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Abstract

The promise of electrified aircraft aims to revolutionize the transportation industry as a more

sustainable and capable mode of modern travel. However, the current power and energy

density of these systems is lacking, resulting in aircraft with significantly limited range in

comparison to their traditional fuel-powered counterparts. This limitation is partially an

artifact of the complex aircraft energy systems that are comprised of multi-domain and

multi-timescale dynamics with strict operational limitations. Additionally, accounting for

such constraints and complex dynamic interactions can be challenging when also considering

the wide range of potential applications for electrified aircraft.

To address these challenges and improve power and energy density, one approach is more

intelligent system operation; make optimized control decisions that more effectively manage

and utilize onboard energy resources. This dissertation proposes a multi-timescale hier-

archical model predictive control approach for the operation of the multi-domain aircraft

energy systems that inherently accounts for system coupling and operational constraints in

the control decision-making process. A key element of the control design is the creation and

integration of an optimization-oriented graph-based modeling framework, designed specifi-

cally for conservation systems. This graph modeling framework facilitates computationally

efficient control design by decomposing the optimal control problem into a hierarchy of co-

ordinated sub-problems. The hierarchical control approach is experimentally validated on

an experimental testbed that represents an aircraft integrated power, propulsion, and ther-

mal management system. In comparison to a conventional control approach, the hierarchical

controller demonstrated advancements in performance and efficiency metrics with significant

improvements in operational reliability. While this demonstration established that control

alone can improve a system’s performance, it is also necessary to consider the additional
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flexibility and effectiveness gained from plant design.

Combined plant and control design (co-design) offers an approach to optimal system-level

aircraft design by considering architecture, sizing, and control design disciplines. Together,

these design methodologies comprise the components/technologies integrated into the air-

craft design, the connections between those components to build the system, and their

operation. This dissertation focuses on integrating feedback control design within archi-

tecture and sizing optimization processes. The design methods leverage the graph-based

modeling approach to efficiently encode the plant dynamics into the optimization routine.

Modular graph models play a key role in the architecture optimization process because they

enable the evaluation of a variety of system topologies. A scalable combined plant sizing

and feedback control optimization is applied to a hybrid UAV design, demonstrating sig-

nificant improvements in closed-loop system performance in contrast to other conventional

design strategies. Additionally, a novel and efficient, relaxed approach to the architecture

optimization problem was used to create mission-specific plant and feedback control designs

for a thermal management system. The result identified a system topology that is opti-

mized for a range of operating requirements. Notably, the proposed approach could identify

near optimal system designs an order of magnitude faster than traditional exhaustive search

approaches.
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Chapter 1

Introduction

1.1 Electrified Mobility

In response to a zero-emission regulation for production vehicles in California, General Mo-

tors released the EV1 as one of the first commercially available all electric cars in 1996.

Equipped with an all electric powertrain, the EV1 had zero emissions and a fast, at the

time, 8.4s 0-60mph time that was touted by celebrities on live TV [1]. However, battery

technology was nascent and early models had a limited 50 miles of range per charge. In the

early 2000s, the emissions regulations were repealed and the EV1 production was eventually

stopped. General Motors decision to end the program was motivated by a lack of public

interest and profitability, citing that modern battery technology could not meet consumers’

demands for more range [2].

About 5 years after the introduction of the original EV1, the Toyota Prius was released

with an estimated fuel economy that approximately doubled the fuel economy of many

similar compact cars released that year, thus garnering attention for those looking to save

money. The high fuel economy is attributed to the Prius’ hybrid powertrain design that

leveraged both a battery and internal combustion engine, allowing the vehicle to operate

efficiently over a range of operating speeds. Then in 2008, the Tesla Roadster was released,

a production all-electric sports vehicle with a recorded 3.7s 0-60mph time that outpaced the

Ferrari F430’s recorded 3.9s time. The Roadster showed significant improvements over the

EV1, demonstrating that electrified vehicles have both a positive environmental impact and

high-end performance. Again in 2012, Tesla was revitalized through the production of its

luxury sedan, the Model S; a daily driver with a 4.6s 0-60mph time and over 200 estimated

miles of range. Since 2012, the all electric vehicle market has continued to grow (Figure
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Figure 1.1: The increasing sales trend of hybrid electric, plug-in hybrid electric, and all
electric cars sales in the United States [3].

1.1) as a result from advancements in power system technology such as more energy dense

batteries yielding over 400 miles of range. In 2002, electric vehicles were not profitable, but

now, in 2023, an electric car company is one of the highest valued companies in the United

States. Although this anecdote neglects to mention years of foundational research and other

landmark developments in all electric and hybrid powertrains, it highlights how persistent

advancements resulted in widespread adoption of a once impractical technology.

While engineers at GM were designing the EV1, their counterparts in the aviation sector

were focused on developing the concept of the More Electric Aircraft (MEA) [4]. The

concepts were similar; leverage evolving advancements in electrical power systems to replace

traditionally power intensive and inefficient pneumatic and hydraulic systems with their

efficient and power dense electronic analogs. Note that these aircraft are only more electric,

meaning that they still utilize traditional fuel-powered engines for propulsion. The key design

advancement is the replacement of the traditionally non-electric subsystems with electrical

ones. Similar to the EV1, the MEA concept was motivated by a beneficial environmental

impact, but there was also additional expectation of increased performance and reliability

and decreased operating and maintenance costs. The hybridization of aircraft was going to
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be a necessary step in the evolution towards the all electric aircraft.

But it was not until the early 2010s where the MEA transitioned from concept to reality

with the release of the Boeing 787 and Airbus A350. As proposed in the 1990s, these

aircraft replaced traditional power demanding pneumatic systems with more power dense

1MW electrical systems. Although the propulsion system remained entirely fuel powered,

hybridizing the power system resulted in significant improvements in fuel economy, decreased

maintenance costs, and greater cruise speeds. All of these aspects demonstrated increased

profitability with positive environmental impact.

In the early 1990s, into the 2000s, and even into the 2020s, batteries are often cited as

one of the key technological bottlenecks for electric vehicles because a lack of energy density

severely limits range. With the current state of battery technology, it is estimated that all

electric aircraft may have at most a few hundred miles of range [5]. Although limited, the

range offers a promising business case for the aviation sector.

Short-haul flights (<1000mi) currently comprise an estimated 30% of the CO2 emissions

in the commercial aviation space (Figure 1.2). Therefore, government and industries leaders

have identified short-haul and regional flights to be an environmentally beneficial and prof-

itable market in which to develop and mature electric aviation technologies. This is precisely

the business case for Heart Aerospace, who plans to deliver 200 all electric aircraft with an

estimated 250 mile (400 km) range for short regional flights [6].

In addition to short range commercial flights, there is also interest in the design of urban

air mobility (UAM) vehicles. Often referred to as air taxis, UAM vehicles are designed

as autonomous or piloted all electric vertical take-off and landing (eVTOL) aircraft with

the purpose to transport people and/or cargo through urban environments with a range

spanning from 10s to 100s of miles [8]. A key capability enabled by electric power systems is

the ability for quiet flight at low altitudes. This contrasts commonly noisy helicopters that

are should cruise at altitudes over 600-1200 m to not perturb civilians [9].

Unmanned aerial vehicles (UAVs) are also being electrified. Advancements in electronic

power systems and the removal of the pilot and life support systems enable a diverse new

frontier of applications that include surveying, disaster relief, film and imaging, agriculture,

package delivery, and more [10]. Some of these applications utilize novel high power electronic
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Figure 1.2: Trend of CO2 emissions for short, medium, and long-haul commercial flights.
Approximately 30% of total emissions are generated by short and medium distance flights
each. This figure is from [7].

sensors or payloads (e.g. professional camera equipment) that require onboard electric power

systems, thus demanding some degree of electrification in the aircraft design.

The design and manufacture of all electric and hybrid aircraft has been motivated by

increased efficiency, novel capabilities, improved maintainability, and decreased operating

costs. However, vehicle range limits widespread adoption of electric aircraft. One approach

to address this challenge is to adopt a mission-specific design framework, wherein the vehicle

design is tailored to its application. For example, a close inspection of Figure 1.3 high-

lights a diverse set of aircraft designs from different companies with unique body shapes,

propulsion systems, etc. Although each vehicle serves the same general purpose to trans-

port people short distances through urban environments, each vehicle looks dramatically

different. Naturally, one may ask:

Which design is best?
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Figure 1.3: Urban air mobility vehicles from different manufacturers: (a) Airbus, (b) Beta,
(c) Lilium, (d) Joby Aviation, and (e) Wisk.

or

Could the design be improved if the vehicle transported cargo instead of people?

In summary, aircraft electrification has various societal benefits. A few key advantages

are:

• Sustainability: By leveraging efficient power systems and renewable energy sources,

electrified aircraft offer a promising approach to reduce fuel dependence.

• Capabilities: Electrified aircraft offer the advantage of quiet and autonomous opera-

tion, with a range of advanced high-power electrical sensors, which makes them well-

suited for a diverse set of applications.

• Power and energy density: Enhanced energy storage and utilization results in increased

aircraft range and greater support for high-power subsystem capabilities.

In particular, this dissertation will focus on developing technologies to improve the power

and energy density of electrified systems with a mission mission-specific design methodology

tailored for aircraft. However, the scale and complexity of aircraft and their design process

pose a variety of unique challenges.
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1.1.1 Challenges

A mission-specific design framework seeks to simplify and standardize the complex electrified

aircraft design decision-making process. One challenge to consider is mission variability

wherein single multirole aircraft are designed to complete multiple missions. While versatile,

integrating multiple operational capabilities into a single system design increases the vehicle

complexity and may result in decreased performance, efficiency, and reliability.

This dissertation chooses to focus on the complex interactions in the energy systems. No-

tably, the power systems onboard electrified aircraft have inherent efficiencies that manifest

themselves as internal heat generation. In response to the heat generation, the system tem-

perature changes, which in turn affects performance and efficiency. A common example of

this power and thermal system coupling is present in battery systems that operate more

efficiently at higher temperatures [11] but fail if they get too hot.

The thermal runaway failure mode highlights the strict operating constraints for electrified

systems. System reliability suffers if components get too hot, too cold, or operate outside

their intended operating regions. These types of failure modes are not acceptable, especially

for aircraft that must have less than 1 failure per million flights. Notably, in 2013, a fleet of

Boeing 787 Dreamliners were grounded as a result of battery fires caused by internal short

circuits [12].

In addition to being coupled and constrained, the energy domain dynamics are also multi-

timescale where some system states change quickly while others change slowly. To advance

the state of the art, it is necessary to account for the temporal disparity within the energy

systems [13]. However, it is difficult to systematically account for the timescale variation

within the design process.

1.2 State of the Art

Designing aircraft is a complex process, requiring engineers to balance a multitude of factors

in order to produce a vehicle that is both efficient and high-performing. From the airframe

design to the selection of materials and components, and the development of the control
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systems, every decision made during the design phase has a significant impact on the final

product. To aid in this complex process, optimization methods are utilized to systemati-

cally evaluate the impact of key design decisions on operational objectives and constraints.

Due to the multifaceted nature of this complex design problem, multi-disciplinary design

optimization (MDO) methods are commonly employed, enabling multiple design disciplines

to be considered within the same design problem. In particular, control co-design (or just

co-design) is a subset of MDO problems for dynamic system design wherein both the plant

and control design disciplines are investigated at the same time. This class of problems has

become increasingly relevant because it has been demonstrated that plant and control design

decisions are strongly coupled [14].

Figure 1.4 illustrates key steps in the system-level vehicle co-design process: topology

generation, topology optimization, sizing optimization, and control optimization [15]. The

topology problem involves generating and assessing potential system architectures, with the

aim of determining the configuration that best meets the design objective. Subsequently,

the sizing problem involves selecting the optimal set of components and parameters that will

be utilized to build the desired system topology. Together, architecture and sizing decisions

comprise the plant design process. To enable effective plant operation, a controller is designed

during the control optimization phase. In the co-design process, consideration is given to
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Figure 1.4: Illustration of the plant and control design optimization decisions that
comprise the co-design process. The different design disciplines are sized according to the
relative size of the design space. Modified from [15].
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Table 1.1: System-level energy system co-design studies.

References Topology Sizing
Closed-Loop

Control

Experimental

Validation

[16,17] ✓
[18, 19] ✓ ✓
[20–22] ✓ ✓
[23–32] ✓

[33] ✓ ✓
[34–40] ✓ ✓
[41–56] ✓
[13, 57] ✓ ✓

either open-loop co-design (OLCD), which identifies an optimal open-loop control action,

or closed-loop co-design (CLCD), which involves the development of an optimal closed-loop

controller. Notably, OLCD studies are primarily focused on the plant design process because

the application of open-loop control to physical systems is impractical when uncertainty is

present.

Traditionally, these design decisions are made sequentially, beginning with topology selec-

tion, followed by component selection, and concluding with controller design [15]. However,

this sequential approach often leads to suboptimal designs that would not meet the require-

ments of next-generation aircraft. Instead, it has been shown that an integrated approach,

involving simultaneous optimization of both plant and control design, leads to improved

system performance [14]. This approach represents the current trend in aircraft co-design.

Figure 1.4 is presented with Table 1.1, which highlights various design studies in the co-design

literature. A brief review of various topology, sizing, and control design studies follows.

The topology generation process involves constructing the overall system design space by

determining the types of systems that meet practical considerations. This can be achieved

through generative approaches [58, 59], wherein realizable designs are constructed based on

a set of rules, or exhaustive approaches [60–62], where all possible designs are built and then

rules are imposed to reduce the design space. While effective, both approaches require a

thorough understanding of how the design rules impact the resulting design space.
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After feasible topologies are generated, the topology, sizing, and control optimization pro-

cesses are applied. In [16], various thermal management system topologies were generated

and dynamically evaluated with open-loop control against a variety of thermal load profiles

to identify design configurations that maximized thermal endurance. Similarly, a tool for

systematic generation and evaluation of diverse thermal management system architectures

was introduced in [17]. Unlike the approach in [16], the tool does not generate optimal

designs. Instead, it utilizes dynamic simulation data to evaluate operational constraints,

effectively reducing the feasible topology design space. The result is a reduced set of dy-

namically feasible designs, which provides a more focused design space for the application of

sizing and control design techniques. An alternate graph-based approach for simultaneous

topology and sizing was demonstrated with an electric car in [18] wherein the design problem

considered the sizing and architecture decisions of the vehicle’s power and thermal system.

While [16–18] focused on generating and selecting novel system architecture designs, [19–22]

instead tailor their approach to designing a controller that can switch between topologies.

In [20, 21], they generate driving modes for a hybrid electric vehicle powertrain and use

an iterative optimization approach to select the best two driving modes that a controller

can switch between in real-time. Notably, the hybrid system is controlled by an equivalent

consumption minimization strategy controller. A similar investigation was conducted in [19]

where the authors also exhaustively considered motor size in the design problem. A con-

trollable and flexible thermal management system topology was proposed in [22], where two

control variables are selected to change between, and evaluate the performance of, differ-

ent system configurations. Another notable contribution, although not considering energy

system design, was in [63] where the authors introduced a tri-level approach to topology

generation and optimization, sizing, and open-loop control design. While many of these

studies consider system architecture, they neglect either system size or closed-loop control

design.

In the context of energy system co-design studies, trajectory optimization is a widely em-

ployed tool for developing an optimal plant size and open-loop control action that meets

power and thermal constraints. This need was illustrated in [23] wherein a candidate air-

craft could complete a minimum-time-to-climb problem 15% faster when considering ade-
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quate thermal management system design. In a subsequent study by Hendricks et al. [24],

the co-design of a turboelectric tiltwing aircraft was further investigated to include concur-

rent optimization of thermal and propulsion system sizing, wing shape, flight dynamics, and

trajectory. A similar investigation was conducted in [25] where the authors investigated per-

formance and design trade-offs between simultaneous and sequential design methodologies.

Renkert et al. designed an electric quadcopter and optimized its trajectory to navigate an ob-

stacle course in minimum time using validated component models [33]. Similar studies have

investigated the combined plant sizing and open-loop trajectory optimization, while consid-

ering battery and/or motor design, for high performance electric race cars [26, 27]. In [28],

the authors utilized a sizing optimization approach to design a hybrid electric aircraft that

incorporated a novel thermal management system. The results demonstrated that while the

system offered increased robustness to flight and environmental conditions, it came at the

cost of increased fuel consumption. To design robust vehicles, chance constrained co-design

methods have been developed [64] and applied to both aircraft [29] and truck [30] design.

Some other notable contributions for combined plant sizing and open-loop control design

include [31,32]. While previous studies have highlighted the advantage of generating design

insights through integrated plant and control design, none of them are physically realizable

as they neglect the closed-loop control design.

Physical systems are designed with closed-loop controllers to account for inherent uncer-

tainty resulting from environmental disturbances or system operation. Some approaches

integrate traditional proportional-integral-derivative (PID) control into the co-design pro-

cess. In [34], the authors present a graph-based approach for combined plant sizing and

feedback control optimization. They applied their method on a hybrid energy storage sys-

tem and two PI controllers, yielding improved reference tracking performance and decreased

system weight. In another study [35], a continuously variable transmission and a feedback

linearization PI controller were jointly designed, resulting in a more efficient and lightweight

system. In [36], a DC motor and its PID controller were designed, which was later ex-

tended in [37] to develop a robust design using a min-max co-design optimization approach.

In these approaches [34–37], the optimization process directly selects the feedback control

gains. However, some alternative methods have instead leveraged efficient control synthesis
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techniques such as LQR [65] or H∞ [38] within nested co-design processes. Other notable

contributions, not relating to energy system co-design, are included [66–71].

However, for complex energy systems, relatively simple tracking and regulatory controllers

are typically insufficient for mission level-coordination. Instead, optimization-based dynamic

programming (DP) or model predictive control (MPC) are commonly used. The key differ-

ence between the two approaches is that the DP optimization process is solved offline and

implemented online through lookup tables or heuristics [41] while the MPC optimization is

directly solved and implemented online [72]. Centralized MPC approaches for energy system

management have been designed [42–45], but suffer when applied to energy systems with

multiple timescales [13]. This limitation has been addressed through distributed [46–49] or

hierarchical [50–55] MPC strategies that redistribute the centralized optimization’s compu-

tational load amongst multiple controllers [73]. In one study [56], the authors proposed

a multi-horizon MPC that could coordinate multi-timescale dynamics within a centralized

MPC formulation. In [13,57], optimal controllers were experimentally validated on testbeds

representing vehicle energy management systems. Some studies have utilized DP [39] or

MPC [40,74] based controllers within a co-design process, but with the drawback of lengthy

optimization times.

1.3 Research Objectives

The literature review in Table 1.1 highlights that while several studies have focused on spe-

cific aspects of topology, sizing, and control design, there remains a research gap considering

the entire co-design problem. This dissertation aims to address this gap by proposing a

mission-specific design framework for aircraft energy systems that simultaneously optimizes

topology, sizing, and control to achieve better performance, efficiency, and reliability (Table

1.2).
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Table 1.2: A summary of this dissertation’s contributions.

References Topology Sizing
Closed-Loop

Control

Experimental

Validation

This Dissertation ✓ ✓ ✓ ✓
Chapter 3 ✓ ✓
Chapter 4 ✓ ✓
Chapter 5 ✓ ✓

1.3.1 Desired Capabilities

Electrified aircraft offer increased efficiency, novel capabilities, require less maintenance, and

have decreased operating costs. Conventional design approaches do not adequately account

for mission variability and the complex nature of multi-domain, constrained, and multi-

timescale behavior of aircraft energy systems. To advance the state of the art, it is necessary

to shift away from sequential design strategies and towards more advanced integrated co-

design approaches.

Therefore, this dissertation proposes a mission-specific approach to energy system design

that considers the following:

• Physics-based models: Manufacturing physical candidate system designs can be a time-

consuming and expensive process. Therefore, this approach should leverage experimen-

tally validated physics-based models that represent the behavior of physical systems.

This will allow new designs to be developed from subsystem models without prior data

on the overall system.

• Modularity and scalability: A mission-specific approach may consider the design of

multiple vehicle systems. Therefore, the proposed methods should be able to design

different systems of varying scale and complexity for a variety of applications.

• Simultaneous plant and control design: Sequentially designing the plant then con-

troller will lead to suboptimal system performance. Leveraging co-design methods

that account for coupling between the design disciplines will yield more effective sys-

tem designs.
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1.3.2 Dissertation Scope

The contributions of this dissertation are as follows:

1. A modular, scalable, optimization-oriented, and energy conservation-based modeling

framework that captures relevant dynamic interactions of aircraft energy systems.

2. The development and experimental validation of a hierarchical model predictive con-

troller for an aircraft integrated power, propulsion, and thermal management sys-

tem (IPPTS) that accounts for dynamic multi-domain and multi-timescale coupling

amongst subsystems to demonstrate improvements in closed-loop system performance,

efficiency, and reliability.

3. The development and demonstration of a generic and scalable sizing and closed-loop

control co-design approach. Application of the approach to a candidate hybrid UAV

design highlights improvements in design performance over alternative design strate-

gies.

4. A topology and closed-loop control co-design framework that relaxes the discrete topol-

ogy decisions to continuous decisions, which can be more efficiently evaluated using

gradient-based optimization techniques. The design methods are applied to develop

mission-specific thermal management system designs.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 introduces the graph-

based modeling approach. Derived from conservation laws, the graph-model modeling frame-

work captures multi-domain dynamic interactions present in energy systems. A reduced-

order modeling technique, linearization, and discretization methods are introduced. The

chapter concludes with an example showing how to interpret the graph-based models intro-

duced in the subsequent chapters.

Chapter 3 demonstrates the utility of hierarchical MPC for a UAV integrated power,

propulsion, and thermal management system. A hierarchical MPC is designed and ex-
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perimentally validated on a hardware-in-the-loop experimental testbed that represents an

unmanned air vehicle IPPTS. When compared to a baseline PI and logic-based control

approach, the hierarchical control demonstrated superior closed-loop system performance,

efficiency, and reliability.

Chapter 4 proposes a scalable approach for sizing and closed-loop control co-design. A

convergence study is introduced to evaluate the number of discretization nodes required

for accurate optimization results. The proposed co-design approach is compared against

alternative strategies by designing a hybrid UAV energy storage system, propulsion system,

and their respective feedback controllers. The proposed approach demonstrates improved

system performance while generating useful design insights.

Chapter 5 proposes a continuous formulation of the traditionally discrete topology and

closed-loop control co-design problem. The discrete design choices are relaxed so that the

topology space is instead represented by a convex set. To dynamically model the contin-

uum of system topologies, a superset system model is introduced that captures the dynamic

interactions of every feasible topology design. An architecture adaptive linear-quadratic reg-

ulator is introduced that recomputes an optimal feedback gain for the continuum of system

topologies. Application of the proposed methods to a mission-specific aircraft thermal man-

agement system design demonstrate optimal changes in system configurations for variable

energy and power mission requirements.

Chapter 6 summarizes the contributions of this dissertation and suggests directions for

future work.
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Chapter 2

Modeling

2.1 Background

Mathematical models are commonplace in various engineering disciplines because they allow

engineers to understand and evaluate the performance of their design in a low-cost computa-

tional environment instead of through expensive physical prototypes. As such, these models

serve as foundational elements that guide the engineering design process. Selecting a correct

model is a challenge itself given the wide breadth of models introduced in the engineering

literature. As an engineer, it is necessary to focus on the specific problem and select a model

that best suits the application. Modeling characteristics that are relevant to consider for the

co-design optimization research in this dissertation include:

• Energy domain agnostic - The ability for the model to capture complex dynamic in-

teractions across various energy domains and timescales.

• Optimization-oriented - The measure of a model’s computationally efficiency/cost and

compatibility with conventional optimization tools.

• Modularity - A model’s ability to be reused or repurposed for alternative applications.

• Scalability - A model’s ability to represent systems of variable size and complexity.

• Variable fidelity - The option to change the model’s accuracy to fit the computational

limits of the end application.

It is necessary that the models are energy domain agnostic because this dissertation inves-

tigates the design and control of coupled electrical, thermal, and mechanical dynamics that
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comprise vehicle energy management systems. Optimization methods, which systematically

evaluate many design points before converging to an optimal solution, are commonplace in

modern decision-making processes, so developing models that are both computationally effi-

cient and compatible with optimization tools is required. Such optimization-oriented models

facilitate a more thorough search of the design space and help return a design solution in less

time. The latter three characteristics are desirable to generalize a given modeling method

beyond a single design or use case. In particular, a modular modeling approach is required

to systematically change system architectures for the topology design process introduced

in Chapter 5. What follows is a brief review of common modeling tools and frameworks

published in the literature, and an evaluation of the modeling requirements.

Toolboxes/libraries are amongst the most common approaches to model energy systems.

They provide a user interface in which developers can visually connect components/blocks in

a variety of configurations to represent the dynamics of a wide class of systems. Modelica and

Simulink-based toolboxes are amongst the most common. Relevant dynamic system oriented

modeling toolboxes include Dymola (Dynamic Modeling Laboratory) and MapleSim, which

are built in Modelica, and Simscape and AttmoSphere [75], which are built in Simulink.

Similarly, GT-Suite and AMESIM are other notable general-purpose tools built outside

the Modelica and Simulink frameworks. Other notable Simulink toolbox contributions tai-

lored to specific applications include Thermosys [76], PowerFlow [77], T-MATS (Toolbox

for the Modeling and Analysis of Thermodynamic Systems), EMTAT (Electrical Modeling

and Thermal Analysis Toolbox), and Power Systems Analysis Toolbox (PSAT) [78]. Power-

flow is developed for analysis and control design of aircraft, Thermosys is tailored towards

vapor cycle system design and control, and PSAT focuses on the design and analysis of

power systems. Together, the NASA toolboxes EMTAT and T-MATS facilitate the analysis

and control design of dynamic electrical and thermal systems. Toolbox models are modular

and well parameterized for scalability, which is a key advantage of the toolbox approach.

The tip-to-tail system representation enables rapid model prototyping that provides a visual

means to comprehend and convey the flow of information within the models. However, model

dynamics and parameter sensitivities are often obscured from the user, making it difficult

to integrate such models into optimization processes. Although manually reconfigurable, it
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is also challenging to systematically evaluate the performance of various model topologies,

which is a core focus of this dissertation. In summary, Simulink toolboxes are a power-

ful prototyping and simulation tool, but have less utility in more advanced optimization

algorithms.

Another viable approach are bond graphs, which model the dynamics of physical sys-

tems using arrows of effort and flows. Bond graph modeling focuses on the development of

a causal model [79], and are often modular and scalable, but become increasingly complex

when modeling large scale systems [80]. Additionally, bond graphs lack conventional analysis

tools (e.g. model order reduction [81]) that facilitate design or control optimization. Finite

element tools (e.g. Ansys) may also be useful, particularly for design optimization applica-

tions. However, these tools sacrifice computational efficiency and modularity for accuracy,

yielding these models impractical for control design.

More recently, there has been some interest in the development of graph-based models for

conservation-based systems. In the context of energy system modeling, graph-based models

reduce the modeling challenge to a conservation of energy problem, where the modeler seeks

to understand how energy is both stored and transferred within a system. Whilst not a

panacea, graph models have various advantages. They are inherently modular and scalable

and have been used to represent a wide array of physical energy systems [34,53,54,57,82–84]

at varying degrees of fidelity [85, 86]. Most importantly, they are computationally efficient

[87], which facilitates their utilization in model-based optimization algorithms [13, 33, 34,

57]. However, there are some key limitations. First, the system must have conservation-

based dynamics, a restriction that limits the research application area. Even so, there

are some conservation-based systems that graph models have difficulty representing, such

as compressible flow systems. Also, some systems have very complex interactions or strong

coupling that may be challenging to represent as a graph model. An example of this challenge

was shown in [57] where a genset model was developed outside the graph-based modeling

framework.

Graph-based models meet the modeling requirements for this dissertation research because

a conservation-based modeling strategy is well suited to represent the dynamics of aircraft

energy systems. In some studies, graph-based models have been experimentally validated
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for this application [53, 57]. From previous plant and control design studies [13, 33, 34, 57],

it is evident that graph-based models are optimization oriented as well. In particular, this

dissertation intends to leverage graph-model modularity to systematically evaluate different

energy system topologies (Chapter 5); a capability that some other modeling techniques

lack.

The remainder of this chapter is organized as follows. Section 2.2 introduces the graph-

based modeling framework fundamentals and its extension to dynamic and algebraic systems.

An approach to model order reduction is introduced in Section 2.3. Section 2.4 describes

the model linearization and discretization process. This chapter will not introduce any

specific graph-based models used in the dissertation research, and instead those models will

be described in the chapter they are used. Therefore, Section 2.5 will provide an example

that describes how to interpret the graph-based models introduced in the following chapters.

Last, Section 2.6 will conclude this chapter and summarize its contributions.

2.2 Graph-Based Modeling Framework Fundamentals

A graph-based model represents conservation-based dynamics through an oriented graph of

vertices and oriented edges, as illustrated in Figure 2.1. In the context of energy systems,

graph-based models obey conservation of energy laws, where the graph vertices represent

energy storage devices and the edges represent energy transfer mechanisms. These energy

transfer mechanisms are often referred to as power flows. Note that power flow is bidirec-

tional and that the edge orientation defines the direction of positive power flow. In Figure

2.1, vertices and edges have solid or dashed lines. The linestyle distinguishes between inter-

nal system interactions (solid lines) and external system interactions/ disturbances (dashed

lines). The following notation is used to describe a graph model.

An oriented graph G = (V , E) consists of Nv vertices vi ∈ V : i ∈ [1 : Nv] and Ne oriented

edges ej ∈ E : j ∈ [1 : Ne]. The set of all vertices can be decomposed into subsets of internal

vertices V i and external vertices Ve such that V i ∪ Ve = V . Similarly, the set of all edges

can be decomposed into internal edges E i and external edges Ee such that E i ∪ Ee = E . The

number of internal vertices, external vertices, internal edges, and external edges are Nv,i,
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Figure 2.1: Notional graph model from [81].

Nv,e, Ne,i, and Ne,e, respectively, such that Nv,i + Nv,e = Nv and Ne,i + Ne,e = Ne. Each

oriented edge ej connects a tail vertex vtailj ∈ V tail
j to a head vertex vheadj ∈ Vhead

j . Similarly,

the set of edges entering and leaving the vertex vi is denoted by Ehead
i :=

{
ej : v

head
j = vi

}
and

E tail
i :=

{
ej : v

tail
j = vi

}
, respectively. In graph models, states x are associated with internal

vertices, and power flows P are associated with internal edges. External disturbances xe and

P e are associated with external vertices and edges, respectively.

The state dynamics of each vertex obey conservation of energy laws,

Ciẋi =
∑

{j:ej∈Ehead
i }

Pj −
∑

{j:ej∈Etail
i }

Pj, (2.1)

where Ci ≥ 0 is the capacitance of the vertex vi. An individual vertex capacitance Ci may

be a function fi of the vertex state xi and model parameters λi

Ci = fi (xi, λi) . (2.2)

Note that the state xi is a scalar, while the parameters λi may be a vector. An individual

power flow Pj is computed with a function fj of the adjacent vertex states (xtail
j and xhead

j ),

19



inputs uj, and model parameters λj

Pj = fj
(
xtail
j , xhead

j , uj, λj

)
. (2.3)

Note that here xtail
j and xhead

j are scalars because each edge can only have one tail and one

head vertex, while uj or λj may be vectors if multiple inputs or parameters affect the power

flow along that edge.

Combining (2.1)-(2.3), the complete graph model dynamics can be written in a state-

space-like form

C(x, λ)ẋ = −M̄P (x, xe, u, λ) +DP e (2.4)

where x ∈ RNv,i is the state vector, C ∈ RNv,i×Nv,i is a diagonal capacitance matrix of the

vertex capacitances, P ∈ RNe,i is a vector of all the edge power flows, M̄ is the upper internal

incidence matrix, and D is the external incidence matrix. Incidence matrices describe the

connectivity and structure of a graph model.

The internal incidence matrix M = [mij] ∈ RNv×Ne,i describes the internal structure of

the graph, where

mij =


1 if vi is the tail of ej,

−1 if vi is the head of ej,

0 else.

(2.5)

The internal incidence matrix can be partitioned as

M =

M̄
¯
M

with M̄ ∈ RNv,i×Ne,i , (2.6)

such that M̄ maps the power flows to affected states.

The external incidence matrix D = [dij] ∈ RNv,i×Ne,e describes how the external edges
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connect to internal vertices

dij =

1 if vi is the head of esj ,

0 else.
(2.7)

While this formulation was presented in the context of energy systems, these methods can

be applied to other conservation-based systems. An example is mass conservation systems

where the vertices represent mass storage (e.g. a tank or vessel) and the edges represent

mass transfer (e.g. tubes or pipes) [53].

