitions for mass flow rate along each edge, 

the conditions in Assumption 4.1 hold and the open-loop system is stable, satisfying Assumption 

4.2. 

The overall system is composed of four dynamically coupled subsystems, as indicated in 

Fig. 4.6. As in Chapter 3, the four subsystem graphs are formulated and shown in Fig. 4.7. From 

these graphs and (4.28)-(4.30), the corresponding subsystem dynamics from (4.8) can be derived. 

Additionally, the passivity output iy  for each subsystem can be determined as defined in (4.14). 

For a pump edge ,i je  in subsystem iS , the corresponding passivity output is 

  , , , .tail head
i j i j i jy Disp x x      (4.31) 

Similarly, for a valve edge, the corresponding passivity output is  

   max
, , , , , .tail head tail head

i j D i j i j i j i jy C x x x x      (4.32) 

 

Figure 4.7 Decomposition of the example system graph into four subsystem graphs used to 

develop the four decentralized MPC controllers.  
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For each subsystem iS , a MPC-based controller iC  is designed based on the 

optimization problem from (4.26), where 

        2 2

2 2
, , 0.01 ,i i i i i ix u r x r u        (4.33) 

2secT  ,  ,|i i i ju u j   , and 0i  . This optimization problem is discretized with 

1sect   and solved with an update rate of 1 Hz. YALMIP [41] and IPOPT [61] are used to 

formulate and solve this optimization problem for each controller.  

To demonstrate the role of the passivity-based stability constraints as a stability-

assurance layer within a hierarchical control framework, as discussed in Remark 4.8, an upper-

level controller 0C  is also designed, which sends references ir  to be tracked by each subsystem. 

The structure of this control hierarchy is shown in Fig. 4.8. While the hierarchical control design 

procedure from Chapter 3 could be applied for the design of 0C , for this Chapter, 0C  has been 

designed using a linearization of the system about the initial state  0x  and has the form 

0 : r Zx C . Following the same procedure, a small change in controller design parameters 

resulted in two different Z  matrices, stableZ  and unstableZ , which as their name suggests, 

resulted in stable and unstable closed-loop systems, as seen in Fig. 4.9. It is important to note 

that the two matrices are very similar with stable unstableZ Z . In fact, using the normalized 

distance between the two matrices, defined as 

 2

2

100 ,
stable unstable

stable

Z Z
Z

Z


    (4.34) 

the similarity of the two matrices can be quantified as 1.8%Z  . The similarity of these 

matrices and the corresponding disparity of their closed-loop behavior highlights a key challenge 

when developing hierarchical controllers in practice. A priori assessment of the overall closed-

loop stability of the system can be very difficult due to the interaction of multiple control loops 

and multiple subsystems. This is especially true with MPC-based controllers which, in general, 

lack a closed-form control law. 
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Figure 4.8 Simple control hierarchy for the example system where 1 4C  are passivity-

constrained decentralized MPC controllers and 0C  is a centralized reference generator 

(signal coloring is the same as Fig. 4.5).  

The stabilizing effect of the decentralized passivity constraints is shown in Fig. 4.9 for 

representative states 2x  and 10x  in subsystems 1S  and 4S , respectively. For both designs of 0 ,C  

the closed-loop system remains stable and converges to the equilibrium. Note that more 

aggressive transient behavior could be achieved by increasing the value of i . For the current 

simulation results 0i   and the accumulated passivity iz  is shown for 1S  in Fig. 4.10 for the 

nominal and passivity-constrained control formulations. From the accumulated passivity, 1z , for 

the nominal MPC with stableZ  (red trace in the first subplot of Fig. 4.10), it is clear that even the 

stable system response was not instantaneously passive, 1 1 1 0Tz u y  , for the majority of the 

transient. This highlights the well-known potential conservatism associated with a passivity-

based stability approach. This conservatism can be reduced by increasing the value of i  and 

allowing the system to violate passivity longer. Thus i  should be designed based on the 

application specific trade-off between the benefit of aggressive control and the cost of 

potentially, yet temporarily, following an unstable trajectory. 
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Figure 4.9 Representative state trajectories for 2x  and 10x  with stable and unstable 

reference generator formulations and for the nominal and passivity-constrained MPC 

designs.  

4.6 Chapter Summary 

This Chapter presented a purely decentralized procedure for augmenting existing model 

predictive control formulations with a passivity-based constraint to guarantee closed-loop 

stability of a power flow system. By establishing passivity of individual subsystems and 

analyzing the structure of the interactions between subsystems, a stability guarantee for the 

overall closed-loop system was achieved through simple, local augmentations to each controller 

in the form of passivity constraints. While the control formulation in this Chapter used slack 

variables on the state constraints to avoid infeasibility of the optimization problem, the following 

Chapter presents a hierarchical control formulation for linear graph-based power flow systems 

that guarantees constraint satisfaction in the presence of model and disturbance signal 

uncertainty. 
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Figure 4.10 Trajectories for 1z  for subsystem 1S  with the stable and unstable reference 

generator formulations and for the nominal and passivity-constrained MPC designs. Note 

that these trajectories are plotted separately due to the disparity in the magnitudes and 

sign of the trajectories for the nominal and passivity-constrained scenarios. 
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Chapter 5     

Robust Feasibility 

5.1 Motivation 

With increasing performance demands, the power flow systems onboard vehicles are 

required to safely function at the limit of their operating envelop. To maximize the capability of 

the vehicle, systems must operate very closely to their actuator and state constraints without 

exceeding these bounds. From a controls perspective, guaranteeing that system operation will 

satisfy these constraints is critical for practical implementation. However, even when using MPC 

to predict the future trajectories of the system to anticipate and avoid possible constraint 

violations, the presence of model and disturbance signal uncertainty makes providing such 

guarantees very difficult in practice. While a hierarchical control framework provides numerous 

advantages in terms of control performance, the decentralization of control decisions and the 

complexity of controller interactions make establishing constraint satisfaction guarantees even 

more challenging.  

5.2 Background 

Building on a number of robust centralized [62]–[65] and distributed [66]–[69] MPC 

formulations, several robust hierarchical MPC formulations have been developed in the 

literature. In [70], a two-level hierarchical control approach is presented with a slow higher-level 

and fast lower-level controller. The lower-level controller bounds deviations between the control 

decisions made at each level and the higher-level controller is made robust to these deviations 

using a min-max robust MPC formulation. This approach is extended in [71] by allowing the 

lower-level of control to consist of m  controllers for systems with decoupled actuator dynamics. 
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The goal of the upper-level controller is to determine which actuators to enable along with their 

desired control inputs, while the lower-level controllers determine the actual control inputs that 

account for the dynamics of the actuators at a faster timescale. This work is further formalized in 

[72]. Additional approaches are presented in [73]–[75] where two-level hierarchical controllers 

are developed that act similar to reference governors, using dynamic actuators to satisfy system 

constraints with guaranteed stability.  

In each of these efforts, a two-level hierarchical framework is developed to handle the 

timescale separation between the system and actuator dynamics. However, in practice many 

systems have more than two timescales and an N -level hierarchical controller would be more 

effective in controlling each timescale. While [76] presents a more generic mathematical 

formulation for N -level hierarchical MPC, theoretical properties like robust stability and 

feasibility are not established and the authors state that “much work is still needed.” 

The goal of this Chapter is to modify the generic hierarchical control formulation from 

Chapter 3 into a specific formulation that can maintain robust feasibility of actuator and state 

constraints in the presence of model and disturbance signal uncertainty. The main features of the 

proposed approach are:  

1) the control hierarchy for a system with subN  subsystems has N  levels, with in  

controllers at the thi  level (  1,i N , 1 1n  , N subn N ), 

2) the formulation guarantees state and actuator constraint satisfaction in the presence of 

both model and disturbance signal uncertainty,  

3) model reduction is employed to reduce computational costs of the upper-level 

controllers, and  

4) all constraints are simple and numerically efficient to calculate offline and implement 

online. With these benefits, the proposed approach relies on several assumptions 

about the system and control formulation that are discussed throughout the Chapter. 
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5.3 Linear Graph System Model 

5.3.1 System Dynamics 

Following the graph-modeling framework from Chapter 2, consider the power flow 

system S  represented by an oriented graph  ,= V E  of order vN  with set of vertices 

   , 1,i vV v i N   and of size eN  with set of edges  , 1,j eE e j N    . Each oriented edge 

je E  represents a path for power flow in S , where positive power jP  flows from the tail 

vertex 
tail
jv  to the head vertex 

head
jv . Each vertex iv V  has an associated state ix  that 

represents the amount of energy stored in that vertex. Thus the dynamic for the state of each iv  

satisfies the discrete-time energy conservation equation 

 ,i i
i j j

in oute E e Ej ji i

x x
C P P

t



 


 


    (5.1) 

where t  is the time step and 0iC   is the energy storage capacitance of vertex iv  while 

 |in head
i j j iE e v v   and  |out tail

i j j iE e v v   are the sets of edges oriented into and out of the 

vertex iv . 

Assumption 5.1 

The power flow jP  along edge je  is defined as 

 ,tail head
j j j j j j j jP a x b x c u P      (5.2) 

where 
tail
jx  and 

head
jx  are the states of the tail and head vertices 

tail
jv  and 

head
jv , ju  is an 

associated actuator input,  , 0j ja b  , 0jc  , and max
j jP P   . 

Remark 5.1 

While a more generic power flow relationship is considered in (4.2), the set operations used for 

constraint tightening in this Chapter rely on a linear system model and thus a linear power flow 
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relationship. However, to allow the results of this Chapter to be applicable to a wider class of 

systems, jP  in (5.2) is treated as an unknown, yet bounded, disturbance. This disturbance 

represents both model uncertainty and bounded linearization error when using (5.2) to 

approximate nonlinear power flow relationships. 

Following the same graph representation used in Chapter 4, the system S  has states 

Nvx  that each satisfy (5.1) and power flows 
NeP  that each satisfy (5.2). The 

disturbances to S  capture how power enters and exits the system, with inlet power flows 

Nin sP   and sink states Nt tx  . As indicated by dashed lines in Fig. 5.1, the inlet power 

flow edges are not included in . Also indicated by dashed lines in Fig. 5.1, the sink states are 

not states of S , but the sink vertices and the edges connecting S  to the sink vertices are included 

in . Power flows along this type of edge, denoted 
Nout tP  , each follow the relationship 

from (5.2). Finally, each system has a subset 
Nin sx   of the states x  that represents the states 

directly affected by the inlet power flows 
inP . Note that Figs. 4.1 and 5.1 are nearly identical, 

with Fig. 4.1 showing the subsystem-based notation used in Chapter 4 while Fig. 5.1 shows the 

system-based notation used in this Chapter. 

Let 
 

,
N N Nv t e

i jM m
      be the incidence matrix of graph  [36] where 

 ,

1 if  is the tail of 

1 if  is the head of .

0 else

i j

i j i j

v e

m v e

 
 

  
 
 

  (5.3) 

Then, based on (5.1), the system dynamics are 

 
 

 
,

0

in

t t

C x x
D

tMP P

x x





 
  

     
  

 

  (5.4) 
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Figure 5.1 Notional system exemplifying the graph-based power flow representation with 

key power flows and states highlighted in red. Dashed lines indicate elements that serve as 

disturbances to the system.  

where   iC diag C  is a diagonal matrix of the vertex capacitances and ,
N Nv s

i jD d
     

where 

 ,

1 if  is the head of 
.

0 else

in
i j

i jk

v P
d

  
  
  

  (5.5) 

Since tx  are disturbances to the system, not states, M  is partitioned as 
M

M
M

 
  
 

, with 

N Nv eM


  and N Nt eM


 , resulting in 

   .inC x x tMP DP       (5.6) 

From (5.2), the vector of power flows in S  is 

 
,

, ,

,

,

T
a b t

T T t
a b a b

x
P M u P

x

M x M x u P





 
    

 

    

  (5.7) 

where 
 

, ,
N N Nv t e

a b i jM m
      is a weighted incidence matrix with 

P1
in

P2
in

x2
in

x1
in

P1
out

x1
t

S

x1

x2

x3

x4

x5

P1

P2

P3

P4

P5

P6
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 ,

if  is the tail of 

if  is the head of 

0 else

j i j

i j j i j

a v e

m b v e

 
 

  
 
 

  (5.8) 

 jdiag c     , ju u    , and jP P     . Thus the dynamics of S  are given by 

 1 2 3: ,in tx Ax B u V P V x V P      S   (5.9) 

where 1
,

T
a bA I tC MM  , 1B tC M  , 1

1V tC D  , 1
2 ,

T
a bV tC MM  , and 

1
3V tC M  . 

5.3.2 Dynamic Timescales 

Let the state vector be subdivided as 1 2

T
T T T

Nx  
 
x x x , where 

iNv
i x  denotes 

a vector of states with the thi  timescale where 
1

N i
v vi

N N


  and j i kC C C   for j jx  x , 

iix  x , kkx  x , and j i k  . Note that the number of levels of the hierarchy, N , matches the 

number of timescales of the system. 

5.3.3 Local Constraints 

The system is subject to box state and actuator input constraints 

 , ,
N Nv ex u      (5.10) 

where  |
Nvx x x x    ,  |

Neu u u u    , and each set contains the origin. 

5.3.4 Nominal System 

While (5.9) represents the true system behavior, the nominal state trajectories, inputs, and 

disturbances used by the hierarchical controller are denoted as x̂ , û , ˆ inP , and ˆtx , resulting in 

the nominal system 

 1 2
ˆ ˆˆ ˆ ˆ ˆ: ,in tx Ax B u V P V x    S   (5.11) 
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Thus the unknown disturbances to the system, to which the hierarchical controller must be 

robust, are ˆin in inP P P   , ˆt t tx x x   , and P . These disturbances are assumed to be 

bounded with in inP  , t tx  , and P  . As with  and , these disturbance 

sets are assumed to contain the origin and are defined by box constraints.  

5.3.5 Control Objective 

The control objective is to satisfy all state and input constraints from (5.10) while 

minimizing the finite-horizon, system-wide cost function 

           
0

, , , ,

Nop
s t

k

J k x k u k k k


     (5.12) 

where opN  is the operational duration of the system in time steps and ( )  is a generic running 

cost. To minimize deviation from ˆ in
desP  and ˆt

desx , (5.12) is designed to heavily penalize 

 
2

2

s k I   and  
2

2

t k I  . 

5.3.6 Feedback Integralization 

To significantly simplify the hierarchical control formulation, the control law 

 1
,

T
a b t

x
u P M

x
 

  
    

  

  (5.13) 

is implemented to convert the linear system (5.9) into the integrator system 

 0 1 3: ,inx x BP V P V P     S   (5.14) 

where P  is the desired power flow vector. The corresponding nominal control law  

 1
,

ˆ
ˆˆ

ˆ

T
a b t

x
u P M

x
 

  
    

  

  (5.15) 

converts the nominal linear system (5.11) into the integrator system 
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 0 1
ˆ ˆ ˆˆ ˆ: ,inx x BP V P   S   (5.16) 

where P̂  is the nominal power flow vector. 

Remark 5.2 

The feedback control law from (5.15), referred to as feedback integralization, forces nominal 

state trajectories to evolve piecewise linearly. As discussed in the following Section, the 

controllers at the upper levels of the hierarchy use slow update rates designed to match the slow 

dynamics under control at that level. When converting a discrete-time model from a fast update 

rate to a slow update rate, as described in [70], no additional model error is introduced by this 

conversion, but information about the state trajectory between the slow updates is lost. By 

converting the linear system to an integrator system, (5.15) ensures that the intersample state 

trajectory is bounded by state values at the neighboring slow time steps, i.e. no over/undershoot 

between slow time steps occurs. This is key in guaranteeing that the state trajectories determined 

by the upper-level controllers are feasible for tracking by the lower-level controllers. Fig. 5.2 

demonstrates this notion and the benefit of the feedback integralization. Finally, (5.13) can be 

implemented for each edge independently using  1 tail head
j j j j j j

j

u P a x b x
c

   . 

5.4 Hierarchical Control Structure 

5.4.1 Subsystem Interconnections 

Let S  be decomposed into subN  non-overlapping subsystems  , ,i subi i NS .  

Definition 5.1 

A ,u v path  in  is a sequence of oriented edges connecting two distinct vertices ,u v V , not 

including any sink vertices as intermediate vertices.  

Assumption 5.2 

If i iv S  and ,j jv i j S  and there exists a ,u v path  in , then there does not exist a 

,v u path  in . 
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Figure 5.2 (a) The upper-level controller plans a feasible state trajectory at the slow time 

step 1k  but the lower-level controller is unable to track this trajectory at the faster time 

step 2k  without violating state constraints. (b) Using the feedback integralization control 

law from (5.15), the system follows piecewise linear state trajectories; thus any trajectory 

that is feasible at the slower time step 1k  is also feasible at the faster time step 2k . 

Remark 5.3 

Assumption 5.2 prevents cyclical connections between subsystems, simplifying the process for 

identifying in  for power flows coming from neighboring subsystems. An example of an 

acyclic graph of subsystems is shown in Fig. 5.3. If systems with cyclically connected subsystems 

are of interest, a more centralized approach for calculating in  can be adopted from [66]. 

5.4.2 Control Structure 

To control the N  dynamic timescales, a hierarchical control framework with N  levels is 

proposed where one of the main functions of controllers at the thi  level is to control states at the 

thi  timescale. At the lowest level of the hierarchy, each subsystem jS  has a corresponding 

controller  ,N j
C  that uses a nominal subsystem model, denoted  ,ˆ N j

S . These controllers have a 

time step of Nt t    and use the time index Nk . The controllers at levels 1N   through 1 of 

the hierarchy coordinate control decisions between these subsystems and have slower update 

rates to more effectively control the slower timescale dynamics of the system. Thus the thj   

x

x

k2 k2+1 k2+5 k2+10

k1 k1+1 k1+2

x

x

k2 k2+1 k2+5 k2+10

k1 k1+1 k1+2

(a) (b)

t t
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Figure 5.3 (a) An example system graph decomposed into subsystems. (b) The 

interconnection of these subsystems is acyclic. 

controller at the thi  level,  ,i j
C , has a time step of it , where 1 1i i it t      and 1i   is a 

positive integer, with a discrete time index ik . The thi  level of the hierarchy has in  controllers 

where N subn N , 1 1n  , and 1i in n  .  

Fig. 5.4 provides an example of a 3-level hierarchy that demonstrates the proposed 

formulation. 

5.4.3 Nominal Subsystems for Level N Controllers 

The nominal subsystem model for jS  follows the same model development used for the 

entire system model in Section 5.3 where  

 
 ,

10
ˆ ˆ ˆˆ ˆ: .

N j inx x BP V P   S   (5.17) 

Note the abuse of notation used for improved readability, where x̂ , P̂ , ˆ inP , B , and 1V  are all 

specific to jS  and occur at time index Nk . 

5.4.4 Nominal Reduced Subsystems for Level i Controllers, i ∈ [1,N - 1] 

An agglomerative, or bottom-up, clustering scheme [77] is used to form the subsystems 

at the thi  level based on the subsystems at level 1i  . At the thi  level, the thj  subsystem 

   ,
, 1,

i j
ij nS , consists of subsystems 

 ,
,,

N l
i jl IS , where ,i jI  denotes the set of constitutive  
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Figure 5.4 Example 3-level hierarchy where 3N  , 4subN  , 2 3 3   , 2,1 {1,2}I  , 

2,2 {3,4}I  , and 1,1 {1,2,3,4}I  . The notation ( )ix k  refers to a sequence of x  values at time 

steps { , , }i
i i pk k N  . 

Level N  subsystems. Since all subsystems at Level N  are included in the agglomerated 

subsystems at Level i , ,

1

[1, ]

ni

i j sub

j

I N



 . Additionally, a subsystem at Level N  can only be 

included in a single subsystem at Level i , thus , , ,i j i kl I l I k j    . The nominal subsystem 

model 
 ,

0
ˆ i j
S  is used to derive a reduced model 

 ,

0
ˆ r i j
S  to be used by controller  ,i j

C . Model 

reduction reduces the dimension of the state and power flow vectors as follows. 

For subsystem 
 ,

0
ˆ i j
S , the state vector is decomposed as  

S

1S 2S 3S 4S

 3,4

0C
 3,3

0C
 3,2

0C
 3,1

0C

        3 3 3 3

1 tail head

j j j j j j

j

u k P k a x k b x k
c

  

 3,4
C

 3,3
C

 3,2
C

 3,1
C

 2,1
C

 2,2

0C

 1.1
C

2t

3t

k 1k 

3k

3k

2k

1k

2 1k 

3 1k 

3 1k 

1 1k 

     
   1 1

, ,

ˆ ˆ,

in t

in t

des des

P k x k P k

P x



k k

   
 

3 3

3

, t

i i

i

x k x k

u k

   
   

3 3

,

ˆ ˆ,

ˆ ˆ,
i i

low

r i i i i

P k x k
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         , , ,
ˆ ˆˆ ˆ, , , ,in t up out low

i i i i des i i des i i des i iP x x P xk k k k k

1t
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ˆ

ˆ ˆ ˆ, , .
ˆ

Nr N fr
r f

f

x
x x x

x

 
   
 

  (5.18) 

In this work, the states of the reduced model are ,zˆ ˆr rx x    , where 

(1) ,ˆ ,r z ix  x   

(2) 
 1

, 1,
,

ˆ ˆ  ,for
i

r z r i k
k

x x j I


 S , and/or 

(3)  1,
, ,o , .ˆ f r

i lin
r z i jx x l I


 S   

All remaining states of the nominal subsystem model are denoted ˆ fx  and are excluded from the 

reduced model. 

Remark 5.4 

The reasoning for including these three types of states is as follows. The first set of states aligns 

with the overall principle of a hierarchical controller: controllers at the thi  level determine the 

desired state trajectories for states with the corresponding timescale. The second set of states is 

included to achieve coordination between the control levels. The desired state trajectories for 

these states are determined at Level 1i   and are tracked by the controllers at Levels i  through 

N . Finally, the third set of states is used to achieve coordination between subsystems at Level

1i  . Since the states of these vertices affect the power flow exiting neighboring subsystems, 

coordinating the values of these states is important. The desired trajectories for these states are 

determined by controllers at Level i  and then sent down as a desired state trajectory to be 

tracked by a controller at Level 1i   and as a known sink state disturbance to the controllers for 

the neighboring subsystems. 

The decomposed subsystem dynamics are 

 
ˆ ˆ

ˆ ˆ .
ˆˆ

r r r r in

f f ff

x x B V
P P

x B Vx





       
         
        

  (5.19) 

In 
 ,

0
ˆ r i j
S , it is assumed    ˆ ˆ1f i f ix k x k  , resulting in 
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    ˆ ˆ 0.in
f i f iB P k V P k    (5.20) 

Thus (5.20) provides fN  constraints that can be used to reduce the decision vector ˆ NeP  to a 

reduced decision vector ˆ N Ne f
rP


  where 

      ˆ ˆ ˆ .in
i r i iP k TP k YP k    (5.21) 

Calculation of 
( )N N Ne e fT
 

  and e NsN
Y


  is detailed in the Appendix at the end of this 

Chapter. The reduced subsystem is  

 
 i,

0
ˆ ˆ ˆ ˆ ˆˆ ˆ: ,

r j in
r r r r rx x B P V P   S   (5.22) 

where ˆ
r rB B T  and ˆ

r r rV V B Y  .  

Remark 5.5 

While the graph-based model reduction approach presented in Section 3.6 can be used for 

developing the generic hierarchical controller in Chapter 3 and visually shows the reduced 

graphs, this Chapter utilizes the residualization-based approach [78] presented above that 

results in no modeling error between the full and reduced nominal integrator system dynamics.  

5.5 Level N Controller Formulation 

Following a bottom-up control development approach, the subsystem models and 

controllers for Level N  are generated first. 

5.5.1 Error Subsystem 

With the nominal subsystem dynamics from (5.17) and the true subsystem dynamics as 

 
 ,

1 30 : ,
N j inx x BP V P V P     S   (5.23) 

a candidate control law for 
 ,

0
ˆ N j
S  is defined as  

 
   

,

0
ˆ ˆ: .

N j
P P K x x  C   (5.24) 
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Letting      ˆN N Ne k x k x k  , from (5.17), (5.23), and (5.24), the error dynamic between the 

true and nominal subsystem is 

   1 .ine I BK e B P V P         (5.25) 

Choosing 
†K B  , (5.25) reduces to 

 1 .ine B P V P       (5.26) 

Since  P k   and  in inP k  , there exists a robust positively invariant (RPI) set  

such that  e k k  . From (5.26), 1
inVB    . Similarly    ˆP k P k K k   . 

Remark 5.6 

The candidate control law from (5.24) with 
†K B   requires the existence of the right inverse 

of 1B tC M  . It is well established that the column sums of the incidence matrix M  are 

zero for a connected graph, resulting in linearly dependent rows of M . However, when a 

subsystem is externally connected, i.e.  ,
0

i j
tN  , M  contains nonzero values and the rows of 

M  become linearly independent. When the rows of a matrix A  are independent, 
†AA I . Thus, 

assuming 
 ,

0
i j

tN   for all subsystems, a controller with 
†K B   is valid and ( ) 0I BK  . 

Remark 5.7 

When the thj  power flow into a subsystem, 
in
jP , comes from the environment, i.e. external to the 

entire system, the bound on ˆin in in
j j jP P P    is assumed to be a known property of the system 

and is used to define in  for the subsystem. However, when 
tin

j
ouP P  of a neighboring 

subsystem, the bound on 
in
jP  is not immediately known. However, using the acyclic assumption 

from Assumption 5.2, this bound equals the bound on ˆP P K   for the corresponding edge 

exiting that neighboring subsystem. Thus calculating in  for each subsystem is a sequential 

process starting with the subsystem having inlet power flows exclusively from the environment. 
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Using the example from Fig. 5.3, the subsystems 1S  - 4S  can be ordered as 

 1 2 4 3, , ,S S S S  to calculate the bounds on 
in
jP  for each subsystem since 1S  only has inlet 

power flow from the environment, 2S  only has inlet power flow from the environment and 1S , 

and so on. 

