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Electric Vehicles-Building Nexus: 
Optimal Charging and Load Management Solutions

CONCLUSION
§ Saved energy from building control strategies 

improvements can support up to 42 EVs to recharge.
§ Managed EV charging will not burden the office 

building’s electricity bill. Compared to a first-come, first-
served charging strategy, managed charging can save up 
to 21.7% per day with the consideration of electricity 
demand charges. The monthly savings can reach up 
to $ 635.07 in a workplace lot in Houston TX.

§ Cost-saving performance of managed charging is 
influenced by model inputs. A larger gap between 
different times of the electricity price tiers increases 
savings of the managed EV charging schedule; a 
longer coincident period of low electricity prices 
and dwell times of commuters makes the managed 
charging practice more effective.

Methods: Building Energy Simulation
A DOE medium office building, with a base HVAC cooling
setpoint of 24℃ and heating setpoint of 21℃, and lighting
illuminance level of 900 lux has two control strategies to
reduce total energy use:

§ Control strategy 1: adjust the building's 
thermostat temperature setpoint from 24 to 
26℃, with a step of 0.5℃ during the summer period 
(June-August); 21 to 19℃ with a step of 0.5℃ during 
the winter period (December-February)

§ Control strategy 2: the daylighting control calculates 
the contribution of daylight and dims the electric 
lighting to meet a target illuminance level in the 
office (two illuminance levels of 300 and 500 lux)

INTRODUCTION
Significant office building energy savings can be realized
through control strategies, like heating, ventilation, and air
conditioning (HVAC) setpoint adjustments and daylighting
control for corporate sustainability. Workplace charging
(WPC) enables the collocation of flexible electric vehicle
(EV) charging loads with office building loads.

Objectives
§ management of the EVs-Building nexus and 

determining the number of EVs that corporate office 
building energy savings (HVAC setpoint adjustments, 
daylighting control) can enable charging

§ simulating building energy savings by HVAC 
setpoint adjustment and daylighting control in 
typical medium office buildings in three US 
metropolises of different climate regions

§ a mathematical model to minimize charging 
costs under time-of-use electricity pricing 
schemes for a given EV hosting capacity of saved office 
energy and patterns of roundtrip commuting

Methods: EV Charging Management
q Input
§ Charging patterns: arrival and departure times, charging 

demand, and #EVs charging capacity for corporate 
energy efficiency

§ Charger allocation: a matrix assigning EVs to a specific 
charger

§ Electricity price: time-of-use electricity pricing scheme
§ Charger specification: charger type and technical 

specifications (power levels)

q Optimization Model
§ Objective: min EV charging costs

§ Constraints:

RESULTS
Results with Cooling Setpoint Adjustments

§ in Houston, the managed building and EV charging costs 
in +1.5℃ is lower than in +1℃ scenarios, because the 
ratio of EVs to chargers is 2.875, 3.2 and 3 in the +1, 
+1.5 and +2℃ scenarios, respectively. This suggests that 
fewer EVs can charge at the same time in the +1.5 ℃
scenario, which can make the peak load and demand 
charge lower.

Results with Daylighting Control

§ in the average demand case, the managed charging 
profile performs better in 300 lux scenarios in Chicago, 
Baltimore, and Houston than in the 500 lux scenarios;

§ in the synthetic cases, the ranges of charging savings, 
charging savings per EV, and the ratio of savings to FCFS 
costs are wider in the 300 lux scenarios than in the 500 
lux scenarios in all three cities.

RESULTS
We implement building efficiency control strategies and
optimal EV charging schedules in one average daily demand
case, i.e., 6.71 kWh/EV, 6.76 kWh/EV, 7.06 kWh/EV in
Chicago IL, Baltimore MD, and Houston TX, and one
hundred synthetic demand cases.

Results with Cooling Setpoint Adjustments
§ in Chicago IL, the volumetric electricity bill portion

under HVAC setpoint adjustments remains constant
even with increased EV charging loads

§ in Baltimore MD and Houston TX, the cost savings
between unmanaged and managed charging plans are
on the rise, increasing from $0.42 to $0.92 in Baltimore
MD, and from $3.78 to $28.87 in Houston TX, as more
EVs are hosted in the workplace lot

Fig 1. Research approach for managing the EVs-building nexus
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Fig 2. Building energy savings from summer office building 
control strategies and the corresponding  EVs charging 
capacity in Chicago IL, Baltimore MD, and Houston TX
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Fig 3. Building and EV charging costs
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Fig 4. Relationship between the ratio of EVs to chargers 
and the building and EV charging saving costs

Average Demand Cases

Lux # EVs Charging 
savings ($)

Charging 
savings per EV 

(¢/ per veh)

Savings/FCFS 
costs (%)

Average 
Savings 

($)

Chicago
300 42 3.57 8.49 11.59 ---
500 36 2.76 7.66 10.54 ---

Baltimore
300 39 2.00 5.14 9.7 ---
500 33 1.01 3.07 6.07 ---

Houston
300 29 1.84 6.35 35.83 ---
500 18 1.01 5.62 33.07 ---

Synthetic Demand Cases

Chicago
300 32–43 -0.06–3.45 -0.16–9.58 -0.22–11.96 0.883
500 27–39 -0.11–2.38 -0.36–7.35 -0.47–9.79 0.782

Baltimore
300 33–44 -0.40–1.10 -1.00–2.96 -1.99–5.06 0.262
500 27–39 -0.17–1.08 -0.54–3.32 -1.02–5.88 0.288

Houston
300 22–33 -0.19–0.80 -0.73–3.08 -4.54–15.27 0.088
500 14–21 -0.09–0.53 -0.63–3.04 -3.86–18.12 0.071

Table 1. Comparison of management performance with
daylighting control
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