2.2.1 Dynamic and Algebraic Vertices

Recall that any vertex has a capacitance value Ci ≥ 0. A vertex is a dynamic vertex when

Ci > 0. When Ci = 0, the vertex is called an algebraic vertex because (2.1) simplifies to an

algebraic equation relating the power inflow and outflow,

0 =
∑

{j:ej∈Ehead
i }

Pj −
∑

{j:ej∈Etail
i }

Pj. (2.8)

There is a change in notation at this point. Dynamics states are represented by the variable

x and algebraic states are represented by the variable a. They are illustrated by single and

double-edged vertices, as shown in Figure 2.1, respectively. A graph model may have Nd

and Na dynamic and algebraic vertices, respectively. Without loss of generality, (2.4) can

be rewritten as Cdẋ

0

 = −

M̄d

M̄a

P (x, a, xe, u, λ) +

Dd

Da

P e (2.9)

where Cd is a diagonal capacitance matrix of the dynamic vertices’ capacitance values and the

upper internal and external incidence matrices have been appropriately partitioned into M̄d,

M̄a, Dd, and Da to represent the internal and external structure of dynamic and algebraic

vertices.

Depending on the number of dynamic and algebraic vertices, the graph model (2.9) may

take on one of three different forms: differential algebraic equations (DAE), ordinary differ-
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ential equations (ODE), and system of algebraic equations (AE). The graph model is a DAE

when Nd > 0 and Na > 0, is an ODE when Nd > 0 and Na = 0, and is an AE when Nd = 0

and Na > 0. Because the DAE form is the most general, it will be utilized in the following

sections.

2.3 Graph-Based Model Order Reduction

Adhering to a variable fidelity modeling framework is one approach to generating computa-

tionally efficient design and control-oriented models. Although high order models (e.g. finite

element) may be accurate, they are impractical for design and control optimization prob-

lems because they have significant computational requirements. To address this issue, it is

common to create reduced order models that approximate the high-order system dynamics

with fewer states. Several model-order reduction techniques that preserve model structure

have been proposed in the literature [86,88]. An aggregation-based approach was introduced

where states are combined into superstates to generate a reduced-order model with multiple

timescales [85]. For optimization-oriented applications, an approach similar to the singular

perturbation method [89,90] is well suited and easily handled by the graph-based modeling

framework.

The singular perturbation approach is most commonly applied to stiff systems comprised

of a combination of fast and slow dynamics, thus applicable to multi-timescale energy sys-

tems. Stiff systems are difficult to integrate into model-based optimization studies because

they require both small discretization intervals and large optimization time horizons to cap-

ture the fast and slow dynamic behavior. The resulting optimization would have many design

variables and significant computational requirements. The singular perturbation approach

addresses both the stiffness and model order issues by approximating the fast dynamic be-

havior with a static relationship. However, a key component in this approach is identifying

the set of fast states to approximate as static.

For linear or linearized nonlinear systems, the fast states are generally associated with the

model’s largest magnitude eigenvalues. However, it can be challenging to directly correlate

eigenvalues to states. An advantage of graph models is that the vertex capacitance values
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often describes the state’s timescale [13, 85]. Therefore, the graph-based framework makes

it possible to identify correlation between eigenvalues and states of a graph-based model.

Note that this is not a rigorous approach to timescale classification, but it may be useful for

some applications like those introduced in Section 3.4.

Applying an approach similar to the singular perturbation technique to graph-based mod-

els requires identifying the fastest state dynamics and setting the capacitance of the associ-

ated states to zero. The result of the model order reduction is a DAE graph model, which

was introduced in Section 2.2.1. Without loss of generality, suppose a graph-based model is

provided in DAE form (2.9) where Nd and Na are the number of dynamic and algebraic ver-

tices, respectively. Using an eigenvalue analysis, the system modeler categorizes the first Ns

dynamic states as slow and the remaining Nf dynamic states as fast, such that Ns+Nf = Nd.

To apply the model order reduction technique, partition the DAE model (2.9) according to

slow, fast, and algebraic states xs, xf , and a, respectively (2.10a). Note that the subscripts

refer to the fast s, slow f , and algebraic a parameters. After partitioning the DAE graph,

set the capacitance value for fast vertices to zero Cf = 0 (2.10b).


Cf ẋs

Csẋf

0

 = −


M̄s

M̄f

M̄a

P (xs, xf , a, x
e, u, λ) +


Ds

Df

Da

P e, (2.10a)


Csẋs

0

0

 = −


M̄s

M̄f

M̄a

P (xs, xf , a, x
e, u, λ) +


Ds

Df

Da

P e, (2.10b)

Then combine the fast and algebraic state partitions to yield a reduced order DAE graph-
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based model with fewer dynamic states and more algebraic states,Ĉd
ˆ̇x

0

 = −

 ˆ̄Md

ˆ̄Ma

P (x̂, â, xe, u, λ) +

D̂d

D̂a

P e, (2.11)

where,

x̂ = xs,
ˆ̄Md = M̄s,

ˆ̄Dd = D̄s, Ĉd = Cs,

â =

xf

a

 , ˆ̄Ma =

M̄f

M̄a

 , ˆ̄Da =

D̄f

D̄a

 ,

where theˆ indicates the reduced order analog of the standard graph model variables from

(2.9). Note that this reduction technique is structure preserving because the reduced-order

model (2.11) is in the same form as the full-order model (2.9). As mentioned in [89], the

reduced order algebraic equations may have multiple roots that may result in unrealistic

behavior for physical systems, so special care should be taken when applying this technique.

2.4 Linearization and Discretization

Complex optimizations often leverage linear models to more efficiently solve the optimiza-

tion problem. Linear models approximate nonlinear behavior through a first order Taylor

expansion,

f (x) ≈ f (x̄) +
∂f

∂x

∣∣∣∣
x̄

(x− x̄) (2.12)

where f(x) is a function and x̄ is the linearization point. The following details the lineariza-

tion of a graph-based model.

The general nonlinear power flow vector function can be linearized about an operating

point z̄ = (x̄, ā, x̄e, ū)

P (z) ≈ P (z̄) +
∂P

∂x

∣∣∣∣
z̄︸ ︷︷ ︸

Px

(x− x̄) +
∂P

∂a

∣∣∣∣
z̄︸ ︷︷ ︸

Pa

(a− ā) +
∂P

∂xe

∣∣∣∣
z̄︸ ︷︷ ︸

Pe

(xe − x̄e) +
∂P

∂u

∣∣∣∣
z̄︸ ︷︷ ︸

Pu

(u− ū) . (2.13)

Note that the parameter argument λ is omitted because parameters are commonly constant.
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If the model is parameter varying or state dependent, these same techniques can be applied

as presented. Plugging the linearized power flow equation into (2.9) yields

ẋ
0

 ≈

Add Ada

Aad Aaa

x
a

+

Bd

Ba

 u+

Ed

Ea

 d+

Gd

Ga

 , (2.14)

where,

Add = −C−1
d M̄dPx, Aad = −M̄aPx,

Ada = −C−1
d M̄dPa Aaa = −M̄aPa,

Bd = −C−1
d M̄dPu, Ba = −M̄aPu,

Ed =
[
−C−1

d M̄dPe C−1Dd

]
, Ea =

[
−M̄aPe Da

]
,

Gd = −Addx̄d − Adax̄a − Bdū− C−1
d M̄dPex̄

e − C−1
d M̄dP (z̄),

Ga = −Aadx̄d − Aaax̄a − Baū− M̄aPex̄
e − M̄aP (z̄),

and d =

xe

P e

. The presented model is a linear DAE, and the same general approach can

be applied to an ODE or AE form graph model. For dynamic systems, it is often preferred

to work with a linear state-space model:

ẋ = Ax+Bu+ Ed+G, (2.15a)

a = Cx+Du+ Fd+H, (2.15b)

where,

A = Add − AdaA
−1
aaAad, B = Bd − AdaA

−1
aaBa,

E = Ed − AdaA
−1
aaEa, G = Gd − AdaA

−1
aaGa,

C = −A−1
aaAad, D = −A−1

aaBa,

F = −A−1
aaEa, H = −A−1

aaGa.

The model can be discretized using conventional approaches such as Forward Euler or

Runge-Kutta 4 approximations. For linear systems, the author’s preferred approach is an

exact discretization that assumes zero-order hold on the model inputs and disturbances. The
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linear system (2.15) is discretized at the discretization interval T

x [k + 1] = Azx [k] + Bzu [k] + Ezd [k] +Gz, (2.16a)

a [k] = Czx [k] +Dzu [k] + Fzd [k] +Hz, (2.16b)

where,

Az = eAT , Bz =

(∫ T

0

eAτdτ

)
B,

Ez =

(∫ T

0

eAτdτ

)
E, Gz =

(∫ T

0

eAτdτ

)
G,

Cz = C, Dz = D,

Fz = F, Hz = H,

where k is the discrete-time index and eAT is a matrix exponential. In future sections, a

more simple notation is adopted x [k] := xk.

2.4.1 Switched Linear Model Representation

In preview of the control results introduced in Chapter 3, a single linear model may not

represent the nonlinear system dynamics over a sufficiently large state space. While one could

opt to use a full nonlinear model, it comes at the expense of increased computational cost

and local minima when integrated into an optimal controller. An alternative approach would

be to use multiple linear models, each of which represent the nonlinear system dynamics in

a different part of the state space. This modeling approach is called a switched linear model.

In a switched linear model representation, the nonlinear dynamics are linearized about an

integer number of linearization points Nm to generate Nm unique linear models. Each of the

linear models is saved, and a switching signal σ(t) is used to determine which linear model

is active

σ(t) : [1 : ∞) → [1 : Nm] = {1, 2, . . . , Nm} ⊂ Z+. (2.17)

Using the linearization and discretization process introduced in Section 2.4, the switched
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linear representation of the nonlinear power flow vector is,

P σ(z) ≈ P (z̄σ)+
∂P

∂x

∣∣∣∣
z̄︸ ︷︷ ︸

Pσ
x

(x− x̄σ)+
∂P

∂a

∣∣∣∣
z̄︸ ︷︷ ︸

Pσ
a

(a− āσ)+
∂P

∂xe

∣∣∣∣
z̄︸ ︷︷ ︸

Pσ
e

(xe − x̄e,σ)+
∂P

∂u

∣∣∣∣
z̄︸ ︷︷ ︸

Pσ
u

(u− ūσ) , (2.18)

where the superscript σ describes the linearization point associated with a given operating

mode. Plugging the switched linear power flows P σ(z) into the DAE graph model (2.9)

yields, ẋ
0

 ≈

Aσ
dd Aσ

da

Aσ
ad Aσ

aa

x
a

+

Bσ
d

Bσ
a

 u+

Eσ
d

Eσ
a

 d+

Gσ
d

Gσ
a

 , (2.19)

where the switched matrix sub-partitions are computed according to the approach introduced

in (2.14). Using the same technique from Section 2.4, the switched linear DAE model can

be converted to a switched linear ODE form,

ẋ = Aσx+Bσu+ Eσd+Gσ, (2.20a)

a = Cσx+Dσu+ F σd+Hσ, (2.20b)

where the switched model matrices are computed using (2.15). The ODE model can be

discretized assuming zero-order hold on the inputs and disturbances to generate a switched

linear discrete-time model,

xk+1 = Aσ
zxk +Bσ

z uk + Eσ
z dk +Gσ

z , (2.21a)

ak = Cσ
z xk +Dσ

z uk + F σ
z dk +Hσ

z , (2.21b)

where the switched discrete time state-space matrices are computed using (2.16).
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2.5 Working With and Interpreting Graph-Based Models

Graph models are inherently modular, allowing model developers to start with a library

of components that can be connected in various ways to develop system graph models.

Many component graph models for energy systems have been introduced in the litera-

ture [34, 53, 54, 57]. Additionally, [33] introduces an approach and toolbox designed to

assemble component graph models into system graph models. Because these topics have

been introduced previously in the literature, they will not be discussed in this dissertation,

and instead an interested reader is directed to [33, 91] for more information. The following

section describes the derivation of a graph model’s equations from its graph and key model

information.

In the following three chapters, graph-based models will be fully described by 5 pieces

of information: the model structure, and vertex, edge, input, and parameter information.

The model structure is introduced graphically while the vertex, edge, input, and parameter

information is presented in tables. This notation was introduced in [92].

An example graph-based model is illustrated in Figure 2.2 and vertex, edge, input, and

parameter information is provided in Tables 2.1 to 2.4. In future chapters, the graph vertices

may be colored to represent energy domains, and additional information, such as variable

units, may be provided in the tables. Using (2.5), and (2.7), the graph model internal and

external incidence matrices are derived from Figure 2.2,

M =


M̄d

M̄a

¯
M

 =



1 0 0 0

−1 −1 1 0

0 1 0 1

0 0 −1 0

0 0 0 −1


, D =

D̄d

D̄a

 =


1 0

0 0

0 1

 . (2.22)
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Figure 2.2: Example graph to show how to construct a graph model from its Tables 2.1
to 2.4.

Table 2.1: Vertex information for the example graph model.

Vertex State Variable Description Capacitance

1 x1 Example Vertex 1 C1 = λax1

2 x2 Example Vertex 2 C2 = λb

3 a3 Example Vertex 3 C3 = 0

4 xe
4 Example Vertex 4 -

5 xe
5 Example Vertex 5 -

Table 2.2: Edge information for the example graph model.

Edge Description Power flow

1 Example Edge 1 P1 = x1x2

2 Example Edge 2 P2 = λ1 (a3 − x2)

3 Example Edge 3 P3 = u1λ
2
2x

2
2

4 Example Edge 4 P4 = u2λ1λ2a3x
e
5

5 Example Edge 5 P e
5

6 Example Edge 6 P e
6

Table 2.3: Input information for the example graph model.

Input Description

u1 Example Input 1

u2 Example Input 2
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Table 2.4: Parameter information for the example graph model.

Parameter Description Value

λa Example Capacitance Parameter a 100

λb Example Capacitance Parameter b 1200

λ1 Example Edge Parameter 1 18

λ2 Example Edge Parameter 2 16

Using Tables 2.1 and 2.2, the capacitance matrix and power flow vector are developed.

Note that the capacitance and power flow equations are arbitrarily selected for illustrative

purposes and do not represent physical energy storage and transfer mechanisms.

C =


C1 0 0

0 C2 0

0 0 C3

 =


λax1 0 0

0 λb 0

0 0 0

 , P =


P1

P2

P3

P4

 =


x1x2

λ1 (a3 − x2)

u1λ
2
2x

2
2

u2λ1λ2a3x
e
5

 (2.23)

The incidence, capacitance, and power flow matrices are plugged into (2.9) to define the

graph model equations.


λax1 0 0

0 λb 0

0 0 0



ẋ1

ẋ2

0

 = −


1 0 0 0

−1 −1 1 0

0 1 0 1




x1x2

λ1 (a3 − x2)

u1λ
2
2x

2
2

u2λ1λ2a3x
e
5

+


1 0

0 0

0 1


P e

5

P e
6

 (2.24)

Once in graph model form, the model can be used as introduced or converted to various other

forms such as a nonlinear state space, linear state space, or discrete time forms depending

on the use case. For example, the equivalent nonlinear state-space DAE form system is

provided below.
ẋ1 = (−x1x2 + P e

5 ) /λax1

ẋ2 =
(
x1x2 + λ1 (a3 − x2)− u1λ

2
2x

2
2

)
/λb

0 = −λ1 (a3 − x2)− u2λ1λ2a3x
e
5 + P e

6

(2.25)
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2.6 Conclusion

This chapter introduces the graph-based modeling framework and its extension to dynamic

and algebraic systems. Although described in the context of energy systems, the presented

graph-based modeling formulation is generic and can be extended to the general class of

conservation-based systems. Model order reduction, linearization, and discretization pro-

cesses were described to create a model better suited for integration in optimization rou-

tines. These processes will become relevant to the optimization-based tools introduced in

the remainder of this dissertation. This chapter concludes with an example that demon-

strates deriving a graph-based model’s equations from its graphical representation and table

information.

As mentioned at the start of the chapter, mathematical system models are foundational in

the development of model-based analysis, design, and control tools. In order to support the

system and control design objectives of the following three chapters, the models should be

energy domain-agnostic, optimization-oriented, modular, scalable, and have variable fidelity.

Because graph-based models meet all of these criteria, they are leveraged within the plant

and control co-design studies presented in the following chapters.
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Chapter 3

Hierarchical Predictive Control for Energy Systems

3.1 Background

Electrification in the aviation industry is driven by the combined need for more sustainable

and capable aircraft. However, an electrified aircraft’s novel power system is inherently

inefficient, which results in heat generation and changes in operating temperatures. As

temperatures change, so does the vehicle’s operating performance and efficiency. Accounting

for this coupling between power and thermal systems is required in control design to improve

performance and efficiency, but also to maintain safe and reliable operation. Various studies

have investigated the development of centralized MPC to address this challenge [42–45],

however, the multi-timescale nature of power and thermal systems makes it difficult to design

an effective real-time capable MPC [13]. Other studies have investigated hierarchical MPC

to address the multi-timescale limitation of the centralized approach [50–55]. In hierarchical

MPC, the overall control task is completed with multiple coordinated predictive controllers

with different update rates, each tuned to operate a partition of the entire system. The

decomposition of the multi-timescale control problem allows hierarchical MPC to retain

the performance benefits of centralized MPC with the additional advantage of real-time

capability.

While various MPCs have been developed, few have been experimentally validated on

aircraft energy systems. In [13], MPC was experimentally validated on aircraft fuel thermal

management system. However, that study used a simple and static power system model that

did not consider the fast timescale electrical and mechanical system dynamics. Conversely,

a hierarchical MPC was experimentally validated on a UAV powertrain testbed in [57] to

highlight superior multi-timescale coordination, but did not consider the system’s thermal

32



response.

Therefore, the key contribution of this chapter is the design and experimental demonstra-

tion of a hierarchical MPC for an entire aircraft integrated power, propulsion, and thermal

management system; highlighting the practicality of the proposed control strategy.

3.2 System Description

The aircraft IPPTS is represented by the experimental testbeds illustrated in Figure 3.1,

and comprises an electrical power system (EPS), mechanical power system (MPS), and

thermal management system (TMS). The combined EPS and MPS will be referred to as

the aircraft’s powertrain (PT). The testbed’s key energy system components are illustrated

schematically in Figure 3.2. While this system architecture does not represent any platform

in production, the architecture and component selection was designed to capture the complex

multi-domain dynamic coupling that is characteristic of electrified aircraft. The PT was

designed based on a standard series hybrid powertrain topology [93] while the TMS was

designed based on single-phase air vehicle cooling architectures in the literature [94,95]. It is

necessary to emphasize that the PT and TMS testbeds illustrated in Figure 3.1 are physically

disconnected, so they could be built, instrumented, and debugged separately without the

risk that a cascade of failures affects the entire system. Although physically decoupled,

the systems are virtually coupled via a hardware-in-the-loop configuration that allows the

emulation of key dynamic interactions between PT and TMS.

The EPS comprises a battery, electronic power conversion devices, and electrical loads.

The battery provides dedicated electrical energy storage and can charge and discharge de-

pending on the system’s electrical power demand and generation. As illustrated in Figure

3.2a, the battery is directly connected to the aircraft’s electrical bus that connects to the

other subsystems. In the avionics subsystem, the bus connects to the low voltage (LV)

DC/DC converter that regulates the voltage supplied to the base and pulse load convert-

ers. The base and pulse loads represent various electronic power requirements for onboard

computers, sensors, payload, etc. Specifically, the pulse load is selected to represent the

pulsed electrical power requirements of next-generation electrified aircraft [96–98]. Notably,
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the base and pulse load electrical efficiency is functionally dependent on their operating

temperature, which is a key characteristic of electrical power systems. In hardware, the

base and pulse loads and their converters are emulated in software with a programmable
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Motor

Prop.

Motor

Dyno.

Motor
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Generator and Prop. 

Motor Inverters

LV Converter

Avionic 
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(a) Powertrain testbed
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(b) Thermal management system testbed

Figure 3.1: Labeled images of the (a) powertrain and (b) thermal management system
testbeds.
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Figure 3.2: Labeled schematics of the (a) powertrain and (b) thermal management system
testbeds.

3kW electronic load labeled avionic loads in Figure 3.1a. Also, directly connected to the

electrical bus are AC/DC and DC/AC electrical power inverters that control the amount of
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power generated by and provided to the generator (gen.) and propulsion (prop.) motors,

respectively. The generator and propulsion motors couple the EPS to the MPS.

The MPS comprises an internal combustion engine, generator motor, propulsion motor,

and propeller. The engine is coupled to the generator via a belt and pulley system and

the generator’s terminals connect to the AC/DC inverter, and together, the combination of

these components (engine, generator, inverter) is called the aircraft’s genset. The purpose of

the genset subsystem is to convert energy stored as fuel to electrical power that can be used

to recharge the battery or power the other electrical loads. Note that the generator is also

used as a starter to remote start the engine. The aircraft’s propulsion subsystem comprises a

DC/AC electrical power inverter, propulsion motor, and propeller. The subsystem converts

electrical power from the EPS into rotational mechanical power to generate thrust and propel

the aircraft. On the experimental testbed, the propulsion loads are simulated in software

and imposed on the hardware via a dynamometer (dyno.) motor (Figure 3.1a).

The EPS and MPS generate heat through inherent inefficiencies such as conduction and

friction losses. To dissipate this heat, the EPS and MPS are coupled to the TMS that

absorbs the heat and rejects it to the chiller (heat sink) onboard the aircraft. The candidate

TMS comprises three serially connected fluid loops in Figure 3.2b where the arrows illustrate

the fluid flow direction. Heat generated by the battery is rejected into the fluid loop 1 cold

plate (CP). Fluid moving through the cold plate absorbs heat and passes through the loop

1-2 heat exchanger (HX) where additional heat is exchanged with fluid loop 2. After passing

through the loop 1-2 heat exchanger, heat is rejected to the aircraft’s chiller via the loop

C-1 heat exchanger. Two large fluid tanks at the top of loop 1 store cool fluid and increase

the loop’s thermal capacity.

Heat generated by the base and pulse loads and their converters is rejected into the base

and pulse cold plates in fluid loop 2. Fluid passing through those cold plates absorbs heat,

which is then exchanged with loop 1 via the loop 1-2 heat exchanger. After passing through

the loop 1-2 heat exchanger, fluid passes through the fluid tank, and then through the loop

2-3 heat exchanger. As in loop 1, the tank in fluid loop 2 increases the loop’s thermal

capacity. Because the pulse load has intermittent operation, a binary on/off valve is added

inline on that flow path and can be actuated to bypass the pulse cold plate. The bypass

36



Table 3.1: Summary of the coupling mechanisms present in the aircraft energy systems.

System 1 System 2 Type Mechanism

EPS MPS Bidirectional Electro-magnetics

EPS MPS Bidirectional Electro-magnetics

MPS TMS Unidirectional Heat load

MPS TMS Unidirectional Heat load

EPS TMS Unidirectional Heat load

EPS TMS Bidirectional Heat load

EPS TMS Bidirectional Heat load

path allows more cooling capacity to be allocated to the base cold plate. Because loop 2 is

large, it is equipped with a single high-speed boost pump to increase the flow rates.

Heat generated by the propulsion and genset subsystem is rejected into the propulsion

and genset cold plates in loop 3. Loop 3 has similar structure to loop 2, except it does not

have a fluid tank or a third pump. The valve in loop 3 is included to divert coolant to the

propulsion cold plate when the genset is not being used.

Given the complexity of the IPPTS, it is necessary to summarize the various types of

coupling between systems. Both unidirectional (one-way) and bidirectional (two-way) cou-

pling is present. Unidirectional coupling is present when one system’s behavior is dependent

on a second system, but the second system’s behavior is independent of the first system.

For bidirectionally coupling, both systems’ behavior is dependent on the other. As previ-

ously described, the aircraft’s energy system comprises coupled EPS, MPS, and TMS. The

EPS exhibits bidirectional coupling with the MPS through the generator and prop. motors

that transform electrical to mechanical energy and vice versa. The MPS has unidirectional

coupling with the TMS, where the heat generated by the prop. motor, generator motor,

and their power electronics is directly imposed on the TMS. The EPS battery exhibits uni-

directional coupling, where the heat generated is imposed on the TMS. The avionic loads

demonstrate bidirectional coupling where heat generated by the avionic loads is imparted

on the TMS and the temperature of the TMS affects the efficiency of the avionic loads. All

cross-system coupling information is summarized in Table 3.1.
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3.2.1 Testbed Capabilities

A description of the testbed components is provided in Appendix A. The PT battery and

genset can supply up to 6kW and 3kW of electrical power, respectively, to the propulsion

and avionic load subsystems. Both the motor and generator have a 14kW power rating,

however, forced air cooling is required for power levels exceeding 4kW to prevent thermal

degradation to the motor windings. Note that the 14kW generator is well oversized for the

3kW engine to prevent overheating. The testbed’s low voltage subsystems can support up to

3.0kW continuous electrical power, but requires forced air cooling for power levels exceeding

2.25kW. The avionic loads are emulated by a 3kW programmable DC electronic load. In

summary, the power system can supply and sink up to a 9kW and 17kW of electrical power,

respectively. The motors, battery, and power electronics are equipped with constant speed

fans to prevent overheating and potential damages.

Each cold plate on the TMS testbed is equipped with resistive heaters that can emulate

heat loads up to 2kW heat loads. The aircraft heat sink is emulated by a chiller with a 5kW

cooling capacity. The heat exchangers are rated to transfer up to 4.0kW of heat at 5LPM

and a 20◦C inlet temperature. Centrifugal pumps are powered by external power supplies

and can provide up to 17.5LPM flow rates. In total, the TMS can absorb and reject up to

10kW and 5kW of thermal energy, respectively.

3.2.2 Virtual Testbed Coupling

The PT and TMS are not physically connected, so they are instead coupled virtually via

a hardware-in-the-loop configuration with a real-time simulation environment (Figure 3.3).

This virtual coupling eases the testbed design process and improves system safety. As illus-

trated in Figure 3.3, both testbeds communicate with a LabView application running on two

separate secondary computers. In turn, the LabView application communicates over User

Datagram Protocol (UDP) to a primary control computer running a real-time simulation

environment, which is Simulink in this application. This primary control computer simulates

the virtual system dynamics, handles various signal processing tasks, and calls the control

systems that will be introduced in Section 3.4 and 3.5. The key virtualized system dynamics
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Figure 3.3: Hardware-in-the-loop communication system, illustrating the information
passing between the testbeds and control computers.

include the vehicle body dynamics, avionic loads, and heat load coupling.

As mentioned in Section 3.2, the vehicle body dynamics are emulated through a dy-

namometer motor. The propulsion motor speed is reported to the control computer through

the LabView program on the secondary computer. The instantaneous motor speed is passed

into a vehicle body simulator that simulates the vehicle speed and computes a propulsion

shaft torque, which is communicated back to the LabView program and commanded to the

testbed. A similar process is used to emulate the avionic loads, where the key difference

is the avionic loads’ temperature dependent efficiencies. To emulate the avionic loads, the

voltage regulator’s voltage and avionic load cold plate temperatures are reported to the

control computer via their respective LabView applications. The subsystem voltage and

temperatures are used to simulate the avionic loads, from which a net electrical load output

39



is computed. The net electrical load is then communicated back to the LabView application

and is commanded to the programmable electronic load on the PT testbed.

In a production system, the powertrain components would be directly connected to a

thermal management system to prevent system degradation or thermal runaway. In the

IPPTS testbed, the PT and TMS are not connected, so the coupling is emulated through

a similar process as the vehicle body and avionic loads. Various current, voltage, speed,

and temperature measurements are collected from the testbeds and communicated to the

primary control computer through LabView. This data is passed into an experimentally

validated powertrain model (Section 3.3.3) to simulate the powertrain losses. It is assumed

that the losses are manifested as heat loads that will be imposed on the TMS. Because the

PT and TMS testbeds operate at different power levels (Section 3.2.1), each of the losses are

scaled by a constant factor before being communicated and imposed as heat loads through

the resistive heaters on the TMS testbed. To scale these two systems, the PT heat loads are

scaled by constant factors such that the resulting nominal heat load applied to each TMS

cold plate is ∼1kW.

3.3 Model Description

3.3.1 Graph-Based Model of an IPPTS

The aircraft IPPTS is mathematically modeled using the graph-based modeling framework

outlined in Chapter 2. This modeled was derived by connecting the component graph-

based models introduced in [53, 57] according to the system schematic (Figure 3.2). The

IPPTS graph model, vertex, edge, input, and parameter information is described by Figure

3.4 and Tables B.1-B.4. This graph model is illustrated in color to highlight the different

energy domains and coupling between subsystems. Note that key state and input constraints

required for control design are included in Tables B.1 and B.3. The battery’s open-circuit

voltage curve Vocv(x1) is provided in [57].

The thermal management system is actuated by pumps that control the quantity of fluid

moving through the system. Although each pump is controlled independently with pulse-
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Figure 3.4: Graph-model of the aircraft IPPTS illustrated in Figure 3.1. Component graph
models are labeled and colored according to the coloring used in Figure 3.2. Graph vertices
are colored to describe the represented energy state.

width modulation (PWM), their outputs are coupled. For example, increasing a pump

PWM to increase the flow through the base load flow path will simultaneously decrease

the amount of fluid flowing through the pulse load flow path. Because of this coupling,

there exists a limited range of flow conditions called a flow envelope. The system’s flow

envelope is the range of achievable flow conditions for a fluid loop. For the IPPTS system,

the flow envelope is developed empirically by sweeping across the set of all unique pump
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Figure 3.5: Loop 2 (top) and 3 (bottom) flow envelopes for the TMS. The experimental
data used to generate identify the flow paths are illustrated by black dots. The valve line is
the flow rate along the flow path with the valve. The through line is the other flow path.

PWM command combinations and recording the resulting flow rates. Figure 3.5 illustrates

the flow envelope’s for fluid loops 2 and 3 when the valves are both open and closed. When

the valve is closed, the flow envelope is a line because fluid will not flow through the valve.

The flow envelope for loop 1 is provided in Table B.3.

The avionic loads have a temperature-dependent efficiency (edges 24 and 44 in Table B.2),

which is modeled by a temperature-dependent resistance term

Rload (Tload) = r1,loadTload + r0,load, (3.1)

where Tload is the temperature of either the base or pulse load and {r1,load, r0,load} are constant

coefficients (Table B.4). The pulse load’s temperature-dependent efficiency is illustrated in

Figure 3.6 where the load becomes less efficient at high current and temperature. Because
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Figure 3.6: An illustration of the pulse load’s temperature dependent efficiency and its
piecewise linear approximation. The load efficiency varies by up to 20% within the load’s
safe operating regime.

the nonlinear power flow relationship may degrade the performance of linear predictive

controllers (Section 3.4), it is desirable to approximate the power flow using a piecewise

linear model, as illustrated in Figure 3.6. The piecewise linear approximation was generated

programmatically by solving an optimization problem that minimizes the difference between

the nonlinear and piecewise linear surfaces given a prescribed number of operating modes.

3.3.2 Genset Model

As introduced in [57], the genset for this system is modeled outside the graph framework

because, due to the testbed’s design, it comes with its own embedded controller, which is

a black box. This makes it difficult to analyze the underlying system dynamics necessary

to formulate a graph-based model. Instead, a system identification approach it utilized to
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model the DC genset current xe
57 as a first-order dynamical system

τ ẋe
57 = −xe

57 +Ku13, (3.2)

where K is the input gain and u13 is the input command. Because the genset has a 3kW

maximum power limit, the maximum current varies as a function of operating voltage x5.

Therefore, the maximum input command must also vary as a function of voltage. An

estimated linear bound is found using experimental data

ū13 = b1x5 + b0, (3.3)

where {b1, b0} are constants. The genset’s experimentally identified operating regime and

current bound is illustrated in Figure 3.7. Note that the genset gain is the slope of approx-

imating surface in Figure 3.7.
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Figure 3.7: Identified genset current (top) and artificial genset SFC curves (bottom)
from [57].
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A common motivation for electrified aircraft is decreased fuel usage, and a common metric

to investigate is a genset’s specific fuel consumption (sfc). Adopting the procedure from [57],

the genset specific fuel consumption can be estimated as a quadratic function of the genset

voltage and current

sfc =

a5x
e
57

2 + a4x
2
5 + a3x5x

e
57 + a2x

e
57 + a1x5 + a0 if xe

57 > 0,

0 if xe
57 = 0,

(3.4)

where {a5, a4, a3, a2, a1, a0} are constant coefficients. The specific fuel consumption curve is

illustrated in Figure 3.7 and all constant coefficient values are tabulated in Table B.4.

3.3.3 Model Validation

The system model is experimentally validated to evaluate its utility in model-based control

design. But before the model can be validated, the model parameters are identified through

a system identification process. This work uses the nonlinear grey-box model estimation tool

from the system identification toolbox in MATLAB, which fits parameters to a structured

model. The model is parameterized on a set of training data, and all model parameters are

reported in Table B.4.

To validate the model, a second set of validation data is collected by exciting the testbed

and parameterized model with the same set of inputs/disturbances. Sensor data and model

outputs for key states are collected and compared as illustrated in Figure 3.8. Note that

the testbeds are experimentally validated independently because they are not physically

connected.