5.5.2 Constraint Tightening 

Using the constraint tightening approach from [62],  ,N j
C  constrains 

  .ˆ ˆ
Nx k    Additionally, using (5.13), the constraint on actuator inputs is imposed as 

 1
, .T

a b t

x
u P M

x
 

  
    

 




  (5.27) 

From comparing (5.13) and (5.15),  

 1
, .ˆˆ T

a b t

e
u u P P M

x
 

  
        

  (5.28) 

Due to the difference between the desired power flow P  and the nominal power flow P̂ , where 

   ˆ
N NP k P k K  ,  ,N j

C  imposes tightened input constraints as 

 1
,

ˆ
ˆˆ

ˆ

ˆ,T
a b t

x
u P M

x
 

  
    

 


 

  (5.29) 

where 

    1 1 1
, ,

ˆ .T T t
a b a bK M M          (5.30) 

Note that when tx  corresponds to a sink of the overall system, 
t  is defined. However, when 

tx  corresponds to a state of a neighboring subsystem, 
t  is not directly known but can be 

calculated based on the error set  for that neighboring subsystem. 
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5.5.3 Level N MPC Problem 

Each controller  ,N j
C  solves the optimization problem 

   ,N j
Nk : 

 

 
   ,

ˆ : 1

min
N j

N
NP k k NN N p

J k
 

  (5.31a) 

 subject to, for : 1 ,N
N N ph k k N   

 
 

        1
ˆ ˆˆ ˆ1 ,inx h x h BP h V P h      (5.31b) 

  ˆ ˆ ,x h    (5.31c) 

  
 

 
1

,
ˆ

ˆ
ˆ

ˆ
,T

a b t

x h
P h M

x h
 

  
   
    

  (5.31d) 

      1 ˆ ˆ ,
upup in
desZ C MP h DP h x h    

 
  (5.31e) 

    ˆ ˆ ,out out
desP h P h   (5.31f) 

    ˆ ,ˆlow lo
l

w
d s owe Nx h x k    (5.31g) 

where  ˆ inP h ,  ˆtx h ,  up
desx h ,  ˆout

desP h , and  ˆlow
des Nx k  are communicated from controllers at 

Level 1N  .  

Remark 5.8 

Constraint (5.31e) uses the matrix 
upZ  to constrain the power flows into and out of the vertices 

with states included in a controller at Level 1N  . Constraint (5.31f) ensures that the power 

flows exiting a subsystem equal the power flows determined by the upper-level controller. 

Finally, constraint (5.31g) bounds the deviation between the trajectories of states not included in 

upper-level controllers and the assumed value ˆlow
desx  used by those upper-level controllers. Note 

that ˆlow
desx  is constant over the prediction horizon. The box constraint set low  includes the 
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origin and the size of the set determines the trade-off between conservativeness of upper-level 

controller and the freedom of lower-level controllers. 

5.6 Level i Controller Formulation (i ≠ N) 

5.6.1 Constraint Tightening 

No additional state constraint tightening is required and thus 
 ,

,
i j

Ni C , constrain 

 ˆ ˆ
r i rx k   where ˆ

r  is formed directly from the box constraints of ˆ .  

The input constraints do need additional tightening to ensure robustness to 

   ˆ ˆlow low
i des ix k x k . Using the state decomposition from (5.18) and adding and subtracting 

 ˆlow
des ix k , (5.29) becomes 

  

 

 

 

   1
,

ˆ,

ˆ

ˆ ˆ ˆ ˆ

ˆ

r i

T low T low
i a b des i f f i des i

t
i

x k

P k M x k M x k x k

x k

 

  
  

        
      

  (5.32) 

where fM  is the portion of ,a bM  corresponding to the fast states. Since (5.31g) bounds the 

difference between ˆ fx  and ˆlow
desx , the input constraints are further tightened such that 

  

 

 

 

1
,

ˆ

ˆ ˆ ˆ ,

ˆ

r i

T low
i a b des i

t
i

r

x k

P k M x k

x k

 

  
  

   
      

  (5.33) 

where  ˆ ˆ
r f lowM   . Note that low  is a set similar to low  from (5.31g) but the 

box constraints are twice the magnitude of those in low . This is due to the following. The 

Level 1 controller is constrained such that    0 1 1ˆ ˆlow low
de ws lox k x k  , where ˆlowx  is the current 

values of ˆ fx , the states not included in the reduced model for the Level 1 controller, and ˆlow
desx  

are the values of ˆ fx  chosen by the controller that remain constant over the prediction horizon. 
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The values ˆlow
desx  are communicated down the hierarchy, where each controller at Levels 2 

through N  is constrained such that    ˆ ˆlow low
i des owi lx k x k   and ˆlowx  are the trajectories of 

the states in the lower-level controller model that were approximated by ˆlow
desx  for the controller 

at Level 1. This two-step process for constraining these fast state trajectories requires the 

constraint tightening using low , instead of low , as defined above.  

To ensure feasibility using the control law from (5.27) it is necessary to impose the 

additional constraint 

  

 

 

 

1
,

ˆ 1

ˆ ˆ

ˆ 1

ˆ ,

r i

T low
i a b de i rs

t
i

x k

P k M x k

x k

 

  
  

   
      

  (5.34) 

so that, as the states evolve between time steps, there is always an input  ˆ ˆ
Nu k   to achieve 

the desired power flow  ˆ
iP k  at the faster time steps Nk  between the slower time steps ik  and 

1ik  . Note that    ˆ ˆ 1low low
des i des ix k x k   since ˆlow

desx  is assumed constant over the prediction 

horizon. 

5.6.2 Level i MPC Problem (i ≠ N, i ≠ 1) 

Each controller 
   ,

, 2, 1
i j

i N C , solves the optimization problem 
   ,i j

ik : 

 

 
   ,

ˆ : 1

min
i j

i
iP k k Nr i i p

J k
 

  (5.35a) 

 subject to, for : 1 ,i
i i ph k k N   

 
 

        ˆ ˆ ˆ ˆˆ ˆ1 ,in
r r r r rx h x h B P h V P h      (5.35b) 

   ˆ ,ˆ rrx h    (5.35c) 

      ˆ ˆ ˆ ,in
rP h TP h YP h    (5.35d) 
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  

 

 

 

1
, ,ˆ ˆ

ˆ

ˆ

ˆr

T low
a b de i

t

rs

x h

P h M x k

x h

 

  
  

   
      

  (5.35e) 

  

 

 

 

1
,

ˆ 1

ˆ ˆ

ˆ

ˆ

1

,

r

T low
a b des i

t

r

x h

P h M x k

x h

 

  
  

   
      

  (5.35f) 

      1 ˆ ˆ ,
upup in
desZ C MP h DP h x h    

 
  (5.35g) 

    ˆ ˆ ,out out
desP h P h   (5.35h) 

    ˆ ,ˆlow lo
l

w
d s owe ix h x k    (5.35i) 

where  ˆ inP h ,  ˆtx h ,  up
desx h ,  ˆout

desP h , and  ˆlow
des ix k  are communicated from controllers at 

Level 1i  . 

5.6.3 Level 1 MPC Problem 

The single controller  1,1
C  solves the optimization problem 

   1,1
1k : 

 

   

   

   1,1
1

1ˆ ˆ: 1 ,1 1 1

1 1: 1 , :1 1 1 1

min
lowP k k N x kr p des

s tk k N k k Np p

J k
 

    

  (5.36a) 

 1
1 1subject to, for : 1 ,ph k k N   

 
 

        ˆ ˆ ˆ ˆˆ ˆ1 ,in
r r r r rx h x h B P h V P h      (5.36b) 

   ˆ ,ˆ rrx h    (5.36c) 

      ˆ ˆ ˆ ,in
rP h TP h YP h    (5.36d) 
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  

 

 

 

1
, 1

ˆ

ˆ ˆ

ˆ

ˆ ,

r

T low
a b de

t

rs

x h

P h M x k

x h

 

  
  

   
      

  (5.36e) 

  

 

 

 

1
, 1

ˆ 1

ˆ ˆ

ˆ 1

ˆ ,

r

r
T low
a b des

t

x h

P h M x k

x h

 

  
  

   
      

  (5.36f) 

            ˆ ˆ ˆ ˆ, ,in s in t t t
des desP h h P h x h h x h      (5.36g) 

  0 1ˆ ,ˆlow low
owe ld sx x k    (5.36h) 

    1 1
1 1ˆ ˆ 1 ,r p r px k N x k N      (5.36i) 

where  ˆ in
desP h  and  ˆt

desx h  are provided directly to the controller and 0ˆ
lowx  is the current value 

of ˆlowx  communicated up the hierarchy from the controllers at Level N .  

Assumption 5.3 

The desired nominal disturbances ˆ in
desP  and ˆt

desx  are known over the entire prediction horizon of 

the hierarchical controller and are piecewise constant between updates of the controller at the 

highest level of the hierarchy.   

The controller has the ability to augment these values in order to maintain feasibility. 

Thus, from (5.36g), the nominal values are      ˆ ˆin s in
desP k k P k   and      ˆ ˆt t t

desx k k x k   

where  s s
idiag   

 
 and  t t

idiag   
 

 are diagonal matrices with ,t s
i i   . 

Remark 5.9 

While this is a strong, and possibly limiting, assumption, the proposed framework can be readily 

extended to be robust to intersample changes in disturbances through additional constraint 

tightening. 
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Remark 5.10 

Constraint (5.36i) helps with the proof of feasibility presented in Section 5.7 and guarantees that 

 s s
idiag   

 
 and  t t

idiag   
 

 are chosen such that there is a feasible solution that 

allows all states to remain constant at the end of the prediction horizon. 

5.7 Recursive Feasibility 

Assumption 5.4 

There exists a neighborhood containing the origin,  0 0 , such that if   0x k   then 

   1,1
1k  is feasible with optimal solution 

       * * * 1
1 1 1

ˆ ˆ ˆ,..., 1r r r pk P k P k N  P   (5.37) 

and associated nominal state trajectory  

       * * * 1
1 1 1ˆ ˆ ˆ,..., .r r r pk x k x k N x   (5.38) 

Theorem 5.1 

If   0x k  , then the solution  

         * * * 1 * 1
1 1 1 1

ˆ ˆ ˆ ˆ1 1 ,..., 1 , 1r r r p r pk P k P k N P k N      P   (5.39) 

with  

         * * * 1 * 1
1 1 1 1ˆ ˆ ˆ ˆ1 1 ,..., ,r r r p r pk x k x k N x k N    x   (5.40) 

is feasible for 
   1,1

1 1k  . Furthermore, the feasibility of 
   1,1

1k  guarantees the feasibility of 

   ,i j
ik  for any lower-level controller. 
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Proof. 

The proof is outlined as follows. First, it is established that the states and power flows of the 

system remain close to the nominal states and power flows determined by the hierarchical 

controller. This allows the hierarchy to only require knowledge of the nominal states and power 

flows; the true system state is not used by any MPC controller in the hierarchy. The feasibility of 

lower-level controllers follows directly from the feasibility of 
   1,1

1k . Feasibility of 

   1,1
1 1k   follows from the constraints imposed by each lower-level controller and the 

existence of a solution where all states remain constant at the end of the prediction horizon. 

 By implementing the feedback integralization control law (5.13) and the candidate 

control law (5.24), the error dynamic between the true and nominal states follows (5.26). Thus at 

any timestep,  Ne k   and    ˆ
N NP k P k K   and the proposed constraint tightening from 

Section 5.5.2 guarantees that    ˆˆ N xk kx    and    ˆˆ N uk ku   .   

From Assumption 5.4, there exists   0x k   such that 
   1,1

1k  is feasible. The optimal 

reduced power flow solution  *
1

ˆ
r kP  is related to the optimal unreduced power flow solution 

 *
1

ˆ kP  via (5.21). From the construction of the reduced state and input constraints, 

   1 1
ˆˆ ˆˆr rrx k x k   and    1 1

ˆ ˆˆˆ rk ku u  , and thus, if  *
1

ˆ kP  is feasible for 

   1,1
1k , these power flows form a feasible solution for all 

   ,
, 2,

i j
i NC . This solution 

provides perfect tracking of ˆrx  and constant trajectories for ˆ fx  of 
 1,1

0Ŝ . 

If all controllers 
   ,

, 2,
i j

i NC  are feasible, the desired state trajectory  *
1ˆ r kx  for 

 1,1
C  is tracked perfectly based on the constraints (5.31e) and (5.35g). Thus 

   * *
1 1 1 1ˆ ˆ1| 1 1|r rx k k x k k    . If  *

1ˆ r kx  is a feasible solution for  1,1
C , then 

   * 1 * 1
1 1ˆ ˆ 1r p r px k N x k N     from constraint (5.36i). This implies that 

   * 1 1
1 1

ˆ ˆ ˆ ˆ1 1 0in
r r p r pB P k N V P k N      . Since  *

1ˆ 1r k x  assumes 
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   * 1 * 1
1 1ˆ ˆ1r p r px k N x k N    , it is desired that    * 1 1

1 1
ˆ ˆ ˆ ˆ 0in
r r p r pB P k N V P k N     which is 

always feasible with    * 1 * 1
1 1

ˆ ˆ 1r p r pP k N P k N     and use of  1
1

s
pk N  .  

Additionally, if all controllers 
   ,

, 2,
i j

i NC  are feasible, then 

   1 1ˆ ˆ1low low
de ls owx k x k   . Thus, a feasible solution at time step 1 1k   is 

   1 1ˆ ˆ1low low
des desx k x k  . Since    * 1 * 1

1 1ˆ ˆ1r p r px k N x k N    ,    * 1 * 1
1 1

ˆ ˆ 1r p r pP k N P k N    , 

and    1 1ˆ ˆ1low low
des desx k x k  , feasibility of 

   1,1
1 1k   only depends on the feasibility of (5.36f) 

with regard to  1
1ˆ 1t

px k N  . Using  1
1 1t

pk N   , (5.36f) is always feasible. Thus, with 

   1,1
1k  feasible, all lower-level controllers are feasible and 

   1,1
1 1k   is feasible, proving 

the theorem.  

5.8 Numerical Example 

The efficacy of the proposed robust hierarchical control framework is demonstrated with 

the following numerical example that, as shown in Fig. 5.5, has the same structure as the 

example systems from Chapters 3 and 4 but is not intented to represent a particular physical 

system. The vehicle consists of two systems, each with two subsystems, and thus, the control 

hierarchy has the same general structure as those shown in Figs. 5.4, 3.5, and 4.5. The individual 

subsystem and system graphs are shown in Figs. 5.6 and 5.7. The Matlab/Simulink code used to 

implement the robust control hierarchy for this example system is provided in the Appendix. 

For each edge je E , the parameters defining the power flow relationship from (5.2) are

1j j ja b c   . The vertex capacitances from (5.1) are 1 2 1000C C  , 3 7... 100C C   , and 

8 12... C 10C    . The state and input constraints from (5.10) are defined such that 

1 1, iix v V    and 1 1, jju e E   . The disturbance power flow from (5.2) is defined 

with 
max 0.1jP  . The input power flow disturbance set in  is defined with 

ˆ0.1 0.1in in in
i i iP P P       and the sink state disturbance set 

t  is defined with 
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ˆ0.1 0.1t t tx x x      . Finally, for the additional constraint tightening in (5.33), low  is 

defined with 0ˆ ˆ0.1 0.1low low
desx x    , and thus low  is defined with 0ˆ ˆ0.05 0.05low low

desx x    . 

 

Figure 5.5 Example system graph for numerical example. 

 

Figure 5.6 Subsystem graphs for numerical example. 
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Figure 5.7 System graphs for numerical example. 

The controller time steps are chosen to be 1 100t  , 2 10t  , and 2 1t t     with 

prediction horizons 
1 2 3 5p p pN N N   . The cost function from (5.12) is defined with  

                 
2 22 6 6

2 2 2
, , , 10 10s t s tx k u k k k u k u k k I k I          . (5.41) 

For the model reduction from (5.18), the state decompositions for System 1, 
 2,1

0Ŝ , is  

  1 3 4 10ˆ
T

rx x x x x ,  8 9ˆ
T

fx x x , (5.42) 

for System 2, 
 2,2

0Ŝ , is 

  2 5 6 7 10ˆ
T

rx x x x x x ,  ˆ 12fx  , (5.43) 

and for the Vehicle, 
 1,1

0Ŝ , is 

  1 2 7 11ˆ
T

rx x x x x ,  3 4 5 6 8 9 10 12ˆ
T

fx x x x x x x x x . (5.44) 

All set computation is performed with the Multi-Parametric Toolbox 3.0 [79]. The MPC 

optimization problems are formulated using the YALMIP Toolbox [41] and solved using the 

Gurobi optimization suite [42]. 
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Fig. 5.8 shows a simple disturbance profile for ˆ in
desP  used to demonstrate some of the key 

features of the robust hierarchical controller. The actual “throttled” inlet power flows ˆ inP  are 

also shown in Fig. 5.8 based on the maximum feasible inlet power flow determined by  1,1
C  

using  1
s k  in (5.36g). Note, that the sink states are held at ˆ ˆ 0t t

desx x  . Uniformly 

distributed random signals of maximum amplitude are applied for P , 
inP , and tx .  

 

Figure 5.8 Disturbance profile for numerical example with desired and actual inlet power 

flows. 

The following figures show the robustness properties of the hierarchical controller. Fig. 

5.9 demonstrates the constraint tightening for actuator inputs 8u  and 16u . The actual inputs are 

bounded by 1 1iu    which form the input constraint set . The notation 8,16  is used to 

denote the projection of  into the 8th and 16th coordinates. The tightened inputs used by 

subsystem controllers at Level 3 are shown by 8,16
ˆ  and the further tighten inputs used by the 

vehicle controller at Level 1 are shown by ,8,16
ˆ
r . Note that the nominal inputs must satisfy 

ˆ ˆu  but the subsystem controller are capable of inputs such that ˆˆ ru U . This is a result of the 

additional constraint tightening employed but the controllers at Levels 1 through 1N  . Based on 

(5.28), the difference between û  and u  is bounded and based on the constraint tightening, if 

ˆ ˆu  then u , as shown in the figure. 
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Figure 5.9 Nominal and actual inputs for edges 8e  and 16e  with the nominal input 

constraint sets 8,16 , the tightened input constraint set 8,16
ˆ  used by the subsystem 

controllers at Level 3 and, and the tighten input constraint set ,8,16
ˆ

r  used by the vehicle 

controller at Level 1. 

Fig. 5.10 demonstrates the bounded difference between the nominal state trajectory 11x̂  

and the actual state trajectory 11x  for vertex 11v . Based on the error dynamic from (5.26), 

11 11 11ˆx x  , where 11  is the projection of the error set  onto the 11th coordinate, as shown 

in the figure.  

Similarly, Fig. 5.11 demonstrates the bounded difference between the nominal power 

flow trajectory 4P̂  and the desired power flow trajectory 4P  along edge 4e . Based on the error 

dynamic from (5.26) using the candidate control law from (5.24),  4 4 4
ˆP P K  , where K  

and  are the candidate controller and error sets for Subsystem 1, as shown in the figure. 
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Figure 5.10 Nominal and actual state trajectories for vertex 11v  with error set showing the 

bounds on the deviation between 11x  and 11x̂  for which the hierarchical controller is 

robust. 

 

Figure 5.11 Nominal and desired power flow trajectories along edge 4e  with error set 

showing the bounds on the deviation between 4P  and 4P̂  for which the hierarchical 

controller is robust. 
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The bounded difference between the nominal and desired power flows P̂  and P  is used 

to formulate the input power uncertainty set in  for subsystems that have inlet power flows 

from neighboring subsystems. Fig. 5.12 demonstrates the formation of in  for Subsystem 3 

based on the differences 8 8
ˆP P  and 14 14

ˆP P  for edges 8e  and 14e . 

 

Figure 5.12 Deviations between the desired and nominal power flows for edges 8e  and 14e , 

which form 
inP  for Subsystem 3, with the set in  for Subsystem 3. 

Finally, Fig. 5.13 shows the nominal and actual state trajectories for vertex 10e . Based on 

the constraint (5.31g), the nominal trajectory 10x̂ , determined by the Subsystem 2 controller at 

Level 3, must remain close to the desired value ,10ˆlow
desx  determined by the Vehicle controller at 

Level 1. By satisfying 10 ,10 ,10ˆ ˆlow
lodes wx x  , the Subsystem controller is able to optimize the 

trajectory of 10x̂  with respect to its own local cost function within a neighborhood of the 

assumed trajectory determined by the Vehicle controller.  
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Figure 5.13 Nominal and actual state trajectories for vertex 10v  with error set showing the 

bounds on the deviation between 10x̂  and ,10ˆlow
desx  determined by the Vehicle controller at 

Level 1. 

5.9 Chapter Summary 

This Chapter presented a generic N -level hierarchical control framework based on MPC 

and a graph-based model of a power flow system that was proven to be robustly feasible at each 

level of the hierarchy in the presence of model and signal uncertainty. The novel approach 

utilizes a constraint tightening procedure where all tightened constraints are simple and 

numerically efficient to calculate offline and implement online. This concludes the theoretical 

contributions of this dissertation and the remaining Chapters assess the practicality of 

hierarchical control through graph-based modeling and control of an experimental thermal fluid 

system. 

5.10 Chapter Appendix 

The following is used to calculate the matrices 
( )N N Ne e fT
 

  and e NsN
Y


  for the 

model reduction from (5.21). Let 
 Ne sN f N

R
 

  be the reduced row echelon form of 

f fA B V     using Gauss-Jordan elimination. Let  , 1,j fb b j N     be a set of indices 

x10

  10

,10 ,10ˆlow
des lowx 

Time [s]

x10
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such that (:, )A b  is a basis of the range of A . Note that (:, )A b  denotes a matrix with columns of 

A  indexed by b . Let  , 1,r j e fE e j N N      be the set of edges corresponding to the 

reduced power flow vector ˆ
rP  where \ { :  and }r j j jE E b e e E e b    . Let (:, )rR R E   . 

Then, ,i jT t     where 

  ,

1 if ,

, if , .

0 else

j j r

i j k k

i e e E

t R k j i b b b

  
 

   
 
 

  (5.45) 

Let   :, 1:s
e e sR R N N N   . Then, ,i jY y     where 

 
 

,

, if ,
.

0 else

s
k k

i j

R k j i b b b
y

   
  
  

  (5.46) 
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Chapter 6     

Graph-based Modeling of a Thermal Fluid System 

6.1 Motivation 

From the generic graph-based modeling framework presented in Chapter 2, the objective 

of this Chapter is to demonstrate the value and applicability of the graph-based modeling 

framework for thermal fluid systems through experimental validation. A modular, and readily 

expandable experimental testbed is presented and used to showcase the ability of a graph-based 

modeling framework to capture the dynamics of a thermal fluid system. Furthermore, it is shown 

that a graph-based modeling approach provides a single flexible framework in which power flow 

dynamics can be represented using nonlinear or linear relationships. 

6.2 Background 

Conventional approaches to modeling and control of complex systems-of-systems are 

often limited to decentralized high-fidelity modeling and robust, low performance proportional-

integral and logic-based control [26]. Holistic modeling, analysis, and control design is inhibited 

by the complexity and size of the systems, especially when dynamics evolve over a wide range 

of timescales and energy domains. As the complexity of systems continues to increase, 

developing, analyzing, and validating control designs must be conducted in simulation prior to 

application to the physical system. Due to the complexity of the systems and corresponding 

models, modular, toolbox-based modeling frameworks are often developed. Examples in the 

fields of building and vehicle energy management include the Thermosys™ [80] toolbox for 

modeling air-conditioning and refrigeration systems, the ATTMO [81] toolbox for modeling 
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aircraft vapor cycle systems, and the PowerFlow toolbox for holistic aircraft power system 

modeling [82]. Each of these toolboxes consists of individual component models that can be 

interconnected to form complete systems. This modularity allows for individual sizing and 

validation of components and permits a wide range of system configurations and sizes to be 

implemented in simulation.  

To validate both modeling toolboxes and control approaches, experimental testbed 

systems have been developed across a range of application areas. Examples include the vapor 

compression refrigeration testbeds of [80] and [83], the hydraulic hybrid vehicle testbed of [84], 

the aircraft fuel thermal management system testbed of [85], and the shipboard chilled water 

distribution system testbed of [86].  

As shown in previous Chapters, a graph-based approach to modeling power flow systems 

can be particularly convenient for facilitating model-based control design. However, in order to 

prove the efficacy of these control techniques for real-world implementation, it is essential to 

demonstrate experimentally that graph-based modeling approaches can accurately capture the 

dynamics of power flow systems. 

6.3 Graph-based Modeling 

6.3.1 Generic Graph Formulation 

The generic graph-based modeling framework presented in Chapter 2 is extended in this 

Chapters to capture the hydrodynamic and thermodynamic behavior of a thermal fluid system. 

Thus, graph-based models in this Chapter are derived from application of either conservation of 

mass or conservation of thermal energy. A graph derived from conservation of mass is referred 

to as a “hydraulic” graph, while a graph derived from conservation of thermal energy is referred 

to as a “thermal” graph. In both cases, each vertex has an associated dynamic state ix  

representing an amount of stored mass or energy. Similarly, each edge has an assigned value jy  

describing the rate of transfer of mass or energy (i.e., power flow) between adjacent vertices. 

