

P / O / E / T / S

CENTER FOR POWER OPTIMIZATION OF ELECTRO-THERMAL SYSTEMS

Virtual Testbed for Fast Charging Battery Systems

Students: Katherine Jiang (Stanford University), Sagar Singh (UIUC), Yashraj Gurumukhi (UIUC)

PIs: Prof. Ken Goodson (Stanford University), Prof. Mehdi Asheghi (Stanford University), Prof. Nenad Miljkovic (UIUC), Prof. Andrew G. Alleyne (University of Minnesota)

- 1. Modelling Environment
- 2. Virtual Testbed System Blocks
- 3. System Level Battery Thermal Management Model
- 4. Battery Fast Charging with Active Cooling
- 5. Battery Preconditioning
- 6. Battery Discharge during Drive Cycle
- 7. Results Summary:
 - i) Battery Charging,
 - ii) Preconditioning
 - iii) Discharging

POETS Collaborators

stanford Heat

Goodson group

Miljkovic group

UNIVERSITY OF MINNESOTA Driven to Discover^{sed}

Alleyne group

Katherine Jiang

Yashraj Gurumukhi

Sagar Singh

BRUNSWICK

IAB advisor: Brennan Kelly

Problem Statement

- Develop a system level analysis tool with reconfigurable components
- Application of the framework for evaluation of fast charging and battery thermal management strategies

Relevance to Industry

- Modelling framework provides a Virtual Testbed for simulation and analysis of EV thermal management system as well as impact of POETS and non-POETS developed technologies
- Framework can be extended to other electro-thermal applications (aircraft/naval)

MATLAB:

An environment built with matrix and arrays expressed mathematically

Simulink:

Environment inside MATLAB built for system design and simulation

Simscape:

Library inside Simulink with built-in physical components in various domains

Transient Modelling

Ρ/Ο/Ε/Τ/S

System Blocks – Example: Radiator

ΡΙΟΙΕΙΤΙS

The Back End - Governing Equations

$$R = \frac{1}{U_{\text{TL}}A_{\text{Th},\text{TL}}} + \frac{F_{\text{TL}}}{A_{\text{Th},\text{TL}}} + R_{\text{W}} + \frac{F_{\text{MA}}}{A_{\text{Th},\text{MA}}} + \frac{1}{U_{\text{MA}}A_{\text{Th},\text{MA}}}$$

$$\label{eq:eq:exp} \epsilon = \frac{1 - \exp[-NTU(1+C_{\rm R})]}{1+C_{\rm R}} \qquad \textit{(Parallel flow)}$$

Heat Transfer Coefficients

$$U = \frac{\text{Nu}k}{D_{\text{H}}} \qquad \text{Nu} = \frac{\frac{f_D}{8}(\text{Re} - 1000)\text{Pr}}{1 + 12.7\sqrt{\frac{f}{8}}(\text{Pr}^{2/3} - 1)}$$
(Turbulent flow inside tube)

$$Nu = \begin{cases} 0.404Lq^{1/3} \left(\frac{\text{Re} + 1}{\text{Re} + 1000}\right)^{0.1}, & Inline \\ 0.404Lq^{1/3}, & Staggered \\ (Flow across tube bank) \end{cases}$$

Fig: Different cross flow configurations

Conservation Equations

$$\frac{dM_{\rm TL}}{dt} = \dot{m}_{\rm A1} + \dot{m}_{\rm B1} \qquad \frac{dM_{\rm MA}}{dt} = \dot{m}_{\rm A2} + \dot{m}_{\rm B2} - \dot{m}_{\rm Cond}$$
$$M_{TL}\frac{du_{TL}}{dt} + u_{TL}(\dot{m}_{A1} + \dot{m}_{B1}) = \phi_{\rm A1} + \phi_{\rm B1} - Q,$$
$$M_{MA}\frac{du_{MA}}{dt} + u_{MA}(\dot{m}_{A2} + \dot{m}_{B2} - \dot{m}_{Cond}) = \phi_{\rm A2} + \phi_{\rm B2} + Q - \phi_{\rm Cond}$$

Pressure Loss

$$p_{\rm A1} - p_{\rm I1} = \frac{f_{\rm D,A} \dot{m}_{\rm A1} |\dot{m}_{\rm A1}|}{2\rho D_{\rm H} A_{\rm CS}^2} \left(\frac{L + L_{\rm Add}}{2}\right)$$
 (Flow inside tube)

 $p_{\rm A2} - p_{\rm I2} = \frac{1}{2} \frac{\mu^2 N_{\rm R}}{\rho D^2} {\rm Hg}({\rm Re})$ (Flow across tube bank)

And so on for condensation, empirical formulation...