The model trajectories deviate some from the experimental results for the battery voltage

and temperature states. Additionally, the genset model does not capture the start-up tran-

sient behavior at 50s. However, it is sufficient to neglect the start-up transient for control

design because it lasts less than 0.5s. Otherwise, the dynamic performance for all other

states is good, where both the model and experiment states change similarly when excited

by the same stimuli. Overall, the modeling error is small and can be compensated for with
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closed-loop controllers.

0 50 100 150 200

52
54
56
58
60

Experimental
Model

0 50 100 150 200
-20

20

80

0 50 100 150 200
-60

-45

-30

-15

0

0 50 100 150 200
0

15

30

45

60

75

0 50 100 150 200
2000

2500

3000

3500

4000

0 50 100 150 200
0

7.5

15

22.5

30

(a) PT experimental system and validated model state comparison from [57].

Figure 3.8: Experimental model validation results for the (a) PT and (b) TMS states.
There is sufficient matching between experimental and model data.
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Figure 3.8 (cont.): Experimental model validation results for the (a) PT and (b) TMS
states. There is sufficient matching between experimental and model data. L1, L2, L3 are
loop 1, loop 2, and loop 3, respectively.
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3.4 Control Design

MPC is a popular control strategy for energy systems because of its ability to respect oper-

ational constraints while optimizing a cost function that can be designed to align with the

system’s figures of merit. However, energy systems are inherently multi-timescale so solving

a centralized MPC optimal control problem in real-time can be computationally challenging.

To address this problem, a hierarchical MPC strategy is designed for application to an air-

craft IPPTS. The following sections introduce hierarchical MPC, its application to aircraft

energy management, and a baseline controller that is used for comparison.

3.4.1 Hierarchical MPC

MPC is a control strategy that identifies an optimal control action through the solution of

a finite-horizon open-loop optimal control problem. As the name implies, a system model

is used to predict the plant behavior for a candidate control sequence that is iterated on

through conventional optimization strategies until an optimal control sequence is identified.

In addition to optimizing closed-loop performance, MPC is also well known for its ability

to handle operational constraints. However, applying traditional centralized MPC to multi-

timescale systems can be particularly challenging because the optimization of stiff systems

requires both a small discretization interval and long prediction horizon, which increases

computation times and inhibits its real-time application on physical systems. The inability

to efficiently handle multi-timescale dynamics limits the implementation of MPC on energy

systems. For example, the real part of a model’s eigenvalues represent the relative timescale

of the system dynamics, and the aircraft IPPTS model from Section 3.3 has eigenvalue real

parts that span approximately 10 orders of magnitude (Figure 3.9).

Hierarchical MPC addresses this limitation by decomposing a centralized MPC prob-

lem into a cascaded structure of smaller, coordinated MPC sub-problems. Distributing the

decision-making problems amongst multiple coordinated MPC problems facilitates compu-

tational efficient multi-timescale control that is necessary for real-time applications. By

coordinating the sub-problems, a hierarchical MPC retains much of the performance benefit
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Figure 3.9: An eigenvalue comparison for the full and reduced order model of the aircraft
IPPTS model from Section 3.3.

of a centralized MPC. An example hierarchical control architecture is illustrated in Figure

3.10. Each node in Figure 3.10 represents a model predictive controller with unique predic-

tion horizon and update interval tuned to optimize the behavior of a specific aspect of the

overall system.

The MPC at the top level of the hierarchy, often called the vehicle level, leverages a

model of the entire system and the longest update interval and prediction horizon to plan

the behavior of the slowest system dynamics over the course of a mission. Because the

vehicle level controller plans the behavior of the entire system, it utilizes the complete

system model. To decrease computationally complexity and facilitate multi-timescale control

design, a reduced-order model is often used. Because the vehicle level controller is designed

to coordinate the slowest system dynamics, the faster system dynamics can be removed using

the model order reduction technique described in Section 2.3.

The vehicle level MPC solves and passes optimal trajectory information to the subsequent
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Figure 3.10: A notional 5-layer hierarchical controller from [99].

system, subsystem, component, etc. levels in the hierarchy. In general, upper level controllers

in the hierarchy have longer update intervals and prediction horizon to coordinate relatively

slower system dynamics, while lower levels controllers have smaller update intervals and

prediction horizons to coordinate faster system dynamics. The models integrated into the

MPCs below the vehicle-level are a decomposition of the complete system model. The

authors of [54, 100], provide model decomposition techniques. For example, in Figure 3.10,

there are 2 system level controllers. This hierarchy would require decomposing the complete

system model into two separate models, each of which are integrated separately into the

two system controllers. This model decomposition happens at each level in the hierarchy.

Using this approach, each controller can be specifically tuned to optimize the performance

of each part of the overall system. In order to complete the overall control task, upper level

controllers pass planning information down the hierarchy to the lower level controllers so

that the entire control system is well coordinated.

Each controller in the hierarchy controls a different part of the overall system and therefore

has different control and computational requirements. To facilitate computationally efficient

multi-timescale control design, upper level controllers leverage reduced-order models of the
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entire vehicle or systems while lower level controllers utilize higher-order, decomposed models

that capture the dynamics of only subsystems and components. The model order reduction

technique introduced in Section 2.3 is relevant for hierarchical control design because it

allows the system modeler to reduce the state order by on timescale separation. The degree

of model reduction is a key design parameter for hierarchical MPC because it provides

flexibility in what system dynamics are represented and can be used to make an individual

controller more computationally efficient.

3.4.1.1 Model Predictive Control

In a hierarchical MPC, each node represents a model predictive controller tuned for a specific

aspect of the overall control task. Each MPC is described by an optimization routine that

returns an optimal state and control sequence when solved, and the first element of the

control sequence is then applied to the plant. The MPC is solved repeatedly at discrete

update intervals in closed-loop with the plant.

While each MPC in the hierarchy is unique with different models, constraints, objectives,

etc., each MPC optimization can be written in the same general form. An MPC is character-

ized by the number of prediction steps N and update interval T where NT is the total predic-

tion time. MPC optimizes a system’s dynamics given an initial state x1, previously applied

input u0 and/or operating mode σ0, a forecasted disturbance trajectory d = {d1, . . . , dN},

and desired trajectories xref =
{
xref
1 , . . . , xref

N+1

}
and aref =

{
aref1 , . . . , arefN

}
, where the

subscript represents the discrete time step index. The optimization routine returns opti-

mal model trajectories x = {x2, . . . , xN+1} and a = {a1, . . . , aN}, optimal control sequence

u = {u1, . . . , uN}, and optimal mode sequence σ = {σ1, . . . , σN}. Note that the operating

mode σ is generally used for switched linear models (Section 2.4.1), but is generalizable to

a single linear model with one mode Nm = 1.
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The general MPC optimization problem used in this work is

minimize J (3.5a)

with respect to u,σ, s

subject to ∀k ∈ [1 : N ]

xk+1 = Aσ
zxk +Bσ

z uk + Eσ
z dk +Gσ

z ,

ak = Cσ
z xk +Dσ

z uk + F σ
z dk +Hσ

z ,
(3.5b)

sk ≥ 0, (3.5c)¯x
¯
a

− sk ≤

xk+1

ak

 ≤

x̄
ā

+ sk, (3.5d)

¯
u ≤ uk ≤ ū, (3.5e)

u1 = u0, (3.5f)

m1 = m0, (3.5g)

where J is the cost function to be minimized s = {s1, . . . , sN} is the slack variable sequence,

and mk ∈ RNm is the controller’s operating mode defined as

mki =

1 if σk = i,

0 else,
(3.6)

where the subscript i is the index location of the vector mk. This MPC problem is subject to

6 constraints. The first constraint (3.5b) is the discrete-time switched linear model dynamics

introduced in Section 2.4.1. For the optimization routine to remain feasible, positive slack

variables are included to allow the dynamic and algebraic states to temporarily violate their

constraints if necessary (3.5c) and (3.5d). Actuator constraints are imposed with (3.5e).

In much of the MPC literature [101], it is assumed that the controller computation time is

negligible and inputs can be instantaneously applied to the plant. However, when applying

MPC to a physical system, there is a time delay between when information is sensed and

the control action is applied due to computation times of the observer and controller. To
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address this delay, the time delay constraints (3.5f) and (3.5g) impose a one-step delay to

explicitly account for the computation time. Note that in a conventional MPC, the first

element of the control sequence is applied to the plant u = u1, but in this real-time capable

MPC, the second element of the control sequence is applied to the plant u = u2.

The MPC optimization problem identified an optimal input, switching, and slack variable

sequence that minimizes an objective function

J =
N∑
k=1

6∑
i=1

Ji +
N−1∑
k=1

8∑
i=7

Ji + J9 (3.7a)

where,

J1,k =
∥∥∥xref

k − xk

∥∥∥2

Λx

(3.7b)

J2,k =
∥∥∥arefk − ak

∥∥∥2

Λa

(3.7c)

J3,k = ∥uk∥2Λu
(3.7d)

J4,k = ∥mk∥2Λm
(3.7e)

J5,k = ∥sk∥2Λs
(3.7f)

J6,k = ∥xk+1 − xk∥2Λ∆x
(3.7g)

J7,k = ∥uk+1 − uk∥2Λ∆u
(3.7h)

J8,k = ∥mk+1 −mk∥2Λ∆m
(3.7i)

J9,k =
∥∥∥xref

N+1 − xN+1

∥∥∥2

ΛT

(3.7j)

where ∥z∥2Λ := zTΛz and Λ ≥ 0 are diagonal matrices of weights for each objective. The

weights can be set to zero to render specific terms in the objective function inactive. Ob-

jectives (3.7b) and (3.7c) are reference tracking objectives. Objectives (3.7d) and (3.7e)

minimize the size of the control inputs and operational modes, respectively. Slack variables

are included in the control formulation to allow states to violate constraints, but (3.7f) is

included to minimize the size of the constraint violations. Objectives (3.7g)-(3.7i) penalize

the rate of change of states, inputs, and mode switching and is used to smooth the result-

ing optimal trajectories. A terminal cost (3.7j) is imposed so that the trajectory ends at a
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desired state.

3.4.2 Hierarchical MPC for Aircraft Energy Management

The proposed hierarchical MPC for aircraft energy management is illustrated in Figure 3.11.

The top three levels of the hierarchy are model predictive controllers, while the bottommost

control level is regulatory controllers that handle high frequency state regulation (Section

3.4.4). The controllers are given descriptive names that describe the part of the overall

system being coordinated. The air vehicle controller (AVC) coordinates the dynamics of

the entire IPPTS and communicates information to the TMS controller (TMSC) and PT

controller (PTC) that plan the behavior of the TMS and PT, respectively. The TMSC

communicates a planned trajectory to the Loop controllers that coordinate the behavior of

each fluid loop, respectively. The system was decomposed in this way based on the spatial

distribution of the systems and subsystems. Controller parameters and active objectives are

provided in Table 3.2. The following sections provide some additional details on the design

of each of the controllers.

Mission Information

Vehicle

60s

Regulation Controllers

System

20s

Subsystem

3 or 4s

Regulation

<0.1s

Electrical Coordination
Thermal Coordination
Mechanical Coordination

O
b
serv

er

Loop 2

AVC

Loop 1 Loop 3

TMSC

PTC

Figure 3.11: A 3-layer hierarchical model predictive controller for an aircraft IPPTS.
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Table 3.2: IPPTS hierarchical MPC parameters and active objectives (3.7a).

Controller Update Interval [s] Horizon Prediction Horizon [s] Active Objectives Ji

AVC 60 7 420 1,3,4,7,8,9

TMSC 20 5 100 1,3,4,7,8,9

Loop 1 4 9 36 1,2,4,6,8,9

Loop 2 4 9 36 1,2,4,6,8,9

Loop 3 4 9 36 1,2,4,6,8,9

PTC 3 11 33 1,2,4,5,6,8,9

3.4.2.1 Air Vehicle Controller

The air vehicle controller optimizes the behavior of the entire vehicle using a reduced-order

model of the entire system. Notably, the air vehicle controller selects the energy system ar-

chitecture by directly commanding the system’s discrete actuators: engine on/off mode and

the two valve open/close modes. It also selects the vehicle’s flight mode (e.g. cruise, loiter,

etc.). These decisions are imposed at the top level in the hierarchy because they strongly

impact coupling amongst the systems and subsystems. When considering all switched linear

dynamics, there are a total of 18,144 potential operating configurations. Directly encoding

all 18,144 models associated with the switching modes into the controller would result in ex-

cessive computational complexity. Instead, the method from [52] was adopted to decompose

the single switching decision into multiple switching decisions that switch smaller partitions

of the overall model. The single signal with 18,144 modes was decomposed into 7 signals

with 8, 4, 3, 3, 3, 3, and 7 modes, respectively, where each switch impacts flow rates, valve

positions, flight conditions, and heat load approximations. This approach encodes all 18,144

modes into the optimization in a more computationally efficient manner.

To optimize over discrete switching decisions, the controller is formulated as a mixed

integer quadratic program (MIQP) with an update interval of T = 60s and prediction of

N = 7 steps, which yields 7 minutes of mission preview. The 7 minutes of mission preview

was selected assuming that the aircraft’s payload would not be operated for more than 6

minutes at a time. The exact update interval and number of prediction steps were tuned

to meet the 7-minute requirement and guarantee that the controller’s optimization could
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identify a solution within the update interval.

The temperature constraints are tightened by 2.5◦C in the control formulation to account

for model error and disturbances. Additionally, the controller incorporates a shrinking hori-

zon, so the mission preview does not extend past the end of the mission. The method from

the appendix of [102] is adopted to implement a shrinking horizon.

3.4.2.2 Thermal Management System Controller

The air vehicle controller passes valve position, heat load, and temperature information to

the TMSC, which coordinates the thermal management system over a 100s prediction horizon

(T = 20s and N = 5). To retain model accuracy over the prediction horizon, the thermal

management system is represented by a switched linear model with 72 unique operating

modes. To optimize over the 72 discrete operating modes, the controller is formulated as

a MIQP. The time step and horizon were tuned so that the optimization could be solved

within one controller update interval. Similar to the AVC, all temperature constraints are

tightened by 2.5◦C to account for model error and disturbance uncertainty.

3.4.2.3 Thermal Management System Loop Controllers

The thermal management system comprises three fluid loops, each with its own MPC. Each

loop controller is tuned identically, but the model integrated into each controller differs. For

example, the loop 1 controller uses the model of only loop 1 and relies on coordination from

the TMSC to account for the coupling with fluid loop 2. The loop controllers control the

flow rates through the system.

Each controller has a 36s prediction horizon (T = 4s and N = 9). Because the update

interval and prediction horizon is relatively short, a single linear model is sufficiently accurate

for solving the MPC problem. The single linear model loop controllers contrast the AVC and

TMSC, in which a switched linear model with multiple operating modes was leveraged to

capture nonlinearities over a longer prediction horizon. The loop controllers are formulated

as a linear quadratic program (QP) where the control model is linearized at each controller

update around the system’s current operating state. The update rate for the loop controllers
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was based on the convergence rate of the pump regulation controllers (Section 3.14), which

was empirically determined to be approximately 1.0s.

3.4.2.4 Powertrain Controller

Using temperature and genset coordination from the AVC, the PTC optimizes the behavior

of the powertrain states by selecting an optimal propulsion motor speed, genset power output,

and avionic load power. The MPC is formulated as a QP with an T = 3s update interval

and N = 11 prediction steps (33s prediction horizon). The update interval was selected to

be slower than the convergence rate of the propulsion motor speed regulator (Section 3.14),

which was empirically determined to be approximately 0.5s.

3.4.3 Baseline Control

A baseline controller (Figure 3.12), which is designed to compare against the hierarchical

MPC, is based on conventional approaches for aircraft energy management in the litera-

ture [103, 104]. As summarized in Table 3.3, there are 9 PI controllers, 2 P load shedding

controllers, and 4 logic-based controllers. The vehicle speed, avionics voltage, base load cur-

rent, and pulse load current controllers are all PI controllers that track a reference trajectory

specified by the mission profile.

The 5 PI pump controllers command flow rates based on temperature set points that are
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Figure 3.12: The baseline controller for the aircraft IPPTS.
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Table 3.3: The IPPTS baseline controller information. Variables reference Tables B.1-B.4.

Actuator Measurement Type Setpoint/Threshold

Inverter u4 Vehicle Speed x14 PI Variable

LV Converter u1 Avionics Voltage a18 PI 40V

Base Converter u2 Base Load Current x23 PI Variable

Pulse Converter u3 Pulse Load Current x28 PI Variable

Loop 1 Flow u6 Return Temp. u34 PI 35◦C

Loop 2 Through Line Flow u7 Base Temp. x53 PI 40◦C

Loop 2 Valve Line Flow u8 Pulse Temp. x54 PI 40◦C

Loop 3 Through Line Flow u10 Prop. Temp. x55 PI 45◦C

Loop 3 Valve Line Flow u11 Genset Temp. x56 PI 45◦C

Genset Command u13

Net Load a6 + a15 + xe
58

Battery SOC x1

Logic Variable

Loop 2 Valve
Pulse Load Current u3

Pulse Temp. x54

Logic 43◦C

Loop 3 Valve
Genset Current xe

57

Genset Temp. x56

Logic 48◦C

Pulse Load Shed Max. Loop 2 Temp. P 43◦C

Genset Load Shed Max. Loop 3 Temp. P 48◦C

Speed Reference Battery SOC x1 Logic 32%

5◦C lower than the respective subsystems upper temperature limit [103]. Because fluid loops

2 and 3 have multiple flow paths, the loop 2 and 3 flow controllers must account for the flow

envelopes (Figure 3.5). As shown in Figure 3.13, each path’s flow rate is controlled by its

own flow PI controller. The two desired flow rate inputs are saturated by the 2-dimensional

saturation function that identifies a feasible flow rate combination that is closest to the

desired point. For a convex flow envelope, the closest point problem is solved by projecting

the unsaturated control action onto the flow envelope. In this work, the projection was

computed using the project() function in MPT3 [105].

The genset controller, which decides the ratio of power provided by the genset and battery,

is formulated as a state machine. This work uses the precise genset controller introduced

in [57]. Notably, the genset control design is charge sustaining, thus biasing the system to
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Figure 3.13: The control architecture for the MIMO pump controllers for TMS loop 2 and
3. The 2-dimensional saturation is applied by projecting the desired flow rate onto the set
of feasible flow rates.

aggressively use the genset to recharge the battery if possible. Additionally, it is equipped

with various emergency handling logistics to prevent the battery from under or over-charging

and unsafe rates.

Two logic controllers operate the on/off position of the valves in the TMS fluid loops. Both

controllers follow the same logic; if the pulse load or genset is active, the respective valve

opens. If the pulse load or genset is not active and the respective load temperature decreases

below a prescribed threshold, then the respective valve closes. Otherwise, the valve position

remains in its current state. The temperature thresholds are listed in Table 3.3.

Two load shed controllers are designed to prevent the system from overheating. If tem-

peratures in fluid loops 2 or 3 are too high, the load shed controllers artificially decrease

the pulse load and genset commands to decrease the heat generation. The load shedding

is proportional to temperature difference between the load and its constraints. Note that

the P controller is designed to activate only if the maximum loop temperature exceeds the

threshold listed in Table 3.3. Shedding load has undesirable consequences. If the pulse load

is shed, the aircraft does not complete its energy objectives. If the genset is shed, the bat-

tery may deplete its state of charge. If the battery state of charge is depleted while in an

unfavorable flight condition, a speed reference controller will return the vehicle to a flight

mode better suited to recharge the battery.
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3.4.4 Embedded Controllers

While some control decisions can be directly applied to the plant (e.g. the valve position),

some of the system dynamics are too fast for either the MPC or baseline controller to directly

control (e.g. motor controllers can have an update interval in the MHz to GHz range).

To control the fast states, a regulation layer of embedded controllers is incorporated into

the complete control design (Figure 3.14). Because the embedded control systems are not

published by the manufacturer, the precise control formulation is unknown. However, it is

expected that they are PI-like controllers that choose a PWM input based on a user-defined

setpoint. The system has 5 types of embedded regulation controllers: pump, motor, voltage,

current, and generator controllers, which require a flow rate, prop. speed, DC voltage, DC

current, and DC current setpoints, respectively. Because the generator is also used to start

the engine, the generator controller also handles the startup condition and transition from

engine startup mode to power generation mode.

3.5 Observer Design

The controllers introduced in the previous section require full state feedback to compute a

control action. However, the experimental testbeds are not outfit with enough sensors to

directly measure all the states. Additionally, sensor measurements are often noisy, which

negatively impacts the control performance. Therefore, this work uses a decentralized ob-

server design to both estimate unmeasured state values and reduce measurement noise.

The decentralized observer is illustrated in Figure 3.15. A decentralized structure was
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Figure 3.15: The decentralized observer for the aircraft IPPTS.

selected because it can be more computationally efficient for real-time implementation, while

affording increased flexibility for observer design and tuning. As shown in Figure 3.15, the

observer comprises 3 subsystem observers. The thermal management system and powertrain

states (excluding the battery) are estimated using an extended Kalman Filter (EKF). It has

been shown, in [85], that an EKF is sufficient for thermal management system and powertrain

state estimation. However, battery state estimation is often more challenging, so a central

difference Kalman Filter (CDKF) was selected to estimate the battery states [106,107].

Discrete-time system models are required to apply the EKF and CDKF estimation tech-

nique. The nonlinear system model (Section 3.3) is discretized using a Forward-Euler ap-

proach and is put in the following form

xk = f (xk−1, uk−1, dk−1, wk−1, ) , (3.8a)

yk = h (xk, uk, dk, vk, ) , (3.8b)

where x is the system states, y is the measurements, u are inputs, d are known disturbances,

and wK ∼ N (0, Q) and vK ∼ N (0, R) are assumed to be normally distributed process

and sensor noise with covariance Q and R, respectively. Note that measured algebraic

state measurements are included in yk. The error system covariance is described by P .

In practice, both an initial guess for state x̂0|0 and error covariance P0|0 is required. An

initial guess determined using system knowledge should be supplied for the initial state, and

it is common practice to initialize the error covariance as the identity matrix. The noise

covariance matrices Q and R are treated as tuning parameters that represent the relative

degree of trust in the model and sensors, respectively. The notation zi|j represents the value
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of the signal z at time index i given data from time index j.

3.5.1 Extended Kalman Filter

The EKF is an extension of the traditional linear Kalman Filter to nonlinear systems, where

the nonlinear system is linearized and the linear Kalman Filter estimation process is applied

to the linearized system. The Kalman filtering process comprises prediction and correction

steps. The prediction step uses the system model (3.8) to predict the system state and

update the error covariance matrix

A =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk−1,dk−1,w=0

, (3.9a)

x̂k|k−1 = f (x̂k−1, uk−1, dk−1, 0, ) , (3.9b)

Pk|k−1 = APk−1|k−1A
T +Q. (3.9c)

Equation (3.9b) estimates the system state x̂k|k−1 using the nonlinear system model and

previously applied system inputs and disturbances. If the model was perfect, additional

computations would be unnecessary. However, model error and uncertainty is always present.

To compensate for this error, sensor information is leveraged within the correction step. In

this step, the measurement model is linearized to compute the observer gain Lk, which is

used to correct the state estimate.

C =
∂h

∂x

∣∣∣∣
x̂k|k−1,uk,dk,v=0

, (3.10a)

Lk = Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

, (3.10b)

x̂k|k = x̂k|k−1 + Lk

(
yk − h

(
x̂k|k−1, uk, dk, 0

))
, (3.10c)

Pk|k = (I − LkC)Pk|k−1, (3.10d)

where yk are the sensor measurements and I is the identity matrix. The state estimate x̂k|k

is passed to the controller for feedback.
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3.5.2 Central Difference Kalman Filter

The CDKF is a variant of sigma-point Kalman filter approaches [106] with only one tun-

ing variable. In contrast to the EKF, the CDKF retains the full nonlinear form of the

system model to produce better state and covariance estimates. However, the CDKF’s com-

putational complexity hinders its application to higher dimensional systems for real-time

applications. While the EKF uses a linearized system to estimate the covariance matrix

(3.9c), the CDKF uses multiple function evaluations at carefully selected sigma-points to

approximate the covariance matrix. An interested reader is referred to [106] for additional

details on sigma-point filtering methods.

Sigma-point filtering methods are described by weighting constants γ, α(m), and α(c) that

weigh the impact of each sigma-point on the estimated statistics. The CDKF constants are

described by,

γ = g (3.11a)

α
(m)
0 = α

(c)
0 =

g2 − n

g2
(3.11b)

α
(m)
j = α

(c)
j =

1

2g2
(3.11c)

where n is the state vector dimension (x ∈ Rn) and j ∈ [1 : 2n]. Note that γ ∈ R is a scalar

and α(m) ∈ R2n+1 and α(c) ∈ R2n+1 are vectors. The variable g is the single tuning parameter

for the CDKF.

When applying the CDKF, the first step is to compute the sigma points, X ∈ Rn×(2n+1)

Xk−1,k−1 =
[
x̂k−1|k−1 x̂k−1|k−1 + γ

√
Pk−1|k−1 x̂k−1|k−1 − γ

√
Pk−1|k−1.

]
(3.12)

It is recommended to compute the matrix square root
√
Pk−1|k−1 using Cholesky factoriza-

tion. Note that x̂k−1|k−1±γ
√
Pk−1|k−1 is a matrix where each column of

√
Pk−1|k−1 is added

to or subtracted from x̂k−1|k−1.

Like in the EKF, a prediction step is applied to estimate the system state and update the
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covariance matrix

Xj,k|k−1 = f
(
Xj,k−1|k−1, uk−1, dk−1, 0

)
, (3.13a)

x̂k|k−1 =
2n∑
j=0

α
(m)
j Xj,k|k−1, (3.13b)

Pk|k−1 =
2n∑
j=0

α
(c)
j ∆x∆

T
x +Q, (3.13c)

where ∆x = Xj,k|k−1−x̂k|k−1 and the notation Zj,m|n is the jth column of the matrix Zm|n. The

current state estimate is likely inaccurate due to model uncertainty. To correct the estimate,

an estimated system output ŷk is computed and compared to the sensor information. The

output estimate is generated by passing the sigma-points through the measurement model,

Yj,k|k−1 = h
(
Xj,k|k−1, uk, dk, 0

)
, (3.14a)

ŷk|k−1 =
2n∑
j=0

α
(m)
j Yj,k|k−1, (3.14b)

where Y are the output sigma-points. The estimated system state and covariance matrix

are updated in the correction step

Uk =
2n∑
j=0

α
(c)
j ∆y∆

T
y +R, (3.15a)

Vk =
2n∑
j=0

α
(c)
j ∆x∆

T
y , (3.15b)

Lk = VkU
−1
k , (3.15c)

x̂k|k = x̂k|k−1 + Lk

(
yk − ŷk|k−1

)
, (3.15d)

Pk|k = Pk|k−1 − LkUkL
T
k , (3.15e)

where ∆y = Yj,k|k−1− ŷk|k−1. The state estimate x̂k|k is passed to the controller for feedback.
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3.5.3 Observer Tuning

The battery states are estimated using a CDKF with a T = 0.125s update interval and

g = 1.2 tuning parameter. A CDKF is used to estimate the battery states because it is easy

to tune and has been shown to be an effective battery state estimator in [106]. Because the

battery has few states, the added computational complexity is minimal. The battery voltage

is sensed as an output and the battery current is treated as a model disturbance.

The remaining powertrain states are estimated with an EKF with T = 0.125s update

interval. The EKF was chosen for its scalability and ease of implementation. Additionally,

it was shown in [57] that an EKF is sufficient for state estimation for this particular platform.

Various system voltages, currents, speeds, and component temperatures are passed to the

EKF as output measurements and disturbance information.

Similarly, the TMS states are estimated with an EKF with T = 1.0s update interval and

was chosen based on its application in prior demonstrations. The slower update of the TMS

EKF reflects the slower dynamics of the thermal management system in comparison to the

faster dynamics of the powertrain. Measured system temperatures and mass flow rates were

input into the EKF.

3.6 Control Results

The hierarchical and baseline controllers are designed and verified in simulation prior to val-

idation on the experimental test platforms. They are evaluated on performance, efficiency,

and reliability figures of merits. The following sections introduce the mission used for com-

parison, highlight key operational differences, and demonstrate quantifiable improvements

in control behavior.

3.6.1 Mission Objectives

The aircraft’s mission objectives are illustrated in Figure 3.16 and consist of a desired flight

speed and avionic load current requirements. The mission considers a scenario where the

aircraft cruises (high speed) to three separate locations to activate its pulsed power payload
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Figure 3.16: The flight and avionic load profiles for the control design evaluation case
study.

during a loiter (low speed). The pulse payload power requirement is a pulse train comprised

of ten evenly spaced 12s pulses (12s pulse uptime followed by 12s pulse downtime). These

three mission objectives are the only time varying references passed to the controllers. Be-

cause the hierarchies AVC has a 60s update interval, an average valued variation of the pulse

load is supplied to the controller (Figure 3.16). This mission assumes that the genset noise

and vibration interferes with the pulsed payload equipment. Therefore, the aircraft cannot

utilize the genset while the pulse load is active. Other key state and operational constraints

are listed in Tables B.1 and B.3.

The mission objectives are classified as flight and mission-critical. The flight critical

objectives include supplying power to the propulsion system and the base load, which are

required to sustain flight. The mission-critical objectives are optional and can be partially

completed or entirely neglected at the cost of a mission failure. The mission-critical objectives

include deploying the system’s pulsed payload and activating the genset. The genset is used
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to sustain the battery state of charge and is controlled to support the mission objectives.

Because the genset power output can be changed to meet mission requirements, it is treated

as a mission-critical load.

The predictive controllers were formulated using YALMIP [108] and solved using CPLEX

[109] (for MIQPs) and QUADPROG (for QPs). The controllers were experimentally vali-

dated on the control computer (Figure 3.3) with an AMD Threadripper CPU and 128 GB

RAM. The hardware in the loop system configuration was described in Section 3.2.2. The

predictive controllers were run as parallel processes in Simulink, which allows each controller

to compute its solution simultaneously for real-time operation.

3.6.2 Simulation Results

The simulated hierarchical and baseline control results are illustrated in Figures 3.17 and

3.18. Over the course of the entire mission, the baseline controller routinely sheds the pulse

load in order to respect the power and thermal system constraints. Notably, at the end of

the mission near 2800s, the pulse load is completely shed (Figure 3.17b) because the flight

controller returns the aircraft to its cruise condition to recharge the battery (Figure 3.17a).

Although the genset controller was tuned to be charge sustaining, the battery energy was

mostly depleted before the last pulse train (Figure 3.17c). Inspecting the battery current

(Figure 3.17d), the genset was attempting to recharge the battery during each cruise segment,

but failed to recharge the battery enough. The baseline controller is limited by its thermal

performance. During the pulse trains, the pulse temperature approached its temperature

limit within 0.5◦C (Figure 3.18c), resulting in load shed. Similarly, during the cruise segments

the genset routinely operates near its thermal limit (Figure 3.18e), so the load shed controller

decreases its power output and the genset is unable to sustain battery SOC. Ideally, the flow

rates through each cold plate could be increased to transfer more thermal energy. However, as

illustrated by Figure 3.18e, the flow rates were already at or near saturation when operating

at high temperatures. The only alternative to respecting constraints is to shed the electrical

system load to decrease heat generation. Although the pulse and genset temperatures are

high, the load shed controllers were effective in preventing constraint violations. However,
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throughout the mission the base load, which is flight critical and cannot be shed, experienced

temperature constraint violations.

In contrast, the hierarchical controller leverages a prediction model to explicitly account

for dynamic coupling and constraints while supplying power to both the mission and flight

critical loads. The hierarchy was able to follow both the mission velocity profile (Figure

3.17a) and deliver the desired current to the pulse load (Figure 3.17b), albeit a small amount

of pulse load was shed towards the end of the third pulse train. The hierarchy delivered power

to the PT loads because the genset adequately recharged the battery during each of the cruise

segments (Figures 3.17c and 3.17d). Unlike the baseline controller, the hierarchical controller

was not thermally limited and did not exhibit any significant thermal constraint violations.
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Figure 3.17: Selected simulated PT system trajectories for hierarchical and baseline
controller comparison: (a) aircraft velocity, (b) pulse load current, (c) battery SOC, and
(d) battery current.
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Figure 3.18: Selected simulated TMS system trajectories for hierarchical and baseline
controller comparison: (a) return, (b) base, (c) pulse, (d) prop., and (e) genset
temperatures and flow rates.
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Figure 3.18 (cont.): Selected simulated TMS system trajectories for hierarchical and
baseline controller comparison: (a) return, (b) base, (c) pulse, (d) prop., and (e) genset
temperatures and flow rates.

Also recall that the base and pulse loads have temperature dependent efficiencies; they are

more efficient at lower temperatures. The hierarchical controller understands that coupling

and reduces the avionic load temperatures to operate more efficiently.

Intuitively, greater power levels result in more waste heat and consequently higher temper-

atures. However, that heuristic does not apply to these results. The hierarchical controller

operated the genset at higher power levels and delivered more power to the pulse load than

the baseline controller, yet it operated at similar, if not lower, operating temperatures. Com-

paring the thermal behavior of the two control approaches, the loop 1 return temperature

exhibits significantly different operating behavior (Figure 3.18a). The baseline controller

tracks the commanded 35◦C setpoint well after initial transients, while the hierarchical con-

troller, which is not incentivized to track a setpoint, operates closer to 31◦C on average.