While previous Chapters refer to this transfer rate as power jP , for this Chapter the generic term 

jy  is used since a set of two interacting graphs will be developed where jy  refers to mass flow 
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rate in a hydraulic graph and thermal power in the thermal graph. For either graph, the dynamics 

of each vertex satisfy the conservation equation  

 ,
in

i i j j

e E e Ej i i
ut

j
o

C x y y

 

     (6.1) 

where iC  is the storage capacitance of the vertex. The transfer rate jy  along edge je  is a 

function of the states 
tail
jx  and 

head
jx  of the incident vertices 

tail
jv  and 

head
jv  as well as an input 

ju . Thus jy  is given as 

 ( , , ).tail head
j j j j jy f x x u   (6.2) 

Based on the same formulation from Chapter 2, the dynamics of the states in system S  

are 

  : ,inCx My Dy  S   (6.3) 

where Nin sy   now takes the place of 
inP  and represents the disturbance source transfer rates 

from the environment into the system and 
Ne

jy y     is  

  , , ,ty F x x u   (6.4) 

where   Nv
ix x   are the states, Nt t t

ix x  
 

 are the disturbance sink states, 

Ne
ju u     are the inputs, and    , , , ,t tail head

j j j jF x x u f x x u 
 

. 

6.3.2 Hydraulic Graph Modeling 

When conservation of mass is used as the continuity equation for a graph of a fluid flow 

system, a model of its hydrodynamic relationships is obtained. A hydraulic graph is denoted as 

m , with corresponding system mS  and the superscript m  denoting conservation of mass. 

States of the hydraulic graph's vertices are pressures [ ], [1, ]i vp p i N  m
, while the transfer rates 

along its edges are mass flow rates [ ], [1, ]j em m j N  m
. For this Chapter, all inputs to edges of 
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the graph ium  are actuator effort in units of % duty cycle of a pulse width modulation (PWM) 

signal. It is assumed that no fluid is added to or drained from to the system, so 0s tN N m m . 

Following from (6.3), the dynamics of the nonlinear hydraulic graph-based model are 

 :  ,C p M m m m m
S   (6.5) 

where ([ ])iC diag Cm m  is the matrix of hydraulic capacitances of the vertices. The mass flow 

rate jm  along je  is a function of the pressure differential 
tail head
j jp p  between the incident 

vertices 
tail
jv , 

head
jv  and the state of the actuator jum

. Therefore, following from (6.2), 

 ( , ).tail head
j j j j jm f p p u m m

  (6.6) 

6.3.3 Thermal Graph Modeling 

When conservation of thermal energy is used as the continuity equation for a graph of a 

fluid flow system, a model of its thermodynamic relationships is obtained. A thermal energy 

graph is denoted as e , with corresponding system eS  and the superscript e  denoting 

conservation of energy. The states of the thermal graph's vertices are temperatures 

[ ], [1, ]i vT T i N  e , while the transfer rates along its edges are thermal power flows 

[ ], [1, ]j eP P j N  e
. All inputs to edges of the graph are mass flow rates [ ], [1, ]j em m j N e e e

. 

Following from (6.3), the dynamics of the nonlinear thermal graph-based model are  

 :  ,inC MT P D P e e e e
S   (6.7) 

where ([ ])iC diag Ce e
 is the matrix of thermal capacitances of the vertices and 

inP  is the 

vector of power flows along the source edges of the graph. The power flow jP  along je  is a 

function of the temperatures 
tail
jT , 

head
jT  of the incident vertices 

tail
jv , 

head
jv  and the mass flow 

rate associated with the edge jme
. Therefore, following from (6.2), 

 ,( , ).tail head
j j j j jP f T T m e e

  (6.8) 
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6.3.4 Multi-graph System Representation 

Many physical components and systems are governed by both conservation of mass and 

conservation of thermal energy. Therefore, they can be represented by both a hydraulic graph 

m  with corresponding system mS  as in (6.5) and a thermal energy graph e  with 

corresponding system eS  as in (6.7). The coupling between the hydraulic and thermal graphs is 

limited to a unidirectional influence of mass dynamics on the thermal energy dynamics. 

Mass flow rates are calculated in the hydraulic graph as its transfer rates m . A subset of 

m  are the edge inputs me  to the thermal graph, affecting the power flows along the thermal 

graph’s edges. An example of this interconnection of the hydraulic and thermal graphs is shown 

in Fig. 6.1. There may also be mass flow rates affecting the power flows that are not calculated 

within the hydraulic graph. For example, this could include flow rates on the secondary side of 

heat exchangers by which heat is transferred to and from neighboring systems. These flow rates 

are denoted by [ ], [1, ]ext ext
i extm

m m i N   and treated as disturbances to the thermal model. 

 

Figure 6.1 Sample interconnection of thermal (top) and hydraulic (middle) graphs, with 

actuator dynamics (bottom) affecting the hydraulic edge inputs.  
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The matrix 
( )

1

N N Ne e extmZ
 



e m

 is defined as a mapping from the mass flow rates m  

and extm  to the input mass flow rates me , such that 

 1 .
ext

m
m Z

m

 
  

 

e   (6.9) 

Let pN m
 be the number of hydraulic actuators in the system. To account for dynamics 

including rate limits and time delays between each actuator command , [1, ]i pv i Nm m
 and the 

actual actuator state ium  which affects the hydraulic graph, each ium  is paired with a single-

input-single-output (SISO) system i
p

S  as shown in Fig. 6.1. Each i
p

S  models the state of the thi  

actuator as a function of its commanded value ivm . 

For this chapter, all actuators are pumps with states and inputs both in units of % duty 

cycle of PWM. The actuator dynamic of each pump is modeled as a first-order response with 

time constant i
p

 and delay 0i 
p

. This dynamic can be expressed as a transfer function by 

 ( ) .: ( )
1

si

i ii

i

e
u s v s

s










p

p m m

p
S   (6.10) 

6.4 Conservation-based Modeling 

The generic graph-based modeling framework presented in the previous Section can be 

used to capture the dynamics of a wide variety of thermal fluid systems that consist of a 

heterogeneous mix of components. Often it is useful to model components individually and then 

combine the individual component models to build up an entire system model.  

Graph-based modeling relies on the assumption of lumped parameters. For example, the 

mass stored in a fluid volume is captured by a single representative pressure while the thermal 

energy stored in a thermal mass is captured by a single representative temperature. The first step 

to modeling a component is to identify the capacitive elements within the component and 

corresponding state values that represent the stored quantities. It is recommended that each 
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component be represented with as few vertices as necessary to capture the relevant dynamics. If 

additional fidelity is needed, the component model can easily be further discretized with 

additional vertices and states. Once the vertices are identified, it is often a simple matter to 

determine the possible paths by which mass or energy can enter or exit that storage element and 

to represent these paths as edges. In order to keep models simple, it is suggested that only 

dominant power flows are represented as edges. If, during validation of the graph, it becomes 

apparent that a significant power flow was omitted from the graph, such as heat loss to ambient, 

edges can easily be added to improve the accuracy of the model. 

For demonstration purposes, the remainder of this Section develops a set of models for 

components often found in an experimental thermal fluid systems to be presented in Section 6.6. 

These components include a fluid reservoir, a flow split/junction, a pump, a pipe, a cold plate 

heat exchanger, and a liquid-to-liquid brazed plate heat exchanger. Fig. 6.2 shows the mass 

conservation and thermal energy conservation graphs for each component. Dashed lines, 

indicating disturbances to each component, consist of variables determined by neighboring 

components. For example, the reservoir and flow split/junction only calculate their own pressure 

based on mass flow rates determined by neighboring components. However, the pump and heat 

exchangers calculate their own outlet pressure and inlet mass flow rate based on the upstream 

pressure and downstream mass flow rate. The following details the modeling of these 

components based on their graph frameworks from Fig. 6.2. 

6.4.1 Mass Conservation 

All pressure dynamics are derived from the mass conservation equation 1 2M m m  , 

where M  is the rate-of-change of fluid mass stored in the component and 1m  and 2m  are the 

total flow rates into and out of the component. For components with a fixed volume V , the 

change in mass stored in a component is based on the change in density   of the fluid as a 

function of pressure p . Thus  M V V p p     . Noting that the change in density with 

pressure is based on the bulk modulus of the fluid E , where p E    , the mass 

conservation equation provides a dynamic equation for pressure within the component, where 
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Figure 6.2 Hydraulic and thermal graphs for individual components.  

 1 2.V p m m
E


    (6.11) 

Currently, the only component without a fixed volume is the reservoir. The reservoir has 

a constant cross sectional area ,c rA  with a liquid height rh . The top of the reservoir is subject to 
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rates 1m  and 2m . The mass stored in the reservoir rM  changes as a function of these flow rates: 

1 2rM m m  . This dynamic is expressed in terms of the pressure rp  at the bottom of the 

reservoir using the relationship between mass and liquid height, ,r c r rM A h , and the 

relationship for static pressure in a liquid, r amb rp p gh  . The resulting pressure dynamic is 

  1 2 .c rA p g m m    (6.12) 

The flow split/junction has n  inlets and m  outlets and thus when using (6.11) the inlet 

and outlet flow rates are calculated as 1 1,1

n
ii

m m


  and 2 2,1

n
ii

m m


 .  

The mass flow rates through pipes and heat exchangers are based on the pressure drop 

across the component 1p p p    and the height difference between the inlet and outlet flow 

h . Fluid flows through a cross sectional area of cA , based on tube diameter D , for a length .L  

Major losses are determined based on the friction factor f  and minor losses are modeled using 

the a minor loss coefficient LK . Pipes may include the pressure drop effects of various sensors 

via this minor loss coefficient. With s  sensors along the pipe the total minor loss coefficient is 

1

spipe i
L LL i

K K K


  . The resulting equation for the mass flow rate through a pipe or heat 

exchanger is 

 
 12

.c

L

p p g h
m A

L
f K

D






  


 
 

 

  (6.13) 

Note that Fig. 6.2 shows two forms of pipes. Pipe version (a) is the standard component 

that calculates a dynamic outlet pressure p  and the inlet mass flow rate 1m . Pipe version (b) 

only calculates a mass flow rate m  between two pressures 1p  and 2p , which are determined by 

neighboring components. Version (b) of the pipe is used at the inlet to the reservoir and flow 

split/junction, since these components do not calculate their own inlet mass flow rates. 

For the brazed plate heat exchangers, there are cN  channels for each fluid, the width of 

each plate is W , and the spacing between plates is b . Thus when using (6.13), c cA N bW  is 
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the cross sectional area of a single channel multiplied by the number of channels and 

 4 2 2D bW b W   is the hydraulic diameter of a single channel. 

The mass flow rate calculation for the pump is a function of the pressure differential 

across the pump 1pp p p    and the pump speed  . The mass flow rate is c mm A u , where 

mu  is the mean fluid velocity. From conservation of mechanical energy the fluid velocity is 

  2m pu g H p g  , where  ,pH H p    is the pump head. Thus the mass flow rate 

through the pump is 

 2 .
p

c

p
m A g H

g




 
  

 
  (6.14) 

Fig. 6.3 shows an example of a experimentally obtained pump head map with 

1 2 3pH k k p k     . 

 

Figure 6.3 Example pump head map.  
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6.4.2 Thermal Energy Conservation 

All temperature dynamics are derived from the thermal energy conservation equation 

1 2stE P P  , where st pE Mc T  is the stored thermal energy and 1P  and 2P  are the rate of 

thermal energy entering or exiting the storage element. In general, st p pE Mc T Mc T  , which 

accounts for the change in thermal energy associated with the change of mass M . The first term 

is important to consider for components, such as the reservoir, which may undergo a significant 

change in mass. However, for most components, st p pE Mc T Vc T  . For the reservoir, pump, 

and pipes, the power flow due to fluid flow into the component 1P  is 1 1 1pP m c T  and the power 

flow out of the component 2P  is 2 2 pP m c T . The lumped temperature represents the fluid 

temperature at the outlet of the component with the dynamic 

 1 1 2 .p p pVc T m c T m c T     (6.15) 

For the flow split/junction, the temperature dynamic is similar with 

 1, 1, 2,

1 1

.
n m

p i p i i p

i i

Vc T m c T m c T
 

     (6.16) 

The cold plate heat exchanger has an additional temperature dynamic capturing the 

thermal capacitance of the wall. With a heat load of Q , the cold plate wall temperature dynamic 

is 

  , ,w p w w s wM c T Q hA T T     (6.17) 

where h  is the heat transfer coefficient and sA  is the convective surface area. The heat transfer 

coefficient is calculated based on a Nusselt number, Nu hD k , of 3.66Nu   for laminar flow 

or the Gnielinski equation [87] 

 
  

   1 2 2 3

8 Re 1000 Pr
,

1 12.7 8 Pr 1

f
Nu

f




 
  (6.18) 
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for turbulent flow. With the additional convective heat flow, the fluid outlet temperature 

dynamic for the cold plate is 

  1 1 2 .p p s w pVc T m c T hA T T m c T       (6.19) 

Finally, the brazed plate heat exchanger is modeled similarly to the cold plate heat 

exchanger where the heat load Q  is replaced by secondary fluid flow. The plates of the heat 

exchanger are assumed to be at a uniform lumped temperature wT  with the dynamic 

    , , , ,w p w w b s b b w a s a w aM c T h A T T h A T T      (6.20) 

where subscripts a  and b  denote the primary and secondary fluids channels, wM  is the mass of 

a single plate, and sA  is the convective surface area for a single channel. For the plate heat 

exchangers, the heat transfer coefficient is based on the empirical results from [88], where 

 0.766 0.3330.277Re Pr .Nu    (6.21) 

Note that all components are assumed to be adiabatic and do not exchange heat with the 

surroundings. If this heat loss needs to be considered, the component graphs in Fig. 6.2 could 

easily be modified with an additional edge directed to a new vertex with a corresponding state 

equal to the ambient air temperature. 

In general, the equations used to represent the hydraulic and thermodynamic behaviors in 

this Section have a nonlinear form but satisfy the generic conservation and power flow 

relationships from (6.1) and (6.2). For control design in particular, it is often useful to use a 

linear representation of the system dynamics. One of the key benefits of a graph-based approach 

is that this linearization can be performed for each power flow relationship individually as 

discussed in the following Section. 



 108  

6.5 Linearization and Discretization 

6.5.1 Hydraulic Graph Linearization 

To generate a linear hydraulic graph model for use in control design, the generic mass 

flow rate relationship of (6.6) is linearized about an equilibrium operating condition using a first-

order Taylor Series, giving  

 ( ,)tail
j j j j j

head
jm a p p b u     m m m

  (6.22) 

where, for a generic signal  x t ,     0:x t x t x    and 0x  is the equilibrium value of x  about 

which the linearization is taken. The dynamics of the linearized hydraulic model are then given 

by 

 ,p A p B u   m m m   (6.23) 

where  

     
1

,
T

jA C M diag a M


  
 

m m m m m   (6.24) 

    
1

,jB C M diag b


  
 

m m m m   (6.25) 

and M m  represents the columns of M m
 corresponding to edges with associated actuators and 

jbm
 are the input coefficients for edges with actuators.  

The output equation of the linearized hydraulic model relating pressures and actuator 

efforts to mass flow rates is given by  

 ,m C p D u   m m m   (6.26) 

where  

    ,
T

jC diag a M 
 

m m m   (6.27) 

 , ,
Ne

j k

N pD d
  

 

m m
m m

  (6.28) 
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and  

 ,

if  is associated with actuator 
.

0 else

j j
j k

b e k
d

  
  
  

m
m   (6.29) 

6.5.2 Hydraulic Graph Discretization  

The dynamics of the hydraulic system evolve relatively quickly, on the order of fractions 

of seconds. Therefore, care must be taken to preserve stability and maintain sufficient numerical 

tolerances when discretizing the continuous model to relatively slow update rates, for example 

on the order of 1 Hz. Furthermore, conservation of mass dictates that Am
 is singular, which 

violates the assumptions of several common discretization approaches. These issues motivate the 

multistep process described below for obtaining discrete models of the hydraulic system. The 

linear hydraulic model is first discretized at a relatively fast update rate on the order of 10,000 

Hz using a zero-order hold. This yields the discrete dynamic model 

 , ,( 1) ( ) ( ),d fast d fastp k A p k B u k     m m m
  (6.30) 

with state matrices given by 

  , exp ,d fast fastA A t m m m   (6.31) 

  , 0
exp ,

t
fast

d fastB A d B


 



 

m
m m m   (6.32) 

where fastt m
 is the time step between consecutive updates. 

For the component size and configuration of the system to be implemented in this 

Chapter, 10,000 Hz has been found to be a sufficiently fast update rate to preserve stability 

properties of the continuous system. However, as demonstrated in Chapter 7, this is orders of 

magnitude faster than what is required to control the hydrodynamics of such a system. Therefore, 

a hydraulic model at a slower update rate is desired. To better capture the continuous behavior of 

the actuators at a slower time step, such a model is derived by downsampling the “fast” discrete 

model using a first-order hold rather than a zero-order hold. This essentially preserves 

knowledge of the rate limit of the actuator effort, which under a first-order hold is assumed to 
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ramp between time steps. By comparison, a zero-order hold would assume stepped actuator 

inputs with an instantaneous rate of change. 

The discrete model used for control has a time step of t m  given by 

 s.t. 1 and .ds fast ds dst N t N N    m m m m m
  (6.33) 

The use of a first-order hold in performing this downsampling yields the discrete dynamic model 

        ,1 ,21 1 ,d d dp k A p k B u k B u k        m m m m m   (6.34) 

with state space matrices given by 

  , ,
N

ds
d d fastA A

m
m m   (6.35) 

  
11

,1 , ,0
1 ,

N iN dsds
d d fast d fasti

ds

i
B A B

N

 



  
     

  


mm
m m m

m
  (6.36) 

  
11

,2 , ,1
.

N iN dsds
d d fast d fasti

B A B
 



 
  
 
 


mm
m m m   (6.37) 

Because (6.34) depends on knowledge of  1u k m  to compute  1p k  , (6.34) is clearly a 

non-causal system. However, as shown in Chapter 7, this does not present a problem when using 

this model for an MPC controller. 

6.5.3 Thermal Graph Linearization 

 To generate a linear thermal graph model, the power flow relationship of (6.8) is 

linearized about an equilibrium operating condition using a first-order Taylor Series, giving 

 .tail he
j j j

ad
jj jjbP cTa T m     e e e e

  (6.38) 

The dynamics of the linearized thermal model are then given by 

 1 2 ,in tT T B m V P V TA        e e e e e
  (6.39) 

where  
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    
1

, ,
T

a bC M MA


 e e e e   (6.40) 

    
1

,jC diagB c


   
 

e e e   (6.41) 

  
1

1 ,C DV


e e e   (6.42) 

    
1

2 , ,
T

a bC M MV


 e e e e   (6.43) 

and 
 

, ,

N Nv t

a b i j

Ne
M m

 
   

e e e
e  is a weighted incidence matrix for the thermal graph with 

 ,

if  is the tail of 

if  is the head of .

0 else

j i j

i j j i j

a v e

m b v e

 
 
 

  
 
  

e

e   (6.44) 

6.5.4 Thermal Graph Discretization 

The dynamics of the thermal system evolve much slower than those of the hydraulic 

system, on the order of tens of seconds. Therefore, the use of a zero-order hold is sufficient for 

generating a discrete model at the rate desired for control. This yields the discrete dynamic 

model 

          ,1 ,21 ,in t
d d d dT k T k B m k V P k V T kA         e e e e e   (6.45) 

with state space matrices given by 

  exp ,dA A t e e e   (6.46) 

    
1

,d dB A A I B


 e e e e
  (6.47) 

    
1

,1 1 ,d dV A A I V


 e e e e
  (6.48) 
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    
1

,2 2 ,d dV A A I V


 e e e e   (6.49) 

where t e  is the time step between consecutive updates. 

6.5.5 Actuator Dynamics 

The continuous-time model of the actuator dynamics given as a transfer function in (6.10) 

can be equivalently expressed as 

       ,i i ii i iu t a u t b v t   
p p pm m m   (6.50) 

where  

 
1 1

, .i i

i i

a b
 

  
p p

p p
  (6.51) 

The update rate of the discrete actuator model t p  is defined such that the delay i
p

 is the 

integer ,ds iN
p

 multiple of t p . The discrete model is then given by 

      , , ,1 ,i i id i d i ds iu k a u k b v k N   
p p pm m m   (6.52) 

where  

  , ,exp , 1 .i i id i d ia a t b a   
p p p p p   (6.53) 

6.6 Experimental System Description 

The following experimental system is used to demonstrate the applicability and validity 

of the graph-based modeling framework presented in the previous Sections. This experimental 

testbed was developed to emulate features of power flow systems while being rapidly 

reconfigurable to allow for numerous system architectures. Currently, the experimental system 

focuses on the thermal and hydrodynamic energy domains, with future work concentrating on 

expansion to the electrical domain. This experimental system is used to demonstrate the 

implementation of a hierarchical model predictive control framework in Chapter 7. 
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6.6.1 Overall System 

Fig. 6.4 shows the testbed with a sample system configuration along with the 

corresponding system schematic. The slatted design of the testbed allows components to be 

placed in arbitrary horizontal or vertical positions, similar to a breadboard for electrical circuits. 

The working fluid is an equal parts mixture of propylene glycol and water. Components use 

standard G1/4 threaded barbs and are connected via flexible tubing. Sensors and pumps are 

connected to a National Instruments CompactDAQ via custom USB plug interfaces. 

6.6.2 Individual Components  

Fig. 6.5 presents images and specifications of the components currently included in the 

testbed.  

Centrifugal pumps are the primary fluid movers in the system. Speed is controlled via a 

PWM duty cycle with <20% being a constant 1300RPM, 65% and above being 4500RPM, and a 

linear trend between. Peak power consumption of the pumps is 20W with a peak efficiency of 

35%. 

Liquid-to-liquid brazed plate heat exchangers (HX) allow for the transfer of heat among 

various fluid loops in either a parallel-flow or counter-flow configuration.  

The cold plate heat exchanger consists of two 47Ω resistive heater wired in parallel, 

capable of 2kW peak power output, mounted to an aluminum cold plate that has copper tubing 

passing through. The heater is connected to a solid-state relay which allows for 0-100% power 

output using the 208VAC wall power supply.  

The reservoir acts as a thermal storage element. A liquid level sensor inside the reservoir 

allows for the calculation of the liquid mass and therefore thermal capacitance of the reservoir. 

A 1.5HP (1.12kW) industrial chiller acts as a heat sink (e.g. a vapor compression 

system). With variable temperature control from -10oC to 70oC, the chiller can emulate a wide 

range of source and sink temperatures. 

Temperature and pressure sensors utilize G1/4 threads and integrate seamlessly into the 

tube junctions. As such, limited pressure drops are incurred due to the inclusion of these sensors 

within the system. Similarly, mass flow sensors use G1/4 threads to attach in line with pipes but 

the paddlewheel-based design does introduce significant pressure drops. 
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(a) Experimental thermal fluid system. 

 
(b) System Schematic (red sensors plotted for model validation in Section 6.8) 

Figure 6.4 Candidate thermal power architecture for simulation and experimental 

validation.  
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Figure 6.5 Individual components and specification with a 6” ruler for scale.  

6.7 Graph-based System Representation 

To represent an entire system as a graph, the individual component models from Fig. 6.2 

in Section 6.4 are simply connected to reflect the given system architecture. The example system 

configuration shown in Fig. 6.4 is modeled using the graph-based framework with the resulting 

hydraulic and thermal energy graphs shown in Fig. 6.6. The following Subsections demonstrate 

how the conservation-based modeling equations from Section 6.4 are assembled into the generic 

graph-based models from Section 6.3 for the example experimental system configuration.  

Component Number Details 

(a)   Pump 8 

 Swiftech MCP35X  

 12VDC, 1.5A max, PWM ctrl. 

 4.4 m max head  

 17.5 LPM max flow 

(b)   Brazed                          
Plate HX 

4 

 Koolance HXP-193 

 12 plates 

 4.0 kW @ 5 LPM and 20oC inlet 

temp. diff. 

(c)   Cold 

Plate HX 
4 

 Ohmite CP4 with TAP2000 thick 

film resistor  

 0.018 oC/W thermal resistance 

 2000W  

(d)   Pipe - 

 Koolance HOS-13CL 

 Clear PVC 

 13mm x 16mm 

(e)   Reservoir 4 

 Koolance 80x240mm  

 Acrylic 

 8” eTape Liquid Level Sensor 

(f)   Chiller 1 

 Polyscience 6000 Series 

 Up to 2900W @ 20oC 

 -10oC to +70oC  

(g)   Temp. 
Sensor 

16 
 Koolance SEN-AP008B 

 10K ohm thermistor 

(h)   Pressure. 
Sensor 

7 
 Measurement Specialties US300 

 0 – 100kPa gauge 

(i)   Flow Rate 
Sensor 

8 
 Aqua Computer High Flow 

 0.5 – 25 LPM  

 

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

(i)
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Figure 6.6 Hydraulic and thermal graphs for the example experimental system configuration.  
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6.7.1 Mass Conservation System 

Since the primary and secondary flow loops do not exchange mass, the hydraulic graph in 

Fig. 6.6 has two independent components. The dynamics of this system follow from (6.5), where 

iC V Em  for all vertices except the reservoir where i cC A gm . The mass flow rate 

function  ,tail head
j j j j jm f p p u m m  equals (6.13) for the pipes and heat exchangers and (6.14) 

for the pumps. To simplify the graph equations, a constant fluid density of 31041kg m   is 

used. For the linear graph results in the following Section, (6.13) and (6.14) are linearized about 

a nominal operating condition (50% pump PWM duty cycles). 

