The Electrified Mobility Innovation Engine – an Innovation Ecosystem for the U.S. Mobility Industry

Giorgio Rizzoni The Ford Motor Company Chair in Electromechanical Systems The Ohio State University presented at NAE Spring 2023 Regional Meeting, UIUC, April 4, 2023

Center for Automotive Research

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

Our Mission

To provide world-class **education** for the next generation of automotive industry leaders, through on-campus learning and continuous professional development;

To serve as a catalyst for **innovation** in automotive technology through collaborative, interdisciplinary research;

To support **economic development**, regionally and nationally.

\$18M/year in research expenditures Supporting >100 graduate students, >300 undergraduate students.

Research Areas of Expertise

Methods of Engagement

Continuing Education

2022 Federal and Industry Research Partners

Over \$5.5M in new awards 90 active projects Engaging 89 different investigators

A little history

Electric cars are not a new idea

THE FIRST TWO ELECTRIC VEHICLES

THE OHIO STATE UNIVERSITY

France, 1881: M. Gustave Trouvé's tricycle

Ernest H. Wakefield, History of the Electric Automobile, SAE International, 1994, ISBN 1-56091-299-5

England, 1882: Ayrton and Perry's electric tricycle

FIRST COMMERCIAL PRODUCTS

Morris and Salom's Electrobats, 1897: Maximum speed of 20 mph Energy carried approximately 5 kWh

Ernest H. Wakefield, History of the Electric Automobile, SAE International, 1994, ISBN 1-56091-299-5

New York City Electric Taxis, 1896: fleet of 13 operating in Manhattan, by the Electric Carriage & Wagon Company of Philadelphia

TWO LONG LIVED ELECTRIC VEHICLE COMPANIES

Baker Electric Company: Baker 1910 Phaeton

Detroit Electric Company: 1908 Standard Electrique

1912 class electric vehicle

Ernest H. Wakefield, History of the Electric Automobile, SAE International, 1994, ISBN 1-56091-299-5

SOME COLUMBUS HISTORY

THE OHIO STATE UNIVERSITY

CENTER FOR AUTOMOTIVE RESEARCH

The Special Features and Refinements OF THE 1912

CLUMBUS ELECTRIC

"The Car Supreme"

Cannot possibly be enumerated fully in this space. Some of the more important ones are as follows:

Large, roomy body. Luxurious trimmings and deep comfortable cushions. Two dome lights operated by opening and closing right hand door. Automatic electric heater. Handsome cut flower vase. Reliable clock. Neat, serviceable toilet case. Adjustable mirror, enabling driver to see traffic approaching from the rear. Stationary front seat, semi-divided pattern. Perfect spring suspension. "I' beam front axle, with ball-bearing steering knuckles. Wheel base 92 inches with 56 inch track. Tires 34 x 4 inches, "nobby tread" on rear wheels.

Write for Catalog 61-E

The Columbus Buggy Company 12 561 Dublin Avenue, Columbus, Ohio

Some thoughts on energy

UNITED STATES' ENERGY USE IN 2011

Lawrence Livermore National Laboratory Estimated U.S. Energy Use in 2011: ~97.3 Quads Net Electricity Imports 0.127 0.0175 Solar 0.158 8.26 12.6 Electricity 26.6 Nuclear Generation 8.26 39.2 Rejected 3.15 18.0 Energy 55.6 Hydro 3.17 2.29 4.86 1.17 Wind Residential 1.17 0.163 0.140 11.4 0.0396 Geothermal 1.14 0.430 0.226 4.83 1.72 0.0197 4.50 Natural Commercial Gas 24.9 8.59 Energy 3.23 0.683 Services 41.7 0.0179 0.0512 4.72 3.33 0.110 Coal 19.7 Industrial 23.6 8.06 1.610.444 20.3 Biomass 4.41 0.0260 1.15 0.288 0.73 Transportation 25.1 27.0 Petroleum 35.3 6.76

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

Source: LLNL 2012. Data is based on DOE/EIA-0384(2011), October, 2012. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports flows for non-thermal resources (i.e., hydro, wind and solar) in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of elergicity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 80% for the residential, commercial and industrial sectors, and as 25% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527

10 YEARS LATER... UNITED STATES' ENERGY USE IN 2021

Lawrence Livermore National Laboratory Estimated U.S. Energy Consumption in 2021: 97.3 Quads Net Electricity 0.05 Imports Solar 1.0 1.5 12.9 8.13 Electricity Nuclear Generation 8.13 23.7 36.6 2.27 Hydro 2.28 Rejected 4.08 0.33 Energy Residential 3.32 0.04 11.7 Wind 65.4 4.82 3.33 0.46 0.97 7.5 Geothermal 0.206 4.52 3.18 0.02 0.14 Commercial 9.07 11.6 3.38 0.15 5.9 0.84 /0.02 Natural Gas 3.3 0.04 10.4 13.2 Industrial 26 Energy 1.04 2.31 Services 9.47 8.76 31.8 Coal 10.5 0.02 1.1 0.44 Biomass Transportation 21.2 4.83 1.48 24.3 26.9 0.2 5.65 Petroleum 35.1

THE OHIO STATE UNIVERSITY

CENTER FOR AUTOMOTIVE RESEARCH

The Ohio State University

CENTER FOR AUTOMOTIVE RESEARCH

Source: LIME March, 2022. Data is based on DOX/EIA MEE (2021). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore Mational Laboratory and the Department of Renergy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include salf-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant heat rate. The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential sector, 65% for the commercial sector, 21% for the transportation sector and 45% for the industrial sector, which was updated in 2017 to reflect DOE's analysis of manufacturing. Totals may not equal num of components due to independent rounding. LLML-RT-410527

HORSE AND CARRIAGE?