Because the TMS architecture is serially cascaded (the chiller connects to loop 1, which con-

nects to loop 2, which connects to loop 3), the thermal behavior of a loop is constrained by
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the thermal behavior its adjacent loops. For example, loop 2’s lowest possible temperature is

the same as loop 1’s highest temperature. The cascaded TMS architecture indicates that the

thermal performance between fluid loops in strongly coupled. The hierarchical controller,

which explicitly accounts for this coupling through the system model, makes decisions to

decrease the operating temperature in loop 1 to decrease the operating temperatures in loops

2 and 3, allowing the PT to successfully complete the mission objectives. The baseline con-

troller, which is not designed to account for this coupling, operates and higher temperatures

and is required to routinely shed loads resulting in a mission failure.

Decreasing the baseline controller return temperature setpoint would result in better base-

line controller performance. However, tuning this and other control parameters would re-

quire extensive trial and error and system knowledge. For more complex systems, it could

be challenging to identify which setpoints, parameters, and input-output pairings should

be modified to improve operation. In contrast, the hierarchical MPC approach inherently

accounts for the coupling and can be more easily tuned by modifying an intuitive objective

function.

3.6.3 Experimental Results

The controllers are experimentally validated using the test platforms illustrated in Figure 3.1.

The experimental results are illustrated in Figures 3.19 and 3.20. Similar to the simulation

results, the baseline controller deviates from the desired trajectory (Figure 3.19a) towards the

end of the mission because the battery’s state of charge is depleted (Figure 3.19c). Although

the genset attempts to recharge the battery during the cruise segments (Figure 3.19d), its

electrical power output is thermally constrained (Figure 3.20e). Similar to the simulation

results, the hierarchy accounts for the system coupling to sustain battery charge, respect

thermal operating limits, and provide power to complete the mission objectives.

While the simulation and experimental control results are well validated, there are minor

differences due to delays, model error or unmodeled behavior, estimation error, and sensor

noise. For example, Figures 3.20c and 3.20e highlight small constraint violations in the pulse

load and genset temperature. Additionally, communication and actuation delays between
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the testbed and control software result in more oscillatory mass flow rates in experimentation

than in simulation. Despite these differences, the experimental results match the simulation

results sufficiently close to consider the testbed validation a success.
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Figure 3.19: Selected experimental PT system trajectories for hierarchical and baseline
controller comparison: (a) aircraft velocity, (b) pulse load current, (c) battery SOC, and
(d) battery current.
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Figure 3.20: Selected experimental TMS system trajectories for hierarchical and baseline
controller comparison: (a) return, (b) base, (c) pulse, (d) prop., and (e) genset
temperatures and flow rates.
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Figure 3.20 (cont.): Selected experimental TMS system trajectories for hierarchical and
baseline controller comparison: (a) return, (b) base, (c) pulse, (d) prop., and (e) genset
temperatures and flow rates.

3.6.4 Controller Evaluation

Broadly speaking, aircraft energy systems can be evaluated by 1) performance, 2) efficiency,

and 3) reliability criteria. Performance describes the system’s ability to complete a desired

class of mission or flight plans. Efficient operation is desired to minimize fuel consumption

or other finite energy resources to increase range, reduce emissions, or extend capabilities.

Reliability requires respecting constraints to avoid system failures or premature degradation,

and is necessary for safe vehicle operation.

By failing to complete the third pulse train in both the simulation and experiment, the

baseline controller failed to finish the mission. This behavior is the most apparent qualitative

difference between the baseline and hierarchical control designs. To quantify the control

performance, 5 figures of merit (FoM) are introduced that are associated with performance,

efficiency, and reliability metrics.
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The EPS performance is quantified by the pulse load tracking error

PEPS =
∥∥∥xref

28 − x28

∥∥∥2

2
. (3.16)

Tracking error generally occurs when the controller chooses to shed the pulse load to prioritize

satisfying a flight critical loads or thermal constraints. The TMS performance is quantified

by the average system temperature

PTMS = mean
(
1

tf

∫ tf

0

xidt

)
∀i ∈ [29 : 56] , (3.17)

where tf is the final mission time, and xi ∀i ∈ [29 : 56] is every temperature state (Table

B.1).

The powertrain efficiency is quantified by the genset’s fuel utilization over the entire

mission.

EPT =

∫ tf

0

(sfc) dt. (3.18)

The TMS efficiency is quantified by the pump power consumption,

ETMS =

∫ tf

0

Ppumpdt. (3.19)

A more efficient system better utilizes fuel and requires less pumping power.

The system reliability is quantified by the amount and length of constraint violations,

Ri =
1

x̄i

∫ tf

0

max (0, xi − x̄i) dt+
1

¯
xi

∫ tf

0

min (0,
¯
xi − xi) dt (3.20)

where Ri is a reliability metric for state xi (state constraints are found in Table B.1). The

system reliability is the sum of all individual reliability metrics R =
∑

Ri.

The FoM are computed for both the simulation and experimental case studies and are

presented in Figures 3.21. For illustrative purposes, the FoM are normalized such that the

baseline value is one. Additionally, all FoM are designed such that a lower value is better.

From Figure 3.21, the hierarchical controller outperforms the baseline controller on almost
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Figure 3.21: Figure of merit comparison for the (a) simulated and (b) experimentally
validated hierarchical and baseline controllers. The figures of merit are normalized against
the baseline controller values. Smaller values indicate improvement in FoM.

all FoM. It is evident that the hierarchical controller delivered significantly more power to

the pulse load because the baseline controller continually shed load to respect power and

thermal constraints. The hierarchical controller, which knows the system coupling, was

able to keep system temperatures 6-7% colder by increasing the flow rate in fluid loop 1.

The increased flow rate increased heat transfer between fluid loops and heat rejection to

the thermal sink. Although neither controller was explicitly designed to minimize system

temperatures, the hierarchical controller recognized that decreasing system temperatures

would improve performance. Interestingly, the hierarchical controller was able to decrease

system temperatures despite using a similar amount of pumping energy as the baseline

approach.
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The hierarchical controller also demonstrated 16-17% improvement in fuel utilization. Al-

though both controllers were designed to minimize fuel consumption, the baseline controller

was forced to decrease the genset power output to a suboptimal operating condition to

respect thermal limitations. The hierarchical system outperforms the baseline system in

reliability, with only a fraction of the constraint violations. This is expected because the

hierarchical controller explicitly accounts for operating constraints.

While these results illustrate qualitative advantages of a hierarchical model predictive con-

trol strategy in comparison to a conventional baseline approach, future work should consider

systems with physical rather than virtual coupling between electrical, mechanical, and ther-

mal systems to ensure that quantitative performance, efficiency, and reliability improvements

translate to such conditions.

3.7 Conclusion

Increasing demand for environmentally sustainable aviation and more capable aircraft has

initiated the trend for aircraft electrification. However, electrified aircraft are complex

systems-of-systems with strongly coupled, constrained, multi-domain, and multi-timescale

dynamics that are difficult to reliably operate using conventional control strategies without

sacrificing performance or efficiency. Therefore, it is proposed to use a hierarchical MPC

approach to address this challenge.

This chapter introduces an experimental hardware-in-the-loop testbed for an aircraft

IPPTS. To facilitate model-based optimal control design, the testbed is modeled using the

graph-based modeling framework, and the model is experimentally validated. A 3-layer

hierarchical MPC for aircraft energy management is designed. The key advantage of hierar-

chical MPC over a centralized MPC is computationally efficient and effective coordination

of multi-timescale systems. To support the experimental validation of both the hierarchical

MPC and a baseline control approach, a decentralized observer using Kalman filter variants

was introduced. The key contribution of this chapter was the experimental validation re-

sult that demonstrated the hierarchical controller’s superior ability to account for system

coupling to improve the performance, efficiency, and reliability of the closed-loop system.
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In contrast, the baseline approach failed to complete all mission objectives. In particular,

the hierarchical controller delivered more power to the pulse load while reducing the size of

constraint violations and decreasing fuel utilization by 16-17%.

The demonstrated predictive control techniques are well suited for applications with well-

known mission objectives such as commercial aircraft, which have pre-defined flight plans.

However, significant uncertainty may be present in alternate applications where mission ob-

jectives and deliverables may change of the course of a mission. Therefore, it is important

to investigate mission level control and rapid replanning in response to changing objectives.

Additionally, electrified aircraft are designed well for autonomous and multi-agent applica-

tions where multiple aircraft work collaboratively to complete a common task. To meet this

need, research should consider an additional level in the hierarchical control framework for

simultaneous coordination of a multi-vehicle system.

The control results illustrated that the hierarchical controller performed better than the

baseline controller because it could account from the coupling present amongst the three

serially connected fluid loops. In the context of control design, it was natural to consider

if the baseline controller could be redesigned to improve system performance. However, an

alternative perspective is

Can the control behavior be improved by redesigning the plant?

This is the concept and objective of co-design. While this chapter focused on just control

design, the following two chapters will investigate how to simultaneously design a plant and

its feedback controllers.
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Chapter 4

Plant Sizing and Closed-Loop Control Co-Design

4.1 Background

Electrified aircraft power systems can support a new variety of electronic capabilities for

a range of applications. However, designing these systems is challenging because they are

complex; comprised of various coupled energy system components, control systems, and

sensor suites. The high degree of system complexity makes it difficult to evaluate how

design decisions impact the performance of the end product. Therefore, this section will

propose a co-design approach that systematically evaluates different design considerations

and their influence on a design objective.

Control co-design is a design methodology, often posed as an optimization problem, where

both plant and control design decisions are made within the same design framework. Co-

design addresses the challenge of coupling between the design of a plant and the design of its

controller [14]; the plant influences the control design process and the controller influences

the plant design process. Traditional methods often discount this coupling by designing a

plant first and the controller second, which result in suboptimal system performance that is

inadequate for modern aircraft design. Much of the co-design literature is focused on open-

loop co-design. In these problems, a plant and open-loop control design are identified through

an optimization routine to identify a jointly optimal solution. While providing good design

insights, an open-loop control action cannot be imposed on physical systems because open-

loop control does not explicitly handle uncertainty or disturbances. Additionally, design

studies usually consider pre-specified trajectories whereas the flight requirements are not

precisely known apriori in practical applications. Some studies have explored robust OLCD

methods, however, physical systems will not be operated in open-loop and require some

79



closed-loop control.

Closed-loop co-design addresses the need to systematically identify a combined set of

practical and optimal plant and control decisions. Instead of identifying open-loop control

actions, CLCD methods design an optimal closed-loop control system. While the literature

on CLCD is more brief than the OLCD counterpart, there have been various investigations

leveraging different simultaneous [34–37], nested [38, 65], and iterative [110] optimization

strategies. While these studies offer a range of contributions, they all focus on the application

of CLCD to a specific subsystem with a single controller.

Therefore, the key contribution of this chapter is the formulation of a generalized and

scalable CLCD optimization approach. The proposed methodology is demonstrated in a

hybrid UAV design study where multiple subsystems and controllers are designed within the

same optimization routine.

This chapter is outlined as follows. Section 4.2 will introduce the OLCD and CLCD

formulations and a convergence analysis that can be used to systematically evaluate the

tradeoff between optimization accuracy and computation time. Section 4.3 describes the

hybrid electric UAV system and model that is leveraged within the design study introduced

in Section 4.4. Section 4.5 summarizes the contributions and key design takeaways.

4.2 Design Methodology

Numerical optimization techniques are a useful tool to systematically evaluate and identify

an optimal set of decisions that minimize an objective subject to design constraints. In the

context of co-design, the optimization routine evaluates different plant and control design

decisions. The following section will introduce both the open-loop and closed-loop control

formulations. Because solving these optimizations can be computationally expensive, a

convergence analysis technique is introduced as a guiding principle to evaluate the trade-off

between optimization accuracy and computation time.
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4.2.1 Open-Loop Control Co-Design

The OLCD process identifies an optimal set of plant parameters and open-loop control

actions by solving the following dynamic optimization problem

minimize J (4.1a)

with respect to t, λp, u

subject to Cdẋ(t)

0

 = −

M̄d

M̄a

P (t, x, a, xe, u, λp) +

Dd

Da

P e(t), (4.1b)

gj (t, x, a, u, λp) ≤ 0, ∀j ∈ [1 : Ng] , (4.1c)

hk (t, x, a, u, λp) = 0, ∀k ∈ [1 : Nh] , (4.1d)

where J is the objective function to be minimized and can be a function of the optimization

variables, t is time, λp is the plant parameters, u is the control trajectory, and gj are hk are

inequality and equality constraints, respectively. In this problem, the decision variables are

time, the plant parameters, and the open-loop control trajectory. The decisions variables are

optimized with respect to the plant dynamics and other inequality and equality constraints.

Notably, the plant dynamics (4.1b) are represented as a graph-based model because they

are optimization-oriented; however, one could also use a general nonlinear DAE form model

without loss of generality.

4.2.2 Closed-Loop Control Co-Design

Instead of identifying an open-loop control action, the CLCD process identifies an optimal

plant parameterization and closed-loop control policy. The CLCD dynamic optimization
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problem is

minimize J (4.2a)

with respect to t, λp, λc

subject to Cdẋ(t)

0

 = −

M̄d

M̄a

P (t, x, a, xe, u, λp) +

Dd

Da

P e(t), (4.2b)

k̇ = fk (t, x, a, k, λp, λc) , (4.2c)

u = fu (t, x, a, k, λp, λc) , (4.2d)

gj (t, x, a, u, k, λp, λc) ≤ 0, ∀j ∈ [1 : Ng] , (4.2e)

hk (t, x, a, u, k, λp, λc) = 0∀k ∈ [1 : Nh] . (4.2f)

In this problem, the control design decisions are represented by λc. In some cases, λc may

represent the control gains in a feedback controller, while in other cases it may represent

an open-loop control trajectory. Although this is a closed-loop control design problem, it

may still be desirable to consider open-loop control behavior within the design process. For

example, the reference trajectory passed to a closed-loop controller could be designed as an

open-loop control action. Equation (4.2c) integrates the controller dynamics k, which are

common in integral control or filter design, into the optimization problem. The feedback

control law u is imposed through (4.2d). As introduced, this formulation can only be ap-

plied to structured control laws where the control policy is an explicit function of system

parameters. It may be challenging to design non-structured or implicit control policies, like

MPC, within the proposed framework.

The key difference between the OLCD (4.1) and CLCD (4.2) problems is in how the

control behavior is optimized. The CLCD problem imposes structural constraints on the

controller (i.e. the control law) that the optimization routine must consider, whereas the

OLCD problem does not, thus addressing a relevant gap in the OLCD formulation. Note

that generally the OLCD and CLCD problems will return different solutions. The CLCD

solution will have less performance in comparison to the OLCD solution due to the addi-
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tional control constraints. However, the advantage of identifying a physically implementable

optimal feedback control strategy outweighs the performance degradation.

Piecewise and conditional functions are common in closed-loop control design. However,

such functionality is often non-smooth and may negatively impact the convergence of a

gradient-based optimization process. To address this concern, the follow section introduces

smoothing functions that are useful in the CLCD process.

4.2.2.1 Smoothing Functions

The saturation function is a piecewise linear function that is often applied in closed-loop

control design to limit the magnitude of the control action,

sat (x)UL =


U if x > U

x if L ≤ x ≤ U

L if L > x

, (4.3)

where U and L are the upper and lower saturation limits, respectively. Alternatively,

sat(x)UL = min (max (x, L) , U). The saturation function sensitivity ∂(sat(x)UL)
∂x

is discontin-

uous at the transition point between saturated and unsaturated outputs, which may nega-

tively impact the convergence of a gradient-based optimization process. Instead, a smooth

approximation of the saturation function is introduced,

sat (x)1−1 ≈ asat (x)1−1 =
x

2p

√
1 + |x|2p

, (4.4)

where p ≥ 1 ∈ Z+ is a positive integer representing the degree of smoothing. While the

approximated saturation function is provided for U = 1 and L = −1, it is preferred to

saturate between arbitrary bounds. It is recommended to scale the saturated variable prior
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to saturation and then undo the scaling after applying (4.4)

x̃ =
2

U − L
x− U + L

U − L
(4.5a)

y =
U − L

2
ỹ +

U + L

2
(4.5b)

where x̃ is the scaled version of x, ỹ = asat (x̃)1−1, and y = asat (x)UL .

Similarly, encoding conditional logic is common in control design

imp (x, T )m1

m2
=

m1 if x ≥ T

m2 if x < T

(4.6)

where mi are operating modes and T is a switching threshold. The function sensitivity
∂(imp(x,T )m1

m2
)

∂x
has infinite magnitude at the switching threshold and zero magnitude every-

where else, which may negatively impact the optimization process. This function can be

approximated as a sigmoid function,

imp (x, 0)10 ≈ sig (x, 0)10 =
1

1 + e−px
, (4.7)

where p ≥ 1 is a positive number representing the degree of smoothing. Similar to the

saturation function, it is preferred to apply conditional logic with arbitrary operating modes

and thresholds. It is recommended to scale the input variable before applying the sigmoid

function, and then undo the scaling after applying (4.7)

x̃ = x− T (4.8a)

y = (m1 −m2) ỹ +m2 (4.8b)

where x̃ is the shifted version of x, ỹ = sig (x̃, 0)10, and y = sig (x, T )m1

m2
.

The exact and approximated saturation and conditional logic functions are illustrated in

Figure 4.1. The figure illustrates how the choice of smoothing factor p impacts the approxi-

mation. The smoothing factors should be held constant throughout the CLCD optimization.
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Figure 4.1: The smooth saturation and conditional logic functions for different smoothing
factors.

4.2.2.2 Closed-Loop Control Examples

While any structured control law can be designed using the proposed CLCD approach, it is

relevant to illustrate how control equations are integrated into the optimization problem. The

process will be introduced using two common strategies relevant to energy system controls:

proportional-integral-derivative control and equivalent consumption minimization strategy

(ECMS) controllers. While the general form of these controllers is introduced in this section,

variations of these controllers, tailored to a target application, are provided in Section 4.3.

Proportional-Integral-Derivative Control

PID control is one of the most widely used feedback control strategies in industry. A PID

controller (Figure 4.2) is designed to reduce a system’s regulation error to zero, which it

may achieve through any combination of proportional, integral, and derivative control effort.

Proportional control effort provides a control action proportional to tracking error; however,
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(a) PID controller with back-calculation anti-windup.
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(b) PID controller with clamping anti-windup.

Figure 4.2: PID controller block diagrams with (a) back-calculation and (b) clamping
anti-windup mechanisms.

it has limited regulation applications because it often has non-zero steady state regulation

error. Integral effort is often used to address this limitation by integrating the regulation

error over time, resulting in zero steady-state regulation error. However, it is necessary

to use anti-windup strategies when implementing integral control to avoid windup in the

controller’s integrator that may yield degraded or delayed responses. Derivative control

slows the control response proportional to the rate of change of the regulation error and is

often implemented with a low-pass filter because it is sensitive to noise and abrupt changes

in references.

There are two common variations of PID controllers with different integral anti-windup

methods: back-calculation and clamping. The governing equations for a PID controller with
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back-calculation anti-windup (Figure 4.2a) are

u(t) = asat(ũ(t))UL , (4.9a)

ũ(t) = uP (t) + uI(t) + u̇D(t), (4.9b)

where,

e(t) = xref (t)− x(t), (4.9c)

uP (t) = Pe(t), (4.9d)

u̇I(t) = Ie(t) + B (u(t)− ũ(t)) , (4.9e)

u̇D(t) = N (De(t)− uD(t)) , (4.9f)

where u is the saturated control action, ũ is the unsaturated control action, e is the tracking

error, xref is the state reference, x is the feedback state, uP , uI , and uD are the proportional,

integral, and derivative control efforts, respectively, N is the derivative effort low pass filter,

and P , I, D, and B are the proportional, integral, derivative, and back-calculation control

gains, respectively.

The governing equations for a PID controller with clamping anti-windup (Figure 4.2b)

are,

u(t) = asat(ũ(t))UL , (4.10a)

ũ(t) = uP (t) + uI(t) + u̇D(t), (4.10b)

where,

e(t) = xref (t)− x(t), (4.10c)

uP (t) = Pe(t), (4.10d)

u̇I(t) = Ie(t)aclamp (ũ, e)UL (4.10e)

u̇D(t) = N (De(t)− uD(t)) . (4.10f)

Note that the only difference between (4.9) and (4.10) is the computation of u̇I . In the

clamping control formulation, the derivative of the integral effort is computed using an

approximate clamping function because the clamping function is a conditional logic function
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Figure 4.3: A comparison of the true and approximated smoothing clamping function for
px = py = 10.

that prevents integration while in saturation. The clamping logic is formally written as

clamp (x, y)UL =

1 if (x ∈ [L,U ]) or (x > U and y < 0) or (x < L and y > 0)

0 else
. (4.11)

The approximate clamping function encodes the logic statement (4.11) smoothly using the

sigmoid function introduced in Section 4.2.2.1. However, the clamping function has two

arguments, so a 2-dimensional sigmoid is used. The approximate clamping function is

clamp (x, y)UL ≈ aclamp (x, y)UL =
1

1 + e−px(x−L)

1

1 + epyy
+

1

1 + epx(x−U)

1

1 + e−pyy
(4.12)

where px and py are positive smoothing factors along the x and y dimensions. As described

in Section 4.2.2.1, it is recommended to scale the inputs before applying the approximation

function. The smooth clamping function is illustrated in Figure 4.3, and the smoothing

factors should be held constant throughout a CLCD optimization.

In the context of CLCD, both PID formulations have two control states uI and uD as-

sociated with the integral effort and derivative filter, respectively. Both control states are

encoded through k = fk() in (4.2). The control laws (4.9a) and (4.10a) are encoded into

(4.2) through u = fu(). Note the optimization differences between the two PID formula-

tions. The back-calculation approach implements an additional control parameter B, thus
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increasing the total number of design variables. In contrast, the clamping formulation has 1

fewer control parameters, but relies on a complex nonlinear function to apply anti-windup.

Equivalent Consumption Minimization Strategy

The equivalent consumption minimization strategy is popular in a hybrid energy system

control approach that controls the total power contribution between a battery and genset

because it provides a near global optimal control solution [111]. A notional hybrid energy

system comprised of genset, battery, and electrical load is illustrated in Figure 4.4 The sys-

tem stores energy in both the fuel and battery, and the ECMS strategy identifies an optimal

control action that minimizes total energy consumption between the two. Because the fuel

and battery energy storage mechanisms are dissimilar, an equivalence relationship is intro-

duced. The equivalence relation converts the battery power consumption to an equivalent

virtual fuel consumption metric. Then, the ECMS identifies a feasible genset command that

minimizes the combined actual and virtual fuel consumption. The ECMS is posed as an

optimization problem

Genset Battery

Load

Bus
Pgen

Pload

Pbatt

Figure 4.4: A notional hybrid energy system consisting of a genset, battery, and electrical
load.
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minimize ṁfuel (Pgen) + ε
Pbatt

QLHV

(4.13a)

with respect to Pgen

subject to

Pbatt + Pgen = Pload, (4.13b)

Ibatt ∈
[̄
Ibatt, Ībatt

]
, (4.13c)

Pgen ∈
[
¯
Pgen, P̄gen

]
, (4.13d)

where ṁfuel is the genset fuel consumption, ε Pbatt

QLHV
is the battery virtual fuel consumption, ε

is the equivalence factor, QLHV is the fuel’s lower heating value, I is current, P is power, and

the subscripts batt, gen, and load refer to battery, genset, and load variables, respectively.

In this controller, ε is the tuning parameter that balances the relative cost of using battery

versus engine power. Large ε results in less battery usage.

Assuming that ṁfuel is convex or can be approximated as a convex function, the ECMS

controller can be solved as a convex optimization problem, for which there are many efficient

solution methods. By solving the ECMS as a convex optimization problem, the CLCD

problem can be solved as a nested optimization. Alternatively, the problem can be reposed

as an unconstrained optimization problem by substituting the power conservation constraint

(4.13b) into the objective function and removing the battery current and genset power limits

(4.13c) and (4.13d).

minimize ṁfuel (Pgen) + ε
Pload − Pgen

QLHV

(4.14)

with respect to Pgen

Because this is a one-dimensional optimization problem with convex cost, there exists an

analytic solution to (4.14). However, the optimal genset power may not respect the battery

current and genset power constraints. To respect those constraints, the optimal genset power

can be saturated using (4.4). The result of this process is a static feedback control law that
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can be encoded into (4.2) through u = fu(). This general process is provided on a more

detailed system in Section 4.3.2.2,

4.2.3 Convergence Analysis

Because system-level co-design problems can be computationally expensive, a convergence

analysis is proposed to evaluate the tradeoff between computation time and optimization

accuracy. Solving the dynamic optimization problems (4.1)-(4.2) requires integrating the

continuous-time plant dynamics to compute the state trajectories. In the context of opti-

mization, there are two approaches to time integration: implicit and explicit [112]. Implicit

methods approximate the system’s continuous state trajectories x(t) as a series of time-

dependent polynomials P (t). To solve the trajectories within the context of optimization,

the states’ time derivatives must equal the polynomials’ time derivatives ẋ(t) = Ṗ (t) at dis-

crete points in time. This relationship is treated as an equality constraint that the optimizer

converges to zero. In contrast, explicit methods directly discretize the state dynamics and

sequentially evaluate the discrete system model in a time-marching manner to approximate

the continuous time trajectory. Common explicit integration methods include Forward-Euler

or Runge-Kutta 4.

In general, both implicit and explicit methods discretize the system dynamics. The key

difference is that the implicit approach integrates continuous-time dynamics into the opti-

mization, whereas the explicit approach uses discrete time dynamics. Implicit integration

problems generally have more decision variables than their explicit counterparts because the

system states are treated as optimization variables. However, implicit methods can often

capture the same dynamic behavior with fewer discretization steps, thus reducing the total

number of decision variables and computation time for the implicit problem. Although both

approaches are feasible, this work will use an implicit integration approach to optimize over

the continuous time system dynamics with fewer discretization steps.

When solving a dynamic optimization problem, a key design decision is determining the

number of required discretization steps to generate an accurate representation of the contin-

uous state dynamics. While more discretization steps in a finite time interval yields a more
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accurate result, an excess of steps would lead to excessive computation times. In general,

there is a trade-off between computational efficiency and optimization accuracy. Because

co-design problems can be computationally expensive, repeatedly solving an optimization

with a different number of discretization steps until the desired accuracy is reached will re-

sult in excessive design times. Therefore, the following section will introduce a convergence

analysis that can be used to estimate the number of discretization steps required to meet a

desired accuracy criteria before solving a full optimization problem.

The approach is as follows.

1. Formulate a more simple, but still representative, variation of the full optimization.

2. Solve the simplified optimization and record the state trajectory information.

3. Evaluate the optimization accuracy at the error nodes.

4. Repeat steps 2 and 3 until the solution accuracy meets a prespecified criterion.

There are a few approaches to posing a simple but still representative optimization prob-

lem. One approach could be to remove all decision variables from the optimization, thus

reducing (4.1) and (4.2) to constraint satisfaction problems that would be easier to solve. If

appropriate, a multi-phase optimization problem could be decomposed into multiple single-

phase optimizations, where each of the single-phase problems represents one part of the

multi-phase problem.

After posing the simplified optimization problem, it can be solved. When using implicit

integration methods, the solution will return the polynomial approximation Pi(t) for each

state xi(t) (Figure 4.5). The accuracy of each polynomial approximation is quantified by

the normalized approximation error ei

ei (t) =
|Ṗi(t)− ẋi(t)|

max (ẋi)
. (4.15)

The optimization process constrains ei = 0 at the discretization nodes (Figure 4.5). However,

as illustrated by the different derivatives in Figure 4.5, the approximation error may be

nonzero elsewhere along the trajectory. To evaluate the approximation error, error nodes
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Figure 4.5: A comparison between a state trajectory and its polynomial approximation.
While the state and polynomial derivatives match at the discretization nodes, they differ at
the error nodes.

are placed at the midpoint between the discretization nodes, and the error is computed using

(4.15). Because the simplified problems can be solved quickly, this process can be evaluated

until the desired accuracy criteria is met.

4.3 Case Study System Description

To demonstrate the utility and performance of the proposed CLCD techniques, they are used

to design a hybrid UAV powertrain and its respective feedback controllers. The following

sections describe the system and its models.

The hybrid UAV powertrain is similar to the system introduced in Chapter 3 and is

illustrated in Figure 4.6a. This hybrid UAV powertrain is similarly comprised of a battery

for energy storage, a genset (engine, generator, and rectifier) for electrical power generation,

a propulsion system (inverter, propulsion motor, propeller) to generate thrust, and an avionic

load that emulates a high power electronic payload [96–98]. Unlike Chapter 3, this design

problem focuses on powertrain design and control and assumes that all components have

adequate thermal management.
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(a) Schematic of the hybrid UAV powertrain.
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(b) The closed-loop hybrid UAV system communication structure.

Figure 4.6: The (a) hybrid UAV powertrain schematic and (b) the communication
structure of the closed-loop UAV system.

The aircraft’s onboard control system comprises a PI controller that controls velocity

reference tracking, and an ECMS controller that coordinates the load sharing between the

battery and genset. Both controllers generate a duty cycle input that is used to control the

aircraft’s inverter and rectifier. Both control approaches are well utilized in the literature

and are readily implemented in a closed-loop control design problem as described in Section

4.2.2.2.

While the two closed-loop controllers are sufficient to manage the aircraft’s powertrain,

they cannot sufficiently coordinate the vehicle performance over the course of a mission that

is defined by velocity and altitude waypoints. The complete closed-loop control system is

illustrated in Figure 4.6b. The remainder of this section introduces the plant and control

94



models for this system. All model variables, descriptions, units, etc. are provided in Tables

B.5-B.8 in the Appendix.

4.3.1 Plant Model

The plant model comprises three separate models: graph-based powertrain, genset, and

vehicle dynamics models.

4.3.1.1 Graph-Based Powertrain Model

The UAV’s powertrain is mathematically modeled in the graph-based modeling framework

introduced in Chapter 2. The model was derived by connecting the component graph models

from [57] according to the system schematic (Figure 4.6a). The graph model is illustrated

in Figure 4.7 and its accompanying vertex, edge, input, and parameter tables are included

in the Appendix (Tables B.5-B.8). Note that each cell in the battery has an open-circuit

voltage Vocv that is modeled as a 5th-order polynomial,

Vocv (x1) = v5x
5
1 + v4x

4
1 + v3x

3
1 + v2x

2
1 + v1x1 + v0, (4.16)

where vi are coefficients reported in Table B.8.
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Figure 4.7: The graph model for the hybrid UAV powertrain. All graph model information
is provided in Tables B.5-B.8.
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4.3.1.2 Genset Model

The genset model is similar to the model introduced in Section 3.3.2, with the inclusion of

fuel mass dynamics

τ ẋe
14 = (−xe

14 +Ku2) , (4.17a)

ṁfuel = c1a5x
e
14 + c0, (4.17b)

where xe
14 is the genset current, a5 is the genset operating voltage, mfuel is the remaining

fuel mass, τ is the genset current time constant, K is the input gain, u2 is the genset input,

and ci are constant coefficients that describe the engine fuel consumption as a function of

the genset power a5x
e
14. The genset parameters are values reported in Table B.8 and are

derived from [57].

4.3.1.3 Vehicle Dynamics Model

The vehicle dynamics are modeled using a quasi-static longitudinal aircraft model similar

to [113,114]. The quasi-static model captures the aircraft’s dynamic velocity xe
15 and altitude

h behavior and treats the vehicle’s angle of attack α as a residual function of body forces

and the flight path angle γ. The aircraft’s free body diagram is illustrated in Figure 4.8,

and the equations of motion are

mẋe
15 = T cosα−D −G sin γ, (4.18a)

ḣ = xe
15 sin γ, (4.18b)

0 = T sinα + L−G cos γ, (4.18c)

where,

D =
1

2
ρACDx

e
15

2, L =
1

2
ρACLx

e
15

2,

T = ρd4CTa
2
11, G = mg,

CD = CD0 +KLC
2
L, CL = CL0 +

α

αmax

(CL,max − CL0) ,
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Figure 4.8: The aircraft free-body diagram used to derive the equations of motion for the
vehicle dynamics model.

where T , D, L, and G are the thrust, drag, lift, and gravitational forces, respectively, ρ

is the air density as a function of altitude, CT , CD, and CL are the thrust, drag, and lift

coefficients, A is the wing area, d is the propeller diameter, g is gravitational acceleration,

CD0 and CL0 are the zero-drag and zero-lift coefficients, respectively, αmax is the maximum

angle of attack, CL,max is the maximum lift coefficient, and KL is the drag-due-to-lift factor.

The total vehicle mass is given by

m = mprop. +mbatt +mfuel +mgenset +mload +minv. +mairframe, (4.19)

where the subscripts prop., batt, fuel, genset, load, inv., and airframe refer to the mass

of the aircraft’s prop motor, battery, fuel, genset subsystem, avionic load, inverter, and

airframe, respectively.