6.7.2 Thermal Energy Conservation System 

Fig. 6.6 also shows the thermal graph for the experimental system. The five inlet power 

flows consist of the four heat loads to the cold plates and the fluid flow from the chiller entering 

the secondary side of heat exchanger 2. Thus in (6.7), 

 1 2 3 4 2, 2, ,
Tin

b p bP Q Q Q Q m c T      (6.54) 

where iQ  is the heat load to the thi  cold plate heat exchanger and 2,bm  is the secondary fluid 

flow rates through heat exchanger 2 with corresponding inlet temperature 2,bT  set by the chiller. 

The thermal capacitances i pC Vce
 for all fluid temperatures and ,i w p wC M ce

 for all heat 

exchanger wall temperatures. The thermal power flow function  , ,tail head
j j j j jP f T T m e e  equals 

tail
j j p jP m c T e

 for all thermal power flow due to fluid flow and  ,
tail head

j j s j j jP h A T T   for 

convective thermal power flows in the heat exchangers. To simplify the graph system equations, 

a constant fluid specific heat of  3500pc J kg K   is used. Additionally, to reduce the 

complexity of the power flow equations, the heat transfer correlation from (6.18) is 

approximated, with (6.17) and (6.19) using 1 2h mT   , where 1 2000   and 2 0   for the 

cold plate heat exchanger. 



 118  

Similarly, the heat transfer correlation from (6.21) for the brazed plate heat exchanger is 

approximated, and (6.20) uses 1 2572   and 2 1136  . While these approximations are used 

successfully within the range of operating conditions seen in the current experimental systems, 

the nonlinear (6.18) and (6.21) may be used over wider ranges of conditions. 

6.8 Model Validation 

In this Section, the graph-based modeling approach of Section 6.7 is validated by 

comparison of experimental data from the testbed of Section 6.6 to the linear graph-based 

models, using the configuration shown in Fig. 6.4. This linear model is used for hierarchical 

control in Chapter 7. Separate experimental tests are used to validate the hydrodynamic and 

thermodynamic domains so that each is validated under excitation on an appropriate timescale 

(i.e., the hydrodynamics are validated using rapid steps in pump speed, while the significantly 

slower thermodynamics are validated with slower steps in pump speed and heat load).  

6.8.1 Hydrodynamic Validation 

Fig. 6.7 shows the pump input sequence used to validate the hydrodynamics of the 

models, where the pump numbering follows from that of Fig. 6.4. Fig. 6.8 shows a subset of the 

measured outputs from the testbed (labeled as “Measured”), as well as the graph-based model 

(labeled as “Linear Graph Model”). The pressures at the outlet of pumps 1, 2, and 4 are shown 

along with the pressure at the inlet to the primary side of heat exchanger 2 and the mass flow 

rates at the outlet of pumps 1 and 4. From Fig. 6.8, the linear graph model captures some 

pressures very accurately, such as the pressures for pumps 1 and 4, while fails to accurately 

model other pressures, such as the pressure for pump 2. This model inaccuracy is likely due to 

the nonlinearity of the pump equation (6.14) and the pressure drop equation (6.13) for flow 

through pipes and heat exchangers. Additional fine tuning of the minor and major loss 

coefficients would also improve model accuracy. However, as will be shown in Chapter 7, a 

hierarchical controller using this linear graph model is capable of effectively controlling the 

nonlinear experimental system. 
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Figure 6.7 Pump PWM duty cycle inputs for hydrodynamic validation.  

 

Figure 6.8 Selected outputs for hydrodynamic validation of experimental data with linear 

graph-based models.  
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6.8.2 Thermal Validation 

Fig. 6.9 shows a sequence of pump inputs and heat loads to the cold plate walls used to 

validate the thermodynamics of the models. From Fig. 6.10, one can confirm that general 

temperature behaviors at multiple locations in the experimental system are captured by the linear 

model. The model error from the hydraulic graph in the previous Subsection also affects the 

accuracy of this model since the mass flow rates modeled by the hydraulic graph are inputs to the 

thermal graph. Discrepancies between the graph-based models and the experimental data are 

likely due to the lumped capacitance approach used to represent a component with spatially 

varying temperature, such as the wall of a cold plate heat exchanger, by a single vertex with a 

single temperature. While these models could be improved, at the cost of increased complexity, 

the accuracy of the models is sufficient for the hierarchical control in Chapter 7.  

 

Figure 6.9 Pump and heater inputs for thermodynamic validation.  
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Figure 6.10 Selected temperatures for thermodynamic validation of experimental data with 

linear graph-based models.  

6.9 Chapter Summary 

The results in this Chapter demonstrate the capabilities of a graph-based modeling 

framework to capture the hydrodynamic and thermodynamic behavior of an experimental 

thermal fluid system. Conceptualizing and modeling a system based on the underlying structure 

of mass and energy storage and transport provides numerous benefits. First, when viewed as a 

graph, systems of different energy domains look and behave identically. Energy, and/or mass, is 

transported along edges and stored at the vertices, regardless of whether the vertex state 
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represents a temperature, a pressure, or a voltage. This unifying framework natively captures the 

interactions between energy domains and thus facilitates system-wide design, analysis, and 

control.  

The second benefit of a graph-based approach comes from the modularity. Vertices and 

edges are all modeled individually. This allows for rapid development of complex systems with 

many vertices and edges through the combination of components modeled individually. From 

this modularity, alternative system configurations can be rapidly evaluated through the 

rearrangement of components or the addition/subtraction of various edges and vertices. Along 

these lines, if the overall model validity is not sufficient for the intended purposes of the model, 

additional fidelity can be easily added through the discretization of components captured by 

additional vertices and edges in the graph. 

An additional benefit comes from the flexibility of a graph-based modeling framework. 

The majority of the system specific behaviors are captured by the edge transfer rate equation 

(6.2). The general, nonlinear form of this equation allows for a wide variety of relationships to be 

captured within a single framework. While the general form may be nonlinear, (6.2) may be 

easily restricted to specific forms, such as input affine, bilinear, or linear, to best suit the needs of 

the modeling and control efforts. The following Chapter demonstrates the ability to directly 

utilize the hydraulic and thermal graphs developed in this Chapter to develop a hierarchical MPC 

controller for the experimental system from Fig. 6.4. 
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Chapter 7     

Hierarchical Control of a Thermal Fluid System 

7.1 Motivation 

Chapter 2 demonstrated how a graph-based modeling framework can capture the storage 

and routing of energy throughout out the complex systems found in vehicles. Chapter 6 showed 

how an experimental thermal fluid system can be represented as a pair of interacting hydraulic 

and thermal graphs, which capture the conservation of mass and conservation of thermal energy 

that govern the complex nonlinear dynamics of a real physical system. This Chapter 

demonstrates the development of a hierarchical control framework for managing the thermal and 

hydraulic states of a system by directly accounting for the coupling between these two domains 

based on the generic modeling and control procedure presented in Chapters 2 and 3. The control 

hierarchy in this Chapter represents the lower-level Subsystem, Component, and Physical Level 

controllers from Fig. 3.1. It is intended that the control hierarchy from this Chapter could be 

readily integrated with the generic hierarchical control formulation from Chapter 3, which would 

form the upper-level controllers from Fig. 3.1, to create a highly functional controller for more 

complex, multiple energy domain systems. While the following control formulation does not 

benefit from the theoretical stability and feasibility guarantees from Chapters 4 and 5, the future 

research directions in presented in Chapter 8 are intended to help extend the applicability of 

these theories to physical systems with more complex dynamics. 
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7.2 Hierarchical Control Framework 

The proposed control framework consists of three layers, arranged in the hierarchy shown 

in Fig. 7.1. The thermal layer optimizes the thermal performance of the system by selecting 

references for its mass flow rates refm . In doing so, the thermal layer leverages available 

preview of upcoming thermal disturbances (i.e., power flows along source edges and states of 

sink vertices of the thermal graph). The hydraulic layer controls the system mass flow rates to 

track refm  by selecting references for the actuator states refum
. In the actuator layer, a set of pN m

 

decoupled SISO controllers track refum
 by commanding the actuator inputs vm . 

 

Figure 7.1 Three-level graph-based control hierarchy and signals.  

7.2.1 Thermal Control Layer 

The thermal control layer leverages available preview of upcoming thermal disturbances 

in selecting references for system mass flow rates refm  that optimize the thermal performance of 
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the system over a prediction horizon. For this Chapter, “optimal thermal performance” primarily 

involves controlling temperature states of the system , [1, ]i vT i N e  such that ,i i iT T T i   , 

where iT  and iT  are lower and upper bounds, respectively, on the thi  temperature. A 

temperature regulation objective is also included to maintain critical components near the desired 

operating temperature. A final objective is minimizing the mass flow rate references, which 

reduces the actuator effort required of the system. Additional constraints are included in the 

thermal control layer to ensure that refm  is an achievable reference to be tracked by the 

hydraulic control layer by the system. The MPC controller at the thermal control layer solves the 

constrained quadratic program 
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. t .s           ,1 ,21 ,in t
d d ref d preview d previewT k T k B m k V P k V T kA         e e e e
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 ( ) ( ) ( ), [1, ],i i i i i vT s k T k T s k i N    e e e   (7.1c) 

 ( ) 0, [1, ],i vs k i N e e
  (7.1d) 

 , ( ), [1, ],ref i em m k i N  m
  (7.1e) 

 ( ) , [1, ],i i i pu u k u i N  m m m m
  (7.1f) 
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 ( ) ( ) ( ),refm k C p k D u k   m m m
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for 0, 1hk N  
 

e .  

In the above MPC optimization problem, hN e
 is the prediction horizon of the thermal 

control layer. The cost function (7.1a) minimizes the thermal slack variable 
Nv

is s  
 

e
e e
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with weighting s
e , the desired state tracking error desT T  with weighting r

e , and the mass 

flow rate references refm  with weighting m
e . The discretized dynamics from the thermal graph 

model are imposed by (7.1b). The temperature states iT  are constrained by (7.1c) where the slack 

variables are required to be non-negative by (7.1d). All mass flow rates are required to be greater 

than m  by (7.1e), where m  is a small positive number to prevent reverse flow conditions.  

Constraints (7.1f)-(7.1h) ensure that the set of reference values refm  are simultaneously 

achievable by m  of the hydraulic graph model at steady-state. This represents a key difference 

between the graph-based control designs in previous Chapters in which generic inputs are 

individually constrained as ,i i iu iu u   . In hydraulic fluid systems with flow splits and 

junctions, there exists a high degree of coupling among pressure and mass flow rates through 

different flow paths. This means that constraining individual mass flow rates by constants can 

either result in over-conservative bounds or result combinations of mass flow references that are 

not simultaneously achievable by the system. The use of the steady-state hydraulic model in 

(7.1g) greatly reduces this conservatism. 

The upper and lower bound constraints on the actuator inputs are enforced by (7.1f). 

Using the steady-state hydraulic model, (7.1g) constraints the relationship between system 

pressures and actuator inputs that are used to calculate the mass flow rates in (7.1h). As will be 

shown in Section 7.3, due to the significant timescale separation between the thermodynamics 

and hydrodynamics, there is negligible error incurred by using a steady-state hydraulic model to 

make control decisions at the timescale of the thermal control layer.  

7.2.1 Hydraulic Control Layer 

The hydraulic control layer forces the system mass flow rates to track refm  by selecting 

references for the actuator states refum
. While (7.1f)-(7.1h) in the thermal control layer ensure that 

refm  is achievable at steady-state, the hydraulic control layer is responsible for managing the 

transient behavior of the hydraulic states to closely track refm , to minimize the prediction error 

of the thermal controller. Because the hydrodynamics evolve significantly faster than the 
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thermodynamics, the hydraulic control layer has an order of magnitude faster update rate than 

the thermal control layer. 

References refm  from the thermal control layer are not provided for a single instant in 

time, but instead are provided for all steps over the thermal control layer's prediction horizon. 

Using a zero-order hold between steps of the thermal horizon, these references are resampled and 

truncated to match the update rate and prediction horizon of the hydraulic control layer, giving 

,ref previewm . This allows the hydraulic layer to take preemptive action in minimizing tracking 

errors, preparing for references anticipated of the future rather than only reacting to their current 

values. 

The MPC controller at the hydraulic control layer solves the constrained quadratic 

program 
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In the above MPC optimization problem, hN m
 is the prediction horizon of the hydraulic 

control layer. The cost function (7.2a) minimizes the thermal slack variable 
Nv
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 

m
m m
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with weighting s
m , the actuator state references refum

 with weighting u
m , and the mass flow 

rate reference tracking error with weighting m
m . The discretized dynamics from the hydraulic 

graph model are imposed by (7.2b) with mass flow rate related to pressure and actuator state 

references through (7.2c). The pressure states ip  are constrained by (7.2d) where the slack 

variables are required to be non-negative by (7.2e). The upper and lower bound constraints on 

the actuator inputs are enforced by (7.2f). Since (7.2b) is non-causal, (7.2g) constrains the 

actuator state references at the current time step  1refum
 to be equal to the actuator state 

references at the corresponding time in the previous time step  , 2ref lastum
.  

7.2.1 Actuator Control Layer 

In the actuator control layer, a set of pN m
 decoupled SISO controllers track refum

 by 

commanding the actuator inputs vm , accounting for the dynamics of the actuators. 

Similar to refm  from the thermal control layer as discussed previously, references refum
 

are not provided for a single instant in time, but instead are provided for all steps over the 

hydraulic control layer's prediction horizon. Using a zero-order hold between steps of the 

hydraulic horizon, these references are resampled and truncated to match the update rate and 

prediction horizon of the actuator control layer, giving ,ref previewum
. 

The thi  MPC controller at the actuator control layer solves the constrained quadratic 

program 
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  (7.3a) 
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 , , ,( ) , [ , 1],i delayed i i ds i h iu v k u k N N   
p pm m m

  (7.3c) 

 , , , ,,( ) ( ), 0, 1 .delayed i delayed last i ds i ds iv k v k N k N    
 

p pm m   (7.3d) 

In the above MPC optimization problem, ,Nh i
p

 is the prediction horizon of the thi  MPC 

controller at the actuator control layer. The cost function (7.3a) minimizes the actuator state 

reference tracking error with weighting ,u ip  and the change in consecutive actuator inputs with 

weighting ,dv ip
 over the portion of the prediction horizon for which ,delayed ivm

 is not fixed to 

equal the actuator inputs , ,delayed last ivm
 determined at the previous iterations of the controller by 

(7.3d). The discretized dynamics from the actuator model are imposed by (7.3b). The upper and 

lower bound constraints on the actuator inputs are enforced by (7.3c). 

7.3 Simulation Results 

In this Section, the proposed hierarchical control framework is demonstrated in 

simulation. The controller is provided with full state feedback of the temperatures, pressures, and 

actuator states of the plant. The update rates, horizons, weightings, and constraints of the control 

framework as described in the previous Section are parametrized as follows: 
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Simulations are conducted in MATLAB/Simulink using the YALMIP toolbox [41] and 

Gurobi optimization suite [42] to solve the constrained quadratic programs. 

Fig. 7.2 shows the heat load inputs to cold plates 1-5 for the simulation example. These 

loads serve as disturbances to the system. Upcoming loads are assumed to be known exactly by 

the thermal control layer over the duration of its prediction horizon, equal to 100 ,ht N s e e . The 

load profile consists of sequential steps of varying magnitude and duration in the heat load to 

each cold plate. 

Fig. 7.3 shows temperature states of the linear plant, including a selection of cold plate 

wall temperatures in the top subplot and fluid temperatures in the bottom subplot. In advance of 

the heat loads to cold plates 1 and 4, the thermal controller seeks to minimize temperature 

constraint violation by strategically “precooling” the cold plate walls prior to the increase in 

load. While this precooling helps to minimize the constraint violation, the loads are large enough 

to cause constraint violations. The coupling between cold plates 2 and 3 is shown during the 

increase in heat load to cold plate 3 between 300 and 400 seconds. Since these two cold plates 

are in series, the controller increases the mass flow rate through both cold plates to prevent 

constraint violation for cold plate 3. This increase in mass flow rate causes the temperature of 

cold plate 2 to decrease.  

Fig. 7.4 shows the resulting pressures, mass flow rates, and pump speed inputs. 

Interestingly, the hierarchical controller chooses to reduce the speed of pump 1 during the 

increase heat load to cold plate 4 between 500 and 600 seconds. This reduces the heat transfer 

from the secondary loop to the primary loop, which helps minimize the constraint violation for 

the cold plate 4 wall temperature. 

Fig. 7.5 shows a closer view of a portion of the actuator effort for pump 5, and also 

includes the references from the Hydraulic Control Layer and the commands issued by the 

Actuator Control Layer. The commands are seen to lead the references, leveraging preview of 
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upcoming references and accounting for the 1 second time delay in pump dynamics to minimize 

the overall tracking error. 

 

Figure 7.2 Thermal disturbances for the simulation example, consisting of step changes in 

heat load to each cold plate (CP) heat exchanger.  

 

Figure 7.3 States of the linear plant in the closed-loop simulation example, including cold 

plate wall temperatures (top) and a selection of outlet fluid temperatures (bottom).  
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Figure 7.4 Fluid pressures at the outlet of each pump and inlet to heat exchanger 2 (top), 

mass flow rates at the outlet of each pump and inlet to heat exchanger 2 (middle), and 

pump input signals (bottom).  
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Figure 7.5 Close-up view of state signals for pump 5 showing the pump state reference from 

the Hydraulic Control Layer, the commanded pump input by the Actuator Control Layer, 

and the achieved pump state.  

7.4 Experimental Results 

The same hierarchical controller used to control a linear graph model of the system in the 

previous Section is applied to the experimental system. The same controller parameters from 

(7.4a-c) are used. A Kalman filter estimates the full set of states based on the subset of measured 

pressures and temperature. Fig. 7.6 shows the measured heat load applied to each cold plate heat 

exchanger based on the measured current and the measured resistance of the resistors from Fig. 

6.5. Fig. 7.7 shows the measured temperatures corresponding to the temperatures from the linear 

simulation presented in Fig. 7.3. There are some clear differences between the measured 

experimental and simulated temperatures, most notably the wall temperature of cold plate 1. The 

fact that this cold plate temperature increases significantly more in the closed-loop simulation 

results than in the closed-loop experimental results is a product of the open-loop model error 

seen in Fig. 6.10 from the previous Chapter, where the linear model predicts larger temperature 

rises as a result of the increased heat load. This error is likely due to the approximated heat 

transfer coefficients in the linear graph model used to capture the heat transfer between the cold 

plate wall and the fluid flowing through the cold plate. The over-prediction of cold plate wall 

temperatures in the linear model also results in differences in the control of pump 1, as seen by 

comparing Fig. 7.8 with Fig. 7.4. In simulation, this pump is operated at its upper constraint in 

simulation and at its lower constraint on the experimental system for most of the scenario.  
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Figure 7.6 Measured heat load applied to each cold plate matching the disturbance profile 

from Fig 7.2.  

 

Figure 7.7 Measured temperatures from closed-loop control of the experimental system, 

including cold plate wall temperatures (top) and a selection of outlet fluid temperatures 

(bottom).  
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Despite these difference, the linear model-based hierarchical controller is able to 

effectively controller the nonlinear experimental system. As with the simulated results in the 

previous Section, the thermal controller seeks to minimize temperature constraint violation by 

strategically precooling the cold plate walls prior to the increase in load, as seen by the 

temperatures of cold plates 1 and 4. 

 

Figure 7.8 Measured fluid pressures at the outlet of each pump and inlet to heat exchanger 

2 (top), measured mass flow rates at the outlet of each pump and inlet to heat exchanger 2 

(middle), and pump input signals (bottom).  
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7.5 Chapter Conclusions  

The results in this Chapter demonstrate the ability to develop a practical hierarchical 

controller based on linear graph models for an experimental system without guaranteed stability 

or robust feasibility. The proposed control framework shows how hydraulic and thermal graph 

models, developed and validated in Chapter 6, can be used by controllers at different levels of 

the hierarchy. With the three levels of control, the thermal, hydraulic, and actuator dynamics can 

be effectively controlled, despite the timescale separation between these dynamics. These 

controllers form the lowest levels of the larger control hierarchy shown in Fig. 3.1. Within the 

overall hierarchy, these controllers have the difficult task of compensating for the nonlinearity, 

sensor noise, model mismatch, and time delays common to many physical systems. Thus, the 

preliminary experimental results in this Chapter demonstrate the potential of model-based 

hierarchical control in practice. In addition to summarizing of the contribution of this 

dissertation, the following Chapter discusses several practical extensions of the theoretical result 

from Chapters 5 and 6 that would help create a highly functional controller for more complex, 

multiple energy domain systems with guaranteed stability and robust feasibility. 
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Chapter 8     

Conclusion 

8.1 Summary of Research Contributions 

  This dissertation develops, analyzes, and demonstrates a hierarchical control framework 

for energy management in vehicle systems. Effective energy management is vital to maximizing 

the capability of these complex systems to meet the constantly growing demands for 

performance, efficiency, and reliability. With multiple systems and subsystems of various energy 

domains interacting over a wide range of timescales, these vehicle systems require both 

modeling and control frameworks that are widely applicable, scalable, robust, high performance, 

and computationally efficient. 

This need is addressed through contributions in the following four areas. 

1. Chapter 2 develops a generic graph-based modeling framework that captures the 

energy storage and power flow dynamics in multiple energy domains and 

timescales. Thus, this modeling approach is widely applicable to many types of 

systems and is scalable to large systems due to the modularity of graph-based 

modeling. The approach is also computationally efficient, using a relatively few 

number of states to capture the complex dynamics of the energy storage and 

routing throughout a system. 

2. Chapter 3 utilizes these graph-based models to develop a multi-level hierarchical 

control framework, where each level consists of multiple MPC-based controllers. 

The graph-based modeling framework is directly used to formulate the structure 

of the control hierarchy as well as the models used by the controllers at each level 
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of the hierarchy via a novel graph-based model reduction technique. Simulation 

results demonstrate the high performance achieved when the update rate of 

controllers at each level of the hierarchy is paired with a particular timescale of 

the multi-timescale system. Through model reduction and large prediction 

horizons with relatively few prediction steps, the hierarchical controller achieves 

this performance with high computational efficiency. 

3. Chapters 4 and 5 analyze the theoretical properties of the proposed hierarchical 

controller with respect to stability and robust feasibility. Chapter 4 presents a 

widely applicable and scalable procedure for augmenting a hierarchical controller 

with simple, local constraints based on passivity that guarantee closed-loop 

stability of the system. Chapter 5 presents a hierarchical control framework for 

linear graph-based power flow systems that is robust to model and disturbance 

signal uncertainty. This control formulation achieves high performance by 

maintaining critical state and actuator constraints while achieving system-specific 

objectives. 

4. Chapters 6 and 7 demonstrate the practical application of both the graph-based 

modeling and hierarchical control frameworks through application to an 

experimental thermal fluid system. These Chapters prove that the proposed 

approaches are widely applicable; being capable of capturing the complex 

dynamics of a real-world system that includes nonlinearity, unknown 

disturbances, and time delays. 

In conclusion, this dissertation shows that graph-based modeling and hierarchical control 

are promising approaches to energy management onboard vehicles, worthy of continued 

development both in theory and application.  

8.2 Future Work 

This dissertation presents the initial formulation, analysis, and implementation of a 

hierarchical control framework for energy management in vehicle systems and future work 

should build off this foundation through advancements in theory and application. Fig. 1.3, 

reshown as Fig. 8.1, provides an outline for this future research. 
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Figure 8.1 Outline of developments required for the realization of hierarchical control of 

power flow in vehicle systems.  

8.2.1 Techniques 

Several aspects of the generic graph-based modeling and hierarchical control 

development procedures presented in Chapters 2 and 3 should be studied further to make these 

approaches more practical for modeling vehicle systems. 

1. Further modeling and validation should be performed for representing systems as 

graphs in other energy domains, electrical systems in particular. For these 

systems, it will become vital to incorporate the ability to represent discrete 

actuator inputs such as the on/off of a switch. 

2. Novel methods for integrating graph models based on different conserved 

quantities should be developed. In Chapter 6, hydraulic and thermal graph models 

are developed based on conservation of mass and energy, respectively. A method 

for combining these graphs into a single system representation would enable the 
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hierarchical control methods developed in Chapters 3-5 to be more directly 

applied to systems with more than one conserved quantity. 

3. Methods for system decomposition, both spatially and temporally, should be 

developed specifically for hierarchical control. The effects of system and 

subsystem boundaries should be investigated as well as the designation of 

timescales when vertex capacitances may not be obviously grouped. 

4. The tradeoff between computational demand and control performance should be 

analyzed to provide guidance for the choice of controller update rates and 

prediction horizons at each level of the hierarchy.  

5. Cost function design for each level of the hierarchy should be investigated to 

better understand how local objectives can be designed to achieve global 

objectives for the vehicle. 

Numbers 3-5 are a few examples of the Design Optimization efforts shown in Fig. 8.1 

that are needed to improve the performance of the hierarchical control approach and maximize 

the capability of the vehicle. 

8.2.2 Theory 

Within the classes of graph-based power flow systems considered in Chapters 4 and 5, 

there are numerous aspects of hierarchical control that warrant additional attention from a 

theoretical perspective. 

1. The passivity-based approach used to establish stability in Chapter 4, like with 

most passivity approaches, suffers from conservatism that could detract from the 

performance of the overall hierarchical controller. Understanding this 

conservatism would be valuable, especially in relation to the common control 

behavior of “precooling,” where states are purposely driven away from their 

equilibrium to accommodate larger future power flows through the system. 