Powered by sustainable biofuels, net zero carbon (well, almost...)

Tailpipe emissions are not quite zero!

EMIE: Where We've Been Where We're Going

Core Team Workshop

March 14, 2023

The Context

EV adoption needs to explode to meet climate goals...

Scenario aligned with a +1.5°C warming with little or no overshoot. BEV share reaches 65% of annual sales by 2040.

2022 – 2040 Powertrain Outlook, KGP Powertrain Intelligence, Derby, UK (2022).

...but a number of critical barriers stand in the way

- Customer acceptance based on cost and range
- Model availability
- Fueling and energy
- Resource/material availability
- Workforce alignment

2022 – 2040 Powertrain Outlook, KGP Powertrain Intelligence, Derby, UK (2022).

The I-75 corridor is the heart of the US mobility sector

Planned battery plant capacity by 2030 (GWh/yr) overlaid by EV assembly locations (dots).

Over 500,000 automotive manufacturing jobs in the five-state region

More than 4,000 firms tied to legacy component and system production

5

Accelerating the transition to Electrified Mobility through technology, manufacturing, and workforce

What EMIE is:

- Independent, non-profit network linking business, academia, government
- Intellectual property holding subsidiary
- Allied venture studio model fund

What EMIE will do:

- Deploy public and private funds to pull forward use-inspired R&D
- Fund education and training programs for workforce development
- Streamline paths into the marketplace for knowledge, products and processes
- Create new businesses

EMIE focuses on **transformative technologies** in the on-board component-to-system design and optimization for integration into vehicle- and grid-level systems...

innovation infrastructure needed to get this tech into use

EMIE will stand as a nonprofit industry/government/academic partnership network.

The emerging EMIE partnership network

		Nerespace	Masters Universities
		Boeing	Morehead State University
		Raytheon Technologies	Murray State University
		Batteries	R1 Universities - State Leads
		LG Energy Solution	Michigan State University
		XS Power Batteries	Ohio State University
		Commercial Vehicles	Purdue University
		Allison Transmission	University of Kentucky
		Cummins	University of Tennessee
		Kenworth	Knaxville
		PACCAR	R1 Universities
		Workhorse	Tennessee State University
		Energy & Infrastructure	University of Louisville
		LG&E and KU	University of Memphis
N 1		RevCharger	University of Michigan
		Louistics	University of Notre Dame
COMMUNITY &	INNOVATION SECTOR	FedEx	Vanderbilt University
TECHNICAL COLLEGE	Bluegrass Angels	Materials	R2 Universities
Bluegrass	BRITE Energy Innovators	Nexxeris	University of Akron
Columbus State Community	Innovation fund America	ProviderMet	University of Toledo
College	Kentucky Science and	Sofire Technology Group Inc.	R3 Universities
lvy lech	Technology Corporation	Possenger Vehicle OEM	Northern Kentucky University
Kentucky Community & Technical Callene System	LaunchBlue	Fami	Western Kentucky University
Lomin County Community	Ohio Innovation fund	General Mators (GM)	(WKU)
College	Porter Wright	Beada	STATE INITIATIVE / AGENCY
Macomb Community College	Revi	Hundei	Clean Fuels East Tennessee
Motiow State Community	FERDC	Valkoannan	DriveOhio
College	Air Ferra Research Laboratory	Consilier	Indiana Department of
Sincloir	(AFRL)	Rom Warnar	Transportation
TRADE /	NASA Glenn Research Center	Dong Warnis	Jobs Ohio
PROFESSIONAL SOCIETY	National Institute of Standards	Esten	LEAP (Lansing Economic Area
Institute of Electrical and	and Technology (MIST)	Castherm	Partnership)
Electronics Engineers (IEEE)	National Renewable Energy	Robert Basch	Michigan Economic
Ohio Manufacturers Association	Laboratory (NREL)	Scheaffler	Development Corporation
SME	Oak Ridge National Laboratory	Stenesidea	and Community Development
Sociley of Automotive		70	
Engineers (SAE)		4	1
1			

PURDUE UNIVERSITY

- Community and Technical College
- Trade/Professional Societies
- Innovation Sector
- FFRDC
- Industry
- University
- State Initiative/Agency

Inclusive, shared regional governance balanced with lean operations

NSF Engines is the first opportunity to start building a regional resource

- Up to \$160M/10 yrs
- The charge: use innovation to drive inclusive economic development

Use-inspired research and development

Translation of innovation results to society

Workforce development to grow and sustain regional innovation

CONTACT car.osu.edu

Giorgio Rizzoni Director, Center for Automotive Research rizzoni.1@osu.edu