4.3.2 Feedback Control Model

The following sections introduce PI and ECMS control laws adapted for the hybrid UAV

control system based on the examples introduced in Section 4.2.2.2.

4.3.2.1 PI Controller

A PI controller is an appropriate feedback controller to track the reference velocity profile

commanded by the aircraft’s autonomous navigation system. Figure 4.9 illustrates the PI

controller block diagram with input saturation and clamping anti-windup, and the governing
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Figure 4.9: The hybrid UAV powertrain velocity tracking PI controller with clamping
anti-windup.

equations are

u1(t) = asat(ũ1(t))
U
L , (4.20a)

ũ1(t) = uP (t) + uI(t), (4.20b)

where,

e(t) = xe
15,ref (t)− xe

15(t), (4.20c)

uP (t) = Pe(t), (4.20d)

u̇I(t) = Ie(t)aclamp (ũ1(t), e(t))
U
L , (4.20e)

The PI controller seeks to reduce the tracking error e between the velocity reference xe
15,ref

and the feedback velocity state xe
15 through proportional and integral control effort. The

magnitude of the proportional and integral control effort is characterized by the proportional

and integral gains P and I, respectively. The PI controller commands the propulsion system

inverter’s duty cycle u1.

4.3.2.2 ECMS Controller

The ECMS controller and its simplification for a generic hybrid power system is introduced

in Section 4.2.2.2. However, the hybrid UAV model described in Section 4.3.1 can be used

to further simplify the result. As presented in Section 4.2.2.2, the process to simplify the

ECMS optimization is to first remove equality constraints, then reduce the optimization

to a 1 dimensional convex problem that can be solved analytically, and lastly apply the

saturation functions to simplify the inequality current and power constraints.
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Using the powertrain graph-based model, a power balance can be applied to vertices 4

and 5

NsVocv (x1) a4 = Rs
Ns

Np

a24 + a5a4, (4.21a)

a5a4 + a5x
e
14 = a5a6 + a5a12, (4.21b)

where x1 is the battery SOC, a4 is the battery current, a5 is the bus voltage, a6 is the inverter

DC current, a12 is the avionic load current, xe
15 is the genset current, Ns is the number of

battery series cells, Np is the number of battery parallel cells, and Rs is that battery internal

resistance (Tables B.5-B.8). The power balance (4.21a), which assumes that bulk battery

inefficiency is governed by its internal resistance (Figure 4.7 edge 4), is used to compute the

bus voltage a5 as a function of the battery current a4 and instantaneous battery SOC x1

(4.22a). Additionally, the power balance (4.21b) is simplified to express the battery current

a4 as a function of the genset power xe
14 and net load current a6 + a12 (4.22b).

a5 = NsVocv (x1)−Rs
Ns

Np

a4, (4.22a)

a4 = a12 + a6 − xe
14. (4.22b)

Note that the instantaneous battery SOC and load currents are input into the controller.

Using the ECMS simplifications (4.22) and genset fuel consumption model (4.17b), the
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original ECMS objective function (4.13a) can be rewritten as

J = ṁfuel (Pgen) + ε
Pbatt

QLHV

= c1x
e
14a5 + c0 + ε

NsVocv (x1) a4
QLHV

= c1x
e
14

(
NsVocv (x1)−Rs

Ns

Np

(a12 + a6 − xe
14)

)
+ c0 + ε

NsVocv (x1) (a12 + a6 − xe
14)

QLHV

=

(
c1Rs

Ns

Np

)
xe
14

2 +

(
c1NsVocv (x1)− c1Rs

Ns

Np

(a12 + a6)− ε
NsVocv (x1)

QLHV

)
xe
14+

+

(
c0 + ε

NsVocv (x1) (a12 + a6)

QLHV

)
(4.23)

While more complex, this equivalent form for the objective function is a one-dimensional

quadratic function of the genset current xe
15. The remaining variables in (4.23) are either

model parameters or inputs to the optimization. Recall that the optimal genset current is

the objective function minimizer xe
15

∗ = argmin(J), which can be computed analytically

because (4.23) is quadratic.

While computing the minimizing genset current is straightforward, the simplification pro-

cess has ignored the battery current and genset power constraints (4.13c) and (4.13b) and

that the genset requires a duty cycle command and not a current command. The prior

is addressed through saturation functions that guarantee a feasible genset current (4.24b)-

(4.24c), while the latter current command is converted to a duty cycle using the genset’s

input gain K (4.24d).

xe
15

∗ = −Np

Ns

c1NsVocv (x1)− c1Rs
Ns

Np
(a12 + a6)− εNsVocv (x1)Q

−1
LHV

2Rsc1
, (4.24a)

xe
15,s1

∗ = asat (xe
15

∗)a12+a6−ā4
a12+a6−

¯
a4
, (4.24b)

xe
15,s2

∗ =
1

a5
asat (a5xe

15
∗)

P̄gen

¯
Pgen

, (4.24c)

u2 =
xe
15,s2

∗

K
. (4.24d)

The ECMS control solution (4.24) can be directly encoded into the CLCD problem (4.2).
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The controller is tuned by varying the equivalence factor ε.

4.3.3 System Summary

The closed-loop hybrid UAV system comprises 5 separate models: powertrain, genset, air-

frame, PI controller, and ECMS. Figure 4.10 is included to illustrate the interactions and

information passing between the 5 models and the autonomous navigation system. To sum-

marize, the powertrain exchanges motor speed a11 and vehicle velocity xe
15 states with the

airframe model and bus voltage a5 and genset current states xe
14 with the genset model.

Additionally, the altitude state h is passed to the powertrain model to determine the air

density value required to compute the total propulsion power. The aircraft model commu-

nicates the velocity state xe
15 to the PI controller to compute the inverter duty cycle input

u1 that is applied to the powertrain model. The ECMS controller requires the instantaneous

battery state of charge x1, inverter DC current a6, avionic load current a12, and bus voltage

a5 to compute the genset command u2. The autonomous navigation system commands the

aircraft’s flight path angle γ and velocity trajectory xe
15,ref . Recall that all model variable

and parameter names are in Tables B.5-B.8.
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Figure 4.10: Variable information passing between the 5 models that comprise the
closed-loop hybrid UAV system.
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4.4 Design Study

Electrified aircraft offer opportunities for more efficient and capable vehicles. In particu-

lar, there is interest in faster aircraft across different industries because, depending on the

application, a faster aircraft may deliver more packages, transport more people, or sur-

vey more land/crops in a fixed amount of time. When designing aircraft, the battery and

propulsion motor selections are two key design considerations that dictate the overall vehicle

performance. While larger batteries and motors may deliver more energy and power, the

increased component weight may result in suboptimal system performance. Additionally,

the control design strongly governs the dynamic system performance, influencing how power

is both generated, stored, and delivered to the subsystems. Therefore, this study will in-

vestigate the design of a hybrid UAV’s battery pack, propulsion motor, and their respective

controllers. To demonstrate the effectiveness of the introduced CLCD approach, the hybrid

UAV is designed using 5 different co-design optimization strategies:

1. Case 1: Simultaneous open-loop co-design (SOL)

Identify an optimal plant and open-loop control decisions as described in (4.1). While

the open-loop control is not physically applicable, this case will illustrate the best case

design.

2. Case 2: Sequential co-design (SQ)

The sequential design study represents a conventional design approach wherein the

plant is designed first, and the controller designed second. The plant design is identified

using the optimal plant parameters from Case 1 (SOL). Then, the plant parameters are

fixed and a second CLCD optimization (4.2) identifies the optimal closed-loop control

parameters.

3. Case 3: Simultaneous closed-loop co-design (SCL)

The simultaneous closed-loop problem identifies a set of optimal plant and closed-loop

control parameters at the same time by solving (4.2).

4. Case 4: Siloed plant design (PCL)
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This study identifies an optimal plant design by solving the CLCD optimization prob-

lem (4.2) where the closed-loop control parameters are fixed.

5. Case 5: Siloed control design (CCL)

This study identifies an optimal closed-loop control parameterization by solving the

CLCD optimization problem (4.2) where the plant parameters are fixed.

The merit of each optimized design is evaluated against a baseline aircraft design (BASE).

The baseline aircraft system was designed based on the experimentally validated powertrain

parameters from Chapter 3. The PI controller was tuned via pole placement methods by

linearizing the system around the cruise condition (Table 4.1), generating the root locus,

and using MATLAB’s control design toolbox to change the closed-loop pole locations until

a desired fast, but damped, step response was produced. The ECMS controller was tuned

to be charge sustaining by changing the equivalence factor until the battery depleted ∼10%

SOC over the course of the mission (Table 4.1).

The plant design parameters are the number of series battery cells Ns, number of parallel

battery cells Np, prop. motor constant kv, and the prop. motor coil resistance Rm. The con-

trol design parameters are the PI controller tuning gains P , and I, and the ECMS equivalence

factor ε. The number of battery cells determine the battery capacity and operating voltage,

and the motor parameters determine the electro-mechanical conversion and electrical effi-

ciencies. The nominal battery cell and parameters are from a 3Ah Samsung INR18650-30Q

cell. While a physical battery pack may only have an integer number of cells, this design

study will permit a continuous number of battery cells. Discrete optimization methods could

be used to convert the continuous design solution to an integer solution [33]. The motor

parameter design space is described by the reported parameter values from the NeuMotors

8000 series brushless DC motors. These motors have a power level range from 4.5-21.4kW,

which is well suited for the proposed application. To formulate the motor parameter design

space, the NeuMotors 8000 series motor database is downloaded and each model’s motor

constant, coil resistance, mass, and current limit are recorded. The feasible motor param-

eter design space is defined by the convex hull Hm of all motor possible constant and coil

resistance pairs. Figure 4.11 illustrates the feasible motor parameter design space and the
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Figure 4.11: The feasible motor constant and resistance design space for the propulsion
motor based on the NeuMotors 8000 series motors. The shading illustrates the changes in
mass and maximum coil current.

relationship with motor mass and current limit.

By designing the battery and prop. motor, the system mass and operating limits change.

The battery and prop. mass and current limits change as a function of their design param-

eters Ns, Np, kv, and Rm

mbatt = NsNpmcell, (4.25a)

¯
a5 = Np

¯
Icell, (4.25b)

ā5 = NpĪcell, (4.25c)

mprop. = m0 +m1kv +m2Rm, (4.25d)

¯
a10 = 0, (4.25e)

ā10 = i0 + i1kv + i2Rm, (4.25f)

where a5 is the battery current and a10 is the prop. current.

The aircraft is designed for a specified mission characterized by the velocity, altitude, and

avionic load profiles illustrated in Figure 4.12. The mission begins in a cruise condition

before a dive into a sensing segment where the aircraft activates its avionic load that could

represent a high power sensing device [96–98]. The sensing segment is followed by a climb
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Figure 4.12: The desired aircraft altitude, velocity, and avionic load power for the hybrid
UAV powertrain design study. Table 4.1 provides additional specifications for each mission
segment.

to dash, and then another climb back to cruise. The mission segment classification, length,

and boundary conditions are described in Table 4.1. Note that the climb and dive segments

are variable length and do not end until the aircraft meets the prescribed flight conditions.

For example, the sensing segment does not start until the vehicle reaches 4 km altitude at

40 m/s velocity.
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Table 4.1: Mission profile conditions for the Figure 4.12.

Mission

Segment
Description

Discretization

Steps

Duration

[min]

Velocity

[m/s]

Altitude

[km]

Load Power

[kW]

a Cruise 10 6 30 5.5 0

b Dive 20 tb 30-40 5.5-4.0 0

c Sensing 10 2 40 4.0 1.0

d Climb 22 td 40-45 4.0-4.5 0

e Dash 10 4 45 4.5 0

f Climb 22 tf 45-30 4.5-5.5 0

g Cruise 10 6 30 5.5 0

4.4.1 Co-Design Optimization Problems

The proposed design study requires solving both the OLCD and proposed CLCD problems

(4.1) and (4.2). The objective is to design a vehicle that can complete a mission in minimum

time by selecting the battery, motor, and control parameters. The OLCD problem is

minimize tgf (4.26a)

with respect to tb, td, tf , Np, Ns, Rm, kv, u1, u2, γ

subject to Cdẋ

0

 = −

M̄d

M̄a

P +

Dd

Da

P e,

Powertrain Model (4.26b)

τ ẋe
14 = (−xe

14 +Ku2) ,

ṁfuel = c1a5x
e
14 + c0,

Genset Model (4.26c)

mẋe
15 = T cosα−D −G sin γ,

ḣ = xe
15 sin γ,

0 = T sinα + L−G cos γ,

Vehicle Dynamics Model (4.26d)
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xe
15

(
ta,f,gf

)
= 30m/s, xe

15 (t
a, tg) = 30± 1m/s

xe
15

(
tb,cf

)
= 40m/s, xe

15 (t
c) = 40± 1m/s

xe
15

(
td,ef

)
= 45m/s xe

15 (t
e) = 45± 1m/s


Mission Velocity

(4.26e)

h (ta,g) = 5.5km,

h (tc) = 4.0km,

h (te) = 4.5km

Mission Altitude (4.26f)

γ (ta,c,e,g) = 0◦
}

Mission Flight Path Angle (4.26g)

P e
22 (t

c) = 1kW
}

Mission Avionic Power (4.26h)

Tables B.5, B.7, and B.8 upper and lower bounds. (4.26i)

Note the following notation: tif is the final time of mission segment i and ti is the time

duration of mission segment i. Here, the optimization routine is written for readability,

where each set of constraints are labeled. Because the duration of the cruise and dive

segments are variable in length, those time durations tb, td, and tf are treated as decision

variables in addition to the plant and open-loop control design variables. The powertrain,

genset, and vehicle dynamics models are included by (4.26b)-(4.26d). The mission structure

defined by Figure 4.12 is encoded into the optimization using (4.26e)-(4.26h). Together, the

velocity, altitude, and flight path angle constraints (4.26e)-(4.26g) require the aircraft to start

and end each mission segment at a specified velocity and altitude while in steady level flight.

Constraint (4.26e) requires the aircraft fly within a velocity threshold for the duration of the

cruise, sensing, and dash segments. The avionic load power is enforced through (4.26h). For

brevity, all other general lower and upper bound constraints are summarized in Tables B.5,

B.7, and B.8.
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Similarly, the CLCD problem is formulated as

minimize tgf (4.27a)

with respect to tb, td, tf , Np, Ns, Rm, kv, P, I, ε, x
e
15,ref , γ

subject to

Equation (4.26b)
}

Powertrain Model (4.27b)

Equation (4.26c)
}

Genset Model (4.27c)

Equation (4.26d)
}

Vehicle Dynamics Model (4.27d)

u1(t) = asat(ũ1(t))
U
L ,

ũ1(t) = uP (t) + uI(t),

e(t) = xe
15,ref (t)− xe

15(t),

uP (t) = Pe(t),

u̇I(t) = Ie(t)aclamp (ũ1(t), e(t))
U
L ,


PI Controller Model (4.27e)

Equation 4.24a

xe
15,s1

∗ = asat (xe
15

∗)
a12+a6−Npā4
a12+a6−Np

¯
a4
,

xe
15,s2

∗ =
1

a5
asat (a5xe

15
∗)

P̄gen

¯
Pgen

,

u2 =
xe
15,s1

∗

K
,


ECMS Controller Model (4.27f)

Equation (4.26e)
}

Mission Velocity (4.27g)

Equation (4.26f)
}

Mission Altitude (4.27h)

Equation (4.26g)
}

Mission Flight Path Angle (4.27i)

Equation (4.26h)
}

Mission Avionic Power (4.27j)

Tables B.5, B.7, and B.8 upper and lower bounds. (4.27k)

For brevity, the plant model and mission constraints are not restated in the CLCD formula-

tion. The key differences between the OLCD and CLCD problems are the control decision

variables and the inclusion of the controller dynamics. Variations of the OLCD and CLCD
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Table 4.2: The free design variables for the hybrid UAV co-design studies from List 4.4.
The SQ design problem is initialized with the optimal plant parameters from the SOL
design problem.

Design

Study

Optimization

Problem

Plant

Decisions

Control

Decisions

Duration

Decisions

BASE (4.27) - - tb,td,tf

SOL (4.26) Np,Ns,Rm,kv u1,u2,γ tb,td,tf

SQ (4.27) - γ,P ,I,ε,xe
15,ref tb,td,tf

SCL (4.27) Np,Ns,Rm,kv γ,P ,I,ε,xe
15,ref tb,td,tf

PCL (4.27) Np,Ns,Rm,kv - tb,td,tf

CCL (4.27) - γ,P ,I,ε,xe
15,ref tb,td,tf

optimizations are solved for the various design scenarios in List 4.4. Table 4.2 lists the design

variables considered in each design scenario.

These optimization problems are built in the python-based optimization packages OpenM-

DAO and Dymos [115,116]. The tools facilitate a modular representation of the optimization

problem through its efficient assembly of total derivatives of coupled subsystems. A key ad-

vantage of these tools is the option to define analytical partial derivatives, which may result

is faster and more robust optimizations when using gradient-based optimizers in contrast to

less efficient finite differencing methods. The optimizations are solved using the sequential

least squares programming (SLSQP) gradient-based optimizer from SciPyOptimize [117].

They are solved on a workstation with an Intel i7 2.90 GHz CPU and 32 GB of RAM. Each

design case is warm-started from the baseline optimization solution.

4.4.2 Convergence Study

The convergence analysis methods introduced in Section 4.2.3 are used to select the number

of discretization steps necessary to solve (4.26) and (4.27). The mission comprises 3 types

of mission phases: constant speed and altitude flight (Case 1), dive (Case 2), and climb

(Case 3). To apply the proposed method, the full optimization is reduced to 3 separate

optimizations that optimize the system over each of the mission phase types. Additionally,
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all design variables are held constant except for the velocity reference and flight path angle.

For the dive and climb optimizations (Cases 2 and 3), the final phase time is also allowed to

vary.

Each optimization case is solved for 10 to 50 discretization steps in 2 node increments. In

Dymos, the number of discretization steps is defined through the num_segments parameter.

The aircraft velocity and fuel mass error statistics are computed using (4.15). These two

states’ statistics are presented because they are critical vehicle states and demonstrated the

largest discretization error amongst all other states. Each case is designed with an average

0.1% accuracy specification.

The aircraft velocity and fuel mass error statistics are presented in Figure 4.13. For

all discretization steps from 10 to 50, the velocity and fuel mass error statistics for Case

1 are below the predesignated 0.1% accuracy specification. Case 1, which represents a

10 20 30 40 50
10-6

10-4

10-2

Case 1 Case 2 Case 3

10 20 30 40 50
10-6

10-4

10-2

10 20 30 40 50
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Figure 4.13: The UAV velocity and fuel mass convergence analysis error statistics used to
evaluate the number of required discretization steps.
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constant velocity and altitude flight condition, does not have significant fast transients, thus

it intuitively requires fewer discretization steps. In contrast, the dive and climb segments

are significantly more transient, thus requiring more discretization steps. In particular,

Figure 4.13 indicates that dive (Case 2) and climb (Case 3) segments require at least 20 and

22 discretization steps, respectively, to meet the accuracy specification. These values are

reported in Table 4.1.

4.4.3 Results

Each design study in List 4.4 is solved using (4.26) and (4.27) with the design variables

in Table 4.2. The quantitative results optimization results are listed in Table 4.3 and the

normalized mission time performance is illustrated in Figure 4.14. Recall that the aircraft

and its controllers are designed to reduce the total mission time. The baseline design com-

pletes the mission in 2,438s, while all other optimized designs complete the mission 5-35%

faster. Intuitively, the simultaneous open-loop (SOL) design offers the greatest improvement

of 35.6% in performance because it can directly choose the optimal open-loop control be-

havior. While high performing, an open-loop control system cannot be put on a physical

Table 4.3: A comparison of the optimal UAV and control design parameters and
performance for each design study.

BASE SOL SQ SCL PCL CCL

Motor Constant [V-s/rad] 0.1238 0.0870 0.0870 0.0926 0.0988 0.1238

Motor Resistance [Ω] 0.0292 0.0158 0.0158 0.0171 0.0186 0.0292

Series Cells [-] 16 20 20 20 20 16

Parallel Cells [-] 7 9.3 9.3 9.8 19.3 7

Equivalence Factor [-] 18.0 - 16.6 16.9 18.0 19.3

P Gain [-] 0.0371 - 0.001 0.001 0.0371 0.0335

I Gain [-] 0.0020 - 0.0065 0.010 0.0020 .0042

GTOW [kg] 50.5 53.7 53.7 54.2 50.5 50.5

Mission Time [s] 2438 1570 1604 1589 1890 2278

Improvement [%] - 35.6 34.2 34.8 22.5 6.60
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Figure 4.14: The optimal mission time for each of the design cases. The times are
normalized against the BASE (baseline) design.

system, so the SOL design serves as the best case benchmark. The sequential optimal design

(SQ) also demonstrates good performance, however, it does perform worse than the simul-

taneous closed-loop optimal design (SCL). This demonstrates that designing the plant and

closed-loop controller at the same time does yield improved system performance. In contrast,

both siloed design approaches (PCL) and (CCL) provide comparatively less improvement in

comparison to the baseline because they do not account for the coupling between plant and

control designs.

Key state and input trajectories are illustrated in Figure 4.15. The velocity and alti-

tude profiles (Figures 4.15a-4.15b) show that each design successfully completes the mission

requirements. The key to completing the mission quickly is to have aggressive dives and

climbs, as illustrated in Figure 4.15c, which shows that the high performing SCL and SQ

designs reach significantly greater flight path angles. While a greater flight path angle is

preferred, it may result in a stall condition if not enough thrust is produced. As such,

the vehicle’s instantaneous thrust-to-weight ratio is illustrated in Figure 4.15d, which shows

that the high performing designs nearly double the maximum thrust-to-weight ratio of the

other designs. To understand the decisions made to increase the thrust-to-weight ratio, in-

vestigate the thrust equation (4.18). Thrust is increased by increasing the propeller speed

a211. By decreasing the motor constant, the motor’s back-emf decreases, allowing the mo-

tor to spin faster at a given terminal voltage. Similarly, decreasing the motor’s resistance

increases the efficiency, thus improving the conversion from electrical to mechanical power.
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However, decreasing the motor resistance increases the motor mass (4.25d), thus decreasing

the thrust-to-weight ratio. Systematically evaluating that trade-off is one of the key merits

of using an optimization-based design approach. According to Table 4.3, the SCL, SQ, and

PCL designs improved the system performance by decreasing both the motor constant and

resistance values.

By increasing the number of series battery cells, the system’s operating voltage increases,

thus increasing the voltage that can be applied to the prop. motor and the resulting prop.

speed. At the expense of increased system mass, all design studies maximized the number

of series battery cells to 20 cells except for the CCL study, which could not change plant

parameters (Table 4.3). However, there is some variance in the choice of number of parallel

battery cells. The SCL and SQ designs select approximately 9-10 parallel cells, while the

PCL design selects 19.3. Increasing the battery voltage increases performance only if the

high battery voltage can be sustained. The PCL design, which can only optimize plant

parameters, can sustain the system voltage by increasing the number of parallel cells at the

expense of additional weight. In contrast, the SCL and SQ designs have additional control

design freedom, allowing those designs to complete the mission faster and therefore require

less battery energy and weight.

The CCL design increases the ECMS equivalence factor to better sustain the system

voltage. While this is a fair comparison because the baseline and CCL designs have the

same battery size, the same direct comparison is improper for the SCL and SQ designs

that have different battery sizes. However, by investigating Figures 4.15e-4.15f, it is clear

that both the SCL and SQ design have charge depleting ECMS designs. Although the PI

control gains do not impact thrust like the other design variables, they do strongly affect the

system’s transient response. By increasing the I gain and decreasing the P gain, the system

response is more aggressive. As a result, the systems are more responsive but with some

oscillatory velocity behavior.

Notably, the SCL and SQ closed-loop controllers behave similarly to SOL open-loop con-

trol action (Figures 4.15g-4.15h). For the ECMS control design, this is not unexpected

because it has been shown that a well tuned ECMS controller can approximate the open-

loop optimal control behavior [111]. Additionally, the SCL and SQ designs are coordinated
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by the autonomous navigation system that commands the aircraft velocity reference as an

open-loop control action. Because the controllers are optimally tuned, they are able to track
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Figure 4.15: Selected optimized trajectories for the hybrid UAV design studies: (a) aircraft
velocity, (b) aircraft altitude, (c) aircraft flight path angle, and (d) aircraft thrust-to-weight
ratio, (e) battery SOC, (f) fuel mass, (g) PI control command, (h) genset command.
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Figure 4.15 (cont.): Selected optimized trajectories for the hybrid UAV design studies: (a)
aircraft velocity, (b) aircraft altitude, (c) aircraft flight path angle, and (d) aircraft
thrust-to-weight ratio, (e) battery SOC, (f) fuel mass, (g) PI control command, (h) genset
command.
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Figure 4.15 (cont.): Selected optimized trajectories for the hybrid UAV design studies: (a)
aircraft velocity, (b) aircraft altitude, (c) aircraft flight path angle, and (d) aircraft
thrust-to-weight ratio, (e) battery SOC, (f) fuel mass, (g) PI control command, (h) genset
command.

the optimal velocity reference trajectory well and perform similarly to the SOL design.

Using the full optimization results, the velocity and fuel mass error statistics are computed

and tabulated in Table 4.4. The average error is approximately 0.1% for each case, which

meets the accuracy criteria defined in Section 4.4.2. Additionally, the computational metrics

for each closed-loop optimization study is provided in Table 4.5. Given the large number

of design variables, constraints, and long computation times, it should be clear that the

proposed convergence analysis is a valuable prepossessing step for this scale of problem that

saves time while quantitatively evaluating the design accuracy.
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Table 4.4: The optimization accuracy error statistics for aircraft velocity and fuel mass
states.

Velocity Error Fuel Mass Error

Mean [%] Std. Dev. [%] Mean [%] Std. Dev. [%]

BASE 0.01 0.03 0.01 0.04

SQ 0.08 0.32 0.09 0.29

SCL 0.02 0.06 0.02 0.11

PCL 0.05 0.47 0.27 1.33

CCL 0.11 0.53 0.12 0.41

Table 4.5: The computation metrics for the closed-loop optimization problems. Note that
the optimizer treats the dynamic states as optimization variables.

SQ SCL PCL CCL

Design Variables 2155 2159 2156 2155

Constraints 3204 3204 3204 3204

Iterations 79 55 46 98

Function Evaluations 98 62 52 196

Gradient Evaluations 79 55 46 98

Solution Time [hr] 5.5 3.8 3.2 6.6

4.5 Conclusion

While electrified aircraft offer a novel suite of impactful capabilities, the inherent complexity

and coupling between subsystems and their controllers makes them difficult to design. Using

traditional sequential design strategies is possible, but results in underperforming designs

inadequate for modern vehicle requirements. Therefore, it is proposed to use co-design

methods to design electrified aircraft

The key contribution of this chapter was the introduction of a generalizable and scalable

CLCD approach that simultaneously optimizes both the plant and closed-loop controller

configuration. While the approach is general, the proposed CLCD problem is introduced

with conventional controllers from the literature to illustrate how feedback controllers are

integrated into the design process. To investigate system-level design, a convergence analysis
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technique was introduced that allows designers to evaluate the tradeoff between optimization

accuracy and computation time. The capabilities and practicality of the proposed approach

was demonstrated through the design of a hybrid UAV and its feedback controllers. In

particular, the design study investigated the design of the vehicle’s battery, propulsion motor,

speed controller, and ECMS controller. The optimization process identified a set of optimal

design parameters that increased the vehicle’s thrust-to-weight ratio and dynamic response

to complete a specified mission in minimum time.

While these results demonstrated improvements in system performance for a single mis-

sion, there is significant uncertainty present in practical applications. Therefore, integrating

formal robustness metrics and constraints into the optimization is necessary to design a

robust plant and closed-loop control design. Additionally, the design process should be

iteratively solved for different profiles to identify a set of plants and controllers that are

best-suited for a range of missions. Monte Carlo is one approach to meet this need, however,

further consideration should be given to more advanced algorithms that scale better to more

complex systems. Chapter 3 demonstrated the need to account for multi-domain coupling

in control design; coupling that should be considered in a co-design process as well. Simi-

larly, a natural extension is to investigate other aspects of the hybrid aircraft design, such

as the airframe or wing, and understand how different objectives and constraints impact the

optimal system design.

The case study presented in this chapter focused on combined sizing and control design

for a standard series hybrid UAV. For this particular system architecture and mission, an

optimal plant and closed-loop control design was identified. However, there are a variety of

UAV architectures such as parallel hybrid, power split, all-electric, etc. that could potentially

perform better. It is also likely that the optimal system design will also change if the mission

requirements are modified. The next chapter will investigate these topics and introduce

methods for mission-specific architecture and closed-loop control co-design.
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Chapter 5

Plant Architecture and Closed-Loop Control Co-Design

5.1 Background

The trend of electrification has enabled the exploration of novel new aircraft system archi-

tectures/topologies with unique capabilities, such as those illustrated in Figure 1.3. While

these novel architectures are diverse with different airframe, propulsion, power, and thermal

management systems, it is challenging to determine which designs are best or appropriate

for a given application because of the numerous design decisions. Therefore, this chapter

will introduce methods to more efficiently parse through the large and complex system-level

design space.

As illustrated in Chapter 1, system level design can be characterized by topology genera-

tion, topology optimization, sizing optimization, and control optimization (Figure 5.1). In

general, design decisions are either continuous, where a decision is made from a continuum

Plant 

Design

D
es

ig
n

 S
p

ac
e

 I
n

cr
ea

seTopology Generation

Topology Optimization

Sizing Optimization

Control 

OptimizationControl 

Design

Co-design

Figure 5.1: Illustration of the plant and control design optimization decisions that
comprise the co-design process. The different design disciplines are sized according to the
relative size of the design space. Modified from [15].
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of options, or discrete, where a decision is made from a discrete number of finite options. An

example of a continuous decision may be the length of a beam that can vary between 1 and

3 meters, while a discrete decision is the choice between either a 1, 2, or 3 meter beam. Dis-

crete design decisions are most often considered when integrating commercial-off-the-shelf

(COTS) parts or discrete actuators (e.g. valves) into the decision-making process.

While many efforts have focused on the plant sizing and control optimization co-design

problem (Table 1.1), fewer studies have focused on integrating architecture optimization into

the design routine. Of these few studies, some have focused explicitly on topology gener-

ation [60–62] while others have focused on topology optimization [16, 18, 63]. Architecture

optimization is particularly challenging because it is an entirely discrete design problem,

often solved using a limited set of tools. To solve these problems for energy system de-

sign, the current state of the art is through an exhaustive search; evaluate the performance

of every design and select the best option. While a valid approach, the increasingly large

topology design space makes it computationally intractable to evaluate the performance of

numerous possible system configurations. In sizing and control design, discrete decisions can

be handled through a relaxation, where the discrete problem is reposed as a continuous one

that can be more efficiently solved with a greater breadth of optimization tools. However, a

relaxation approach has not yet been developed for topology design of energy systems.

Therefore, the key contribution of this chapter is a relaxed representation of the combined

plant architecture and closed-loop co-design problem. The proposed approach is enabled by

the modular and computationally efficient graph-based models (Chapter 2) wherein multi-

ple architectures are encoded into a single model, thus facilitating a continuous search of

the relaxed design space. Similarly, this approach also introduces an architecture-adaptive

feedback controller that is simply reconfigured to rapidly evaluate the performance of any

candidate architecture design. The methods are applied to create a mission-specific air-

craft thermal management design. The proposed case study seeks to address the following

questions:

Which class of system architectures is best suited for a range of missions?

How is a given topology and its controller optimized for any given mission?
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Does relaxing the traditional discrete topology selection problem improve the op-

timization process?

This chapter is outline as follows. Section 5.2 introduces a generic system-level co-design

problem formulation. Section 5.3 establishes the novel relaxed architecture design problem,

a representative graph-based model, optimization methods, and the architecture-adaptive

closed-loop controller. To illustrate the effectiveness of the novel design approach, the meth-

ods are used to design a thermal management system in Section 5.4. The mission-specific

optimization results are outlined in Section 5.5, and Section 5.6 concludes the chapter and

suggests areas for future work.

5.2 The System-Level Co-Design Problem

Chapter 4 introduced a co-design problem formulation (4.2) for combined sizing and closed-

loop control design. This chapter extends that formulation to include architecture/topology

optimization in the decision-making process

minimize J (5.1a)

with respect to ρ, λp, λc

subject to

ẋ = fx (x, a, u, d, λp, ρ) (5.1b)

0 = fa (x, a, u, d, λp, ρ) (5.1c)

k̇ = fk (x, a, k, λp, λc, ρ) , (5.1d)

u = fu (x, a, k, λp, λc, ρ) , (5.1e)

ρ ∈ A (5.1f)

gj (x, a, u, k, λp, λc) ≤ 0, ∀j ∈ [1 : Ng] , (5.1g)

hk (x, a, u, k, λp, λc) = 0∀k ∈ [1 : Nh] , (5.1h)
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where J is the objective function to be minimized, ρ, λp, and λc are the topology, plant,

and control design variables, respectively, x and a are the system dynamic and algebraic

states, respectively, k are the control dynamics, u are the control inputs, d are the sys-

tem disturbances, and A is the feasible topology design space. Note that the model’s time

dependency is implied. The functions fx, fa, fk, and fu are the dynamic plant state, alge-

braic plant state, dynamic controller state, and control input equations, respectively. Thus,

the plant equations are represented by (5.1b)-(5.1c) and the controller equations are repre-

sented by (5.1d)-(5.1e). The constraint functions gj and hk represent inequality and equality

constraints, respectively.