2. The proposed robust hierarchical controller in Chapter 5 could be improved and 

analyzed in a number of ways. 
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a. Currently, known disturbances can only change at the rate of the slowest 

controller at the top of the hierarchy. Allowing intersample disturbance 

changes would greatly improve the practicality of this approach.   

b. The feedback integralization approach requires an actuator input along 

each edge of the graph. Extending this method to systems with edges that 

do not have a dedicated actuator would significantly improve the 

applicability of this approach. 

c. The proposed approach requires desired state trajectories and power flows 

to be tracked perfectly by lower level controllers. Allowing imperfect 

tracking may result in improved overall system-level control performance 

and should be investigated. 

d. Fast states are currently bounded to be close to an assumed value used by 

the upper level controllers. The effect of the magnitude of this bound on 

performance should be analyzed to determine the tradeoff between 

flexibility at the lower levels and conservative constraint tightening at the 

upper levels. 

e. While not discussed in this dissertation, many vehicle systems have hybrid 

dynamics, where in addition to continuous dynamics, the vehicle 

undergoes discrete changes such as the turning on and off of entire 

systems or subsystems. Instead of continuously variable actuators, many 

systems also have actuators that operate at discrete values. A hierarchical 

control framework capable of effectively controlling this class of systems 

would be highly valuable.  

Each of these suggested topics of continued research are examples of the Practical 

Extensions shown in Fig. 8.1 that will enable the application of these valuable theoretical 

guarantees to a real physical system, such as the experimental system from Chapters 6 and 7 and 

future vehicle systems.  
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8.2.3 Application 

The proposed graph-based modeling and hierarchical control frameworks need to be 

further tested on a wide variety of systems including physical systems with multiple energy 

domains and wider ranges of timescales. To maximize the performance of the control hierarchy, 

the following practical extensions should be investigated. 

1. Controlling the interactions between the electrical and thermal systems is key to 

increasing the performance and reliability of the vehicle as a whole. A 

hierarchical controller that encompasses the control of both systems would allow 

the operation of the electrical system to be partially governed based on current 

and anticipated thermal constraints.  

2. While the hierarchical controller presented in Chapter 7 utilized a linearized 

model of the nonlinear experimental system dynamics, future controller 

development should explore the use of nonlinear graph-based models and the 

optimization routines, such as genetic algorithms, used to solve the resulting 

nonlinear optimization problems. The trade-off between control performance and 

computational burden would be of particular interest.  

3. The hierarchical controllers presented in this dissertation use a time-based control 

updating procedure where the time step between control updates is predetermined. 

As preliminarily demonstrated in [89], an event-based updating of each controller 

in the hierarchy could result in significant performance enhancements.  

4. All controller computations in this dissertation are performed on powerful desktop 

computers. Thus, while the hierarchical controllers are designed to be 

computationally efficient, computation time never restricted the design of the 

controllers. In practice, the computational resources onboard vehicle may be very 

limited and each computation adds heat to the vehicle that must also be managed. 

Future work should investigate how computational cost and overall controller 

performance are related for hierarchical control. 

As shown in Fig. 8.1, the ultimate extension of the proposed approach is the application 

of a highly functional, five-level hierarchical controller to the energy management of a real 

vehicle system. 



 143  

References 

[1] W. D. Gerstler and R. S. Bunker, “Aircraft Engine Thermal Management: The Impact of 

Aviation Electric Power Demands,” ASME Global Gas Turbine News, 2008. 

[2] S. S. L. Mitchell, “Luke AFB changes refueling truck color, mitigates F-35 shutdowns,” 

United States Air Force, 2014. [Online]. Available: 

http://www.af.mil/News/ArticleDisplay/tabid/223/Article/555558/luke-afb-changes-

refueling-truck-color-mitigates-f-35-shutdowns.aspx. 

[3] J. Rubinstein, “Study of the Light Utility Helicopter (LUH) acquisition program as a 

model for defense acquisition of non-developmental items,” Ph.D. Dissertation, Naval 

Postgraduate School, Monterey, CA, 2014. 

[4] C. Bailey, “Thermal Management Technologies for Electronic Packaging: Current 

Capabilities and Future Challenges for Modeling Tools,” 10th Electron. Packag. Technol. 

Conf., 2008. 

[5] G. Andersson, “Dynamics and Control of Electric Power Systems,” Lect. Notes Electr. 

Eng. Power Syst. Lab. ETH Zurich, 2012. 

[6] P. de Bock, “GE Aviation Systems Avionics: Avionics Thermal Management,” GE Glob. 

Res., 2012. 

[7] M. Bodie, G. Russell, K. Mccarthy, E. Lucus, J. Zumberge, and M. Wolff, “Thermal 

Analysis of an Integrated Aircraft Model,” 48th AIAA Aerosp. Sci. Meet., 2010. 

[8] K. Mccarthy, M. Amrhein, P. Lamm, M. Wolff, K. Yerkes, O. Connell, B. Raczkowski, J. 

Wells, and W. Borger, “INVENT Modeling, Simulation, Analysis and Optimization,” 

48th AIAA Aerosp. Sci. Meet., 2010. 

[9] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves, “Model Predictive 

Control for the Operation of Building Cooling Systems,” IEEE Trans. Control Syst. 

Technol., vol. 20, 2012. 

[10] P.-D. Morosan, R. Bourdais, D. Dumur, and J. Buisson, “Building temperature regulation 

using a distributed model predictive control,” Energy Build., 2010. 

[11] N. Jain, J. P. Koeln, S. Sundaram, and A. G. Alleyne, “Partially decentralized control of 

large-scale variable-refrigerant-flow systems in buildings,” J. Process Control, 2014. 

[12] M. Cantoni, E. Weyer, L. Yuping, S. K. Ooi, I. Mareels, and M. Ryan, “Control of Large-

Scale Irrigation Networks,” Proc. IEEE, 2007. 



 144  

[13] R. R. Negenborn, A. Sahin, Z. Lukszo, B. De Schutter, and M. Morari, “A non-iterative 

cascaded predictive control approach for control of irrigation canals,” IEEE Int. Conf. 

Syst. Man Cybern., 2009. 

[14] C. Ocampo-Martinez, D. Barcelli, V. Puig, and A. Bemporad, “Hierarchical and 

decentralised model predictive control of drinking water networks: application to 

Barcelona case study,” IET Control Theory Appl., 2012. 

[15] D. Gayme and U. Topcu, “Optimal Power Flow With Large-Scale Storage Integration,” 

IEEE Trans. Power Syst., 2012. 

[16] X. Xu, H. Jia, D. Wang, D. C. Yu, and H.-D. Chiang, “Hierarchical energy management 

system for multi-source multi-product microgrids,” Renew. Energy, 2015. 

[17] P. D. Christofides, R. Scattolini, D. Muñoz de la Peña, and J. Liu, “Distributed model 

predictive control: A tutorial review and future research directions,” Comput. Chem. Eng., 

2013. 

[18] M. J. Tippett and J. Bao, “Distributed Model Predictive Control Based on Dissipativity,” 

AIChE J., 2012. 

[19] J. A. Rosero, J. A. Ortega, E. Aldabas, and L. Romeral, “Moving Towards a More Electric 

Aircraft,” IEEE A&E Syst. Mag., 2007. 

[20] T. Mahefkey, K. Yerkes, B. Donovan, and M. L. Ramalingam, “Thermal Management 

Challenges For Future Military Aircraft Power Systems,” SAE Tech. Pap. 2004-01-3204, 

2004. 

[21] M. A. Williams, J. P. Koeln, and A. G. Alleyne, “Hierarchical Control of Multi-Domain 

Power Flow in Mobile Systems - Part II: Aircraft Application,” ASME 2015 Dyn. Syst. 

Control Conf., 2015. 

[22] B. Frank, J. Pohl, and J.-O. Palmberg, “Estimation of the potential in predictive control in 

a hybrid wheel loader,” 11th Scand. Int. Conf. Fluid Power, 2009. 

[23] F. Wang, A. M. Zulkefli, Z. Sun, and K. A. Stelson, “Investigation on the Energy 

Management Strategy for Hydraulic Hybrid Wheel Loaders,” ASME 2013 Dyn. Syst. 

Control Conf., 2013. 

[24] T. O. Deppen, A. G. Alleyne, K. A. Stelson, and J. J. Meyer, “Optimal Energy Use in a 

Light Weight Hydraulic Hybrid Passenger Vehicle,” J. Dyn. Syst. Meas. Control, vol. 134, 

2012. 

[25] C. Alan, S. Ali, H. Alaa, and B. Eric, “Optimal sizing of an energy storage system for a 

hybrid vehicle applied to an off-road application,” IEEE/ASME Int. Conf. Adv. Intell. 

Mechatronics, 2014. 

[26] B. G. Liptak, Process Control, 3rd ed. Chilton, 1995. 

[27] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System Dynamics: Modeling, 

Simulation, and Control of Mechatronic Systems, Fifth. Wiley, 2012. 

[28] H. A. Preisig, “A graph-theory-based approach to the analysis of large-scale plants,” 

Comput. Chem. Eng., 2009. 



 145  

[29] S. S. Jogwar, S. Rangarajan, and P. Daoutidis, “Reduction of complex energy-integrated 

process networks using graph theory,” Comput. Chem. Eng., vol. 79, 2015. 

[30] S. Mukherjee, S. Mishra, and J. T. Wen, “Building Temperature Control: A Passivity-

Based Approach,” Proc. IEEE Conf. Decis. Control, 2012. 

[31] K. L. Moore, T. L. Vincent, F. Lashhab, and C. Liu, “Dynamic Consensus Networks with 

Application to the Analysis of Building Thermal Processes,” IFAC World Congr., 2011. 

[32] H. Behjati, A. Davoudi, and F. Lewis, “Modular DC-DC Converters on Graphs: 

Cooperative Control,” IEEE Trans. Power Electron., 2014. 

[33] F. Blanchini, E. Franco, G. Giordano, V. Mardanlou, and P. L. Montessoro, 

“Compartmental flow control: Decentralization, robustness and optimality,” Automatica, 

2016. 

[34] G. Bastin and V. Guffens, “Congestion control in compartmental network systems,” Syst. 

Control Lett., 2006. 

[35] J. Jacquez and C. Simon, “Qualitative theory of Compartmental Systems,” SIAM Rev., 

1993. 

[36] D. B. West, Introduction to Graph Theory. Prentice-Hall Inc., 2001. 

[37] J. Maestre and R. Negenborn, Distributed Model Predictive Control Made Easy. Springer, 

2014. 

[38] R. Mohler, “Natural Bilinear Control Processes,” IEEE Trans. Syst. Sci. Cybern., vol. 6, 

1970. 

[39] C. Bruni, G. DiPillo, and G. Koch, “Bilinear systems: An appealing class of ‘nearly linear’ 

systems in theory and applications,” IEEE Trans. Automat. Contr., vol. 19, Aug. 1974. 

[40] N. Motee and B. Sayyar-rodsari, “Optimal Partitioning in Distributed Model Predictive 

Control,” Am. Control Conf., 2003. 

[41] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in MATLAB,” 2004 

IEEE Int. Conf. Comput. Aided Control Syst. Des., 2004. 

[42] “Gurobi Optimizer Reference Manual.” Gurobi Optimization Inc., 2016. 

[43] D. Hill and P. Moylan, “The stability of nonlinear dissipative systems,” IEEE Trans. 

Automat. Contr., 1976. 

[44] H. Khalil, Nonlinear Systems, Third. Prentice-Hall Inc., 2002. 

[45] R. Sepulchre, M. Jankovic, and P. Kokotovic, Constructive Nonlinear Control. Springer-

Verlag London, 1997. 

[46] A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control. Springer, 

1996. 

[47] R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramirez, Passivity-based Control of 

Euler-Lagrange Systems. Springer, 1998. 

[48] A. Ulbig, “Passivity-based Nonlinear Model Predictive Control,” University of Stuttgart, 

2007. 



 146  

[49] J. Bao and P. L. Lee, Process Control: The Passive Systems Approach. Springer, 2007. 

[50] P. Falugi, “Model predictive control : a passive scheme,” IFAC World Congr., 2014. 

[51] C. Løvaas, M. M. Seron, and G. C. Goodwin, “A dissipativity approach to robustness in 

constrained model predictive control,” Proc. IEEE Conf. Decis. Control, 2007. 

[52] T. Raff, C. Ebenbauer, and F. Allgöwer, “Nonlinear Model Predictive Control: A 

Passivity-Based Approach,” in Assessment and Future Directions of Nonlinear Model 

Predictive Control, 2007. 

[53] S. Sredojev and R. Eaton, “Model Predictive Controller for a Class of Nonlinear 

Dissipative Systems,” Am. Control Conf., 2014. 

[54] H. Yu, F. Zhu, M. Xia, and P. J. Antsaklis, “Robust Stabilizing Output Feedback 

Nonlinear Model Predictive Control by Using Passivity and Dissipativity,” Proc. 2013 

Eur. Control Conf., 2013. 

[55] P. Varutti, B. Kern, and R. Findeisen, “Dissipativity-based Distributed Nonlinear 

Predictive Control for Cascaded Nonlinear Systems,” IFAC Symp. Adv. Control Chem. 

Process., 2012. 

[56] M. Arcak and E. D. Sontag, “A passivity-based stability criterion for a class of 

biochemical reaction networks,” Math. Biosci. Eng., 2008. 

[57] H. Yu and P. J. Antsaklis, “A passivity measure of systems in cascade based on passivity 

indices,” Proc. IEEE Conf. Decis. Control, 2010. 

[58] S. Riverso, M. Farina, and G. Ferrari-Trecate, “Plug-and-Play Decentralized Model 

Predictive Control for Linear Systems,” IEEE Trans. Automat. Contr., 2013. 

[59] P. J. Moylan and D. J. Hill, “Stability criteria for large-scale systems,” IEEE Trans. 

Automat. Contr., 1978. 

[60] T. Tran and J. Bao, “Supervisory Stability Assurance Layer for Hierarchical Plant-wide 

Process Control,” Am. Control Conf., 2010. 

[61] A. Wächter, “An Interior Point Algorithm for Large-Scale Nonlinear Optimization with 

Applications in Process Engineering,” Dept. Chem. Eng., Carnegie Mellon Univ., 

Pittsburg, PA., 2002. 

[62] D. Q. Mayne, M. M. Seron, and S. V. Raković, “Robust Model Predictive Control of 

Constrained Linear Systems with Bounded Disturbances,” Automatica, 2005. 

[63] W. Langson, I. Chryssochoos, S. V. Raković, and D. Q. Mayne, “Robust model predictive 

control using tubes,” Automatica, vol. 40, 2004. 

[64] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for tracking piecewise 

constant references for constrained linear systems,” Automatica, vol. 44, 2008. 

[65] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “Robust tube-based MPC for 

tracking of constrained linear systems with additive disturbances,” J. Process Control, 

vol. 20, 2010. 

[66] M. Farina and R. Scattolini, “Distributed predictive control: A non-cooperative algorithm 

with neighbor-to-neighbor communication for linear systems,” Automatica, vol. 48, 2012. 



 147  

[67] S. Riverso and G. Ferrari-Trecate, “Tube-based distributed control of linear constrained 

systems,” Automatica, vol. 48, 2012. 

[68] P. Trodden and A. Richards, “Distributed model predictive control of linear systems with 

persistent disturbances,” Int. J. Control, vol. 83, 2010. 

[69] P. Trodden, “Feasible parallel-update distributed MPC for uncertain linear systems 

sharing convex constraints,” Syst. Control Lett., vol. 74, 2014. 

[70] R. Scattolini and P. Colaneri, “Hierarchical model predictive control,” IEEE Conf. Decis. 

Control, 2007. 

[71] R. Scattolini, P. Colaneri, and D. De Vito, “A switched MPC approach to hierarchical 

control,” 17th IFAC World Congr., 2008. 

[72] B. Picasso, D. De Vito, R. Scattolini, and P. Colaneri, “An MPC approach to the design of 

two-layer hierarchical control systems,” Automatica, vol. 46, 2010. 

[73] D. Barcelli, A. Bemporad, and G. Ripaccioli, “Hierarchical Multi-Rate Control Design for 

Constrained Linear Systems,” IEEE Conf. Decis. Control, 2010. 

[74] D. Barcelli, A. Bemporad, and G. Ripaccioli, “Decentralized Hierarchical Multi-Rate 

Control of Constrained Linear Systems,” 18th IFAC World Congr., 2011. 

[75] C. Vermillion, A. Menezes, and I. Kolmanovsky, “Stable hierarchical model predictive 

control using an inner loop reference model and λ-contractive terminal constraint sets,” 

Automatica, vol. 50, 2014. 

[76] B. Picasso, C. Romani, and R. Scattolini, “On the Design of Hierarchical Control Systems 

with MPC,” Eur. Control Conf., 2009. 

[77] V. Chandan and A. G. Alleyne, “Optimal partitioning for the Decentralized Thermal 

Control of Buildings,” IEEE Trans. Control Syst. Technol., vol. 21, 2013. 

[78] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and design, 

2nd ed. John Wiley & Sons, Inc., 2005. 

[79] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-Parametric Toolbox 3.0,” in 

European Control Conference, 2013. 

[80] B. P. Rasmussen, “Dynamic Modeling and Advanced Control of Air Conditioning and 

Refrigeration Systems,” Ph.D. Dissertation, Dept. Mech. Eng., Univ. Illinois Urbana-

Champaign, Urbana, IL, 2005. 

[81] M. Kania, J. Koeln, and A. Alleyne, “A Dynamic Modeling Toolbox for Air Vehicle 

Vapor Cycle Systems,” Proc. 2012 SAE Power Syst. Conf., 2012. 

[82] M. Williams, S. Sridharan, S. Banerjee, C. Mak, C. Pauga, P. Krein, A. Alleyne, A. 

Jacobi, and S. D. Urso, “PowerFlow : A Toolbox for Modeling and Simulation of Aircraft 

Systems,” SAE Tech. Pap. 2015-01-2417, 2015. 

[83] A. Puntel, S. Emo, T. E. Michalak, J. Ervin, L. Byrd, V. Tsao, and T. Reitz, “Refrigerant 

Charge Management and Control for Next-Generation Aircraft Vapor Compression 

Systems,” SAE Tech. Pap. 2013-01-2241, 2013. 

[84] T. O. Deppen, “Optimal Energy Use in Mobile Applications with Storage,” Ph.D. 



 148  

Dissertation, Dept. Mech. Eng., Univ. Illinois Urbana-Champaign, Urbana, IL, 2013. 

[85] T. O. Deppen, J. E. Hey, A. G. Alleyne, and T. S. Fisher, “A Model Predictive Framework 

for Thermal Management of Aircraft,” ASME 2015 Dyn. Syst. Control Conf., 2015. 

[86] S. K. Srivastava, D. A. Cartes, F. Maturana, F. Ferrese, M. Pekala, M. Zink, R. Meeker, 

D. Carnahan, R. Staron, D. Scheidt, and K. Huang, “A Control System Test Bed for 

Demonstration of Distributed Computational Intelligence Applied to Reconfiguring 

Heterogeneous Systems,” IEEE Instrum. Meas. Mag., 2008. 

[87] V. Gnielinski, “New Equations for Heat and Mass-transfer in Turbulent Pipe and Channel 

Flow,” Int. Chem. Eng., 1976. 

[88] G. A. Longo and A. Gasparella, “Refrigerant R134a vaporisation heat transfer and 

pressure drop inside a small brazed plate heat exchanger,” Int. J. Refrig., 2007. 

[89] J. P. Koeln and A. G. Alleyne, “Event-based Hierarchical Control for Power Flow in 

Vehicle Systems,” Am. Control Conf., 2016. 

 



 149  

Appendix     

Robust Hierarchical Controller Code 

The following Matlab code is used to implement the numerical example of the robust 

hierarchical controller from Section 5.8.  Figs. A.1 and A.2 show the structure of the code for the 

generation of the controllers and the Simulink model used to execute the simulation. 

 

Figure A.1 Structure of Matlab files used to generate the robust hierarchical controller. 

Sys_Gen

SS1_Gen

SS2_Gen

SS3_Gen

SS4_Gen

S1_Gen

S1r_Gen

S2_Gen

S2r_Gen

Veh_Gen

Vehr_Gen

Call_Level_1_Controller

Call_Level_i_Controller

Call_Level_N_Controller

Constraint_Tightening

Generic_Reduced_Subsystem_Gen

Generic_Subsystem_Gen

Level_1_Controller_Gen

Level_i_Controller_Gen

Level_N_Controller_Gen

Nominal_Constraints

Candidate_Controller

Robust_Constraints

State_Reordering

Tracking_Constraint_Matrices

Generic_Controller_Development



 150  

 

Figure A.2 Structure of Matlab files called within the Simulink model used to simulate the 

robust hierarchical controller. 

A.1 Generic_Controller_Development.m 

%% Generate Systems 
run('Sys_Gen') 
run('SS1_Gen') 
run('SS2_Gen') 
run('SS3_Gen') 
run('SS4_Gen') 
run('S1_Gen') 
run('S1r_Gen') 
run('S2_Gen') 
run('S2r_Gen') 
run('Veh_Gen') 
run('Vehr_Gen') 
% Flags to plot and time result of controller calls 
plot_ = 1; 
time = 1; 
% Control design parameters 
Sys.Dx_LL_max_value = 0.1;     % Bound on lower level tracking 
Sys.DP_max_value = 0.1;        % Bound on power flow uncertainty 
Sys.DPin_max_value = 0.1;      % Bound on inlet power flow uncertainty 
Sys.Dxt_max_value = 0.1;       % Bound on sink state uncertainty 

  
%% Simulation Parameters 
% Simulation time 
Sys.Tsim = 1000; 
% Disturbance preview flag 
Sys.preview = 1; 
% Size of controller output 
Sys.Output_size = Sys.Ne+Sys.Ns+Sys.Nt; 

  
%% Nominal Sets for Controllers 
SS1 = Nominal_Constraints(SS1); 
SS2 = Nominal_Constraints(SS2); 
SS3 = Nominal_Constraints(SS3); 

Three_Level_Sim

Call_Level_1_Controller

Call_Level_i_Controller

Call_Level_N_Controller

Dist_Three_Level

Rate_Transition

SystemThree_Level_Controller
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SS4 = Nominal_Constraints(SS4); 
S1 = Nominal_Constraints(S1); 
S1r = Nominal_Constraints(S1r); 
S2 = Nominal_Constraints(S2); 
S2r = Nominal_Constraints(S2r); 
Veh = Nominal_Constraints(Veh); 
Vehr = Nominal_Constraints(Vehr); 

  
%% Constraint tightening for Subsystem Controller 
% Candidate (nilpotent) feedback controller 
SS1 = Candidate_Controller(SS1); 
SS2 = Candidate_Controller(SS2); 
SS3 = Candidate_Controller(SS3); 
SS4 = Candidate_Controller(SS4); 
% Upper bounds on DeltaP (assumed the same for all edges) 
SS1.DP_max = Sys.DP_max_value*ones(SS1.Ne,1); 
SS2.DP_max = Sys.DP_max_value*ones(SS2.Ne,1); 
SS3.DP_max = Sys.DP_max_value*ones(SS3.Ne,1); 
SS4.DP_max = Sys.DP_max_value*ones(SS4.Ne,1); 
% Lower bounds on DeltaP (assumed negative of upper bound) 
SS1.DP_min = -SS1.DP_max; 
SS2.DP_min = -SS2.DP_max; 
SS3.DP_min = -SS3.DP_max; 
SS4.DP_min = -SS4.DP_max; 
% Generate polyhedron for set DeltaP 
SS1.Set_DP = Polyhedron('lb',SS1.DP_min,'ub',SS1.DP_max); 
SS2.Set_DP = Polyhedron('lb',SS2.DP_min,'ub',SS2.DP_max); 
SS3.Set_DP = Polyhedron('lb',SS3.DP_min,'ub',SS3.DP_max); 
SS4.Set_DP = Polyhedron('lb',SS4.DP_min,'ub',SS4.DP_max); 

  
%% Calcuate Error Sets  
% Following a sequence such that each system only has power entering  
% from the environment or a subsystem earlier in the sequence 
% SS1 
% Upper bound on inlet power uncertainty 
SS1.DPin_max = Sys.DPin_max_value; 
% Lower bound on inlet power uncertainty 
SS1.DPin_min = -SS1.DPin_max; 
% Generate polyhedron for set DeltaPin 
SS1.Set_DPin = Polyhedron('lb',SS1.DPin_min,'ub',SS1.DPin_max); 
% Calculate State Error Set 
SS1.Set_E = plus(affineMap(SS1.Set_DP,SS1.B),... 
                 affineMap(SS1.Set_DPin,SS1.V1)); 
% Calculate Power Error Set 
SS1.Set_dP = affineMap(SS1.Set_E,SS1.K); 

  
% SS2 
% Upper bound on first inlet power uncertainty (power flow along edge 4) 
SS2.Set_dPin = SS1.Set_dP.projection(4);  % Project power error for edge 
SS2.dPin_max = SS2.Set_dPin.H(1,end);     % Isolate maximum value 
SS2.DPin_max = [Sys.DPin_max_value;SS2.dPin_max]; 
% Lower bound on inlet power uncertainty 
SS2.DPin_min = -SS2.DPin_max; 
% Generate polyhedron for set DeltaPin 
SS2.Set_DPin = Polyhedron('lb',SS2.DPin_min,'ub',SS2.DPin_max); 
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% Calculate State Error Set 
SS2.Set_E = plus(affineMap(SS2.Set_DP,SS2.B),... 
                 affineMap(SS2.Set_DPin,SS2.V1)); 
% Calculate Power Error Set 
SS2.Set_dP = affineMap(SS2.Set_E,SS2.K); 

