Energy Efficient Federated Learning with Bayesian Optimized Training Pace Control

Hongpeng Guo¹, Haotian Gu², Zhe Yang¹, Xiaoyang Wang¹, Eun Kyung Lee³, Nandhini Chandramoorthy³, Tamar Eilam³, Deming Chen¹, Klara Nahrstedt¹

INTRODUCTION

Federated Learning Overview:

- Federated Learning (FL) is a distributed machine learning technique where models are trained on local data to preserve privacy.
- Federated learning has significant applications in healthcare, material discovery, autonomous vehicles and smart homes.
- However, training models on edge devices can consume a lot of energy, making **energy-efficient FL** crucial.

METHODOLOGY

BoFL System Overview:

UNIVERSITY OF 1

Pareto Construction with Bayesian Optimization:

A typical workflow of federated learning.

Dynamic Voltage and Frequency Scaling (DVFS):

• **DVFS** is a technique that **optimizes energy and performance** according to demand, scaling resources as needed.

In This Work:

 We design a training pace controller, named BoFL, for Federated Learning clients, which operates by intelligently modifying hardware configurations in real-time to optimize energy consumption and performance during the training of machine learning models. Bayesian optimization (BO) is a sample efficient methodology for optimizing black-box functions that are expensive to evaluate.

BO iteratively selects input values to balance exploration and exploitation, finding the global optimum with minimal evaluations.

Multi-Objective Bayesian optimization (MBO)

Berkeley IBM Research

EXPERIMENTAL RESULTS

Testbed Hardware:

Task Types	Datasets	NN-Model
CV	CIFAR10	Vision-Transformer
CV	ImageNet	ResNet-50
NLP	IMDB	LSTM

Results and Analysis:

Energy consumption over FL rounds.

CHALLENGES

How to Select the Best DVFS Configurations?

How to select the **best** DVFS configurations for each round of local model training?

- BoFL cuts energy use 22.3%
 vs. *Performant*,
- Only 1.48% energy overhead compared to *Oracle*.

Pareto front searched by BoFL.

 BoFL can successfully find a close approximation to the actual Pareto front over all three tasks.

CONCLUSION

BoFL is a **training pace controller** for edge devices that achieves energy efficient federated learning. Experiments show that it can reduce energy consumption by over **20%** compared to the baselines and achieve close to optimal energy efficiency with only **1.2% - 3.4% energy regret**.

ACKNOWLEDGEMENT

This work was supported by **IBM-Illinois Discovery Accelerator Institute**. More information can be found in our paper "**BoFL: bayesian optimized local training pace control for energy efficient federated learning**" *In the 23rd ACM/IFIP International Middleware Conference*. 2022

Contact: hg5@illinois.edu

NAE Regional Meeting 2023