Equation (5.1) has a few differences from (4.2). The plant and controllers equations are

parameterized as a function of the architecture design variables ρ to capture the relationship

between system behavior and topology. While it is reasonable to suggest that only the plant

equations change as a function of the plant topology, it is necessary to consider structural

controller changes as well. Different plants have different control needs, and thus the control

system will also change as a function of the topology design variables. This formulation

also poses the plant equations as a nonlinear DAE system instead of a graph-model. While

a graph-based representation will become useful in Section 5.3.2, this problem definition is

designed for a generic plant and control model. Lastly, constraint (5.1f) guarantees that a

candidate topology design is feasible. The following section will describe the novel methods

used to define and solve this optimization problem for architecture and closed-loop control

design.

5.3 Design Methodology

As illustrated in Figure 5.1, system level design comprises 4 steps: topology generation,

topology optimization, sizing optimization, and control optimization. While sizing opti-

mization is necessary for system level design, those methods were discussed in Chapter 4

and will be omitted here. Therefore, the following sections will describe methods for topology

generation, topology optimization, and control optimization. In particular, the novelty of the

proposed methods is the relaxation of the topology design problem and the formulation of
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an architecture-adaptive feedback control law that enables the application and development

of efficient gradient-based optimization algorithms.

5.3.1 Architecture Generation

The architecture generation problem is primarily focused on identifying and forming the

design space of all unique feasible architectures A, which is described as a unique arrange-

ment/connection of components from a component catalog. Figure 5.2 illustrates 3 unique

hybrid powertrain architectures (series, parallel, power-split) that are generated from a com-

ponent catalog of batteries, engines, clutches, power electronics, and motors. While the illus-

tration only demonstrates architecture design decisions, sizing decisions, like those discussed

in Chapter 4, could be incorporated as well. In the context of energy system design, the ar-

chitecture design problem is discrete (or integer) wherein a candidate design is part of a finite

discrete set of feasible topologies. The discrete problem contrasts continuous design prob-

lems, in which all feasible designs are part of a continuous set. In general, continuous design

problems are easier to solve using an assortment of optimization tools, such as gradient-

Engine Motor/

Generator
Battery

Clutch Inverter Rectifier

(a) Hybrid powertrain component catalog

MotorBattery Inverter

EngineGeneratorRectifier

(b) Series hybrid powertrain

Engine

MotorBattery ClutchInverter

(c) Parallel hybrid powertrain

Engine

MotorBattery ClutchInverter

GeneratorRectifier

(d) Power-split hybrid powertrain

Figure 5.2: A hybrid powertrain component catalog (a) and three unique powertrain
architectures: (b) series hybrid, (c) parallel hybrid, and (d) power-split hybrid.
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based optimization methods. Conversely, discrete design problems are NP-complete [118],

so a feasible solution can be easily verified, but it is challenging to efficiently identify a so-

lution. Because topology design problems are discrete, they are particularly challenging to

solve, a problem that becomes more difficult when the design process considers continuous

sizing and control decisions too. Problems that consider both discrete and continuous design

decisions are often referred to as mixed-integer design problems.

The most common discrete optimization technique is an exhaustive search, where every

unique architecture is evaluated, and the best design is selected. However, exhaustive search

is not scalable and its computational expense limits it practicality. To address this limi-

tation, other discrete optimization methods have been developed that rely on heuristics or

approximations to more efficiently search the discrete design space. While such techniques

work well on some problems, they are not guaranteed to outperform an exhaustive search

(it is NP-complete). Despite the lack of guarantees, there is still interest in using alternative

discrete optimization techniques to more efficiently search the design space.

Many of the alternative discrete optimization techniques, such as branch and bound,

annealing, penalty, or surrogate methods [118–120], use a relaxed representation of the

discrete design space to improve search efficiency. Relaxation is the process by which a

discrete set {1, 2, 3, . . . , N} ⊂ Z is converted into a continuous set [1 : N ] ⊂ R. While it is

possible to relax an integer discrete set, it may be more appropriate to relax a binary discrete

set {0, 1} ⊂ Z where topology variables take on only one of two values: 0 or 1. For topology

optimization of energy systems, it is recommended to use a binary set representation. An

integer set representation is possible, but the ordering of the candidate design architectures

can negatively impact the search of the design space.

The discrete topology design space must be formulated before it can be relaxed into

the continuous topology design space. The following sections describe these processes and

provides a notional example of the proposed methods. Note that the unique contribution of

this section is the formulation of the binary and continuous topology design spaces.
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5.3.1.1 Integer Topology Design Space

Recall that a unique architecture is described by a unique set of connections between a

unique set of components, and the set of all unique architectures is the discrete topology

design space. Unique architectures can be built using either generative [58,59] or exhaustive

[60–62] construction methods. Generative techniques use rules to construct potential system

architectures, while exhaustive techniques enumerate all possible configurations and then

impose rules posteriori to evaluate structural feasibility. As the name suggests, exhaustive

techniques identify all possible system topologies, while generative techniques may not. This

works uses the perfect matching enumeration approach from [60] for architecture generation

because it guarantees a complete representation of the topology design space and is provided

as an open-source tool. It has also been used in other energy system design problems [17]. It

should be clear that the perfect matching approach is not a contribution of this dissertation,

and that an interested reader is referred to [60, 61] for more information. A brief overview

of the approach is described below.

The perfect matching approach is input a component catalog C defined by the list of

components L and a set of structural constraints. Each component can have R replicates

and P ports, where ports are interfaces that connect components. Structural constraints

impose compatibility between components. For example, a propeller could be mounted on

a motor, but not on a battery pack. Operational constraints, such as a topology’s ability

to keep a temperature below a specified threshold, would also be relevant to consider at

this stage. However, evaluating those constraints may be challenging or computationally

expensive at this step in the design process. Conversely, structural constraints can be more

efficient to evaluate.

The perfect matching is input the component catalog and structural constraints, and the

algorithm enumerates every system topology. Very efficient and parallelizable evaluations

of structural constraints allows the algorithm to enumerate millions of possible design ar-

chitectures on the scale of seconds. The approach is based in graph-theory, so efficient

isomorphism checks can evaluate uniqueness of a given topology. The output of the perfect

matching algorithm is a set of adjacency matrices that define the discrete topology design
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space,

A := {A1, A2, . . . , AN} = {Ai | i ∈ {1, 2, 3, . . . , N}} (5.2)

where N is the total number of unique system architectures. In graph theory, the adjacency

matrix A = [aij] ∈ RNc×Nc is a symmetric metric that represents the connectivity between

components in a system,

aij =

1 if component Li is connected to component Lj,

0 else,
(5.3)

where Nc is the number of components in the candidate architecture. The adjacency matrix

for the example shown in Figure 5.3 is

A =



0 1 0 0 0 0

1 0 1 0 0 0

0 1 0 1 1 1

0 0 1 0 0 0

0 0 1 0 0 1

0 0 1 0 1 0


. (5.4)

The discrete design space (5.2) is currently an integer set because a candidate topology

Ai is identified by choosing an integer variable i ∈ {1, 2, 3, . . . , N} ⊂ Z. To relax the design

problem, the integer discrete set must first be converted to a binary discrete set.

2 3 41

5 6

Figure 5.3: A notional graph used to show the construction of an adjacency matrix.
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5.3.1.2 Binary Topology Design Space

To convert the integer design space into a binary space, a similar approach to [121] is

adopted by converting the adjacency matrix to a bitstring representation. Recognize that

each integer topology Ai comprises binary variables 0 or 1. Also, note that Ai is symmetric,

so all the topology information is encoded into only half of the full matrix (upper or lower

triangular half). Without loss of generality, assume that none of the candidate topologies

have components that connect to themselves or have self loops (i.e. the diagonal elements

of Ai are zero: aij = 0 for i = j). Let Pi ∈ RNc(Nc−1)/2 be the column vector of all elements

from the lower triangular partition, excluding the diagonal, of Ai. Therefore, an equivalent

representation for the integer topology design space is

A := {P1,P2, . . . ,PN} = {Pi | i ∈ {1, 2, 3, . . . , N}} . (5.5)

The binary topology design space is formulated by concatenating each candidate topology

vector Pi into a matrix and introducing the binary topology selection variable λ ∈ RN

A :=
{
ρ | ρ =

[
P1 P2 · · · PN

]
λ,

∑
λ = 1, λ ∈ {0, 1}

}
. (5.6)

In this representation ρ ∈ RNc(Nc−1)/2 are the topology variables describing connections

between components and λ is a vector where a single element has value 1 and all other

elements are 0. When λ is selected in this fashion, ρ is also a binary vector that directly

corresponds to one of the topologies Pi.

While (5.2), (5.5), and (5.6) are all equivalent representations of the discrete topology

design space, they uniquely encode the design space as an integer set of adjacency matrices

(5.2), an integer set of topology vectors (5.5), or as a binary set with a topology matrix

(5.6). In (5.2) and (5.5), the design problem has a scalar design variable i that can be any

of N integer values while in (5.6), the design problem has a N -length vector design variable

λ where each element can be a binary value (0 or 1). The binary design space is well suited

for relaxation.
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5.3.1.3 Continuous Topology Design Space

Relaxing the binary set into a continuous set requires removing the binary constraint on λ

Ac :=
{
ρ | ρ =

[
P1 P2 · · · PN

]
λ,

∑
λ = 1, λ ≥ 0

}
, (5.7)

where Ac is the continuous topology design space. This notation is otherwise known as the

vertex representation (V-rep) for convex sets. Note that the only difference between (5.6) and

(5.7) is the constraint on the topology selector variable λ. In the continuous representation,

λ can vary continuously, which results is a continuous set of feasible system topologies ρ.

In the discrete representation, ρ was binary and indicated if components were connected

ρ = 1 or not ρ = 0. In the continuous representation, the continuous ρ can be interpreted

as facilitating a partial connection between components. In the context of optimization, the

optimizer could select intermediate values of ρ to determine the connections that yield the

best performance. Note the following definitions

Definition 5.1 (Continuously feasible). A candidate topology ρ is continuously feasible for

a given λ if ρ ∈ Ac as defined in (5.7).

Definition 5.2 (Discretely feasible). A candidate topology ρ is discretely feasible for a given

λ if ρ ∈ A as defined in (5.6). Note that all discretely feasible topologies are also continuously

feasible A ⊂ Ac.

5.3.1.4 Notional Low-Dimensional Example

The following example is constructed to illustrate how the topology design space is generated.

Consider a component catalog of 3 unique components L1, L2, and L3 without replicates

R = 0 where each component may have up to 2 ports. In this example, the components

are arbitrary and do not represent any physical system. Apply the following structural

constraints:

1. There must exist at least 1 connection between components.

2. No more than 2 connections can be present.
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Figure 5.4: Eight unique system architectures for the example architecture generation
problem. The crosses indicate the designs (a) and (b) are structural infeasible. Each
architecture’s adjacency matrix A and topology variables ρ are provided.

The perfect matching approach enumerates and generates the 8 candidate system topologies,

illustrated in Figure 5.4. However, structural constraints 1 and 2 are applied to reduce the

8 candidate topologies to 6 because architecture 1 (Figure 5.4a) contains zero connections

and architecture 2 (Figure 5.4b) contains 3 connections.

The lower triangular elements of each adjacency matrix are vectorized and the discrete

topology design space is represented as

A = {Pi | i ∈ {3, 4, 5, 6, 7, 8}} =



1

0

0

 ,


0

1

0

 ,


0

0

1

 ,


1

1

0

 ,


1

0

1

 ,


0

1

1


 . (5.8)
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Figure 5.5: A visualization of the 3-dimensional discrete topology design space. The
structurally infeasible architectures are crossed out. The topology at ρ =

[
1 0 1

]T is
shown.

The discrete design space is visualized in Figure 5.5 where each feasible topology is rep-

resented by a single point in a 3-dimensional space, and the structurally infeasible designs

are crossed out. Relax the design space by concatenating the topology design vectors Pi

according to (5.7)

Ac =

ρ | ρ =


1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

λ,
∑

λ = 1, λ ≥ 0

 (5.9)

where any continuously feasible topology is generated through the choice of a valid λ. The

continuous topology design space is visualized as the interior of the convex hull of the discrete

topology design space (Figure 5.6). Three examples of continuously feasible topologies are

visualized in Figure 5.7 where the candidate topologies marked by a ■ and ▲ in the interior

of the topology design space yield partial connections between components represented by

the shaded lines between vertices. Additionally, the candidate topology marked by the ⋆ is

at the vertex of the continuous design space, which indicates a discretely feasible topology.
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Figure 5.6: A visualization of the 3-dimensional continuous topology design space as the
convex hull of the discrete topology design space.
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Figure 5.7: A visualization of 3 topologies in the continuous design space. The topologies
marked by a ■ and ▲ are continuously feasible while ⋆ is discretely feasible.
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5.3.2 Superset Model Generation

If an exhaustive search is used to solve the topology design problem, N unique plant mod-

els could be constructed and optimized. However, the proposed relaxed design approach

requires a single plant that can be continuously varied to reflect the continuous topology

design space. Therefore, this dissertation adopts a superset modeling approach, inspired

from [18], where the dynamics for every continuously feasible topology are captured in a

single monolithic model. Graph-based models, which are modular, are well suited for this

application because the component connections described in Section 5.3.1 are analogous to

component connections in the graph-based modeling framework. Therefore, a single graph-

model containing all feasible components connections can be constructed, and the topology

design variables ρ can be used to activate ρi = 1 or deactivate ρi = 0 the connections to

represent a continuum of system dynamics.

As presented in [91], a system graph model comprises various modular component graph

models that are connected according to a user defined specification. In particular, graph

edges, which capture energy transfer, represent the connection between two energy storage

elements. If two components are not connected, energy cannot be transferred and vice versa.

This is illustrated by the notional example in Figure 5.8 from [91] where the two component

models are connected along edges 3 and 1, respectively, resulting in a system where edge 3

represents the energy transfer between the two components. In the context of continuous

topology design, the existence of edge 3 can vary between ρ ∈ [0, 1] depending on whether

the two component are or are not connected (e.g. grey connections in Figure 5.7). All other

edges in Figure 5.8 are always present because they represent energy transfer internal to the

components and not external connections between components.

A superset graph model captures all possible connections between components, where

each element of the topology design vector ρi is associated with the connection/energy

transfer i between components. The graph-based model equation (2.9) can be augmented

with the topology design variables. Recall that ρ ∈ RNc(Nc−1)/2 where Nc (Nc − 1) /2 is the

total number of component connections and Ne,i is the total number of graph model edges.

Without loss of generality, let edges ej for j ∈ [1 : Nc (Nc − 1) /2] be the edges associated
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Figure 5.8: An example connection between two graph model components into a graph
model system. Components 1 and 2 are connected along edges 3 and 1, respectively,
resulting in a system model where 3 represents the connection edge.

with connections ρi. Similarly, let edges ej for j ∈ [Nc (Nc − 1) /2 + 1 : Ne,i] be all other

edges not associated with component connections. Therefore, the superset graph model is

given byCdẋ

0

 = −

M̄d

M̄a

diag (ρ) 0

0 INe,i−Nnc

P (x, a, xe, u, λp) +

Dd

Da

P e (5.10)

where diag (ρ) is a diagonal matrix of the topology design variables ρ and INe,i−Nnc is the

identify matrix of size Ne,i − Nc. By choice of ρ, the magnitude of the power flows P are

modified, where ρ = 0 implies that the power flow is 0 (i.e. components are not connected)

while ρ = 1 implies full power flow (i.e. components are connected). A superset graph model

is illustrated in the case study problem is Section 5.4.
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5.3.3 Topology Optimization

As illustrated in Figure 5.1, the topologies can be optimized after they are generated and

a model is constructed. An exhaustive search approach could be used to enumerate the

performance of every discrete design. However, an exhaustive method is computationally

expensive and does not scale well to large design problems. To leverage the novel continuous

topology design space representation, a hybrid continuous-discrete search method is proposed

to more efficiently search the discrete topology design space.

Because a hybrid optimization does not necessarily guarantee improved performance over

an exhaustive approach, both optimization strategies are investigated in this dissertation.

The following sections describe the two approaches in more detail.

5.3.3.1 Enumeration

The enumeration approach, which is simple and easy to implement, is commonly applied

to discrete problems. It identifies the optimal topology ρ∗ ∈ A that minimizes an objective

function J

ρ∗ = argmin (J (ρ)) (5.11)

where,

ρ∗ ∈ A

The discrete topology design space A is defined in (5.2), (5.5), or (5.6). In the enumeration

algorithm, the integer representation (5.5) is used. The algorithm is as follows:

Enumeration Algorithm

1. Given: N candidate topologies ρi ∈ A

2. For each candidate topology, evaluate the optimal objective function value Ji (ρi).

3. Return: ρ = argmin (J (ρ))
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The exhaustive approach efficiently uses parallel processing techniques. However, for very

large problems, the computational impact of parallel processing may be negligible.

5.3.3.2 Distance-Sorted Search

The distance-sorted search algorithm is a hybrid algorithm that solves the continuous topol-

ogy design problem to formulate a distance metric that represents the relative expected

performance of the discrete topologies. Then an exhaustive search is conducted that starts

by evaluating the true performance of the highest ranked topology and sequentially evalu-

ating the remaining topologies until a stopping condition is met. The continuous topology

problem identifies the optimal continuous topology ρ∗c ∈ Ac that minimizes an objective

function J

ρ∗c = argmin (J (ρc)) (5.12)

where,

ρc ∈ Ac

Various distance metrics can be applied. In this work, the distance metric is the Euclidean

distance between the optimal continuous topology ρ∗c and each discretely feasible topology,

ρi ∈ A

Di = ∥ρ∗c − ρi∥22 , (5.13)

where D ∈ RN is the distance metric vector. Sort D from smallest to largest and let R ∈ RN

be the ranked index of each design. For example, suppose that design i = 627 has the 10th

smallest distance. Then R10 = 627. Then apply the exhaustive search algorithm, starting

with R1 and sequentially evaluating topologies Ri for i ∈ [1 : N ]. The algorithm is as follows:

Distance-Sorted Search Algorithm

1. Given: N candidate topologies ρi ∈ A

2. Evaluate the optimal objective function value J (ρc) for ρc ∈ Ac.
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3. If: the optimal continuous design is discretely feasible ρ∗c = argmin (J (ρ)) ∈ A, then

Return: ρ∗c = argmin (J (ρ))

Else If: ρ∗c = argmin (J (ρ)) meets a stopping criterion, then

Return: ρ∗c = argmin (J (ρ))

4. Compute the distance metric D and ranked index vector R

5. For each: i ∈ [1 : N ]

For each: candidate topology ρRi
, evaluate the optimal objective function value

Ji (ρRi
)

6. If: the stopping criterion is met

Return: ρRi
= argmin (J (ρ))

Multiple stopping criterion can be used. For example, if the evaluated cost function is less

than a desired threshold J (ρ) < Jdesired (or ∆J ≤ ε), then the algorithm can be stopped.

An alternative approach could be to limit the number of searches Nsearch < N . It is also

common to stop the search if the current best design has not been improved upon over the

last N searches. Note that while the distance-sorted search can be solved sequentially, it is

recommended to parallelize the search process.

5.3.4 Control Optimization

In most applications, a feedback controller is designed for a specific system, whereas in a

co-design approach, the controller is designed at the same time as the system. However,

when architecture considerations are integrated into the co-design process, challenges arise

because a general controller needs to be developed for a general class of systems instead of

just the singular system. Thus, an architecture adaptive control strategy is developed.

In a discrete topology design problem, a unique controller could be synthesized for each

discrete topology. However, the proposed continuous topology design problem requires that

a controller be synthesized for any of a continuum of continuously feasible architectures.

Similar to the superset modeling method, a monolithic control design approach is adopted
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where a single controller, parameterized as a function of the topology design variables ρ, is

synthesized to operate over a continuum of topologies. It also enables the use of efficient

gradient-based optimizers because sensitivity information can be computed to understand

the impact the topology variables have on the control design.

An architecture adaptive linear quadratic regulator (AALQR) approach is proposed to

meet this need. LQR is a common optimal feedback control approach for linear time-

invariant systems. Notably, an LQR controller can be efficiently synthesized and is con-

sequently well-suited for integration into a co-design problem [65, 66, 68–71]. While LQR

is used in this work, other similar feedback control approaches could be explored as well.

The novelty of the proposed AALQR is the sensitivity computations that can be used by a

gradient-based optimizer to evaluate the impact of the topology design variables on the con-

trol design, and thus the closed-loop system performance. Additionally, systems commonly

have input constraints, so an input constrained variation of the AALQR is also presented.

The following sections provide a brief review of the LQR problem and its extension to non-

linear systems and the AALQR formulation with input constraints.

5.3.4.1 Linear Quadratic Regulator

The infinite horizon LQR is an optimal control strategy for unconstrained linear time-

invariant systems. The infinite horizon LQR problem is commonly posed as

minimize J (u) =

∫ ∞

0

(
xTQx+ uTRu

)
dt (5.14a)

with respect to u

subject to

ẋ = Ax+Bu (5.14b)

where J is the quadratic cost function, A ∈ RNx×Nx and B ∈ RNx×Nu are the linear state

space matrices, Q ∈ RNx×Nx is a symmetric positive semi-definite state weight matrix,

and R ∈ RNu×Nu is a symmetric positive definite input weight matrix. Equation (5.14b)

is the linear time-invariant system dynamics where (A,B) are stabilizable and (A,C) are
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observable. The solution to (5.14) is the unique optimal feedback control law

u = −R−1BTPx, (5.15)

where P is the unique symmetric positive semi-definite solution to the Algebraic Riccati

Equation (ARE)

0 = PA+ ATP +Q− PBR−1BTP. (5.16)

Often, the optimal control law is written as

u = −Kx, (5.17a)

where,

K = R−1BTP. (5.17b)

While LQR techniques are developed for efficient and optimal control synthesis for linear

time-invariant systems, they can also be applied to nonlinear systems, though the control

solution is no longer globally optimal. Consider a general nonlinear state-space form model.

ẋ = f (x, u, d) , (5.18)

where x is the system state, u is the input, and d are the disturbances. Linearizing (5.18)

about an equilibrium condition
(
x̄, ū, d̄

)
yields a linear state space model (excluding distur-

bances)

∆ẋ = A∆x+B∆u, (5.19)

where,

∆x = x− x̄,

∆u = u− ū.

With a system in the form (5.19), the standard LQR synthesis techniques can be applied.

When applying the optimal linear control solution to the nonlinear system, the control action
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Figure 5.9: The feedback block diagram for an LQR applied to a nonlinear system.

is modified to

u = −K (x− x̄) + ū, (5.20)

where the matrix K is computed as described in (5.17). The general LQR feedback control

system diagram is illustrated in Figure 5.9.

5.3.4.2 Architecture-Adaptive LQR

As introduced in Section 5.3.2, the system model may be a function of the system topology

variables

ẋ = f (x, u, d, ρ) , (5.21a)

or,

ẋ = A (ρ) x+B (ρ) u (5.21b)

Therefore, the LQR problem can be reposed as the AALQR problem

minimize J (u) =

∫ ∞

0

(
xTQx+ uTRu

)
dt (5.22a)

with respect to u

subject to

ẋ = A (ρ) x+B (ρ) u (5.22b)
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with the corresponding optimal control solution

u = −K (ρ) x, (5.23a)

where,

K (ρ) = R−1B (ρ)T P (ρ) , (5.23b)

0 = P (ρ)A (ρ) + A (ρ)T P (ρ) +Q− P (ρ)B (ρ)R−1B (ρ)T P (ρ) (5.23c)

The optimal feedback control gain K (ρ) is a function of the system topology. The AALQR

synthesis technique is a reparameterization of the traditional LQR synthesis approach to be

a function of the system topology. Notably, this technique can be applied to a continuum of

systems, therefore, it is possible to compute the sensitivity of the feedback control gain with

respect to the topology variables ∂K(ρ)
∂ρ

. In the context of co-design, the sensitivity of the

feedback control gain with respect to the LQR state and input weights ∂K(Q)
∂ρ

and ∂K(R)
∂ρ

can

also be computed. As previously mentioned, this parameterization is particularly important

for gradient-based optimization to facilitate a more efficient search of the feasible design

space. Because these sensitivity evaluations require knowledge of matrix calculus and are

lengthy, the computations are provided in Appendix C.

5.3.4.3 Input Constrained AALQR

While LQR identifies an optimal feedback control law, it does not explicitly handle input

constraints that may be present in real systems, such as in the case study presented in
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Section 5.4. To account for input constraints, the revised AALQR problem is

minimize J (u) =

∫ ∞

0

(
xTQx+ uTRu

)
dt (5.24a)

with respect to u

subject to

ẋ = A (ρ) x+B (ρ) u, (5.24b)

¯
u ≤ u ≤ ū, (5.24c)

M (ρ) u = 0 (5.24d)

where
¯
u and ū are lower and upper input constraints, respectively, and M (ρ) ∈ Rm×Nu is the

linear equality constraint matrix that may change as a function of the system topology. Note

that m < Nu. Constraints (5.24c) and (5.24d) are input inequality and equality constraints,

respectively. Unlike the LQR and AALQR problems, there does not exist an explicit solution

to (5.24). However, (5.24) can be simplified to approximate the optimal control solution.

The equality constraints are eliminated using the process outline in Section 10.1.2 in [122].

To eliminate the equality constraints, identify a matrix F (ρ) ∈ RNu×(Nu−m) whose range in

the nullspace of M (ρ) (i.e. F (ρ) = null (M (ρ)) such that

{u | M (ρ) u = 0} =
{
F (ρ) z + û | z ∈ RNu−m

}
(5.25)

where û is any particular solution to M (ρ) u = 0. From (5.25) with û = 0, recognize that

u = F (ρ) z. (5.26)
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The equality constraint is eliminated by substituting (5.26) into (5.24)

minimize J (z) =

∫ ∞

0

(
xTQx+ zT R̄ (ρ) z

)
dt (5.27a)

with respect to z

subject to

ẋ = A (ρ) x+ B̄ (ρ) z, (5.27b)

¯
z ≤ z ≤ z̄, (5.27c)

where,

R̄ (ρ) = F (ρ)T RF (ρ) ,

B̄ (ρ) = B (ρ)F (ρ) ,

By eliminating the input equality constraints, the LQR problem is now a function of the

intermediate control variable z. Note that (5.24) and(5.27) are equivalent problems. To

eliminate the input inequality constraints (5.27c), saturate the optimal control action after

the optimal control solution is synthesized. Therefore, the solution to the input constrained

LQR problem (5.24) is

u = F (ρ) sat (−K (ρ) x)z̄

¯
z , (5.28a)

where,

K (ρ) = R̄ (ρ)−1 B̄ (ρ)T P (ρ) , (5.28b)

0 = P (ρ)A (ρ) + A (ρ)T P (ρ) +Q− P (ρ) B̄ (ρ) R̄ (ρ)−1 B̄ (ρ)T P (ρ) (5.28c)

While this technique was applied to a linear time-invariant system, it can also be extended

to nonlinear systems using the process provided in Section 5.3.4.1.

5.4 Thermal Management System Design Case Study

Growing interesting in electrified aircraft is supported by various performance, ecological,

and economic benefits [4]. However, thermal management remains a key challenge that in-
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hibits widespread development and adoption of electrified vehicles. Inherent inefficiencies

in the novel electrical systems are manifested as heat that, if not managed, could result in

degraded performance, damaged components, or complete system failures. This heat gen-

eration is particularly important to consider for pulsed electrical components that generate

significant thermal loads [47, 97, 98]. To address this reliability challenge, electrified power

systems are equipped with a thermal management system to regulate system temperatures.

These novel electrified power systems require novel thermal management system designs.

Traditional design methods for worst-case operation are no longer suitable for the increasing

power and thermal requirements for electrified aircraft [123]. The proposed plant topology

and closed-loop control co-design techniques can be used to explore the design space of novel

thermal management systems.

The following sections will demonstrate how the novel techniques introduced in Section

5.3 are applied to a relatively simple thermal management system design problem. The case

study investigates a mission-specific TMS design where the optimal thermal management

system design changes as a function of varying power and energy requirements. The results

will highlight a class of system designs well suited for a variety of applications, generate

design insights, and evaluate the performance of the distance-sorted search optimization

approach.

5.4.1 Thermal Management System Architecture Generation

As introduced in Section 5.3.1, the architecture generation problem requires a catalog of

components and a set of structural constraints to define the topology design space. The

component catalog for TMS design is illustrated in Figure 5.10 and comprises a heat sink,

one heat exchanger, and four unique cold plates. The heat sink comprises a heat exchanger

that can reject absorb heat to a chiller and a tank for bulk thermal energy storage. The single

heat exchanger is used to develop multiple fluids loops. Each of the four cold plates will have

unique heat loads and temperature constraints to represent different thermal requirements

for different electrical equipment. This catalog was selected because it produces a thermal

management system design suitable for a small UAV powertrain like the system introduced
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in Chapter 4.

To facilitate the architecture design problem, the structure of feasible topologies are rep-

resented as labeled rooted trees, as introduced in [16]. In graph theory, a rooted tree is an

undirected graph where a simple path connects any pair of vertices. In the context of TMS

design, the connections between components are represented by tubes in which fluid flows

to transfer energy. However, note that rooted trees do not contain any cycles, meaning that

they can not inherently represent fluid loops present in TMS design. To address this limi-

tation, a post-processing modification is applied to the generated tree structures to connect

a tree’s leaves (a vertex with only one connection) to the root, thus representing a closed

fluid loop. An example of a tree and its closed loop representation is illustrated in Figure

5.11. In the TMS design problem, the heat sink is treated as the tree’s primary root, and

the secondary side of the heat exchanger is treated as a secondary root. When creating

the closed-loop rooted tree TMS, the leaves are connected to their nearest parent root. To

facilitate using the perfect matching architecture generation algorithm, the heat exchanger

is treated as two separate components: a primary and secondary side. This separation im-

proves the scalability of the approach to a catalog with more components. The structural

constraints imposed for the perfect matching enumeration process are as follows:

1. Simple Graph: The topologies can not contain any multi-edges (two connections be-

tween the same components) or loops (a component is connected to itself).

2. Connected: The topologies must be connected; there exists a path from each compo-

nent to any other component.

Heat Sink

Cold Plate 1 Cold Plate 2

Cold Plate 3 Cold Plate 4

Heat Exchanger 

Primary Side

Heat Exchanger 

Secondary SideTo/From 

Chiller

To/From 

Chiller

Figure 5.10: The TMS design problem component catalog consisting of a heat sink, a heat
exchanger, and 4 cold plates.
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Figure 5.11: An example of a rooted tree (left) and its corresponding closed-loop
representation (right).

3. No Loops: There cannot be a path that starts and ends at the same vertex.

4. Tree Condition: A candidate topology is a tree if Np = 2(Nc − 1) where Np is the

number of ports in the topology and Nc is the number of components.

5. Heat Exchanger Side Constraint: The primary and secondary sides of the heat ex-

changer must be connected. This is necessary because each side of the heat exchanger

is treated as two separate components.

6. Load Placement: There must exist at least one path between any cold plate and the

heat sink that does not pass through the secondary side of the heat exchanger. There

must also exist at least one path between any cold plate and the secondary side of the

heat exchanger that does not pass through the primary side of the heat exchanger. In

other words, all candidate topologies will have at least two fluid loops and there must

exist at least one cold plate in each loop (See Figure D.1 for examples).

By applying these constraints, 682 feasible system topologies are identified. As previously

mentioned, each topology represented as a rooted tree is post-processed to convert the trees
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Figure 5.12: An example of two TMS architectures in the same class. They differ by cold
plate connections.

into closed loop systems (Figure 5.11). Illustrating all 682 system would be complex, but

they can be categorized into 37 unique topology classes. All architectures within a class

have the same structure, but differ in the cold plate arrangement. All architecture classes

are illustrated in Figure D.1. An example of two unique architectures in the same class is

depicted in Figure 5.12. The relationship between the rooted tree representation and TMS

schematic is shown in Figure 5.13.

The perfect matching algorithm outputs the adjacency matrix information for each topol-

ogy that is used to define both the discrete and continuous topology design spaces A and Ac,

respectively, using the methods from Section 5.3.1. The superset system model is formed

using the topology design space.
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(a) Rooted tree representation

To/From 

Chiller

To/From 

Chiller

(b) TMS representation

Figure 5.13: An example relating a (a) rooted tree topology representation to its (b) TMS
schematic representation.
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5.4.2 Graph-Based Thermal Management System Model

The TMS component catalog comprises a heat sink, a heat exchanger, and four cold plates,

so the superset graph-based system model comprises heat sink, heat exchanger, and cold

plate component graph-based models [53]. Using the set of all discretely feasible topologies,

the superset system schematic and system graph-based model are generated (Figure 5.14).