  
% SS4 
% Upper bound on first inlet power uncertainty (power flow along edge 9) 
SS4.Set_dPin = SS2.Set_dP.projection(4);  % Project power error for edge 
SS4.dPin_max = SS4.Set_dPin.H(1,end);     % Isolate maximum value 
SS4.DPin_max = SS4.dPin_max; 
% Lower bound on inlet power uncertainty 
SS4.DPin_min = -SS4.DPin_max; 
% Generate polyhedron for set DeltaPin 
SS4.Set_DPin = Polyhedron('lb',SS4.DPin_min,'ub',SS4.DPin_max); 
% Calculate State Error Set 
SS4.Set_E = plus(affineMap(SS4.Set_DP,SS4.B),... 
                 affineMap(SS4.Set_DPin,SS4.V1)); 
% Calculate Power Error Set 
SS4.Set_dP = affineMap(SS4.Set_E,SS4.K); 

  
% SS3 
% Upper bound on first inlet power uncertainty (power flow along edge 8) 
SS3.Set_dPin1 = SS1.Set_dP.projection(5); % Project power error for edge 
SS3.dPin1_max = SS3.Set_dPin1.H(1,end);   % Isolate maximum value 
% Upper bound on second inlet power uncertainty (power flow along edge 14) 
SS3.Set_dPin2 = SS4.Set_dP.projection(4); % Project power error for edge 
SS3.dPin2_max = SS3.Set_dPin2.H(1,end);   % Isolate maximum value 
SS3.DPin_max = [SS3.dPin1_max;SS3.dPin2_max]; 
% Lower bound on inlet power uncertainty 
SS3.DPin_min = -SS3.DPin_max; 
% Generate polyhedron for set DeltaPin 
SS3.Set_DPin = Polyhedron('lb',SS3.DPin_min,'ub',SS3.DPin_max); 
% Calculate State Error Set 
SS3.Set_E = plus(affineMap(SS3.Set_DP,SS3.B),... 
                 affineMap(SS3.Set_DPin,SS3.V1)); 
% Calculate Power Error Set 
SS3.Set_dP = affineMap(SS3.Set_E,SS3.K); 

  
%% Sink State Uncertainty Sets 
% SS1  
% Upper bound on first sink state uncertainty (state of vertex 10) 
SS1.Set_dXt1 = SS2.Set_E.projection(3);     % Project state error for vertex 
SS1.Set_dXt1_max = SS1.Set_dXt1.H(1,end);   % Isolate maximum value 
% Upper bound on second sink state uncertainty (state of vertex 11) 
SS1.Set_dXt2 = SS3.Set_E.projection(3);     % Project state error for vertex 
SS1.Set_dXt2_max = SS1.Set_dXt2.H(1,end);   % Isolate maximum value 
SS1.Set_dXt_max = [SS1.Set_dXt1_max,SS1.Set_dXt2_max]; 
% Lower bound on sink state uncertainty 
SS1.Set_dXt_min = -SS1.Set_dXt_max; 
% Generate polyhedron for set DeltaXt 
SS1.Set_dXt = Polyhedron('lb',SS1.Set_dXt_min,'ub',SS1.Set_dXt_max); 

  
% SS2 
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% Upper bound on sink state uncertainty (state of vertex 7) 
SS2.Set_dXt1 = SS4.Set_E.projection(2);     % Project state error for vertex 
SS2.Set_dXt1_max = SS2.Set_dXt1.H(1,end);   % Isolate maximum value 
SS2.Set_dXt_max = [SS2.Set_dXt1_max]; 
% Lower bound on sink state uncertainty 
SS2.Set_dXt_min = -SS2.Set_dXt_max; 
% Generate polyhedron for set DeltaXt 
SS2.Set_dXt = Polyhedron('lb',SS2.Set_dXt_min,'ub',SS2.Set_dXt_max); 

  
% SS3 
% Upper bound on sink state uncertainty (sink state xt1) 
SS3.Set_dXt_max = [Sys.Dxt_max_value]; 
% Lower bound on sink state uncertainty 
SS3.Set_dXt_min = -SS3.Set_dXt_max; 
% Generate polyhedron for set DeltaXt 
SS3.Set_dXt = Polyhedron('lb',SS3.Set_dXt_min,'ub',SS3.Set_dXt_max); 

  
% SS4 
% Upper bound on first sink state uncertainty (state of vertex 11) 
SS4.Set_dXt1 = SS3.Set_E.projection(3);     % Project state error for vertex 
SS4.Set_dXt1_max = SS4.Set_dXt1.H(1,end);   % Isolate maximum value 
% Upper bound on second sink state uncertainty (sink state xt2) 
SS4.Set_dXt2_max = Sys.Dxt_max_value; 
SS4.Set_dXt_max = [SS4.Set_dXt1_max,SS4.Set_dXt2_max]; 
% Lower bound on sink state uncertainty 
SS4.Set_dXt_min = -SS4.Set_dXt_max; 
% Generate polyhedron for set DeltaXt 
SS4.Set_dXt = Polyhedron('lb',SS4.Set_dXt_min,'ub',SS4.Set_dXt_max); 

  
%%  Generate Robust State and Input Constraint Sets 
SS1 = Constraint_Tightening(SS1); 
SS2 = Constraint_Tightening(SS2); 
SS3 = Constraint_Tightening(SS3); 
SS4 = Constraint_Tightening(SS4); 

  
%% Subsystem tracking constraint set 
SS1 = Tracking_Constraint_Matrices(SS1,SS1,S1r); 
SS2 = Tracking_Constraint_Matrices(SS2,SS2,S1r); 
SS3 = Tracking_Constraint_Matrices(SS3,SS3,S2r); 
SS4 = Tracking_Constraint_Matrices(SS4,SS4,S2r); 
S1r = Tracking_Constraint_Matrices(S1r,S1,Vehr); 
S2r = Tracking_Constraint_Matrices(S2r,S2,Vehr); 

  
%% Constraint Tightening for Upper Levels 
% Robust constraints are initial formed from the subsystem robust constraints 
% S1r 
% Robust state constraints 
S1r.x_max_robust = [SS2.Set_X_robust.H(1,end);SS1.Set_X_robust.H(1,end);... 
                    SS2.Set_X_robust.H(2,end);SS2.Set_X_robust.H(3,end)]; 
S1r.x_min_robust = -S1r.x_max_robust; 
% Robust input constraints 
S1r.U_max_robust = 

[SS1.Set_U_robust.H(1:4,end);SS2.Set_U_robust.H(1:3,end);... 
                    SS1.Set_U_robust.H(5,end);SS2.Set_U_robust.H(4,end)]; 
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S1r.U_min_robust = -S1r.U_max_robust; 

  
% S2r 
% Robust state constraints 
S2r.x_max_robust = [SS3.Set_X_robust.H(1,end);SS3.Set_X_robust.H(2,end);... 
                    SS4.Set_X_robust.H(1,end);SS4.Set_X_robust.H(2,end);... 
                    SS3.Set_X_robust.H(3,end)]; 
S2r.x_min_robust = -S2r.x_max_robust; 
% Robust input constraints 
S2r.U_max_robust = [SS3.Set_U_robust.H(1:4,end);SS4.Set_U_robust.H(4,end);... 
                    SS4.Set_U_robust.H(1:3,end);SS4.Set_U_robust.H(5,end)]; 
S2r.U_min_robust = -S2r.U_max_robust; 

  
% Vehr 
% Robust state constraints 
Vehr.x_max_robust = [SS2.Set_X_robust.H(1,end);SS3.Set_X_robust.H(1,end);... 
                     SS4.Set_X_robust.H(2,end);SS3.Set_X_robust.H(3,end)]; 
Vehr.x_min_robust = -Vehr.x_max_robust; 
% Robust input constraints 
Vehr.U_max_robust = [S1r.U_max_robust;S2r.U_max_robust]; 
Vehr.U_min_robust = -Vehr.U_max_robust; 
% Generate polyhedron for robust sets 
S1r = Robust_Constraints(S1r,Sys.Dx_LL_max_value); 
S2r = Robust_Constraints(S2r,Sys.Dx_LL_max_value); 
Vehr = Robust_Constraints(Vehr,Sys.Dx_LL_max_value); 

  

%% Z matrices for state reordering 
S1r = State_Reordering(S1r,S1); 
S2r = State_Reordering(S2r,S2); 
Vehr = State_Reordering(Vehr,Veh); 

  
%% Weights 
% Nominal weightings (1,1,0), pure economic (0,0,1) 
weightings.x        = 0; 
weightings.u        = 0; 
weightings.u_eff    = 1; 

  
%% Constraint Flags 
constraints.robustOn            = 1; 
constraints.stateTrackingOn     = 1; 
constraints.pOutTrackingOn      = 1; 
constraints.lowerStateBoundsOn  = 1; 
constraints.Dx_LL_max_value     = Sys.Dx_LL_max_value; 

  
%% Level N Controller Generation 
% SS1 
SS1.horizon = 5;    % Prediction horizon 
SS1 = Level_N_Controller_Gen( SS1, weightings, constraints ); 
% SS2 
SS2.horizon = 5;    % Prediction horizon 
SS2 = Level_N_Controller_Gen( SS2, weightings, constraints ); 
% SS3 
SS3.horizon = 5;    % Prediction horizon 
SS3 = Level_N_Controller_Gen( SS3, weightings, constraints ); 
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% SS4 
SS4.horizon = 5;    % Prediction horizon 
SS4 = Level_N_Controller_Gen( SS4, weightings, constraints ); 

  
%% Level i Controller Generation 
% S1r 
S1r.horizon = 5;    % Prediction horizon 
S1r = Level_i_Controller_Gen( S1r, weightings, constraints ); 
% S2r 
S2r.horizon = 5;    % Prediction horizon 
S2r = Level_i_Controller_Gen( S2r, weightings, constraints ); 

  
%% Level 1 Controller Generation 
% Vehr 
Vehr.horizon = 5;    % Prediction horizon 
Vehr = Level_1_Controller_Gen( Vehr, weightings, constraints ); 

  
%% Test Vehr Controller 
Vehr.x0 = Vehr.x0; 
Vehr.Pin = repmat(Veh.Pin0,1,Vehr.horizon); 
Vehr.xt = repmat(Veh.xt0,1,Vehr.horizon+1); 
Vehr.xlow0 = Veh.x0(Vehr.xf); 

  
[ Vehr ] = Call_Level_1_Controller( Vehr, plot_, time ); 

  
%% Test S1r Controller 
S1r.x0 = S1r.x0; 
S1r.Pin = repmat(S1.Pin0,1,S1r.horizon); 
S1r.xt = repmat(S1.xt0,1,S1r.horizon+1); 
S1r.xdotDes = zeros(max(size(S1r.Zup,1),1),S1r.horizon); 
S1r.PoutDes = zeros(max(size(S1r.Zout,1),1),S1r.horizon); 
S1r.xlowDes = S1r.x0(S1r.xlow); 
S1r.xlow0 = S1.x0(S1r.xf); 

  
[ S1r ] = Call_Level_i_Controller( S1r, plot_, time ); 

  
%% Test S2r Controller 
S2r.x0 = S2r.x0; 
S2r.Pin = repmat(S2.Pin0,1,S2r.horizon); 
S2r.xt = repmat(S2.xt0,1,S2r.horizon+1); 
S2r.xdotDes = zeros(max(size(S2r.Zup,1),1),S2r.horizon); 
S2r.PoutDes = zeros(max(size(S2r.Zout,1),1),S2r.horizon); 
S2r.xlowDes = S2r.x0(S2r.xlow); 
S2r.xlow0 = S2.x0(S2r.xf); 

  
[ S2r ] = Call_Level_i_Controller( S2r, plot_, time ); 

  
%% Test SS1 Controller 
SS1.x0 = SS1.x0; 
SS1.Pin = repmat(SS1.Pin0,1,SS1.horizon); 
SS1.xt = repmat(SS1.xt0,1,SS1.horizon); 
SS1.xdotDes = zeros(max(size(SS1.Zup,1),1),SS1.horizon); 
SS1.PoutDes = zeros(max(size(SS1.Zout,1),1),SS1.horizon); 
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SS1.xlowDes = SS1.x0(SS1.xlow); 

  
[ SS1 ] = Call_Level_N_Controller( SS1, plot_, time ); 

  

%% Test SS2 Controller 
SS2.x0 = SS2.x0; 
SS2.Pin = repmat(SS2.Pin0,1,SS2.horizon); 
SS2.xt = repmat(SS2.xt0,1,SS2.horizon); 
SS2.xdotDes = zeros(max(size(SS2.Zup,1),1),SS2.horizon); 
SS2.PoutDes = zeros(max(size(SS2.Zout,1),1),SS2.horizon); 
SS2.xlowDes = 0; 

  
[ SS2 ] = Call_Level_N_Controller( SS2, plot_, time ); 

  
%% Test SS3 Controller 
SS3.x0 = SS3.x0; 
SS3.Pin = repmat(SS3.Pin0,1,SS3.horizon); 
SS3.xt = repmat(SS3.xt0,1,SS3.horizon); 
SS3.xdotDes = zeros(max(size(SS3.Zup,1),1),SS3.horizon); 
SS3.PoutDes = zeros(max(size(SS3.Zout,1),1),SS3.horizon); 
SS3.xlowDes = 0; 

  
[ SS3 ] = Call_Level_N_Controller( SS3, plot_, time ); 

  
%% Test SS4 Controller 
SS4.x0 = SS4.x0; 
SS4.Pin = repmat(SS4.Pin0,1,SS4.horizon); 
SS4.xt = repmat(SS4.xt0,1,SS4.horizon); 
SS4.xdotDes = zeros(max(size(SS4.Zup,1),1),SS4.horizon); 
SS4.PoutDes = zeros(max(size(SS4.Zout,1),1),SS4.horizon); 
SS4.xlowDes = SS4.x0(SS4.xlow); 

  
[ SS4 ] = Call_Level_N_Controller( SS4, plot_, time ); 

A.2 Sys_Gen.m 

%% System Parameters 
% Name of system 
Sys.Name = 'Sys'; 
% Number of vertices 
Sys.Nv = 12;          % Number of vertices 
Sys.Ne = 18;          % Number of edges 
Sys.Ns = 2;           % Number of sources 
Sys.Nt = 2;           % Numper of sinks 
Sys.Nvs = 2;          % Number of slow vertices (First states in vector) 
Sys.Nvm = 5;          % Number of medium vertices (middle states in vector) 
Sys.Nvf = 5;          % Number of fast vertices (Last states in vector) 
% Head states of inlet power flows 
Sys.xin = [3;4];             
% Discrete update rate 
Sys.DT = 1; 

  
%% Edge matrix  
% (row i corresponds to edge i, first column is tail vertex, 
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%  second colum is head vertex) 
% (sink vertices numbers are [ Sys.Nv+1 : Sys.Nv+Sys.Nt ]) 
Sys.e = [3 8; 
         3 9; 
         9 8; 
         9 10; 
         4 10; 
         4 1; 
         1 10; 
         8 11; 
         10 7; 
         11 2; 
         11 5; 
         2 5; 
         5 13; 
         6 11; 
         7 6; 
         7 12; 
         12 6; 
         12 14]; 

      
%% Capacitance Vector 
Sys.Caps = [1000*ones(Sys.Nvs,1);100*ones(Sys.Nvm,1);10*ones(Sys.Nvf,1)]; 

  
%% Edge Parameters 
Sys.a = ones(Sys.Ne,1);   % Tail coefficient 
Sys.b = ones(Sys.Ne,1);   % Head coefficient 
Sys.c = ones(Sys.Ne,1);   % Input coefficient 

  
%% Initial Conditions 
Sys.x0 = zeros(Sys.Nv,1); 
Sys.u0 = zeros(Sys.Ne,1); 
Sys.xt0 = zeros(Sys.Nt,1); 
Sys.Pin0 = zeros(Sys.Ns,1); 

  
%% Constraints 
Sys.x_max = ones(Sys.Nv,1); 
Sys.x_min = -Sys.x_max; 
Sys.u_max = ones(Sys.Ne,1); 
Sys.u_min = -Sys.u_max; 

  
% End of user specified information 
%% Incidence Matrix 
Sys.M = zeros(Sys.Nv+Sys.Nt,Sys.Ne); 
for i = 1:Sys.Ne; 
    Sys.M(Sys.e(i,1),i) = 1; 
    Sys.M(Sys.e(i,2),i) = -1; 
end 
clear i 

  
Sys.M_upper = Sys.M(1:Sys.Nv,:);        % System dynamics 
Sys.M_lower = Sys.M(Sys.Nv+1:end,:);    % Sink states 
Sys.M_s = Sys.M_upper(1:Sys.Nvs,:);                    % Slow states 
Sys.M_m = Sys.M_upper(1+Sys.Nvs:Sys.Nvs+Sys.Nvm,:);    % Medium states 
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Sys.M_f = Sys.M_upper(1+Sys.Nvs+Sys.Nvm:end,:);        % Fast states 

  
%% Weighted Incidence Matrix 
Sys.Mab = zeros(Sys.Nv+Sys.Nt,Sys.Ne); 
for i = 1:Sys.Ne; 
    Sys.Mab(Sys.e(i,1),i) = Sys.a(i); 
    Sys.Mab(Sys.e(i,2),i) = -Sys.b(i); 
end 
clear i 

  
Sys.Mab_upper = Sys.Mab(1:Sys.Nv,:);        % System dynamics 
Sys.Mab_lower = Sys.Mab(Sys.Nv+1:end,:);    % Sink states 
Sys.Mab_s = Sys.Mab_upper(1:Sys.Nvs,:);                    % Slow states 
Sys.Mab_m = Sys.Mab_upper(1+Sys.Nvs:Sys.Nvs+Sys.Nvm,:);    % Medium states 
Sys.Mab_f = Sys.Mab_upper(1+Sys.Nvs+Sys.Nvm:end,:);        % Fast states 

  
%% Input Vector 
Sys.D = zeros(Sys.Nv,Sys.Ns); 
for i = 1:Sys.Ns 
    Sys.D(Sys.xin(i),i) = 1; 
end 
clear i 
Sys.D_s = Sys.D(1:Sys.Nvs,:); 
Sys.D_m = Sys.D(1+Sys.Nvs:Sys.Nvs+Sys.Nvm,:); 
Sys.D_f = Sys.D(1+Sys.Nvs+Sys.Nvm:end,:); 

  

%% System Dynamics 
% Continuous 
Sys.A_c = diag(1./Sys.Caps)*(-Sys.M_upper*Sys.Mab_upper'); 
Sys.B_c = diag(1./Sys.Caps)*(-Sys.M_upper); 
Sys.beta = diag(Sys.c); 
Sys.V_c1 = diag(1./Sys.Caps)*(Sys.D); 
Sys.V_c2 = diag(1./Sys.Caps)*(-Sys.M_upper*Sys.Mab_lower'); 
Sys.V_c3 = diag(1./Sys.Caps)*(-Sys.M_upper); 
% Discrete 
Sys.A = eye(Sys.Nv)+Sys.DT*Sys.A_c; 
Sys.B = Sys.DT*Sys.B_c; 
Sys.V1 = Sys.DT*Sys.V_c1; 
Sys.V2 = Sys.DT*Sys.V_c2; 
Sys.V3 = Sys.DT*Sys.V_c3; 
% Initial power flow  
Sys.P0 = Sys.Mab_upper'*Sys.x0+Sys.Mab_lower'*Sys.xt0+diag(Sys.c)*Sys.u0; 

A.3 SS1_Gen.m 

%% SS1 Parameters 
% Name of system 
SS1.Name = 'SS1'; 
% Number of vertices 
SS1.Nv = 3;             % Number of vertices 
SS1.Ne = 5;             % Number of edges 
SS1.Ns = 1;             % Number of sources 
SS1.Nt = 2;             % Numper of sinks 
SS1.Nvs = 0;            % Number of slow vertices (First states in vector) 
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SS1.Nvm = 1;            % Number of medium vertices (middle states in vector) 
SS1.Nvf = 2;            % Number of fast vertices (Last states in vector) 
% Head states of inlet power flows 
SS1.xin = [1];            
% Discrete update rate 
SS1.DT = 1; 
% Relation to full system 
SS1.Sys_Vs = [3;8;9];       % Indices of vertices in full system 
SS1.Sys_Es = [1;2;3;4;8];   % Indices of edges in full system 
SS1.xt0 = Sys.x0([10 11]);  % Initial sink states 
SS1.Pin0 = Sys.Pin0(1);     % Initial inlet power flows 

  

%% Edge matrix 
SS1.e = [1 2; 
         1 3; 
         3 2; 
         3 4; 
         2 5]; 

  

%% Generate remaining subsystem values 
[SS1] = Generic_Subsystem_Gen(SS1,Sys); 

A.4 SS2_Gen.m 

%% SS2 Parameters 
% Name of system 
SS2.Name = 'SS2'; 
% Number of vertices 
SS2.Nv = 3;             % Number of vertices 
SS2.Ne = 4;             % Number of edges 
SS2.Ns = 2;             % Number of sources 
SS2.Nt = 1;             % Numper of sinks 
SS2.Nvs = 1;            % Number of slow vertices (First states in vector) 
SS2.Nvm = 1;            % Number of medium vertices (middle states in vector) 
SS2.Nvf = 1;            % Number of fast vertices (Last states in vector) 
% Head states of inlet power flows 
SS2.xin = [2;3];               
% Discrete update rate 
SS2.DT = 1; 
% Relation to full system 
SS2.Sys_Vs = [1;4;10];       % Indices of states in full system 
SS2.Sys_Es = [5;6;7;9];   % Indices of edges in full system 
SS2.xt0 = Sys.x0(7);  % Initial sink states 
SS2.Pin0 = [Sys.Pin0(2);Sys.P0(4)];     % Initial inlet power flows 

  
%% Edge matrix 
SS2.e = [2 3; 
         2 1; 
         1 3; 
         3 4]; 

  
%% Generate remaining subsystem values 
[SS2] = Generic_Subsystem_Gen(SS2,Sys); 
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A.5 SS3_Gen.m 

%% SS3 Parameters 
% Name of system 
SS3.Name = 'SS3'; 
% Number of vertices 
SS3.Nv = 3;             % Number of vertices 
SS3.Ne = 4;             % Number of edges 
SS3.Ns = 2;             % Number of sources 
SS3.Nt = 1;             % Numper of sinks 
SS3.Nvs = 1;            % Number of slow vertices (First states in vector) 
SS3.Nvm = 1;            % Number of medium vertices (middle states in vector) 
SS3.Nvf = 1;            % Number of fast vertices (Last states in vector) 
% Head states of inlet power flows 
SS3.xin = [3;3];               
% Discrete update rate 
SS3.DT = 1; 
% Relation to full system 
SS3.Sys_Vs = [2;5;11];       % Indices of states in full system 
SS3.Sys_Es = [10;11;12;13];   % Indices of edges in full system 
SS3.xt0 = Sys.xt0(1);  % Initial sink states 
SS3.Pin0 = [Sys.P0(8);Sys.P0(14)];     % Initial inlet power flows 

  
%% Edge matrix 
SS3.e = [3 1; 
         3 2; 
         1 2; 
         2 4]; 

    
%% Generate remaining subsystem values 
[SS3] = Generic_Subsystem_Gen(SS3,Sys); 

A.6 SS4_Gen.m 

%% SS4 Parameters 
% Name of system 
SS4.Name = 'SS4'; 
% Number of vertices 
SS4.Nv = 3;             % Number of vertices 
SS4.Ne = 5;             % Number of edges 
SS4.Ns = 1;             % Number of sources 
SS4.Nt = 2;             % Numper of sinks 
SS4.Nvs = 0;            % Number of slow vertices (First states in vector) 
SS4.Nvm = 2;            % Number of medium vertices (middle states in vector) 
SS4.Nvf = 1;            % Number of fast vertices (Last states in vector) 
% Head states of inlet power flows 
SS4.xin = [2];               
% Discrete update rate 
SS4.DT = 1; 
% Relation to full system 
SS4.Sys_Vs = [6;7;12];       % Indices of states in full system 
SS4.Sys_Es = [15;16;17;14;18];   % Indices of edges in full system 
SS4.xt0 = [Sys.x0(11);Sys.xt0(2)];  % Initial sink states 
SS4.Pin0 = Sys.P0(9);     % Initial inlet power flows 
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%% Edge matrix 
SS4.e = [2 1; 
         2 3; 
         3 1; 
         1 4; 
         3 5]; 

    
%% Generate remaining subsystem values 
[SS4] = Generic_Subsystem_Gen(SS4,Sys); 

A.7 S1_Gen.m 

%% S1 Parameters 
% Name of system 
S1.Name = 'S1'; 
% Number of vertices 
S1.Nv = 6;              % Number of vertices 
S1.Ne = 9;              % Number of edges 
S1.Ns = 2;              % Number of sources 
S1.Nt = 2;              % Numper of sinks 
S1.Nvs = 1;             % Number of slow vertices (First states in vector) 
S1.Nvm = 2;             % Number of medium vertices (middle states in vector) 
S1.Nvf = 3;             % Number of fast vertices (Last states in vector) 
% Head states of inlet power flows 
S1.xin = [2;3];               
% Discrete update rate 
S1.DT = 10; 
% Relation to full system 
S1.Sys_Vs = [1;3;4;8;9;10];       % Indices of states in full system 
S1.Sys_Es = [1:9]';   % Indices of edges in full system 
S1.xt0 = Sys.x0([11 7]);  % Initial sink states 
S1.Pin0 = Sys.Pin0;     % Initial inlet power flows 

  
%% Edge matrix 
S1.e = [2 4; 
        2 5; 
        5 4; 
        5 6; 
        3 6; 
        3 1; 
        1 6; 
        4 7; 
        6 8]; 