ΡΙΟΙΕΙΤΙΣ

Models heat exchange between a moist air network and a thermal liquid network - MATLAB (mathworks.com)

System Blocks Examples

Cell Model and Charging Protocol

Cell Parameters and Data [1]

- Cell Capacity 28 Ah
- Type Li-ion NMC
- •

Battery Configuration

- Configuration 80s10p (4 packs of 20s10p each connected in series)
- Battery Energy ~ 82.9 kWh

Charging Protocol

O / **E** / **T** / **S**

 Constant Current Constant Constant Voltage (CC-CV)

Fig 1. Simplified equivalent circuit model of an electrochemical cell [1].

Fig 2: Charging Protocol - Constant Current Constant Voltage (**CC-CV**) [2].

[1] T. Huria, M. Ceraolo, J. Gazzarri, R. Jackey. "*High Fidelity Electrical Model with Thermal Dependence for Characterization and Simulation of High-Power Lithium Battery Cells*," IEEE International Electric Vehicle Conference, March 2012.
 [2] Tomaszewska, Anna, et al. "*Lithium-ion battery fast charging: A review*." *ETransportation* 1 (2019): 100011.

Passive cooling using radiator during low load

Consumes pump (and fan) power

Active cooling using chiller/refrigerant system during fast charging and high load

High energy consumption by compressor

ΡΙΟΙΕΙΤΙS

Fast Charging with Active Cooling – Parameters

Simulated Charging Currents and C-rates

- 0.1C; 2.8*10 A = 28 A ~ 8 kW
- 0.25C; 7*10 A = 70 A ~ 21 kW
- 0.5C; 14*10 A = 140 A ~ 41 kW
- 1C; 28*10 A = 280 A ~ 83 kW
- 2C; 56*10 A = 560 A ~ 166 kW
- 3C; 84*10 A = 840 A ~ 249 kW

Parameters of Study:

- Charging Time
- Charging Energy
- Thermal Management System (Compressor + Pump) Power and Energy Consumption
- Battery Precooling Temperatures
- Max Cell Temperature During Charging
- Total Energy Consumption and Monetary Cost

Drive Cycle (for discharge)

• US 06 repeated 6 times (total 1 hour duration)

Source: https://www.epa.gov/vehicle-and-fuelemissions-testing/dynamometer-drive-schedules

Fixed Simulation Parameters:

- Ambient: 30°C, relative humidity: 50%
- Battery Initial Temp = Ambient = 30°C (except for precooled battery)
- Battery desired temperature set point: 30°C
- Pump: 1000 RPM (Constant)
- Condenser fan air flow rate: 2 m³/sec (Constant)
- Compressor refrigerant flow rate: PID Controlled

All simulations are done from 10% to 98% SOC but results are reported for 10% to 85% SOC to make it relevant for Fast Charging. After 80-85% SOC, charging rates decrease significantly.

ΡΙΟΙΕΙΤΙS

Battery Active Cooling – 0.5C Charging

Max Cell Temp = **30.7°C**

Avg. Cell Temp = 30.2°C

```
Charging Time = 89 min
```

```
Compressor + Pump
Energy = 0.45 kWh
```

```
Charging Energy = 64 kWh
```

Total Energy: = 64.45 kWh

P / **O** / **E** / **T** / **S**

Battery Active Cooling – 2C Charging

ΡΙΟΙΕΙΤΙΣ

At high C-rates, cooling falls short leading to high battery max temperature during charging

Summer Precooling the battery from 30°C to 20°C prior to charging

Precooling Energy (Comp. + Pump) = 1 kWh

Time for Precooling = 714 s

Winter Preheating the battery from 0°C to 10°C prior to charging

Preheating Energy (Comp. + Pump) = 1.04 kWh

Time for Preheating = 548 s

Battery Discharge (US 06 Drive Cycle)

Compressor + Pump Energy = **0.15 kWh**

ΡΙΟΙΕΙΤΙΣ

15/18

Battery Discharge (US 06 Drive Cycle)