Because the superset system approach captures every possible system architecture in a single

monolithic model, the schematic and model are complex with numerous connections between

components and graph vertices. Note that only a subset of all the connections are present in

a discretely feasible architecture, as seen in Figure 5.13b. The graph-based model’s vertex,

edge, input, and parameter information is provided in the Appendix (Tables B.9-B.12). The

model dynamics are provided in the general form (5.10).

To/From 

Chiller

To/From 

Chiller

Heat Sink

Cold Plate 1
Cold Plate 2

Cold Plate 3
Cold Plate 4

Heat

Exchanger

(a) Superset TMS schematic

Figure 5.14: The superset TMS (a) schematic and (b) graph-based model.
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(b) Superset TMS graph-based model

Figure 5.14 (cont.): The superset TMS (a) schematic and (b) graph-based model.

5.4.3 Control Design

The thermal management system is controlled by varying the mass flow rates through the

fluid loops via an input constrained AALQR as introduced in Section 5.3.4. There are 2

key considerations when synthesizing the controller. First, the thermal management system

has nonlinear dynamics (bilinear to be precise), so the system needs to be linearized about

an equilibrium condition before the controller can be synthesized. Second, the system must

respect conservation of mass and flow limit constraints (i.e. input constraints). The remain-

der of this section will describe the methods to identify the system’s equilibrium, linearize

the dynamics, and synthesize an input-constrained AALQR.

Every system architecture has a unique steady-state operating condition, so the system’s

equilibrium point will be a function of the topology variables ρ. To identify the general

form equilibrium point, choose a set of nominal input, disturbance, and parameter values(
û, x̂e, P̂ e, λ̂p

)
and substitute those values into (5.10). Because the thermal management
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system has bilinear dynamics, the resulting system will be in the formCdẋ

0

 = Aeq (ρ) x̃+Beq (ρ) , (5.29)

where,

x̃ =

x
a

 .

Let xeq =

x̂
â

 be the equilibrium solution to (5.29) when ẋ = 0. The equilibrium is

computed via a matrix inverse

xeq (ρ) = −A−1
eq (ρ)Beq (ρ) . (5.30)

Therefore, the equilibrium point for any topology is
(
x̂, â, û, x̂e, P̂ e, λ̂p

)
.

The linearization methods introduced in Section 2.4 are applied to linearize the full non-

linear system dynamics (5.10) about the identified equilibrium condition, with the addition

that the linear system dynamics are a function of the topology design variables ρ. The linear

system dynamics are

∆ẋ = A (ρ)∆x+B (ρ)∆u, (5.31)

where,

∆x = x− x̂,

∆u = u− û.

This model assumes operation at the nominal disturbance and parameter values (i.e. xe −

x̂e = 0, P e − P̂ e = 0, and λ− λ̂ = 0).

An input constrained AALQR is synthesized for the nominal system. The controller

synthesis is subjected to a flow conservation equality constraint M (ρ) u = 0 that guarantees,

at any instant, the same amount of fluid both enters and leaves the component. This
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is suitable for the type of incompressible flow utilized in the class single-phase thermal

management systems depicted in Figure 5.14. The flow conservation constraint for every

flow junction is

Mj (ρ) u = 0 =
∑

ui∈U in
j

ρiui −
∑

ui∈Uout
j

ρiui, (5.32)

where U in
j is the set of all mass flow rates directed into the junction j and U out

j is the set

of all mass flow rates directed out of the junction j. As presented in Section 5.3.4.3, the

equality constraint is eliminated by finding the nullspace of the flow conservation constraint

F (ρ) = null (M (ρ)). The nullspace can be computed using null() in MATLAB or by putting

M (ρ) in reduced row echelon form. For the flow conservation constraint, the nullspace has

a physical meaning.

Every flow conservation constraint (5.32) may be dependent on up to Nm unique flow

rates. Of the Nm flow rates, Nm − 1 flow rates may be freely selected while the last flow

rate is entirely dependent on the other Nm − 1 flow rates. An example is provided for the

case where Nm = 3. In (5.33a), the flow conservation constraint is written in the form

(5.32), whereas (5.33b) illustrates the solved flow conservation constraint that is represented

by the nullspace in which u3 is dependent on the choice of u1 and u2. In this sense, some

flow rates are independent while other flow rates are dependent. The independent flow rates

are directly selected by the synthesized controller, and then the dependent flow rates are

computed from the control solution. Note that there may be various representation for the

nullspace and any will yield a valid solution.

0 = ρ1u1 + ρ2u2 − ρ3u3 (5.33a)

u3 =
1

ρ3
(ρ1u1 + ρ2u2) (5.33b)

In addition to the equality constraints, the controller is subjected to lower and upper

flow bounds imposed as inequality constraints. If the lower and upper flow limits for the

nonlinear system are
¯
u and ū, then the lower and upper flow limits for the linearized system

are ∆
¯
u =

¯
u− û and ∆ū = ū− û, respectively. Consequently, for the system with eliminated

flow constraints,
¯
z and z̄ are the elements of ∆

¯
u and ∆ū, respectively, that correspond to the
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Figure 5.15: The block diagram for the input constrained AALQR for TMS design.

independent flow rates. The lower and upper bound flow constraints are imposed through

the approximate saturation function (4.4).

The complete controller synthesis equations that are encoded into the co-design problem

are summarized below, and the feedback control system is illustrated in Figure 5.15. The

controller synthesis requires a candidate ρ, LQR weight matrices Q and R, and nominal

input, disturbance and parameter information û, x̂e, P̂ e, and λ̂.x̂
â

 = −A−1
eq (ρ)Beq (ρ) , (5.34a)

F (ρ) = null (M (ρ)) , (5.34b)

0 = P (ρ)A (ρ) + A (ρ)T P (ρ) +Q− P (ρ) B̄ (ρ) R̄ (ρ)−1 B̄ (ρ)T P (ρ) (5.34c)

K = R̄ (ρ)−1 B̄ (ρ)T P (ρ) , (5.34d)

u = F (ρ) asat (−K (ρ) (x− x̂))z̄

¯
z + û, (5.34e)

where,

R̄ (ρ) = F (ρ)T RF (ρ) ,

B̄ (ρ) = B (ρ)F (ρ)

Recall that A (ρ) and B (ρ) are computed by linearizing the system dynamics about the

equilibrium condition.

5.4.4 Co-Design Optimization Problem

The proposed methods are used to understand the impact different mission requirements

have on the design and control of a thermal management system. In this study, each mission
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comprises four unique pulsed heat loads that are applied to each of the four TMS cold

plates (Figure 5.16a). Each heat load has a nominal power level Pnom engaged for 165s,

a pulsed power level Ppulse engaged for a variable amount of time tpulse, and 30s transient

ramp segments in between. To explore how the system architecture and control behavior

changes as a function of mission, an optimal vehicle will be designed for 25 different power

and energy requirements (Figure 5.16b). The total power P and total energy E for each

mission is computed as

P =
4∑

i=1

Ppulse,i, (5.35a)

E = tpulse

4∑
i=1

Ppulse,i, (5.35b)

where Ppulse,i is the pulse power of heat load i. To vary the mission power and energy

requirements, the magnitude and length of the pulse loads are changed. Table 5.1 provides

the pulse power and length of each of the 25 missions illustrated in Figure 5.16b. Mission 13

is considered the nominal mission. Note that each mission has the same Pnom. Those values

are Pnom,1 = 600W , Pnom,2 = 400W , Pnom,3 = 700W , and Pnom,4 = 300W .
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(a) Example profile for a single heat load pulse (left) and the full mission profile for all 4 cold
plates for mission 13.

270 405 540 675 810

1800

2700

3600

4500

5400

(b) Grid of 25 thermal energy and power requirements

Figure 5.16: An illustration of (a) The cold plates’ pulse heat loads. (b) The 25 different
thermal power and energy mission requirements for the TMS design study.
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Table 5.1: Pulse heat load power and energy information for each cold plate and mission as
described in Figure 5.16b.

Mission
tpulse

[s]

CP 1

[W]

CP 2

[W]

CP 3

[W]

CP 4

[W]

Total Power

[W]

Total Energy

[kJ]

1 150 200 750 350 500 1800 270

2 225 200 750 350 500 1800 405

3 300 200 750 350 500 1800 540

4 375 200 750 350 500 1800 675

5 450 200 750 350 500 1800 810

6 100 300 1125 525 750 2700 270

7 150 300 1125 525 750 2700 405

8 200 300 1125 525 750 2700 540

9 250 300 1125 525 750 2700 675

10 300 300 1125 525 750 2700 810

11 75 400 1500 700 1000 3600 270

12 112.5 400 1500 700 1000 3600 405

13 150 400 1500 700 1000 3600 540

14 187.5 400 1500 700 1000 3600 675

15 225 400 1500 700 1000 3600 810

16 60 500 1875 875 1250 4500 270

17 90 500 1875 875 1250 4500 405

18 120 500 1875 875 1250 4500 540

19 150 500 1875 875 1250 4500 675

20 180 500 1875 875 1250 4500 810

21 50 600 2250 1050 1500 5400 270

22 75 600 2250 1050 1500 5400 405

23 100 600 2250 1050 1500 5400 540

24 125 600 2250 1050 1500 5400 675

25 150 600 2250 1050 1500 5400 810
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For each mission, the optimal system design is characterized by the choice of topology ρ

and LQR matrix weights Q and R. The optimal set of plant and control parameters are

identified through the solution of the following plant architecture and closed-loop control

co-design optimization problems. Problem (5.36) is the discrete variation, while (5.37) is the

continuous variation.

minimize
∫ tf

0

∥u∥2ρ dt (5.36a)

with respect to λ,Q,R

subject to

ρ = Pλ,∑
λ = 1,

λ ∈ {0, 1} ,

Discretely Feasible Topology (5.36b)

Equation (5.34)
}

Input Constrained AALQR Synthesis (5.36c)

Equation (5.10)
}

Superset Graph Model (5.36d)

10−2 ≤ Q ≤ 102

102 ≤ R ≤ 106

LQR Weight Limits (5.36e)

Upper and lower bound constraints from Tables B.9 and B.11. (5.36f)

minimize
∫ tf

0

∥u∥2ρ dt (5.37a)

with respect to λ,Q,R

subject to

ρ = Pλ,∑
λ = 1,

λ ≥ 0,

Continuous Feasible Topology (5.37b)
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Equation (5.34)
}

Input Constrained AALQR Synthesis (5.37c)

Equation (5.10)
}

Superset Graph Model (5.37d)

10−2 ≤ Q ≤ 102

102 ≤ R ≤ 106

LQR Weight Limits (5.37e)

Upper and lower bound constraints from Tables B.9 and B.11. (5.37f)

where ∥u∥2ρ = uTdiag (ρ) u and P =
[
P1 P2 · · · P682

]
as described in Section 5.3.1.

As described in Section 5.3.3, the TMS design problem will be solved using two methods.

First, the exhaustive search method is applied (Section 5.3.3.1) by optimizing (5.36) each of

the 682 feasible TMS topologies. Second, the distance sorted search method is used (Section

5.3.3.2) by first solving (5.37) and then searching different architectures based on the optimal

continuous results. By solving the problem 2 ways, the relative performance between the

two optimization strategies can be compared. Note that the distance-sorted search will not

repeat the optimizations completed for the exhaustive search. In total, 17,075 optimizations

will be solved for this design study: 683 solutions (682 discrete and 1 continuous) for each

of the 25 power and energy requirements.

These optimization problems are built in the python-based optimization packages Open-

MDAO and Dymos [115, 116] and solved using the sequential least squares programming

(SLSQP) gradient-based optimizer from SciPyOptimize [117]. It is solved on a workstation

with an AMD Threadripper 3990X 2.90 GHz 64 Core CPU and 256 GB of RAM. Each

design case is warm-started using the nominal Q and R gain values (Table B.12).

The following mission-specific design analysis will investigate the optimal design for each

mission scenario, determine if a class of architectures is best suited for a class of mission,

investigate the optimized closed-loop system trajectories, and evaluate the effectiveness of

the distance-sorted search.
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5.5 Results

The combined architecture and control optimization results are analyzed to answer the

following questions:

Which class of system architectures is best suited for a range of missions?

How is a given topology and its controller optimized for any given mission?

Does relaxing the traditional discrete topology selection problem improve the op-

timization process? Can it find a system that is suitable faster?

These questions are answered through a mission-level, system-level, and optimization routine

analyses.

5.5.1 Mission-Level Analysis

The optimal TMS system topology and controller is identified through both the exhaustive

and distance-sorted search methods for each of the missions described by Figure 5.16b.

Figure 5.17a illustrates the optimal architecture design for each of the 25 missions. Notably,

missions 22 through 25, which had the highest power requirements, had no feasible solutions,

thus the missions could not be completed while respecting constraints using this class of

thermal management systems. Otherwise, architectures 165, 167, 242, 244, 588, and 590

were the optimal solutions for the other 21 feasible missions (Figure 5.18). There is sparsity

in optimal design architectures in Figure 5.17a where architecture 165 is optimal for mission

4 but not for any of the similar missions 3, 5, 8, 9, or 10. Note that these are non-convex

optimizations that may have local minima with many similarly performing designs.

Therefore, Figure 5.17b re-illustrates the result from Figure 5.17a where the optimal

topologies (Figure 5.18) are sorted by general structure. Figure 5.17b shows that all op-

timal topologies from missions 1-18 (Archs. 165, 167, 242, and 244) have two single flow

paths; one that flows through the tank and another that flows through the secondary side

of the heat exchanger. These designs will be referred to as P1S1 for 1 primary flow path
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(a) Optimal architecture for each of the 25 missions
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(b) Optimal architecture for each of the 25 missions, categorized by the number of flow paths

Figure 5.17: (a) The optimal TMS architectures categorized by (b) number of flow paths.
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(a) Architecture 165 (left) rooted tree and (right) TMS representation

To/From 

Chiller

To/From 

Chiller

CP 1

CP 3 CP 2 CP 4

(b) Architecture 167 (left) rooted tree and (right) TMS representation
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(c) Architecture 242 (left) rooted tree and (right) TMS representation

Figure 5.18: The rooted tree and TMS schematic representation for the optimal TMS
designs from Figure 5.17a for Architectures (a) 165, (b) 167, (c) 242, (d) 244, (e) 588, and
(f) 590.
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(e) Architecture 588 (left) rooted tree and (right) TMS representation
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(f) Architecture 590 (left) rooted tree and (right) TMS representation

Figure 5.18 (cont.): The rooted tree and TMS schematic representation for the optimal
TMS designs from Figure 5.17a for architectures (a) 165, (b) 167, (c) 242, (d) 244, (e) 588,
and (f) 590.
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Table 5.2: The number of systems with 1 or 2 primary flow paths for the best 7 designs for
each mission. P1S1-1 primary and 1 secondary flow path. P2S1-2 primary and 1 secondary
flow path.

Missions P1S1 P2S1

1-17 7 0

18 2 5

19-20 1 6

21 0 7

through the tank and 1 secondary flow path through the secondary side of the heat ex-

changer. The P1S1 class of system architectures contrasts the P2S1 designs illustrated by

architectures 588 and 590 where 2 flow paths are present in the primary fluid loop containing

the tank. Figure 5.17b illustrates that as the thermal power and energy mission requirements

increase, the number of primary flow paths increases so that fresh coolant can be supplied

to the hottest cold plates.

Because these optimization problems are non-convex, the structure of the best 1% of

designs are investigated for each mission (∼ 7 architectures per mission). This set of designs

is defined as near optimal and includes the single optimal design and the 6 next best designs.

In total, there is a set of 21 unique, near optimal system architectures spanning the 21 feasible

missions (Figure D.2). For each mission, Table 5.2 categorizes the best 1% of designs by

flow structure (either P1S1 or P2S1). For the lower power and energy missions 1-17, all near

optimal designs are single primary flow path configurations (P1S1). However, as the energy

and power requirements increase, more dual primary flow path configurations (P2S1) are

included in the set of near optimal designs because including more flow paths allows fresh

coolant to be supplied to cold plates, thus allowing the system to continue operating within

its thermal constraints.

The multi-flow path systems will require more pumping energy and therefore perform

worse than their single flow path counterparts. However, the performance degradation is at

the benefit of increased reliability because the multi-flow path systems are better-suited to

respect constraints under high thermal load. Figure 5.19 shows the variation in pumping
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Figure 5.19: The pumping energy (optimization objective) requirement for the optimal
system design for each mission.

energy requirements (5.37a) across the 25 missions for the optimal designs in Figure 5.17a.

The low power and energy missions use less pumping energy than the more challenging

missions because the low degree of thermal loading requires less fluid movement to reject

heat from the system. Note that as the thermal energy requirements increase, so does the

pumping energy requirements because the pumps have to operate for a longer time duration.

The P2S1 designs (missions 19-21) use more pumping energy than the P1S1 designs (missions

1-18).

Notably, there are zero system designs that satisfy the requirements and constraints for

missions 22-25. As Figure 5.20 illustrates, there also exist a range of infeasible designs for

all 25 missions. Almost the entire design space is feasible for the missions with the lowest

power and energy requirements (bottom left corner of Figure 5.20). However, as energy

and power levels increase and the missions become more challenging, the number of system

configurations that satisfy both the mission requirements and constraints decreases. In
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Figure 5.20: The number of dynamically feasible TMS architectures for each mission.
There are at most 682 feasible topologies.

particular, the gradient shading in Figure 5.20 shows that the thermal power requirements

have a greater impact on the feasible design space than the energy requirements.

While the mission-level analysis has shown which designs perform best for specific mis-

sions, it has also generated valuable insights for a mission-specific vehicle design. For com-

paratively low thermal power and energy mission requirements, P1S1 class topologies are

relatively simple and perform well. For more challenging missions, multi-flow path P2S1

class architectures are required in order to respect thermal operating limits. For this class

of systems and missions investigated in this work, the transition between P1S1 and P2S1

topologies occurs nears 4500W and over 540kJ.

5.5.2 System-Level Analysis

The control behavior is optimized to meet thermal operating limits for a given topology.

As the previous section demonstrated, there are two general architecture classes: P1S1 and
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(b) Optimal (left) temperature state and (right) flow rate input trajectories for mission 13
architecture 165.

Figure 5.21: The (a) TMS schematic representation and (b) optimal state and input
trajectories for mission 13 architecture 165.

P2S1. Figure 5.21b illustrates the cold plate temperature (CP) state and mass flow rate

input trajectories for mission 13 where the optimal design was P1S1 architecture 165. This

architecture has two controllable flow rates as labeled in Figure 5.21a and 4 cold plate

temperatures to maintain within thermal operating limits. In general, to be most energy

efficient, it is desirable to operate at the system’s thermal limit. However, the two flow rates

only provide two degrees of freedom, so only two cold plate temperatures (CP 1 and 4) meet

their thermal operating limit.

Conversely, a P2S1 architecture has additional flow paths and consequently more control

authority. Figure 5.22 shows the cold plate temperature state and mass flow rate input

trajectories for the optimal architecture 588 for mission 21. In this system, every cold plate

temperature meets its thermal operating limit. Not only does this system benefit from the
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(b) Optimal (left) temperature state and (right) flow rate input trajectories for mission 21
architecture 588.

Figure 5.22: The (a) TMS schematic representation and (b) optimal state and input
trajectories for mission 21 architecture 588.

additional degree of control freedom from the additional flow rate, but it can also configure

the system so that two serially connected cold plates exactly meet their thermal limit using

the same fluid. Notably, cold plate 2 is put on its own flow path because that component has

the greatest thermal load and second-strictest thermal constraint, so it requires the largest

flow rates for adequate heat rejection. The state and input trajectories for missions 13 and

21 were selected here as representative P1S1 and P2S1 architectures, respectively, for the

entire mission space. All state and input trajectories for other missions are provided in the

Appendix (Figure D.3).

To show that multiple flow rates are required for the more challenging missions, Figure

5.23 is included to compare the state trajectories for architectures 165 and 588 for the mission

21. Architecture 588 was the optimal design for mission 21 while architecture 165 was one
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Figure 5.23: A comparison of the state trajectories for architectures 165 and 588 for
mission 21. Architecture 165 cannot complete the mission because it cannot satisfy
thermal constraints

of the highest performing designs for many of the other missions. Both architectures were

previously illustrated in Figures 5.21a and 5.22a, respectively. From Figure 5.23, architecture

165 cannot maintain cold plates 1 or 4 within their thermal operating limits during the pulse

heat load segment because the fluid is too warm by the time it reaches the loads.

The system-level analysis shows that both a suitable topology and controller must be

generated for a jointly optimal solution. The results indicated that a controller is intuitively

designed to meet the system’s thermal operating limits. Also, the system architecture can

be modified to provide additional control degrees of freedom that may be required to meet

the design specification and objective.
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5.5.3 Optimization Analysis

The topology optimization problems were solved using two methods: exhaustive search,

which is commonplace in the literature, and distance-sorted search (Section 5.3.3). The

distance-sorted search method leverages the solution to the novel relaxed topology opti-

mization formulation introduced in this chapter. However, there is a trade-off between the

two approaches. An exhaustive search evaluates the entire feasible design space to identify

the globally optimal solution, which is ideal but does not scale well to large discrete design

problems like system-level vehicle design. It may be preferred to search less of the design

space to find a design that is near optimal. The following analysis shows how the distance-

sorted search optimization approach can be used to identify adequate designs with fewer

optimizations and understand the tradeoff in design performance.

Figure 5.24 describes the number of architecture evaluations in the distance-sorted search

that are required for different design objectives. Lost performance is the performance of a

given design relative to the optimal design. For example, the optimal design has 0% lost per-

formance, while a design that performs 5% worse has 5% lost performance. While identifying

the global optimal design may be ideal, it is likely that similar performing designs can be

identified with fewer architecture evaluations. Figure 5.24 (left) shows that approximately
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Figure 5.24: The number of architecture evaluations required versus performance trade-offs
when using the distance-sorted search optimization method. The results are shown for
mission 13.
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25% of the discrete topology design space would need to be evaluated to identify the global

optimal design. However, if willing to sacrifice 5% performance, a similar design could be

identified by searching 4% of the entire design space.

Figure 5.24 (right) provides a similar metric for the distance-sorted search by investigating

the best 7 architectures (i.e. best ∼1%), which have at most 6.1% lost performance for

mission 13. This set of architectures near optimal because it includes the single optimal

system and the 6 next best designs. The vertical axis shows the number of architecture

evaluations required to identify any number of those designs. To find 1 of the near optimal

designs, 1% of the design space would be searched. Conversely, 30% of the design space

could be searched to identify 6 of the best 7 designs. Recall that all the designs will have

at worst 6.1% lost performance in comparison to the global optimal solution. This result

highlights that near optimal designs can be identified quickly if some performance can be

sacrificed.

If using an exhaustive search approach, designs are randomly optimized until the entire

design space is evaluated. Conversely, Figure 5.24 demonstrates that using the solution to

the relaxed architecture optimization to guide a distance-sorted search process may help

identify the optimal or near optimal design in far fewer system optimizations. For mission

13, the global optimal design could be identified 4 times faster (i.e. 25% evaluations required)

than an exhaustive approach. However, it is not possible to determine if any given design is

globally optimal without an exhaustive search, so stopping criterion are applied to distance-

sorted searches to limit the number of total optimizations. As illustrated in Figure 5.24

(left), one of the near optimal designs was identified 100 times faster (i.e. 1% required

evaluations) than an exhaustive search. Although Figure 5.24 only provides optimization

results for mission 13, this trend holds across all missions. In almost all missions, a near

optimal design would be identified after applying a distance sorted search to only 10% of the

design space. This equates to identifying a high performance design an order of magnitude

faster than through an exhaustive approach. Notably, the distance sorted search finds a near

optimal design in the first system optimization for missions 16 and 18. The search results

for all missions are provided in the Appendix (Figure D.4).
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5.6 Conclusion

Electrified aircraft may have unique energy system architectures tailored to the need of

their end application. But the combinatorial size of the discrete architecture design space

makes it challenging for engineers to systematically evaluate the performance trade-offs

between dissimilar system topologies. Additionally, each unique system architecture has

unique control requirements, thus increasing the complexity of the overall design problem.

Therefore, this chapter proposed a relaxed approach to the traditionally discrete topology co-

design problem wherein a single model and controller is designed and adapted to a continuum

of feasible system architectures, thus facilitating a continuous search of the discrete design

space.

An architecture generation method from the literature is used to identify the set of all

structurally feasible design architectures. Instead of representing each unique topology as an

adjacency matrix, the novel approach converts each topology to a bitstring representation

that represents connectivity between components. This bitstring representation converts

the integer topology problem into a binary one that can be relaxed to represent the discrete

topology design space as a convex and continuous space that can be more efficiently searched.

An essential element of this approach is the development of a superset model; enabled by the

modular graph-based modeling framework that represents connections between components

as edges of a dynamic graph. A complementary architecture adaptive LQR controller was

formulated, so a controller can be synthesized for a continuum of the system models, thus

facilitating a search of the continuous design space. The methods are used to identify a

mission-specific design of an aircraft thermal management system. The results demonstrated

that a class of single flow path designs are optimal at low power and energy levels but are

unable to respect constraints for more challenging missions. To obey thermal limits for

more difficult missions, multiple flow paths are required to provide fresh coolant to each

load independently, albeit at the cost of a more complex controller with increased control

effort. By relaxing the topology design problem and using a distance-sorted search, a near

optimal design solution could be identified an order of magnitude faster than the conventional

exhaustive search approach.
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The relaxed system representation approach was able to more efficiently search the discrete

design space while providing design insights. However, other optimization approaches, such

as a penalty method [119], may provide better performance. Alternatively, an energy-based

distance metric [54] may be better suited for a distance-sorted search approach. Another

natural extension should include plant sizing design into the optimization process or explore

alternative control approaches. Lastly, Figure 5.20 illustrated that many designs may be

structurally feasible but are unable to respect dynamic operating constraints. Therefore,

methods should be developed that identify the subset of dynamically feasible system designs

in order to reduce the total number of designs that would need to be optimized.
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Chapter 6

Conclusion

6.1 Summary of Research Contributions

Electrified aircraft can provide a more sustainable future while offering a unique set of novel

capabilities. However, electrified aircraft are complex; they are multi-functional and com-

prised of multi-domain and multi-timescale systems with strict operational limits. Address-

ing all of these challenges when designing a vehicle is difficult. Therefore, this dissertation

proposes a physics-based and generalizable mission-specific approach to aircraft design that

considers both the vehicle and its operation within the design process.

To meet this need, Chapter 2 introduces the graph-based modeling approach for conser-

vation based systems. The graph-based modeling framework is energy domain agnostic,

optimization-oriented, modular, scalable, and variable fidelity, which facilities the develop-

ment of optimization-based decision-making tools presented in this thesis. In particular,

modularity is a key requirement for the architecture optimization methods presented in

Chapter 5. The graph-based modeling framework was introduced with model-order re-

duction, linearization, and discretization techniques that are useful when integrating these

models into optimization algorithms.

Chapter 3 presents a hierarchical model predictive controller for an aircraft’s integrated

power, propulsion, and thermal management system. The hierarchical control framework

facilities a computationally efficient application of model predictive control to the aircraft’s

multi-domain and multi-timescale energy management system. In comparison to a base-

line control approach, the hierarchical control provides superior performance and efficiency

while better respecting power and thermal constraints for safe operation. The validation of

the hierarchical model predictive controller on an experimental platform that represents an
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aircraft IPPTS was a key aspect of this contribution.

Chapter 4 proposes an approach for combined plant sizing and CLCD. In contrast to

conventional OLCD, the CLCD formulation treats the feedback control law as an additional

constraint in the optimization, thus accounting for closed-loop dynamics when designing

the plant. The advantage to the CLCD approach is a physically implementable system

and jointly optimal plant and controller. Because system-level design can be computation-

ally expensive, a convergence analysis is proposed to systematically evaluate the tradeoff

between computation time and optimization accuracy. The proposed co-design method is

compared against alternative design strategies through the development of a hybrid UAV en-

ergy storage system, propulsion system, and feedback controllers. The results demonstrated

improvements in closed-loop system performance and provided valuable insights on battery

and motor sizing and controller tuning.

Chapter 5 introduces a system-level co-design problem for combined architecture and

closed-loop control. The novelty of the approach is the relaxation of the integer topology se-

lection problem into a continuous form, thus facilitating a more efficient search of the discrete

topology design space. A superset graph-based model and architecture adaptive LQR were

formulated to represent a continuum of feasible topology and control designs. The methods

were used to design an aircraft thermal management system and its feedback controller for

25 different missions characterized by unique thermal power and energy requirements. The

results generated mission-specific design insights, illustrating that single flow path thermal

management systems can provide superior performance at low power and energy levels, but

require multi-flow path topologies for more challenging missions.

6.2 Future Work

This dissertation presents an initial approach into system-level co-design for aircraft energy

management systems. Additional investigations into alternative applications and design

disciples are relevant to consider.
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6.2.1 Observer Design

In practical systems, full state feedback is either too expensive or not possible, and therefore

the control design requires an observer. Like control design, tuning the observer may be a

complex process that can limit closed-loop performance. Therefore, observer design should

also be considered within the system-level co-design process.

6.2.2 Spatial Packaging of Interconnected Systems

While the topology optimization methods introduced in Chapter 4 develop physically mean-

ingful topologies, it discounts the relative complexity between different system architectures.

Some designs are easy to integrate into a physical system, while others may be more difficult.

This relative difficulty of system integration should be considered when selecting an optimal

design. Therefore, the proposed topology and control design techniques should be combined

with a spatial packaging algorithm as designed in [124] to evaluate both operational and

integration constraints and objectives.

6.2.3 Multi-Vehicle Design and Coordination

Unmanned air vehicles’ low cost and diverse set of capabilities lend themselves to fleet

applications where multiple coordinated vehicles operate cohesively to complete a greater

control task. While research efforts have considered multi-agent system coordination, there

exists a gap in multi-vehicle system co-design. Therefore, future work should consider both

plant and control design of multi-agent systems to understand how a fleet of vehicles should

be composed to most effectively complete a mutual task.

6.2.4 Mission Planning

The co-design methods presented in this dissertation primarily considered regulatory con-

trol while neglecting mission level coordination. Describing and creating the missions that

vehicles are designed for is a key step in the mission-specific design process. Research should

174



investigate mission planning and methods to encode the mission objectives and constraints

into the mission-specific design framework.

6.2.5 Robust Design

This dissertation considered the design of systems for either a single or class of missions.

However, uncertainty is present in physical systems due to environmental conditions, system

degradation, changing objectives, and modeling error. To account for such uncertainty,

robust co-design methods should be developed and evaluated. Importantly, these methods

should be computationally efficient as to not increase the already significant computational

requirements for system-level co-design problems.

6.2.6 Experimental Validation

While some studies have validated control systems on physical platforms, few have exper-

imentally validated co-design methods. Because the co-design process makes various as-

sumptions about system dynamics and operating requirements, the theoretical results never

translate directly to a physical design implementation. Quantifying and accounting for that

design error would result in more meaningful insights and system designs.
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Appendix A

Experimental Testbed Components

The powertrain and thermal management system testbeds’ (Figure 3.1) parts lists are pro-

vided in Tables A.1 and A.2. Additional testbed details can be found in [81,91].

(a) (b) (c) (d) (e)

(f) (g) (i)

Figure A.1: Powertrain testbed (Figure 3.1a) parts list. (a) battery pack, (b) electronic
speed controller, (c) low power battery pack, (d) genset, (e) resistor bank, (f) propulsion
and dynamometer motor, (g) filter box, and (h) power supply and electronic load. Image
credit [91].

Table A.1: The powertrain testbed parts list.

Component Manufacturer Details

Battery Pack Custom 16S7P Samsung 18650 Cells

Low Power Battery Pack Expert Power 5S1P EXP1270 Lead Acid Cells

Electronic Speed Controller (x3) PCKA -

Filter Box (x2) PCKA -

Continued on next page ↪→
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Table A.1 – continued from previous page

Component Manufacturer Details

Propulsion Motor NeuMotors Series 8038-105

Dynamometer Motor NeuMotors Series 8038-105

Starter/Generator NeuMotors Series 8038-140

Power Resistors (x12) TE Connectivity 1Ω 2S6P

Engine Briggs and Stratton 19N1 Series

Power Supply Magna-Power 4kW Rating (XR400-10.0 Series Supply)

Electronic Load NH Research 3kW Rating (4700-3-TP Series)

Battery Management System Texas Instruments bq76PL455A-Q1 Evaluation Board

CompactDAQ National Instruments 4 slots (cDAQ-9174)

Voltage Input Module National Instruments Reads shunt resistors (NI-9205)

Digital I/O Module National Instruments Controls relays (NI-9403)

High Current Shunt (x2) Rideon 200A rating (RSB-200-100)

Low Current Shunt (x4) Rideon 100A rating (RSB-100-100)

USB to CAN Adapter Intrepid Control Sys. Facilitates CAN communication

Control Computer Dell 7th Gen Intel Core i7 with 8GB RAM

Figure A.2: Thermal management system testbed (Figure 3.1b) parts list. (a) centrifugal
pump, (b) positive displacement pump, (c) solenoid valve, (d) heat exchanger, (e) cold
plate, (f) pipe, (g) reservoir, (h) chiller, (i) temperature sensor, (j) pressure sensor, and (k)
mass flow rate sensor. Image credit [81].
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Table A.2: The thermal management system testbed parts list.