     
%% Generate remaining subsystem values 
[S1] = Generic_Subsystem_Gen(S1,Sys); 

A.8 S1r_Gen.m 

%% S1r Parameters 
% Name of system 
S1r.Name = 'S1r'; 
% Relation to nominal system 
S1r.Sys_Es = 1:S1.Ne;    % Keep all edges 
S1r.Sys_Vs = [1 3 4 10]; % Keep slow and medium states and head of subsystem 
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%% Generate reduced subsystem 
[S1r] = Generic_Reduced_Subsystem_Gen(S1r,S1); 

A.9 S2_Gen.m 

%% S2 Parameters 
% Name of system 
S2.Name = 'S2'; 
% Number of vertices 
S2.Nv = 6;              % Number of vertices 
S2.Ne = 9;              % Number of edges 
S2.Ns = 2;              % Number of sources 
S2.Nt = 2;              % Numper of sinks 
S2.Nvs = 1;             % Number of slow vertices (First states in vector) 
S2.Nvm = 3;             % Number of medium vertices (middle states in vector) 
S2.Nvf = 2;             % Number of fast vertices (Last states in vector) 
% Head states of inlet power flows 
S2.xin = [5;4];               
% Discrete update rate 
S2.DT = 10; 
% Relation to full system 
S2.Sys_Vs = [2;5;6;7;11;12];       % Indices of states in full system 
S2.Sys_Es = [10:18]';   % Indices of edges in full system 
S2.xt0 = Sys.xt0;  % Initial sink states 
S2.Pin0 = [Sys.P0(8);Sys.P0(9)];     % Initial inlet power flows 

  
%% Edge matrix 
S2.e = [5 1; 
        5 2; 
        1 2; 
        2 7; 
        3 5; 
        4 3; 
        4 6; 
        6 3; 
        6 8]; 

    
%% Generate remaining subsystem values 
[S2] = Generic_Subsystem_Gen(S2,Sys); 

A.10 S2r_Gen.m 

%% S2r Parameters 
% Name of system 
S2r.Name = 'S2r'; 
% Relation to nominal system 
S2r.Sys_Es = 1:S2.Ne;     % Keep all edges 
S2r.Sys_Vs = [2 5 6 7 11];% Keep slow and medium states and head of subsystem 

  
%% Generate reduced subsystem 
[S2r] = Generic_Reduced_Subsystem_Gen(S2r,S2); 

A.11 Veh_Gen.m 
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%% Veh Parameters 
% Name of system 
Veh.Name = 'Veh'; 
% Number of vertices 
Veh.Nv = 12;            % Number of vertices 
Veh.Ne = 18;            % Number of edges 
Veh.Ns = 2;             % Number of sources 
Veh.Nt = 2;             % Numper of sinks 
Veh.Nvs = 2;            % Number of slow vertices (First states in vector) 
Veh.Nvm = 5;            % Number of medium vertices (middle states in vector) 
Veh.Nvf = 5;            % Number of fast vertices (Last states in vector) 
% Head states of inlet power flows 
Veh.xin = [3;4];               
% Discrete update rate 
Veh.DT = 100; 
% Relation to full system 
Veh.Sys_Vs = [1:12]';       % Indices of states in full system 
Veh.Sys_Es = [1:18]';   % Indices of edges in full system 
Veh.xt0 = Sys.xt0;  % Initial sink states 
Veh.Pin0 = Sys.Pin0;     % Initial inlet power flows 

  
%% Edge matrix 
Veh.e = [3 8; 
         3 9; 
         9 8; 
         9 10; 
         4 10; 
         4 1; 
         1 10; 
         8 11; 
         10 7; 
         11 2; 
         11 5; 
         2 5; 
         5 13; 
         6 11; 
         7 6; 
         7 12; 
         12 6; 
         12 14]; 

    

%% Generate remaining subsystem values 
[Veh] = Generic_Subsystem_Gen(Veh,Sys); 

A.12 Vehr_Gen.m 

%% Vehr Parameters 
% Name of system 
Vehr.Name = 'Vehr'; 
% Relation to nominal system 
Vehr.Sys_Es = 1:Veh.Ne;    % Keep all edges 
Vehr.Sys_Vs = [1 2 7 11];  % Keep slow states and head of system 

  
%% Generate reduced subsystem 
[Vehr] = Generic_Reduced_Subsystem_Gen(Vehr,Veh); 
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A.13 Generic_Subsystem_Gen.m 

function [Output] = Generic_Subsystem_Gen(Input,Sys) 

  

Output = Input; 

  
%% Capacitance Vector 
Output.Caps = Sys.Caps(Output.Sys_Vs); 

  
%% Edge Parameters 
Output.a = Sys.a(Output.Sys_Es);   % Tail coefficient 
Output.b = Sys.b(Output.Sys_Es);   % Head coefficient 
Output.c = Sys.c(Output.Sys_Es);   % Input coefficient 

  
%% Incidence Matrix 
Output.M = zeros(Output.Nv+Output.Nt,Output.Ne); 
for i = 1:Output.Ne; 
    Output.M(Output.e(i,1),i) = 1; 
    Output.M(Output.e(i,2),i) = -1; 
end 
clear i 

  
Output.M_upper = Output.M(1:Output.Nv,:);        % Outputtem dynamics 
Output.M_lower = Output.M(Output.Nv+1:end,:);    % Sink states 
% Incidence matrix for slow, medium, and fast states 
Output.M_s = Output.M_upper(1:Output.Nvs,:);                     
Output.M_m = Output.M_upper(1+Output.Nvs:Output.Nvs+Output.Nvm,:); 
Output.M_f = Output.M_upper(1+Output.Nvs+Output.Nvm:end,:);         

  
%% Weighted Incidence Matrix 
Output.Mab = zeros(Output.Nv+Output.Nt,Output.Ne); 
for i = 1:Output.Ne; 
    Output.Mab(Output.e(i,1),i) = Output.a(i); 
    Output.Mab(Output.e(i,2),i) = -Output.b(i); 
end 
clear i 

  
Output.Mab_upper = Output.Mab(1:Output.Nv,:);        % Outputtem dynamics 
Output.Mab_lower = Output.Mab(Output.Nv+1:end,:);    % Sink states 
% Weighted incidence matrix for slow, medium, and fast states 
Output.Mab_s = Output.Mab_upper(1:Output.Nvs,:);                     
Output.Mab_m = Output.Mab_upper(1+Output.Nvs:Output.Nvs+Output.Nvm,:);     
Output.Mab_f = Output.Mab_upper(1+Output.Nvs+Output.Nvm:end,:);         

  
%% Input Vector 
Output.D = zeros(Output.Nv,Output.Ns); 
for i = 1:Output.Ns 
    Output.D(Output.xin(i),i) = 1; 
end 
clear i 
Output.D_s = Output.D(1:Output.Nvs,:); 
Output.D_m = Output.D(1+Output.Nvs:Output.Nvs+Output.Nvm,:); 
Output.D_f = Output.D(1+Output.Nvs+Output.Nvm:end,:); 
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%% Outputtem Dynamics 
% Continuous 
Output.A_c = diag(1./Output.Caps)*(-Output.M_upper*Output.Mab_upper'); 
Output.B_c = diag(1./Output.Caps)*(-Output.M_upper); 
Output.beta = diag(Output.c); 
Output.V_c1 = diag(1./Output.Caps)*(Output.D); 
Output.V_c2 = diag(1./Output.Caps)*(-Output.M_upper*Output.Mab_lower'); 
% Discrete 
Output.A = eye(Output.Nv)+Output.DT*Output.A_c; 
Output.B = Output.DT*Output.B_c; 
Output.V1 = Output.DT*Output.V_c1; 
Output.V2 = Output.DT*Output.V_c2; 
Output.A0 = eye(Output.Nv); 

  
%% Model Reduction Matrices 
Output.T = eye(Output.Ne); 
Output.Y = zeros(Output.Ne,Output.Ns); 

  

%% Initial Conditions 
Output.x0 = Sys.x0(Output.Sys_Vs); 
Output.u0 = Sys.u0(Output.Sys_Es); 
Output.P0 = Sys.P0(Output.Sys_Es); 

  
%% Constraints 
Output.x_max = Sys.x_max(Output.Sys_Vs); 
Output.x_min = -Output.x_max; 
Output.u_max = Sys.u_max(Output.Sys_Es); 
Output.u_min = -Output.u_max; 

  
end 

A.14 Generic_Reduced_Subsystem_Gen.m 

function [Output] = Generic_Reduced_Subsystem_Gen(Input,Full) 

  
Output = Input; 

  
%% Number of vertices 
Output.Nv = length(Output.Sys_Vs);             % Number of reduced vertices 
Output.Ne = Full.Ne-(Full.Nv-Output.Nv);       % Number of reduced edges 
Output.Ns = Full.Ns;                           % Number of sources 
Output.Nt = Full.Nt;                           % Numper of sinks 
Output.Nvs = Full.Nv-Full.Nvf-Full.Nvm;        % Number os slow states 
% Discrete update rate 
Output.DT = Full.DT; 
% Determine indices for vertices of reduced matrix 
[trash,Output.Full_Vs] = ismember(Output.Sys_Vs,Full.Sys_Vs); 
% Matrices for reduced power flow equation 
Output.xf = setdiff(1:Full.Nv,Output.Full_Vs);    % Fast vertices 
[Output.R,Output.jb] = rref([Full.M(Output.xf,:) Full.D(Output.xf,:)]); 
Output.Sys_Es = setdiff(1:Full.Ne,Output.jb)'; 
Output.F = -Output.R(:,Output.Sys_Es); 
Output.T = zeros(Full.Ne,Output.Ne); 
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for i = 1:Output.Ne 
    Output.T(Output.Sys_Es(i),i) = 1; 
end 
for i = 1:size(Output.F,1) 
    Output.T(Output.jb(i),:) = Output.F(i,:); 
end 
Output.G = Output.R(:,end-Output.Ns+1:end); 
Output.Y = zeros(Full.Ne,Full.Ns); 
for i = 1:size(Output.F,1) 
    Output.Y(Output.jb(i),:) = Output.G(i,:); 
end 
% Reduced power flow matrices 
Output.Br_hat = Full.B(Output.Full_Vs,:)*Output.T; 
Output.Vr_hat = Full.V1(Output.Full_Vs,:)+Full.B(Output.Full_Vs,:)*Output.Y; 

  
% Upper incidence matrix for reduced system 
Output.M_upper = Full.M(Output.Full_Vs,:); 
% Input Matrix for reduced system 
Output.D = Full.D(Output.Full_Vs,:); 
% Weighted incidence matrix for full system 
Output.Mab = Full.Mab; 
% Weighted incidence matrix corresponding to fast states 
Output.Mfast = Full.Mab(Output.xf,:); 
% Vertex capacitances 
Output.Caps = Full.Caps(Output.Full_Vs); 

  

% State Constraints 
Output.x_max = Full.x_max(Output.Full_Vs); 
Output.x_min = Full.x_min(Output.Full_Vs); 

  
% Input Constraints 
Output.u_max = Full.u_max; 
Output.u_min = Full.u_min; 

  
% Initial Conditions 
Output.x0 = Full.x0(Output.Full_Vs); 
Output.u0 = Full.u0; 

  
end 

A.15 Nominal_Constraints.m 

function Output = Nominal_Constraints(Input) 

  
Output = Input; 

  
% State Constraints 
Output.Set_X = Polyhedron('lb',Output.x_min,'ub',Output.x_max); 
% Input Constraints 
Output.Set_U = Polyhedron('lb',Output.u_min,'ub',Output.u_max); 

  
end 
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A.16 Candidate_Controller.m 

function [Output] = Candidate_Controller(Input) 

  

Output = Input; 

  
% Candidate control law  
Output.K = -pinv(Output.B); 

  
end 

A.17 Constraint_Tightening.m 

function Output = Constraint_Tightening(Input) 

  
Output = Input; 

  
% Robust state set 
Output.Set_X_robust = minus(Output.Set_X,Output.Set_E); 
% Robust input set 
Output.Set_U_robust = minus(Output.Set_U,... 
             affineMap(Output.Set_dP,inv(Output.beta))); 
Output.Set_U_robust = minus(Output.Set_U_robust,... 
             affineMap(Output.Set_E,-inv(Output.beta)*Output.Mab_upper')); 
Output.Set_U_robust = minus(Output.Set_U_robust,... 
             affineMap(Output.Set_dXt,-inv(Output.beta)*Output.Mab_lower')); 
Output.Set_X_robust.minHRep;   % Minimum representation of constraints 
Output.Set_U_robust.minHRep;   % Minimum representation of constraints 

  
% Input Set constraint reordering 
indexes = []; 
for i = 1:size(Output.Set_X_robust.H,2)-1 
    indexes = [indexes;find(Output.Set_X_robust.H(:,i) == 1)]; 
end 
for i = 1:size(Output.Set_X_robust.H,2)-1 
    indexes = [indexes;find(Output.Set_X_robust.H(:,i) == -1)]; 
end 
Output.Set_X_robust=Polyhedron('A',Output.Set_X_robust.H(indexes,1:end-1),... 
                                 'b',Output.Set_X_robust.H(indexes,end)); 

  

% Input Set constraint reordering 
indexes = []; 
for i = 1:size(Output.Set_U_robust.H,2)-1 
    indexes = [indexes;find(Output.Set_U_robust.H(:,i) == 1)]; 
end 
for i = 1:size(Output.Set_U_robust.H,2)-1 
    indexes = [indexes;find(Output.Set_U_robust.H(:,i) == -1)]; 
end 
Output.Set_U_robust=Polyhedron('A',Output.Set_U_robust.H(indexes,1:end-1),... 
                                 'b',Output.Set_U_robust.H(indexes,end)); 

  
end 

A.18 Tracking_Constraint_Matrices.m 
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function Output = Tracking_Constraint_Matrices(Input,Full,UpperReduced) 

  
Output = Input; 

  

% Find vertices contained in reduced upper level system 
[trash,Output.Track] = ismember(intersect(Output.Sys_Vs,... 
                                UpperReduced.Sys_Vs),Output.Sys_Vs); 
% Generate state tracking matrix 
Output.Zup = zeros(length(Output.Track),Output.Nv); 
for i = 1:length(Output.Track) 
    Output.Zup(i,Output.Track(i)) = 1; 
end 
% Generate outlet power tracking matrix 
Output.Zout = zeros(Output.Nt,size(Output.T,1)); 
j = 1; 
for i = 1:Full.Ne 
    if Full.e(i,2) > Full.Nv 
        Output.Zout(j,i) = 1; 
        j = j + 1; 
    end 
end 
% Generate fast state constraint matrix 
Output.xlow = setdiff(1:Output.Nv,Output.Track); 
Output.Zlow = zeros(length(Output.xlow),Output.Nv); 
for i = 1:length(Output.xlow) 
    Output.Zlow(i,Output.xlow(i)) = 1; 
end 

  
end 

A.19 Robust_Constraints.m 

function Output = Robust_Constraints(Input,bound) 

  
Output = Input; 
% Robust state set 
Output.Set_X_robust = Polyhedron('lb',Output.x_min_robust,... 
                                 'ub',Output.x_max_robust); 
% Robust input set 
Output.Set_U_robust = Polyhedron('lb',Output.U_min_robust,... 
                                 'ub',Output.U_max_robust); 

  
% Additional input constraint tightening for lower level tracking error 
% Upper bound lower level tracking error 
Output.Dx_LL_max = bound*ones(length(Output.xf),1); 
% Lower bound lower level tracking error 
Output.Dx_LL_min = -Output.Dx_LL_max; 
% Generate lower level tracking error set 
Output.Set_Dx_LL = Polyhedron('lb',Output.Dx_LL_min,'ub',Output.Dx_LL_max); 
% Tighten constraints 
Output.Set_U_robust = minus(Output.Set_U_robust,... 
                            affineMap(Output.Set_Dx_LL,-Output.Mfast')); 
Output.Set_U_robust.minHRep;   % Minimum representation of constraints 
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% State Set constraint reordering 
indexes = []; 
for i = 1:size(Output.Set_X_robust.H,2)-1 
    indexes = [indexes;find(Output.Set_X_robust.H(:,i) == 1)]; 
end 
for i = 1:size(Output.Set_X_robust.H,2)-1 
    indexes = [indexes;find(Output.Set_X_robust.H(:,i) == -1)]; 
end 
Output.Set_X_robust=Polyhedron('A',Output.Set_X_robust.H(indexes,1:end-1),... 
                                 'b',Output.Set_X_robust.H(indexes,end)); 

  

% Input Set constraint reordering 
indexes = []; 
for i = 1:size(Output.Set_U_robust.H,2)-1 
    indexes = [indexes;find(Output.Set_U_robust.H(:,i) == 1)]; 
end 
for i = 1:size(Output.Set_U_robust.H,2)-1 
    indexes = [indexes;find(Output.Set_U_robust.H(:,i) == -1)]; 
end 
Output.Set_U_robust=Polyhedron('A',Output.Set_U_robust.H(indexes,1:end-1),... 
                                 'b',Output.Set_U_robust.H(indexes,end)); 

  
end 

A.20 State_Reordering.m 

function Output = State_Reordering(Input,Full) 

  
Output = Input; 

  
% Initial reordering matrix 
Output.Z = eye(Full.Nv); 
% Identify order of states 
[trash,reorder] = ismember([Output.Sys_Vs';... 
                            setdiff(Full.Sys_Vs,Output.Sys_Vs)],Full.Sys_Vs); 
% Reorder matrix 
Output.Z = Output.Z(:,reorder); 
% Add sink states to matrix 
Output.Z = blkdiag(Output.Z,eye(Output.Nt)); 

  

end 

A.21 Level_1_Controller_Gen.m 

function [ Output ] = Level_1_Controller_Gen(Input, weightings, constraints) 

  
Output = Input; 

  

% Use nominal or robust constraints based on flag 
if constraints.robustOn 
    Output.x_A = Output.Set_X_robust.H(:,1:end-1); 
    Output.x_b = Output.Set_X_robust.H(:,end); 
    Output.U_A = Output.Set_U_robust.H(:,1:end-1); 
    Output.U_b = Output.Set_U_robust.H(:,end); 
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else 
    Output.x_A = Output.Set_X.H(:,1:end-1); 
    Output.x_b = Output.Set_X.H(:,end); 
    Output.U_A = Output.Set_U.H(:,1:end-1); 
    Output.U_b = Output.Set_U.H(:,end); 
end 
% Initialize Yalmip variables 
x_ = sdpvar(repmat(Output.Nv,1,Output.horizon+1),... 
            repmat(1,1,Output.horizon+1)); 
P_ = sdpvar(repmat(Output.Ne,1,Output.horizon),... 
            repmat(1,1,Output.horizon)); 
Pin_ = sdpvar(repmat(Output.Ns,1,Output.horizon),... 
            repmat(1,1,Output.horizon)); 
xt_ = sdpvar(repmat(Output.Nt,1,Output.horizon+1),... 
            repmat(1,1,Output.horizon+1)); 
xlowDes_ = sdpvar(repmat(length(Output.xf),1,1),... 
            repmat(1,1,1)); 
xlow_    = sdpvar(repmat(length(Output.xf),1,1),... 
            repmat(1,1,1)); 
lambdas_ = sdpvar(repmat(Output.Ns,1,Output.horizon),... 
            repmat(1,1,Output.horizon)); 
lambdat_ = sdpvar(repmat(Output.Nt,1,Output.horizon+1),... 
            repmat(1,1,Output.horizon+1)); 

  
% Initalize objective function and constraints 
objs = 0; 
cons = []; 

  
% Formulate optimization problem at each step in the prediction horizon 
for k = 1:Output.horizon 
    % Define full power flow vector 
    P_full = Output.T*P_{k}+Output.Y*diag(lambdas_{k})*Pin_{k}; 
    % Nominal state tracking 
    objs = objs + weightings.x*norm(x_{k+1} - Output.x0,2)^2; 
    % Nominal power tracking 
    objs = objs + weightings.u*norm(P_full-Output.Mab'*Output.Z*... 
               [x_{k};xlowDes_;diag(lambdat_{k})*xt_{k}] - Output.u0,2)^2; 
    % Minimize power 
    objs = objs + weightings.u_eff*norm(P_full-Output.Mab'*Output.Z*... 
               [x_{k};xlowDes_;diag(lambdat_{k})*xt_{k}] - Output.u_min,2)^2; 
    % Minimize changes to desired disturbances 
    objs = objs + 1e6*norm(lambdas_{k}-1,2)^2; 
    objs = objs + 1e6*norm(lambdat_{k}-1,2)^2; 
    % Constrain system dynamics 
    cons = [cons, x_{k+1} == x_{k}+Output.Br_hat*P_{k}+... 
                                   Output.Vr_hat*diag(lambdas_{k})*Pin_{k}]; 
    % Constrain states 
    cons = [cons, Output.x_A*x_{k} <= Output.x_b]; 
    % Constrain inputs 
    cons = [cons, Output.U_A*(P_full-Output.Mab'*Output.Z*... 
              [x_{k};xlowDes_;diag(lambdat_{k})*xt_{k}]) <= Output.U_b]; 
    % Constrain inputs for next timestep 
    cons = [cons, Output.U_A*(P_full-Output.Mab'*Output.Z*... 
              [x_{k+1};xlowDes_;diag(lambdat_{k})*xt_{k+1}]) <= Output.U_b]; 
    % If low state bounds on, constrain low states to be close to desired 
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    if constraints.lowerStateBoundsOn 
        cons = [cons, -constraints.Dx_LL_max_value/2 <= ... 
                      (xlow_ - xlowDes_) <= constraints.Dx_LL_max_value/2]; 
    end 
    % Constrain last constant states at end of prediction horizon 
    if k == Output.horizon 
        cons = [cons, x_{k+1} == x_{k}]; 
    end 
end 
opts = sdpsettings('solver','+gurobi'); 
Output.Controller = optimizer(cons,objs,opts,{x_{1},Pin_{:},xt_{:},xlow_},... 
                              [x_,P_,lambdas_,lambdat_,{xlowDes_}]); 

  
end 

A.22 Level_i_Controller_Gen.m 

function [ Output ] = Level_i_Controller_Gen(Input, weightings, constraints) 

  
Output = Input; 

  
% Use nominal or robust constraints based on flag 
if constraints.robustOn 
    Output.x_A = Output.Set_X_robust.H(:,1:end-1); 
    Output.x_b = Output.Set_X_robust.H(:,end); 
    Output.U_A = Output.Set_U_robust.H(:,1:end-1); 
    Output.U_b = Output.Set_U_robust.H(:,end); 
else 
    Output.x_A = Output.Set_X.H(:,1:end-1); 
    Output.x_b = Output.Set_X.H(:,end); 
    Output.U_A = Output.Set_U.H(:,1:end-1); 
    Output.U_b = Output.Set_U.H(:,end); 
end 
% Initialize Yalmip variables 
x_ = sdpvar(repmat(Output.Nv,1,Output.horizon+1),... 
            repmat(1,1,Output.horizon+1)); 
P_ = sdpvar(repmat(Output.Ne,1,Output.horizon),... 
            repmat(1,1,Output.horizon)); 
Pin_ = sdpvar(repmat(Output.Ns,1,Output.horizon),... 
            repmat(1,1,Output.horizon)); 
xt_ = sdpvar(repmat(Output.Nt,1,Output.horizon+1),... 
            repmat(1,1,Output.horizon+1)); 
xdotDes_ = sdpvar(repmat(max(size(Output.Zup,1),1),1,Output.horizon),... 
            repmat(1,1,Output.horizon)); 
PoutDes_ = sdpvar(repmat(max(size(Output.Zout,1),1),1,Output.horizon),... 
            repmat(1,1,Output.horizon)); 
xlowDes_ = sdpvar(repmat(max(size(Output.Zlow,1),1),1,1),repmat(1,1,1)); 
xlow_    = sdpvar(repmat(max(length(Output.xf),1),1,1),repmat(1,1,1)); 

  
% Initalize objective function and constraints 
objs = 0; 
cons = []; 

  
% Formulate optimization problem at each step in the prediction horizon 
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for k = 1:Output.horizon 
    % Define full power flow vector 
    P_full = Output.T*P_{k}+Output.Y*Pin_{k}; 
    % Nominal state tracking 
    objs = objs + weightings.x*norm(x_{k+1} - Output.x0,2)^2; 
    % Nominal power tracking 
    objs = objs + weightings.u*norm(P_full-Output.Mab'*Output.Z*... 
                                    [x_{k};xlow_;xt_{k}] - Output.u0,2)^2; 
    % Minimize power 
    objs = objs + weightings.u_eff*norm(P_full-Output.Mab'*Output.Z*... 
                                [x_{k};xlow_;xt_{k}] - Output.u_min,2)^2; 
    % Constrain system dynamics 
    cons = [cons, x_{k+1} == 

x_{k}+Output.Br_hat*P_{k}+Output.Vr_hat*Pin_{k}]; 
    % Constrain states 
    cons = [cons, Output.x_A*x_{k} <= Output.x_b]; 
    % Constrain inputs 
    cons = [cons, Output.U_A*(P_full-Output.Mab'*Output.Z*... 
                                [x_{k};xlow_;xt_{k}]) <= Output.U_b]; 
    % Constrain inputs for next timestep 
    cons = [cons, Output.U_A*(P_full-Output.Mab'*Output.Z*... 
                                [x_{k+1};xlow_;xt_{k+1}]) <= Output.U_b]; 
    % If state tracking on, constrain states to track desired trajectories 
    if constraints.stateTrackingOn 
        cons = [cons, Output.Zup*inv(diag(Output.Caps))*... 
                  (-Output.M_upper*P_full+Output.D*Pin_{k}) == xdotDes_{k}]; 
    end 
    % If outlet power tracking on, constrain outlet powers to track desired 
    if constraints.pOutTrackingOn 
        cons = [cons, Output.Zout*P_full == PoutDes_{k}]; 
    end 
    % If low state bounds on, constrain low states to be close to desired 
    if constraints.lowerStateBoundsOn 
        cons = [cons, -constraints.Dx_LL_max_value/2 <= ... 
          (Output.Zlow*x_{k+1} - xlowDes_) <= constraints.Dx_LL_max_value/2]; 
    end 
end 
opts = sdpsettings('solver','+gurobi'); 
Output.Controller = optimizer(cons,objs,opts,... 
    {x_{1},Pin_{:},xt_{:},xdotDes_{:},PoutDes_{:},xlowDes_,xlow_},[x_,P_]); 

