

P / O / E / T / S

CENTER FOR POWER OPTIMIZATION OF ELECTRO-THERMAL SYSTEMS

Data-Driven Reliability Monitoring and Fault Diagnostics of High-Power Density Motors

PI: Debbie Senesky, Pingfeng Wang, Haran Kiruba

Optimizing Hall-effect Sensors for Motors

Develop Hall-effect sensor placements and machine learning algorithms to predict faults in electric motors

01	Optimize Hall-effect Sensor Placement in Motor
02	Digital Twin of Motor and Simulating Faults
03	Detecting Fault in Motor System

Prof. Wang

Prof. Kiruba

Prof. Senesky

Student researchers:

Yanwen Xu, Junhan Zhao, Xiaolong Zhang, Sara Kohtz (UIUC) Anand Lalwani, Abel John (Stanford)

Industrial POC's: Timothy Krantz (NASA), Tim Deppen (PC Krause & Associates)

Predictive Maintenance Market to Hit USD 111.34 Billion by 2030, at a CAGR of 26.2%

- Global News Wire

Hall-effect Sensors

- Non-invasive
- Measure magnetic field
- Low-footprint
- Low-cost
- Data rich (high frequency)

NSF

1-MW, 15,000 rpm, radial-flux air-gap winding PMSM with an outer-rotor structure achieves 13~kW/kg specific power with a self-pumped air cooling system.

Air-gap winding

- Eliminate iron teeth
- Reduces active weight
- Mitigates the iron losses
- Require on force reaction, insulation and cooling.

Recent Breakthrough in Hall-Effect Sensors

Circuits & Modalities

Sensitivity/Geometry Optimization

Noise Optimization

12 Papers, 4 Patents, 3 PhD thesis, 3 Labs, 1 Mission

Starting Focus: Inter-turn/phase Winding Fault

Occurs when insulation on the coil fails causing a short.

In 3-phase motor, shorting of coils causes unbalance current (e.g., 9000 Amp rise – catastrophic!)

ΡΙΟΙΕΙΤΙΣ

Cannot find the precise location of the fault with current methods

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Magnetic Flux Density

Current Density, Magnet

Introducing Faults in Simulation Model

Inter-fault Winding Fault introduced in FEA model

Insert fault by changing the coupling equivalent circuit of motor.

	Support	X_m	Y_m	Z_m	Magnetic_dens_normal			Resistance	Rotor_angle	Fault_category	Placement	7
0	0.000000	0.155253	0.000135	0	-0.119832			0.001	5.0	A 1coil	outer	
1	0.000269	0.155253	0.000405	0	-0.128518			0.001	5.0	A 1coil	outer	
2	0.000539	0.155252	0.000674	0	-0.136584			0.001	5.0	A 1coil	outer	
3	0.000808	0.155251	0.000944	0	-0.143779			0.001	5.0	A 1coil	outer	
4	0.001078	0.155249	0.001213	0	-0.150019	•	•	0.001	5.0	A 1coil	outer	(
								0.001	5.0	A_ KON_	outer	
176	0.041825	0.130546	0.041292	0	0.725355			0.000	45.0	Healthy	airgap	
177	0.042063	0.130474	0.041518	0	0.730311			0.000	45.0	Healthy	airgap	•
178	0.042301	0.130402	0.041745	0	0.735012			0.000	45.0	Healthy	airgan	
179	0.042538	0.130329	0.041971	0	0.739453			0.000	45.0	Healthy	airgan	
180	0.042776	0.130256	0.042197	0	0.743640			0.000	45.0	Healthy	airgap	
5277	960 rows	× 15 colu	ns	5	Sensor output				1010		ongop	
l	Location of sensors (181					17 lev	els of s	everit	ty per t	fault (b	esides	s he
(coord	linate	es pe	er								
F	blace	men	t) — t	543	8 possible							
- 1	Uudu	UIIS										

7 fault categories

3 possible areas for placement

 Place sensors (any #) at the x,y coordinates within the 3 possible areas for optimal detectability of faults

- 1.Define health states within the system
- 2.Sensor data acquisition collect simulation training data for sensors
- 1.Perform health classification
 - We use k-means distance clustering
- 2.Determine detectability measure
- 3.Perform optimization for sensor placement/design:
 - Mixed integer nonlinear programming
 - Reliability-based co-design optimization (RBDO)
 - Genetic algorithm to search for optimal design

$$PoD = \begin{bmatrix} P_{11} & P_{12} & \cdots & P_{1N_{HS}} \\ P_{21} & P_{22} & \cdots & P_{2N_{HS}} \\ \vdots & \vdots & \ddots & \vdots \\ P_{N_{HS}1} & P_{N_{HS}2} & \cdots & P_{N_{HS}N_{HS}} \end{bmatrix} D_i = Pr(Detected as HS_i||opereted as HS_i) P_{ij} = Pr(Detected as HS_i|)$$

"A probabilistic detectability-based sensor network design method for system health monitoring and prognostics" – Wang et al 2015, Journal of Intelligent Material Systems

ΡΥΟΥΕΥΤΥS

Genetic algorithm for selecting the best sensor placements for detecting inter-turn winding fault

Genetic Algorithm Flow-Chart

ΡΙΟΙΕΙΤΙS

Evaluating Fault Type from Genetic Algorithm

ΡΙΟΙΕΙΤΙS

Optimal sensor location for evaluating faults

- 1. Because the intensity of the magnetic field at airgap than outside, so we prefer more sensors in the airgap.
- 2. Because the intensity of the inner air magnetic field is weak, so we do not need sensor inside of the motor
- 3. We recommend evenly distributed within air gap.

Location: Prof. Kiruba Lab, UIUC

Ρ/Ο/Ε/Τ/S

Prof. Wang

Prof. Kiruba

Prof. Senesky

Student researchers:

Yanwen Xu, Junhan Zhao, Xiaolong Zhang, Sara Kohtz (UIUC) Anand Lalwani, Abel John (Stanford)

Industrial POC's: Timothy Krantz (NASA), Tim Deppen (PC Krause & Associates)