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e Federated Learning (FL) is a distributed machine learning technique
where models are trained on local data to preserve privacy.

e Federated learning has significant applications in healthcare, Training Training Training Training Training
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material discovery, autonomous vehicles and smart homes.
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A typical workflow of federated learning.

BO iteratively selects input values to balance v
exploration and exploitation, finding theglobal | >~ _—""—" N

optimum with minimal evaluations.
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EXPERIMENTAL RESULTS

Testbed Hardware: Learning Tasks:

e DVFS is a technique that optimizes energy and performance
according to demand, scaling resources as needed.
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Learning clients, which operates by intelligently modifying hardware

configurations in real-time to optimize energy consumption and Results and Analvsis:

performance during the training of machine learning models.
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e BoFL cuts energy use 22.3%
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How to select the best DVFS configurations for each round of local model training?
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CONCLUSION

BoFL is a training pace controller for edge devices that achieves energy
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consumption by over 20% compared to the baselines and achieve close to

optimal energy efficiency with only 1.2% - 3.4% energy regret.
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