  

end 

A.23 Level_N_Controller_Gen.m 

function [ Output ] = Level_N_Controller_Gen( Input, weightings, constraints 

) 

  
Output = Input; 

  
% Use nominal or robust constraints based on flag 
if constraints.robustOn 
    Output.x_A = Output.Set_X_robust.H(:,1:end-1); 
    Output.x_b = Output.Set_X_robust.H(:,end); 
    Output.U_A = Output.Set_U_robust.H(:,1:end-1); 
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    Output.U_b = Output.Set_U_robust.H(:,end); 
else 
    Output.x_A = Output.Set_X.H(:,1:end-1); 
    Output.x_b = Output.Set_X.H(:,end); 
    Output.U_A = Output.Set_U.H(:,1:end-1); 
    Output.U_b = Output.Set_U.H(:,end); 
end 
% Initialize Yalmip variables 
x_ = sdpvar(repmat(Output.Nv,1,Output.horizon+1),... 
                            repmat(1,1,Output.horizon+1)); 
P_ = sdpvar(repmat(Output.Ne,1,Output.horizon),... 
                            repmat(1,1,Output.horizon)); 
Pin_ = sdpvar(repmat(Output.Ns,1,Output.horizon),... 
                            repmat(1,1,Output.horizon)); 
xt_ = sdpvar(repmat(Output.Nt,1,Output.horizon),... 
                            repmat(1,1,Output.horizon)); 
xdotDes_ = sdpvar(repmat(max(size(Output.Zup,1),1),1,Output.horizon),... 
                            repmat(1,1,Output.horizon)); 
PoutDes_ = sdpvar(repmat(max(size(Output.Zout,1),1),1,Output.horizon),... 
                            repmat(1,1,Output.horizon)); 
xlowDes_ = sdpvar(repmat(max(size(Output.Zlow,1),1),1,1),repmat(1,1,1)); 

  
% Initalize objective function and constraints 
objs = 0; 
cons = []; 

  

% Formulate optimization problem at each step in the prediction horizon 
for k = 1:Output.horizon 
    % Nominal state tracking 
    objs = objs + weightings.x*norm(x_{k+1} - Output.x0,2)^2; 
    % Nominal power tracking 
    objs = objs + weightings.u*norm(P_{k}-Output.Mab'*... 
                                        [x_{k};xt_{k}] - Output.u0,2)^2; 
    % Minimize power 
    objs = objs + weightings.u_eff*norm(P_{k}-Output.Mab'*... 
                                        [x_{k};xt_{k}] - Output.u_min,2)^2; 
    % Constrain system dynamics 
    cons = [cons, x_{k+1} == x_{k}+Output.B*P_{k}+Output.V1*Pin_{k}]; 
    % Constrain states 
    cons = [cons, Output.x_A*x_{k} <= Output.x_b]; 
    % Constrain inputs 
    cons = [cons, Output.U_A*(P_{k}-Output.Mab'*... 
                                        [x_{k};xt_{k}]) <= Output.U_b]; 
    % If state tracking on, constrain states to track desired trajectories 
    if constraints.stateTrackingOn 
        cons = [cons, Output.Zup*inv(diag(Output.Caps))*... 
                  (-Output.M_upper*P_{k}+Output.D*Pin_{k}) == xdotDes_{k}]; 
    end 
    % If outlet power tracking on, constrain outlet powers to track desired 
    if constraints.pOutTrackingOn 
        cons = [cons, Output.Zout*P_{k} == PoutDes_{k}]; 
    end 
    % If low state bounds on, constrain low states to be close to desired 
    if constraints.lowerStateBoundsOn 
        cons = [cons, -constraints.Dx_LL_max_value/2 <= ... 
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         (Output.Zlow*x_{k+1} - xlowDes_) <= constraints.Dx_LL_max_value/2]; 
    end 
end 
opts = sdpsettings('solver','+gurobi');%,'verbose',2); 
Output.Controller = optimizer(cons,objs,opts,... 
          {x_{1},Pin_{:},xt_{:},xdotDes_{:},PoutDes_{:},xlowDes_},[x_,P_]); 

  
end 

A.24 Call_Level_1_Controller.m 

function [ Output ] = Call_Level_1_Controller( Input, plot, time ) 

  
Output = Input; 

  
% Configure inputs to the controller 
Inputs = cell(1,1+2*Output.horizon+1+1); 
Inputs(1) = {Output.x0}; 
Inputs(2:Output.horizon+1) = ... 
                    mat2cell(Output.Pin,Output.Ns,ones(1,Output.horizon)); 
Inputs(Output.horizon+2:2*Output.horizon+2) = ... 
                    mat2cell(Output.xt,Output.Nt,ones(1,Output.horizon+1)); 
Inputs(2*Output.horizon+3) = {Output.xlow0}; 

  
% Start timing controller 
if time == 1 
    tic; 
end 
% Call controller 
[Outputs,Output.feasible] = Output.Controller{Inputs}; 
% Record controller solve time 
if time == 1 
    Output.T_calc = toc; 
end 
% Display if optimization problem was infeasible 
if Output.feasible ~= 0 
    disp([Output.Name, ' infeasible at time = ', num2str(Output.Time),... 
          ' with code = ', num2str(Output.feasible)]) 
end 
% Output variables 
Output.x = cell2mat(Outputs(:,1:Output.horizon+1)); 
Output.P = cell2mat(Outputs(:,Output.horizon+2:2*Output.horizon+1)); 
Output.lambdas = cell2mat(Outputs(:,2*Output.horizon+2:3*Output.horizon+1)); 
Output.lambdat = cell2mat(Outputs(:,3*Output.horizon+2:4*Output.horizon+2)); 
Output.xlowDes = cell2mat(Outputs(:,4*Output.horizon+3)); 
Output.x(:,1) = Output.x0; 

  
if plot == 1 
    figure; 
    subplot(4,1,1);stairs(Output.x(:,1:end-1)') 
    subplot(4,1,2);stairs(Output.P') 
    subplot(4,1,3);stairs(Output.lambdas') 
    subplot(4,1,4);stairs(Output.lambdat') 
end 



 175  

  
end 

A.25 Call_Level_i_Controller.m 

function [ Output ] = Call_Level_i_Controller( Input, plot, time ) 

  
Output = Input; 

  
% Configure inputs to the controller 
Inputs = cell(1,1+4*Output.horizon+1+1+1); 
Inputs(1) = {Output.x0}; 
Inputs(2:Output.horizon+1) = ... 
                    mat2cell(Output.Pin,Output.Ns,ones(1,Output.horizon)); 
Inputs(Output.horizon+2:2*Output.horizon+2) = ... 
                    mat2cell(Output.xt,Output.Nt,ones(1,Output.horizon+1)); 
Inputs(2*Output.horizon+3:3*Output.horizon+2) = ... 
   mat2cell(Output.xdotDes,max(size(Output.Zup,1),1),ones(1,Output.horizon)); 
Inputs(3*Output.horizon+3:4*Output.horizon+2) = ... 
   

mat2cell(Output.PoutDes,max(size(Output.Zout,1),1),ones(1,Output.horizon)); 
Inputs(4*Output.horizon+3) = {Output.xlowDes}; 
Inputs(4*Output.horizon+4) = {Output.xlow0}; 

  
% Start timing controller 
if time == 1 
    tic; 
end 
% Call controller 
[Outputs,Output.feasible] = Output.Controller{Inputs}; 
% Record controller solve time 
if time == 1 
    Output.T_calc = toc; 
end 
% Display if optimization problem was infeasible 
if Output.feasible ~= 0 
    disp([Output.Name, ' infeasible at time = ', num2str(Output.Time),... 
          ' with code = ', num2str(Output.feasible)]) 
end 
% Output variables 
Output.x = cell2mat(Outputs(:,1:Output.horizon+1)); 
Output.P = cell2mat(Outputs(:,Output.horizon+2:2*Output.horizon+1)); 
Output.x(:,1) = Output.x0; 

  
if plot == 1 
    figure; 
    subplot(2,1,1);stairs(Output.x(:,1:end-1)') 
    subplot(2,1,2);stairs(Output.P') 
end 

  
end 

A.26 Call_Level_N_Controller.m 
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function [ Output ] = Call_Level_N_Controller( Input, plot, time ) 

  
Output = Input; 

  

% Configure inputs to the controller 
Inputs = cell(1,1+4*Output.horizon+1); 
Inputs(1) = {Output.x0}; 
Inputs(2:Output.horizon+1) = ... 
                    mat2cell(Output.Pin,Output.Ns,ones(1,Output.horizon)); 
Inputs(Output.horizon+2:2*Output.horizon+1) = ... 
                    mat2cell(Output.xt,Output.Nt,ones(1,Output.horizon)); 
Inputs(2*Output.horizon+2:3*Output.horizon+1) = ... 
   mat2cell(Output.xdotDes,max(size(Output.Zup,1),1),ones(1,Output.horizon)); 
Inputs(3*Output.horizon+2:4*Output.horizon+1) = ... 
   

mat2cell(Output.PoutDes,max(size(Output.Zout,1),1),ones(1,Output.horizon)); 
Inputs(4*Output.horizon+2) = {Output.xlowDes}; 
% Start timing controller 
if time == 1 
    tic; 
end 
% Call controller 
[Outputs,Output.feasible] = Output.Controller{Inputs}; 
% Record controller solve time 
if time == 1 
    Output.T_calc = toc; 
end 
% Display if optimization problem was infeasible 
if Output.feasible ~= 0 
    disp([Output.Name, ' infeasible at time = ', num2str(Output.Time), ... 
          ' with code = ', num2str(Output.feasible)]) 
end 
% Output variables 
Output.x = cell2mat(Outputs(:,1:Output.horizon+1)); 
Output.P = cell2mat(Outputs(:,Output.horizon+2:2*Output.horizon+1)); 
Output.x(:,1) = Output.x0; 

  
if plot == 1 
    figure; 
    subplot(2,1,1);stairs(Output.x(:,1:end-1)') 
    subplot(2,1,2);stairs(Output.P') 
end 

  
end 

A.27 Three_Level_Sim.slx 
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Figure A.3 Simulink model used to simulate the robust hierarchical controller. 

A.28 Three_Level_Controller.m 

function out = Three_Level_Controller(in) 

  

% Define persistent variables 
persistent Sys SS1 SS2 SS3 SS4 S1r S2r Vehr x_pred plot_ time i_S i_SS... 
           Pin_V xt_V Pfull_V x_V xdot_V... 
           Pin_S1 xt_S1 Pfull_S1 x_S1 xdot_S1... 
           Pin_S2 xt_S2 Pfull_S2 x_S2 xdot_S2 

  
% Time 
t = in(1); 
% Load variables from work space 
if t == 0 
    Sys = evalin('base','Sys'); 
    SS1 = evalin('base','SS1'); 
    SS2 = evalin('base','SS2'); 
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    SS3 = evalin('base','SS3'); 
    SS4 = evalin('base','SS4'); 
    S1r = evalin('base','S1r'); 
    S2r = evalin('base','S2r'); 
    Vehr = evalin('base','Vehr'); 
    x_pred = Sys.x0; 
    plot_ = 0; time = 1; 
    i_S = 0; 
    i_SS = 0; 
end 
% Length of input vectors 
l_x0 = Sys.Nv; 
l_Pin = Sys.Ns*Vehr.horizon; 
l_xt = Sys.Nt*(Vehr.horizon+1); 
l_xt0 = Sys.Nt; 
% Indices for each input vector 
t1 = 2;     t2 = t1+l_x0-1; 
t3 = t2+1;  t4 = t3+l_Pin-1; 
t5 = t4+1;  t6 = t5+l_xt-1; 
t7 = t6+1;  t8 = t7+l_xt0-1; 
% Define inputs 
x0 = in(t1:t2); 
Pin = reshape(in(t3:t4),Vehr.horizon,Sys.Ns)'; 
xt = reshape(in(t5:t6),Vehr.horizon+1,Sys.Nt)'; 
xt0 = in(t7:t8); 

  

% Call at Vehicle-level time step 
if mod(t,Vehr.DT) == 0 

     
    % Inputs to Vehr controller 
    Vehr.x0 = x_pred(Vehr.Sys_Vs); 
    Vehr.Pin = Pin; 
    Vehr.xt = xt; 
    Vehr.xlow0 = x_pred(Vehr.xf); 
    % Call controller 
    Vehr.Time = t; 
    [ Vehr ] = Call_Level_1_Controller( Vehr, plot_, time ); 
    % Upsample trajectories to be used by lower level controllers 
    [Pin_V,xt_V,Pfull_V,x_V,xdot_V] = Rate_Transition(Vehr,S1r); 
    % Reinitialize index used by lower level controller 
    i_S = 0; 
end 
% Call at System-level time step 
if mod(t,S1r.DT) == 0   
    % Increment index used to select values from upper level trajectories 
    i_S = i_S+1; 
    % Inputs to S1r controller 
    S1r.x0 = x_pred(S1r.Sys_Vs); 
    S1r.Pin = Pin_V(:,i_S:i_S+S1r.horizon-1); 
    S1r.xt = x_V([4 3],i_S:i_S+S1r.horizon); % Vertices 11 and 7 
    S1r.xdotDes = xdot_V([1],i_S:i_S+S1r.horizon-1); 
    S1r.PoutDes = Pfull_V([8 9],i_S:i_S+S1r.horizon-1); 
    S1r.xlowDes = Vehr.xlowDes([1 2 7]);  % Vertices 3, 4, and 10 
    S1r.xlow0 = Vehr.xlowDes([5 6]);   % Vertices 8 and 9 
    % Call controller 
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    S1r.Time = t; 
    [ S1r ] = Call_Level_i_Controller( S1r, plot_, time ); 
    % Upsample trajectories to be used by lower level controllers 
    [Pin_S1,xt_S1,Pfull_S1,x_S1,xdot_S1] = Rate_Transition(S1r,SS1); 
        % Inputs to S2r controller 
    S2r.x0 = x_pred(S2r.Sys_Vs); 
    S2r.Pin = Pfull_V([8 9],i_S:i_S+S2r.horizon-1); 
    S2r.xt = xt_V(:,i_S:i_S+S2r.horizon); % Vertices xt1 and xt2 
    S2r.xdotDes = xdot_V([2 3 4],i_S:i_S+S2r.horizon-1); 
    S2r.PoutDes = Pfull_V([13 18],i_S:i_S+S2r.horizon-1); 
    S2r.xlowDes = Vehr.xlowDes([3 4]);  % Vertices 5 and 6 
    S2r.xlow0 = Vehr.xlowDes([8]);   % Vertex 12 
    % Call controller 
    S2r.Time = t; 
    [ S2r ] = Call_Level_i_Controller( S2r, plot_, time ); 
    % Upsample trajectories to be used by lower level controllers 
    [Pin_S2,xt_S2,Pfull_S2,x_S2,xdot_S2] = Rate_Transition(S2r,SS3); 
    % Reinitialize index used by lower level controller 
    i_SS = 0; 
end 
% Call at Subsystem-level time step 
if mod(t,SS1.DT) == 0    
    % Increment index used to select values from upper level trajectories 
    i_SS = i_SS + 1; 
    % Inputs to SS1 controller 
    SS1.x0 = x_pred(SS1.Sys_Vs); 
    SS1.Pin = Pin_S1(1,i_SS:i_SS+SS1.horizon-1); 
    SS1.xt = [x_S1(4,i_SS:i_SS+SS1.horizon-1);... 
              xt_S1(1,i_SS:i_SS+SS1.horizon-1)]; % Vertices 10 and 11 
    SS1.xdotDes = xdot_S1([2],i_SS:i_SS+SS1.horizon-1); 
    SS1.PoutDes = Pfull_S1([4 8],i_SS:i_SS+SS1.horizon-1); 
    SS1.xlowDes = Vehr.xlowDes([5 6]);  % Vertices 8 and 9 
    % Call controller 
    SS1.Time = t; 
    [ SS1 ] = Call_Level_N_Controller( SS1, plot_, time ); 
    % Inputs to SS2 controller 
    SS2.x0 = x_pred(SS2.Sys_Vs); 
    SS2.Pin = [Pin_S1(2,i_SS:i_SS+SS2.horizon-1);... 
               Pfull_S1(4,i_SS:i_SS+SS2.horizon-1)]; 
    SS2.xt = xt_S1(2,i_SS:i_SS+SS2.horizon-1); % Vertex 7 
    SS2.xdotDes = xdot_S1([1 3 4],i_SS:i_SS+SS2.horizon-1); 
    SS2.PoutDes = Pfull_S1([9],i_SS:i_SS+SS2.horizon-1); 
    SS2.xlowDes = 0; 
    % Call controller 
    SS2.Time = t; 
    [ SS2 ] = Call_Level_N_Controller( SS2, plot_, time ); 
    % Inputs to SS3 controller 
    SS3.x0 = x_pred(SS3.Sys_Vs); 
    SS3.Pin = [Pin_S2(1,i_SS:i_SS+SS3.horizon-1);... 
               Pfull_S2(5,i_SS:i_SS+SS3.horizon-1)];  
    SS3.xt = xt_S2(1,i_SS:i_SS+SS3.horizon-1); % Vertex xt1 
    SS3.xdotDes = xdot_S2([1 2 5],i_SS:i_SS+SS3.horizon-1); 
    SS3.PoutDes = Pfull_S2([4],i_SS:i_SS+SS3.horizon-1); 
    SS3.xlowDes = 0; 
    % Call controller    
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    SS3.Time = t; 
    [ SS3 ] = Call_Level_N_Controller( SS3, plot_, time ); 
    % Inputs to SS4 controller 
    SS4.x0 = x_pred(SS4.Sys_Vs); 
    SS4.Pin = Pin_S2(2,i_SS:i_SS+SS4.horizon-1); 
    SS4.xt = [x_S2(5,i_SS:i_SS+SS1.horizon-1);... 
              xt_S2(2,i_SS:i_SS+SS1.horizon-1)];    % Vertices 11 and xt2 
    SS4.xdotDes = xdot_S2([3 4],i_SS:i_SS+SS4.horizon-1); 
    SS4.PoutDes = Pfull_S2([5 9],i_SS:i_SS+SS4.horizon-1); 
    SS4.xlowDes = Vehr.xlowDes([8]);  % Vertex 12 
    % Call controller 
    SS4.Time = t; 
    [ SS4 ] = Call_Level_N_Controller( SS4, plot_, time ); 
end 
% Calculate the desired power flows 
P1 = SS1.P(:,1) + SS1.K*(x0(SS1.Sys_Vs)-x_pred(SS1.Sys_Vs)); 
P2 = SS2.P(:,1) + SS2.K*(x0(SS2.Sys_Vs)-x_pred(SS2.Sys_Vs)); 
P3 = SS3.P(:,1) + SS3.K*(x0(SS3.Sys_Vs)-x_pred(SS3.Sys_Vs)); 
P4 = SS4.P(:,1) + SS4.K*(x0(SS4.Sys_Vs)-x_pred(SS4.Sys_Vs)); 
% Assemble the desired power flows 
P_bar  = [P1(1:4);P2(1:3);P1(5);P2(4);P3(1:4);P4(4);P4(1:3);P4(5)]; 
% Calculate the control input 
u = inv(Sys.beta)*(P_bar-Sys.Mab'*[x0;xt0]); 
% Assemble predicted nominal states at the next time step 
x_pred = [SS2.x(1,2);SS3.x(1,2);SS1.x(1,2);SS2.x(2,2);SS3.x(2,2);... 
          SS4.x(1,2);SS4.x(2,2);SS1.x(2,2);SS1.x(3,2);SS2.x(3,2);... 
          SS3.x(3,2);SS4.x(3,2)]; 
% Output inputs and throttling variables 
out = [u;Vehr.lambdas(:,1);Vehr.lambdat(:,1)]; 

  
end 

A.29 Rate_Transition.m 

function [Pin,xt,Pfull,x,xdot] = Rate_Transition(Upper,Lower) 

  
% Determine Pin and xt over Lower-level prediction horizon based on 
% values determined by the Upper-level controller 
Pin = []; 
xt = []; 
% If signals are coming from the Vehicle level, calculate "throttled" values 
if strcmp(Upper.Name,'Vehr') 
 for i = 1:size(Upper.Pin,2) 
  Pin = [Pin repmat(Upper.lambdas(:,i).*Upper.Pin(:,i),1,Upper.DT/Lower.DT)]; 
  xt = [xt repmat(Upper.lambdat(:,i).*Upper.xt(:,i),1,Upper.DT/Lower.DT)]; 
 end 
  Pfull = []; 
    for i = 1:size(Upper.P,2) 
        P = Upper.T*Upper.P+Upper.Y*(Upper.lambdas.*Upper.Pin); 
        Pfull = [Pfull repmat(P(:,i),1,Upper.DT/Lower.DT)]; 
    end 
else 
    for i = 1:size(Upper.Pin,2) 
        Pin = [Pin repmat(Upper.Pin(:,i),1,Upper.DT/Lower.DT)]; 
        xt = [xt repmat(Upper.xt(:,i),1,Upper.DT/Lower.DT)]; 
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    end 
    Pfull = []; 
    for i = 1:size(Upper.P,2) 
        P = Upper.T*Upper.P+Upper.Y*Upper.Pin; 
        Pfull = [Pfull repmat(P(:,i),1,Upper.DT/Lower.DT)]; 
    end 
end 
% Determine state trajectory 
x = []; 
for i = 1:size(Upper.x,2)-1 
    x = [x repmat(Upper.x(:,i),1,Upper.DT/Lower.DT)+... 
                 (Upper.x(:,i+1)-Upper.x(:,i))/(Upper.DT/Lower.DT)*... 
                 [0:Upper.DT/Lower.DT-1]]; 
end 
% Determine rate of change of states 
xdot = inv(diag(Upper.Caps))*(-Upper.M_upper*Pfull+Upper.D*Pin); 

  
end 

A.30 System.m 

function out = System(in) 

  
% Define persistent variables 
persistent Sys 

  
% Time 
t = in(1); 
% Load variables from work space 
if t == 0 
    Sys = evalin('base','Sys'); 
    Sys.x = Sys.x0; 
end 
% Length of input vectors 
l_u  = size(Sys.u0,1); 
l_Pin = Sys.Ns; 
l_xt = Sys.Nt; 
l_DP = Sys.Ne; 
l_DPin = Sys.Ns; 
l_Dxt = Sys.Nt; 
% Indices for each input vector 
t1 = 2;     t2 = t1+l_u-1; 
t3 = t2+1;  t4 = t3+l_Pin-1; 
t5 = t4+1;  t6 = t5+l_xt-1; 
t7 = t6+1;  t8 = t7+l_DP-1; 
t9 = t8+1;  t10 = t9+l_DPin-1; 
t11 = t10+1;  t12 = t11+l_Dxt-1; 
% Define inputs 
Sys.u = in(t1:t2); 
Sys.Pin = in(t3:t4); 
Sys.xt = in(t5:t6); 
Sys.DP = in(t7:t8); 
Sys.DPin = in(t9:t10); 
Sys.Dxt = in(t11:t12); 
% System state at next time step 



 182  

Sys.x = Sys.A*Sys.x+Sys.B*Sys.beta*Sys.u+... 
    Sys.V1*(Sys.Pin+Sys.DPin)+Sys.V2*(Sys.xt+Sys.Dxt)+Sys.V3*Sys.DP; 
% Output system state at next time step 
out = [Sys.x]; 

  
end 

A.31 Dist_Three_Level.m 

function out = Dist_Three_Level(in) 

  

% Define persistent variables 
persistent Vehr Sys xt Pin T_Pin T_xt 

  
% Time 
t = in(1); 
% Load variables from work space 
if t == 0 
    Vehr = evalin('base','Vehr'); 
    Sys = evalin('base','Sys'); 

     
    Pin = 0*ones(Sys.Ns,Sys.Tsim+Vehr.DT*Vehr.horizon); 
    xt = 0*ones(Sys.Nt,Sys.Tsim+Vehr.DT*(Vehr.horizon+1)); 

     
    Pin(1,201:300) = 3; 
    Pin(2,401:500) = 3;  
end 
% Define time vector 
if mod(t,Vehr.DT) == 0 
    T_Pin = t+1:Vehr.DT:t+Vehr.DT*Vehr.horizon; 
    T_xt = t+1:Vehr.DT:t+Vehr.DT*(Vehr.horizon+1); 
end 
% Output disturbance over prediction horizon and current values 
if Sys.preview 
    out = [reshape(Pin(:,T_Pin)',Sys.Ns*Vehr.horizon,1);... 
           reshape(xt(:,T_xt)',Sys.Nt*(Vehr.horizon+1),1);... 
           Pin(:,t+1);xt(:,t+1)]; 
else 
    out = 

[reshape(repmat(Pin(:,t+1),1,length(T_Pin))',Sys.Ns*Vehr.horizon,1);... 
           

reshape(repmat(xt(:,t+1),1,length(T_xt))',Sys.Nt*(Vehr.horizon+1),1);... 
           Pin(:,t+1);xt(:,t+1)]; 
end 

  
end 