All	values for cha	rging from 10% to	85% SOC	Includes heat losses	Cor spent	mp. + Pump Ene on precooling b	ergy attery			
	C-Rate	Avg, <i>(Max)</i> Cell Temperature Reached	Comp. + Pump Energy	Charging Energ	9Y	Battery Precooling Energy	Total energy (Comp.+Pump + Charging + Precooling)	Extra Energy (wrt 0.1 C)	*Annual Extra \$\$ (@ 0.25\$/kWh , 71 cycles)	Charging Time, (Precooling time)
(°C)			()	kWh)			%, (kWh)	\$	(min)	
	0.1	30.0, (30.1)	0.30	62.50		-	62.80	-	-	442.9
	0.25	30.0, (30.2)	0.19	63.23		-	63.42	1.0%, (0.62)	11\$	177.2
	0.5	30.2, (30.7)	0.45	64.43		-	64.88	3.3%, (2.08)	37\$	88.6
	1	31.0, (32.8)	2.43	66.63		-	69.16	10.1%, (6.36)	113\$	46.8
	2	47.4, (59.0)	3.29	69.19		-	72.48	15.4%, (9.68)	172\$	33.2
	2 (precooled bat. to 25C)	44.0, (56.3)	3.14	69.20		0.56	72.9	16.1%, <i>(10.10)</i>	179\$	33.3 (7.1)
	2 (precooled bat. to 20C)	39.5, (53.5)	3.00	69.20		0.99	73.19	16.5%, (10.39)	184\$	33.3 (11.9)
Very high Max Cell Temp. at – Cooling power not enoug		at 2C Cl ugh with	Charging Energy increases with increasing C-rates due to higher heat losses		Precooling requires initial energy but leads to slightly lesser comp. power during operation				Charging time decreases with higher C-Rates	

with precooled battery

Battery Initial Temp = Ambient = 30°C (Except for Precooled Battery)

*Avg miles driven per year by an American: 12724 [3] Avg EV Energy consumption for 1 mile: **0.346 kWh** [4] Avg kWh consumption per year: 12724*0.346 = 4402.5 kWh Avg Charge Cycles: 4402.5 / ((.85-.1)*82.9)) ~ **71 cycles**

ΡΙΟΙΕΙΤΙS

[3] Average Miles Driven Per Year: Why It Is Important - Kelley Blue Book (kbb.com) [4] Average Electric Car kWh Per Mile [Results From 231 EVs] (ecocostsavings.com)

NSF

Preheating: Winter Charging

Ambient Temp.	Preheating Temp.	Comp. + Pump Energy	Preheating Time	Annual Preheating Cost (@ 0.25\$/kWh, 71 DCFC cycles)
(°C)	(°C)	(kWh)	(min)	\$ (USD)
0	5	1.04	9.1	18
0	15	1.90	15.6	34

Drive Cycle – US06 repeated 6 times (total time = 1 hour)

Desired Battery Setpoint	Avg. Cell Temperature	Comp. + Pump Energy	Extra Energy (wrt 35C)	*Annual Extra \$\$ (@ 0.25\$/kWh , 265 drive cycles)
(°C)	(°C)	(kWh)	(kWh)	\$ (USD)
35	33.9	0.15	-	-
30	30.2	0.26	0.11	7
25	25.5	0.92	0.77	51
20	21.3	1.42	1.27	84

Fig: Capacity fade of a NMC/Gr. cell at different average temperatures

(K. Smith; Y. Shi; E. Wood, A. Pesaran. Advanced Automotive Battery Conference (AABC), Detroit Michigan, June, 14e17, 2016)

For \$84 extra in cooling energy, lifespan of battery can potentially increase by 3 to 5 years!

P / **O** / **E** / **T** / **S**

- Continue developing, tuning and validating thermal and electrical Virtual Testbed components.
- Develop more detailed battery models with more emphasis on temperature effects (internal gradients), cell degradation and ageing.
- Continue evaluating various battery management strategies for optimizing short term and long-term battery performance and life.

Thank You! Questions?

Ρ/Ο/Ε/Τ/S

Battery Active Cooling – 0.5C Charging

Battery Active Cooling – 2C Charging

At high C-rates, Cooling Power falls short leading to high battery max temperature during charging

Max & Avg Cell Temp: = 59.0°C & 45.7°C Charging Time : 1992s = 33.2 min Compressor + Pump Energy : = 3.29 kWh Charging Energy: = 69.19 kWh Total Energy (Charging + Comp. + Pump): = 72.48 kWh

ΡΙΟΙΕΙΤΙΣ

Desired Battery Setpoint Temperature : 35°C

Avg Cell Temp: 33.9°C Compressor + Pump Energy : 0.15 kWh

ΡΙΟΙΕΙΤΙΣ

Avg 33.9

2000 2500

Time (s)

1500

Chiller Cooling

23/18

4000

Pack 1

Pack 2

Pack 3

Pack 4

3500

3000

Chiller Cooling

Heat Generated by Battery Packs