Component Manufacturer Details

Centrifugal Pump Swiftech MCP35X 17.5 LPM

Positive Disp. Pump Gikfun Peristaltic pump 0.1LPM

Solenoid Valve WIC Valve 2SCW 150PSI

Heat Exchanger Koolance HXP-193 4.0kW

Cold Plate Wakefield-Vette 6-pass 6in. cold plate

Pipe Koolance HOS-13CL

Reservior Koolance 80x240mm

Chiller Polyscience 6000 Series 5.0kW

Temperature Sensor Koolance
10kΩ thermistor SEN-AP008B(fluid)

& SEN-AP007P(surface)

Pressure Sensor Measurement Specialties US300 310kPa guage

Flow Rate Sensor Aqua Computer High Flow 0.5 to 25LPM

Current Sensor Sparkfun ACS712 low current

Resistive Heaters Vishay LPS1100H47R0JB resistors, 47 ?, 1.1kW

Current Sensor Echun Electronic Co. ECS1030-L72 non-invasive current sensor
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Appendix B

Graph-Based Models

B.1 Aircraft Integrated Power, Propulsion, and Thermal System

The aircraft IPPTS graph-based model introduced in Chapter 3 is shown below (Figure B.1)

with vertex, edge, input, and parameter tables (Tables B.1-B.4).
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Figure B.1: Graph-model of the aircraft IPPTS illustrated in Figure 3.1.
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Table B.1: Vertex information for the IPPTS graph model.

Vertex
State

Variable
Description Units Capacitance

Lower

Bound

Upper

Bound

1 x1 Battery State of Charge - QVocv (x1) 0.3 0.9

2 x2 RC Pair Voltage 1 V C1x2 - -

3 x3 RC Pair Voltage 2 V C2x3 - -

4 x4 Battery Current A Lbx4 −10.5 105

5 x5 Bus Voltage V Cbx5 - -

6 a6 Inverter DC Current A 0 - -

7 a7 Inverter DC Link Voltage V 0 - -

8 a8 Inverter Y q-axis Current A 0 20 100

9 a9 Inverter Y q-axis Voltage V 0 - -

10 a10 Inverter ∆ Current A 0 - -

11 a11 Inverter ∆ Voltage V 0 - -

12 x12 Prop. Current A Lpx12 20 100

13 x13 Prop Speed rad/s Jpx13 50π 167π

14 x14 Vehicle Speed m/s mvx14 15 22.5

15 a15 LV Converter Current A 0 - -

16 a16 LV Converter DC Link Voltage V 0 - -

17 a17 Net Avionic Load Current A 0 - -

18 a18 Avionics Voltage V 0 39 41

19 a19 Base Converter Current A 0 - -

20 a20 LV Converter Voltage V 0 - -

21 a21 Base Converter Load A 0 - -

22 a22 Base Converter Voltage V 0 - -

23 x23 Base Load Current A Lbasex23 5 12

24 a24 Pulse Converter Current A 0 - -

25 a25 LV Converter Voltage V 0 - -

26 a26 Pulse Converter Load A 0 - -

27 a27 Pulse Converter Voltage V 0 - -

28 x28 Pulse Load Current A Lpulsex28 0 25

29 x29 Loop 1 Tank Temp. ◦C m29cp,f 5 40

30 x30 Pipe Temp. ◦C m30cp,f 5 40

Continued on next page ↪→
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Table B.1 – continued from previous page

Vertex
State

Variable
Description Units Capacitance

Lower

Bound

Upper

Bound

31 x31 Battery CP Fluid Temp. ◦C m31cp,f 5 40

32 x32 Pipe Temp. ◦C m32cp,f 5 40

33 x33 Loop 1-2 HX Side 1 Temp. ◦C m33cp,f 5 40

34 x34 Return Temp. ◦C m34cp,f 5 40

35 x35 Loop C-1 HX Side 2 Temp. ◦C m35cp,f 5 40

36 x36 Loop C-1 HX Wall Temp. ◦C C36 5 40

37 x37 Loop C-1 HX Side 1 Temp. ◦C m37cp,f 5 40

38 x38 Loop 1-2 HX Wall Temp. ◦C C38 5 40

39 x39 Loop 1-2 HX Side 2 Temp. ◦C m29cp,f 5 45

40 x40 Loop 2 Tank Temp. ◦C m40cp,f 5 45

41 x41 Loop 2-3 HX Side 1 Temp. ◦C m41cp,f 5 45

42 x42 Split Temp. ◦C m42cp,f 5 45

43 x43 Base CP Fluid Temp. ◦C m43cp,f 5 45

44 x44 Pulse CP Fluid Temp. ◦C m44cp,f 5 45

45 x45 Junction Temp. ◦C m45cp,f 5 45

46 x46 Loop 2-3 HX Wall Temp. ◦C C46 5 45

47 x47 Loop 2-3 HX Side 2 Temp. ◦C m47cp,f 5 50

48 x48 Split Temp. ◦C m48cp,f 5 50

49 x49 Prop. CP Fluid Temp. ◦C m49cp,f 5 50

50 x50 Genset CP Fluid Temp. ◦C m50cp,f 5 50

51 x51 Junction Temp ◦C m51cp,f 5 50

52 x52 Battery Temp. ◦C C52 5 50

53 x53 Base Temp. ◦C C53 5 50

54 x54 Pulse Temp. ◦C C54 5 50

55 x55 Prop. Temp. ◦C C55 5 50

56 x56 Genset Temp. ◦C C56 5 50

57 xe
57 Genset Current A - - -

58 xe
58 ESC Current A - - -

59 xe
59 Base Load Voltage V - - -

60 xe
60 Pulse Load Voltage V - - -

61 xe
61 Base Converter Diode Voltage V - - -

Continued on next page ↪→
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Table B.1 – continued from previous page

Vertex
State

Variable
Description Units Capacitance

Lower

Bound

Upper

Bound

62 xe
62 Pulse Converter Diode Voltage V - - -

63 xe
63 LV Converter Diode Voltage V - - -

64 xe
64 Bleed Resistor Sink ◦C - - -

65 xe
65 LV Converter Resistor Sink ◦C - - -

66 xe
66 Chiller Temp. ◦C - - -

67 xe
67 Misc. - - - -

Table B.2: Edge information for the IPPTS graph model.

Edge Description Power flow

1 Battery Power Vocv(x1)x4

2 Resistive Loss/Heat Load Rsx
2
4

3 Electrical Power x4x2

4 Electrical Power x4x3

5 Resistive Loss/Heat Load 1
R1

x2
2

6 Resistive Loss/Heat Load 1
R2

x2
3

7 Resistive Loss/Heat Load Rbx
2
4

8 Electrical Power x4x5

9 Electrical Power x5x
e
58

10 Electrical Power x5a15

11 Electrical Power a15a16

12 Controlled Electrical Power u1a16a17

13 Electrical Power a17a18

14 Switching & Conduction Loss (Rs,LV u1 +Rc,LV )a
2
17

15 Diode Loss (1− u1)a17x
e
63

16 Electrical Power a18a19

17 Electrical Power a19a20

18 Controlled Electrical Power u2a20a21

Continued on next page ↪→
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Table B.2 – continued from previous page

Edge Description Power flow

19 Diode Loss (1− u2)a21x
e
61

20 Switching & Conduction Loss (Rs,baseu2 +Rc,base)a
2
21

21 Electrical Power a21a22

22 Electrical Power a22x23

23 Electrical Power x23x
e
59

24 Temp. Dependent Resistive Loss/Heat Load Rbase(x53)x
2
23

25 Electrical Power a18a24

26 Electrical Power a24a25

27 Controlled Electrical Power u3a25a26

28 Diode Loss (1− u3)a26x
e
62

29 Switching & Conduction Loss (Rs,pulseu3 +Rc,pulse)a
2
26

30 Electrical Power a26a27

31 Electrical Power a27x28

32 Electrical Power x28x
e
60

33 Temp. Dependent Resistive Loss/Heat Load Rpulse(x54)x
2
28

34 Electrical Power x5x
e
57

35 Resistive Loss/Heat Load Rgx
e
57

2

36 Electrical Power x5a6

37 Electrical Power a6a7

38 Controlled Electrical Power u4a7a8

39 Electrical Power a8a9

40 Electrical Power a9a10

41 Y to ∆ Conversion
√

1
3a10a11

42 Electrical Power a11x12

43 Resistive Loss/Heat Load u5Ria
2
8

44 Resistive Loss/Heat Load Rpx
2
12

45 Electro-magnetics kvx12x13

46 Friction Loss bpx
2
13 + cpx13

47 Propulsion Power ρ D4

4π2CTx
2
13x14

48 Drag (1− ηp)ρ
D5

4π2Cτx
3
13

49 Aircraft Drag and Weight mvg sin θx14 +
1
2ρACDx3

14

50 Convection Ubatt(x52 − x31)
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Table B.2 – continued from previous page

Edge Description Power flow

51 Advection u6cp,fx31

52 Advection u6cp,fx32

53 Advection u6cp,fx33

54 Advection u6cp,fx34

55 Advection u6cp,fx35

56 Advection u6cp,fx29

57 Advection u6cp,fx30

58 Convection U1(x35 − x36)

59 Convection U1(x36 − x37)

60 Bi-directional Advection u5cp,f (x37 − xe
66)

61 Convection U2(x38 − x33)

62 Convection U2(x39 − x38)

63 Advection u9cp,fx39

64 Advection u9cp,fx40

65 Advection u9cp,fx41

66 Advection u8cp,fx42

67 Convection Upulse(x54 − x44)

68 Advection u8cp,fx44

69 Advection u7cp,fx42

70 Convection Ubase(x53 − x43)

71 Advection u7cp,fx43

72 Advection u9cp,fx45

73 Convection U3(x46 − x41)

74 Convection U3(x47 − x46)

75 Advection u12cp,fx47

76 Advection u11cp,fx48

77 Convection Ugenset(x55 − x50)

78 Advection u10cp,fx48

79 Convection Uprop(x56 − x49)

80 Advection u11cp,fx50

81 Advection u10cp,fx49

82 Advection u12cp,fx51
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Table B.3: Input information for the IPPTS model.

Input Description Units Lower Bound Upper Bound

u1 LV Converter Duty Cycle - 0.01 0.99

u2 Base Converter Duty Cycle - 0.01 0.99

u3 Pulse Converter Duty Cycle - 0.01 0.99

u4 Inverter Duty Cycle - 0.01 0.99

u5 Chiller Flow Rate kg/s 0.3 0.3

u6 Loop 1 Flow Rate kg/s 0.04 0.13

u7 Loop 2 Through Line Flow Rate kg/s Figure 3.5 Figure 3.5

u8 Loop 2 Valve Line Flow Rate kg/s Figure 3.5 Figure 3.5

u9 = u7 + u8 Loop 2 Net Flow Rate kg/s Figure 3.5 Figure 3.5

u10 Loop 3 Through Line Flow Rate kg/s Figure 3.5 Figure 3.5

u11 Loop 3 Valve Line Flow Rate kg/s Figure 3.5 Figure 3.5

u12 = u10 + u11 Loop 3 Net Flow Rate kg/s Figure 3.5 Figure 3.5

u13 Genset Input - 0.0 3.3

Table B.4: Parameter information for the IPPTS model.

Parameter Description Units Value

ρ Air Density kg/m3 1.225

θ Angle of Attack ◦ 3.6

Rc,base Base Converter Conduction Resistance mΩ 23.9

Rs,base Base Converter Switching Resistance mΩ 24.2

Lbase Base Load Inductance µH 100

r1,base Base Load Resistance Coefficient Ω/◦C 1/150

r0,base Base Load Resistance Coefficient Ω 0.1

Rbase Base Resistance Ω (3.1)

Q Battery Capacity Ah 21.33

C1 Battery RC Capacitance 1 F 862

Continued on next page ↪→
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Table B.4 – continued from previous page

Parameter Description Units Value

C2 Battery RC Capacitance 2 F 2.31× 104

R1 Battery RC Resistance 1 mΩ 63.8

R2 Battery RC Resistance 2 mΩ 78.1

Rs Battery Series Resistance mΩ 47.6

Cb Bus Capacitance F 0.1

Rb Bus Resistance mΩ 0.5

CD Drag Constant - 0.0167

m29 Fluid Mass kg 1.9

m30 Fluid Mass kg 0.014

m31 Fluid Mass kg 1.1

m32 Fluid Mass kg 0.014

m33 Fluid Mass kg 1.1

m34 Fluid Mass kg 0.014

m35 Fluid Mass kg 0.57

m37 Fluid Mass kg 0.57

m39 Fluid Mass kg 0.71

m40 Fluid Mass kg 0.86

m41 Fluid Mass kg 0.28

m42 Fluid Mass kg 0.014

m43 Fluid Mass kg 1.1

m44 Fluid Mass kg 1.1

m45 Fluid Mass kg 0.014

m47 Fluid Mass kg 0.28

m48 Fluid Mass kg 0.014

m49 Fluid Mass kg 1.1

m50 Fluid Mass kg 1.1

m51 Fluid Mass kg 0.014

cp,f Fluid Specific Heat Capacity J/kg-K 3498

a5 Genset sfc Coefficient g/kW-A2h 0.22

a4 Genset sfc Coefficient g/kW-V2h 0.089

a3 Genset sfc Coefficient g/kW-VAh 0.26

a2 Genset sfc Coefficient g/kW-Ah −33.2
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Table B.4 – continued from previous page

Parameter Description Units Value

a1 Genset sfc Coefficient g/kW-Vh −21.0

a0 Genset sfc Coefficient g/kW-h 1.50

K Genset Input Gain A 63.3

b1 Genset Limit Coefficient 1/V −0.015

b0 Genset Limit Coefficient - 1.71

Rg Genset Resistance mΩ 425

tau Genset Time Constant s 0.5

g Gravitational Acceleration m/s2 9.81

C36 Heat Capacity J/K 45

C38 Heat Capacity J/K 45

C46 Heat Capacity J/K 27.5

C52 Heat Capacity J/K 1866

C53 Heat Capacity J/K 1800

C54 Heat Capacity J/K 1800

C55 Heat Capacity J/K 1800

C56 Heat Capacity J/K 1800

Ri Inverter Resistance mΩ 80.8

Rc,LV LV Converter Conduction Resistance mΩ 23.9

Rs,LV LV Converter Switching Resistance mΩ 24.2

Ubatt Overall Heat Transfer Coefficient W/K 219

Ubase Overall Heat Transfer Coefficient W/K 484

Upulse Overall Heat Transfer Coefficient W/K 200

Uprop Overall Heat Transfer Coefficient W/K 777

Ugenset Overall Heat Transfer Coefficient W/K 536

U1 Overall Heat Transfer Coefficient W/K 100× 103

U2 Overall Heat Transfer Coefficient W/K 898

U3 Overall Heat Transfer Coefficient W/K 2.36× 103

Lp Prop. Coil Inductance µH 48.7× 10−6

Rp Prop. Coil Resistance mΩ 29.2

Jp Prop. Inertia kg/m2 2.73× 10−2

kv Prop. Motor Constant mNm/A 0.1238

D Propeller Diameter m 0.625
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Table B.4 – continued from previous page

Parameter Description Units Value

ηp Propeller Efficiency - 0.95

Rc,pulse Pulse Converter Conduction Resistance mΩ 23.9

Rs,pulse Pulse Converter Switching Resistance mΩ 24.2

Lpulse Pulse Load Inductance µH 100

r1,pulse Pulse Load Resistance Coefficient Ω/◦C 1/200

r0,pulse Pulse Load Resistance Coefficient Ω 0.05

Rpulse Pulse Resistance Ω (3.1)

cp Static Friction mNm 228

CT Thrust Constant - 0.07

Cτ Torque Constant - 0.01

mv Vehicle Mass kg 85

Lb Virtual Inductance H 4× 10−8

bp Viscous Friction mNms/rad 0.36
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B.2 Series Hybrid UAV Powertrain

The series hybrid UAV powertrain graph-based model introduced in Chapter 4 is shown

below (Figure B.2) with vertex, edge, input, and parameter tables (Tables B.5-B.8).
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Figure B.2: The graph model for the series hybrid UAV powertrain.

Table B.5: Vertex information for the Hybrid UAV PT graph model.

Vertex
State

Variable
Description Units Capacitance

Lower

Bound

Upper

Bound

1 x1 Battery State of Charge - NsNpQVocv (x1) 0.3 0.9

2 x2 RC Pair Voltage 1 V Np

Ns
C1x2 −10 10

3 x3 RC Pair Voltage 2 V Np

Ns
C2x3 −10 10

4 a4 Battery Current A 0 −1.5Ns 15Ns

5 a5 Bus Voltage V 0 - -

6 a6 Inverter DC Current A 0 - -

7 a7 Inverter DC Link Voltage V 0 - -

8 a8 Inverter q-axis Current A 0 - -

9 a9 Inverter q-axis Voltage V 0 - -

10 a10 Prop. Current A 0 0 (4.25f)

11 a11 Prop Speed rad/s 0 - -

12 a12 Avionic Load Current A 0 - -

13 a13 Avionic Load Voltage V 0 - -

Continued on next page ↪→
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Table B.5 – continued from previous page

Vertex
State

Variable
Description Units Capacitance

Lower

Bound

Upper

Bound

14 xe
14 Genset Current A - 0 50

15 xe
15 Vehicle Velocity m/s - 25 50

16 xe
16 Thermal Sink - - - -

17 xe
17 Thermal Sink - - - -

18 xe
18 Thermal Sink - - - -

19 xe
19 Thermal Sink - - - -

Table B.6: Edge information for the Hybrid UAV PT graph model.

Edge Description Power flow

1 Battery Power NsVocv(x1)a4

2 Electrical Power a4x2

3 Electrical Power a4x3

4 Resistive Loss/Heat Load Rs
Ns

Np
a24

5 Resistive Loss/Heat Load 1
R1

Np

Ns
x2
2

6 Resistive Loss/Heat Load 1
R2

Np

Ns
x2
3

7 Resistive Loss/Heat Load Rba
2
4

8 Electrical Power a4a5

9 Electrical Power a5a6

10 Electrical Power a6a7

11 Controlled Electrical Power u1a7a8

12 Electrical Power a8a9

13 Switching & Conduction Loss Riu1a
2
8

14 Electrical Power a9a10

15 Electro-magnetics kva10a11

16 Resistive Loss/Heat Load Rma210

17 Friction Loss ba211

18 Propulsion Power ρd4

η CTa
2
11x

e
15

Continued on next page ↪→
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Table B.6 – continued from previous page

Edge Description Power flow

19 Electrical Power a5a12

20 Electrical Power a12a13

21 Electrical Power xe
14a5

22 Avionic Load Power P e
22

Table B.7: Input information for the Hybrid UAV model.

Input Description Units Lower Bound Upper Bound

u1 Inverter Duty Cycle - 0.01 0.99

u2 Genset Command - 0.01 0.99

γ Flight Path Angle rad −π
6

π
6

Table B.8: Parameter information for the Hybrid UAV model.

Parameter Description Units
Default

Value

Lower

Bound

Upper

Bound

mairframe Airframe mass kg 18 N/A N/A

Rb Bus resistance mΩ 0.5 N/A N/A

C1 Cell RC capacitance 1 kF 1.97 N/A N/A

C2 Cell RC capacitance 2 kF 52.9 N/A N/A

R1 Cell RC resistance 1 mΩ 27.9 N/A N/A

R2 Cell RC resistance 2 mΩ 34.2 N/A N/A

Q Cell capacity Ah 3.05 N/A N/A

mcell Cell mass g 45.9 N/A N/A

Rs Cell series resistance mΩ 20.8 N/A N/A

i0 Current limit coefficient A 160 N/A N/A

i1 Current limit coefficient A-rad/V-s 601 N/A N/A

i2 Current limit coefficient A/Ω −3440 N/A N/A

Continued on next page ↪→

201



Table B.8 – continued from previous page

Parameter Description Units
Default

Value

Lower

Bound

Upper

Bound

KL Drag-due-to-lift factor - 0.05 N/A N/A

τ Engine time constant s 20 N/A N/A

ε Equivalence factor - 18.0 9 30

c0 Fuel consumption coefficients kg 7.13× 10−5 N/A N/A

c1 Fuel consumption coefficients kg/W 2.79× 10−7 N/A N/A

QLHV Fuel lower heating value MJ/kg 43.4 N/A N/A

K Genset input gain A 63.3 N/A N/A

mgenset Genset mass kg 12 N/A N/A

Pgen Genset power kW − N/A N/A

g Gravitational constant m/s2 9.81 N/A N/A

I Integral gain - 0.0020 0.0 0.01

minv. Inverter mass kg 1.0 N/A N/A

Ri Inverter resistance mΩ 80.8 N/A N/A

mload Load mass kg 7.1 N/A N/A

αmax Max AoA ◦ 8 N/A N/A

CL,max Max lift - 1.23 N/A N/A

Rmot Motor friction mNm-s/rad 0.36 N/A N/A

m0 Motor mass coefficients kg 0.81 N/A N/A

m1 Motor mass coefficients kg-rad/V-s 21.3 N/A N/A

m2 Motor mass coefficients kg/Ω −39.5 N/A N/A

Np Number of parallel cells - 7 1 20

Ns Number of series cells - 16 1 20

v5 OCV coefficients V 13.75 N/A N/A

v4 OCV coefficients V −40.12 N/A N/A

v3 OCV coefficients V 44.14 N/A N/A

v2 OCV coefficients V −22.98 N/A N/A

v1 OCV coefficients V 6.73 N/A N/A

v0 OCV coefficients V 2.66 N/A N/A

Rm Prop. coil resistance mΩ 29.2 Fig. 4.11 Fig. 4.11

kv Prop. motor constant V-s/rad 0.1238 Fig. 4.11 Fig. 4.11

d Propeller diameter m 0.7 N/A N/A
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Table B.8 – continued from previous page

Parameter Description Units
Default

Value

Lower

Bound

Upper

Bound

η Propeller efficiency - 0.8 N/A N/A

P Proportional gain - 0.0371 0.001 0.1

CT Thrust coefficient - 2.1× 10−3 N/A N/A

xe
15,ref Velocity reference m/s − 25 50

b Viscous friction mNm-s/rad 0.36 N/A N/A

A Wing area MJ/kg 3.4 N/A N/A

CL,0 Zero lift coefficient - 0.49 N/A N/A
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B.3 Thermal Management System

The thermal management system superset graph-based model introduced in Chapter 5 is

shown below (Figure B.3) with vertex, edge, input, and parameter tables (Tables B.9-B.12).
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Figure B.3: The superset TMS graph-based model.

Table B.9: Vertex information for the TMS graph model. HX-Heat Exchanger

Vertex
State

Variable
Description Units Capacitance

Lower

Bound

Upper

Bound

1 x1 Tank Temp. ◦C cp,fmtank 20 70

2 x2 HX Temp. ◦C Chx 20 70

3 x3 Load 1 Temp. ◦C Ccp1 20 50

4 x4 Load 2 Temp. ◦C Ccp2 20 55

5 x5 Load 3 Temp. ◦C Ccp3 20 60

6 x6 Load 4 Temp. ◦C Ccp4 20 65
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Table B.9 – continued from previous page

Vertex
State

Variable
Description Units Capacitance

Lower

Bound

Upper

Bound

7 a7 Recirculation Temp. ◦C 0 - -

8 a8 Heat Sink Wall Temp. ◦C 0 - -

9 a9 Heat Sink Temp. ◦C 0 - -

10 a10 HX Primary Side Temp. ◦C 0 - -

11 a11 HX Secondary Side Temp. ◦C 0 - -

12 a12 Cold Plate 1 Temp. ◦C 0 - -

13 a13 Cold Plate 2 Temp. ◦C 0 - -

14 a14 Cold Plate 3 Temp. ◦C 0 - -

15 a15 Cold Plate 4 Temp. ◦C 0 - -

16 xe
16 Chiller Temp. ◦C - - -

17 xe
17 - ◦C - - -

Table B.10: Edge information for the TMS graph model.

Edge Description Power flow

1 Advection ρ1u1cp,fa7

2 Advection ρ2u2cp,fx1

3 Advection ρ3u3cp,fa12

4 Advection ρ4u4cp,fa13

5 Advection ρ5u5cp,fa14

6 Advection ρ6u6cp,fa15

7 Advection ρ7u7cp,fa12

8 Advection ρ8u8cp,fa13

9 Advection ρ9u9cp,fa14

10 Advection ρ10u10cp,fa15

11 Advection ρ11u11cp,fx1

12 Advection ρ12u12cp,fa10

13 Advection ρ13u13cp,fa11
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Table B.10 – continued from previous page

Edge Description Power flow

14 Advection ρ14u14cp,fa13

15 Advection ρ15u15cp,fa14

16 Advection ρ16u16cp,fa15

17 Advection ρ17u17cp,fx1

18 Advection ρ18u18cp,fa10

19 Advection ρ19u19cp,fa11

20 Advection ρ20u20cp,fa13

21 Advection ρ21u21cp,fa14

22 Advection ρ22u22cp,fa15

23 Advection ρ23u23cp,fx1

24 Advection ρ24u24cp,fa10

25 Advection ρ25u25cp,fa11

26 Advection ρ26u26cp,fa12

27 Advection ρ27u27cp,fa13

28 Advection ρ28u28cp,fa15

29 Advection ρ29u29cp,fx1

30 Advection ρ30u30cp,fa10

31 Advection ρ31u31cp,fa11

32 Advection ρ32u32cp,fa12

33 Advection ρ33u33cp,fa13

34 Advection ρ34u34cp,fa14

35 Advection ρ35u35cp,fa10

36 Advection ρ36u36cp,fa12

37 Advection ρ37u37cp,fa13

38 Advection ρ38u38cp,fa14

39 Advection ρ39u39cp,fa15

40 Convection Uhs(a7 − a8)

41 Convection Uhs(a8 − a9)

42 Advection ṁchillercp,fx
e
16

43 Advection ṁchillercp,fa9

44 Convection Uhx(a10 − x2)

45 Convection Uhx(x2 − a11)

Continued on next page ↪→
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Table B.10 – continued from previous page

Edge Description Power flow

46 Convection Ucp(x3 − a12)

47 Convection Ucp(x4 − a13)

48 Convection Ucp(x5 − a14)

49 Convection Ucp(x6 − a15)

50 Heat Load 1 P e
50

51 Heat Load 2 P e
51

52 Heat Load 3 P e
52

53 Heat Load 4 P e
53

Table B.11: Input information for the TMS model.

Input Description Units Lower Bound Upper Bound

u1 Flow Rate 1 kg/s 0 0.4

u2 Flow Rate 2 kg/s 0 0.1

u3 Flow Rate 3 kg/s 0 0.1

u4 Flow Rate 4 kg/s 0 0.1

u5 Flow Rate 5 kg/s 0 0.1

u6 Flow Rate 6 kg/s 0 0.1

u7 Flow Rate 7 kg/s 0 0.1

u8 Flow Rate 8 kg/s 0 0.1

u9 Flow Rate 9 kg/s 0 0.1

u10 Flow Rate 10 kg/s 0 0.1

u11 Flow Rate 11 kg/s 0 0.1

u12 Flow Rate 12 kg/s 0 0.1

u13 Flow Rate 13 kg/s 0 0.1

u14 Flow Rate 14 kg/s 0 0.1

u15 Flow Rate 15 kg/s 0 0.1

u16 Flow Rate 16 kg/s 0 0.1

u17 Flow Rate 17 kg/s 0 0.1

Continued on next page ↪→
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Table B.11 – continued from previous page

Input Description Units Lower Bound Upper Bound

u18 Flow Rate 18 kg/s 0 0.1

u19 Flow Rate 19 kg/s 0 0.1

u20 Flow Rate 20 kg/s 0 0.1

u21 Flow Rate 21 kg/s 0 0.1

u22 Flow Rate 22 kg/s 0 0.1

u23 Flow Rate 23 kg/s 0 0.1

u24 Flow Rate 24 kg/s 0 0.1

u25 Flow Rate 25 kg/s 0 0.1

u26 Flow Rate 26 kg/s 0 0.1

u27 Flow Rate 27 kg/s 0 0.1

u28 Flow Rate 28 kg/s 0 0.1

u29 Flow Rate 29 kg/s 0 0.1

u30 Flow Rate 30 kg/s 0 0.1

u31 Flow Rate 31 kg/s 0 0.1

u32 Flow Rate 32 kg/s 0 0.1

u33 Flow Rate 33 kg/s 0 0.1

u34 Flow Rate 34 kg/s 0 0.1

u35 Flow Rate 35 kg/s 0 0.1

u36 Flow Rate 36 kg/s 0 0.1

u37 Flow Rate 37 kg/s 0 0.1

u38 Flow Rate 38 kg/s 0 0.1

u39 Flow Rate 39 kg/s 0 0.1

Table B.12: Parameter information for the TMS model.

Parameter Description Units Value

Ucp CP Overall HTC W/K 2000

ṁchiller Chiller Flow Rate kg/s 0.1

cp,f Fluid Specific Heat J/kg-K 3500

Continued on next page ↪→
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Table B.12 – continued from previous page

Parameter Description Units Value

Uhx HX Overall HTC W/K 1000

Chx HX Thermal Capacity J/K 937.5

Uhs Heat Sink Overall HTC W/K 1000

R Input Weight Matrix - 104

Ccp1 Load 1 Thermal Capacity J/K 375

Ccp2 Load 2 Thermal Capacity J/K 375

Ccp3 Load 3 Thermal Capacity J/K 375

Ccp4 Load 4 Thermal Capacity J/K 375

Q State Weight Matrix - 1

mtank Tank Mass kg 1.6

ρ Topology Variables - −
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Appendix C

Architecture Adaptive LQR Sensitivity Computations

C.1 Background on Matrix Derivatives

An infinite horizon linear quadratic regulator in synthesized through the solution of the Alge-

braic Riccati Equation (ARE). To facilitate gradient-based design of an LQR class controller,

it is necessary to evaluate the sensitivity of the ARE output to its inputs. This evaluation re-

quires knowledge of matrix calculus, since the ARE is a matrix function. Although it might

seem reasonable to vectorize the matrices and apply standard vector calculus techniques,

the problem is not that trivial. As [125] makes clear, there are multiple ways to compute

matrix derivatives that yield different sensitivity results. If interested, it is recommended to

read [125]. The following sections introduce basic matrix derivative computation rules that

are then applied to the architecture adaptive LQR synthesis process.

Note, the following computations are valid for the OpenMDAO implementation of ma-

trix calculus. As [125] points out, there is not a universal approach for computing matrix

derivatives, so special care should be taken when using this approach.

C.2 Matrix Derivatives

C.2.1 Identity, Transpose, Product, and Chain Rule

Define the following matrices:

A ∈ Rm×n

B ∈ Rq×r
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X ∈ Rn×n

Y ∈ Rn×r

Z ∈ Rq×n

Let Ki,j ∈ Rij×ij be the commutation matrix and Ik ∈ Rk×k be the identity matrix. The

operation ⊗ is the Kronecker product. The following identities are useful

B ⊗ A = Kq,m (A⊗ B)Kn,r, (C.1a)

(M ⊗N) (O ⊗ P ) = (MO)⊗ (NP ) for compatible matrices M,N,O ,and P (C.1b)

The following matrix operations and their sensitivity functions are provided

Self Differentiation:

F (A) = A, (C.2a)
∂F

∂A
= Imn (C.2b)

Transposed Self Differentiation:

F (A) = AT , (C.3a)
∂F

∂A
= Kn,m (C.3b)

Product Rule: for linear matrix functions

F (A, Y ) = AY, (C.4a)
∂F

∂A
= Km,r

(
Y T ⊗ Im

)
Kn,m, (C.4b)

= Im ⊗ Y T , (C.4c)
∂F

∂Y
= A⊗ Ir (C.4d)
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Chain Rule:

F (X) = G (H (X)) , (C.5a)
∂F

∂X
=

∂G

∂H

∂H

∂X
(C.5b)

Product Rule: for general matrix functions. Let A (X) ∈ Rm×n and Y (X) ∈ Rn×r

F (X) = AY, (C.6a)
∂F

∂X
= Km,r

(
Y T ⊗ Im

)
Kn,m

∂A

∂X
+Km,r (Ir ⊗ A)Kr,n

∂Y

∂X
, (C.6b)

=
(
Im ⊗ Y T

) ∂A

∂X
+ (A⊗ Ir)

∂Y

∂X
(C.6c)

C.2.2 Key Examples

From the product and chain rule, the partial derivatives of many other matrix functions can

be computed. Consider the following notable derivations

Product Rule with Transpose: Make the substitution C = ZT , apply product and

chain rules knowing that ∂C
∂Z

= Kn,q.

F (B,Z) = ZTB = C (Z)B, (C.7a)
∂F

∂Z
=

(
In ⊗ BT

) ∂C
∂Z

+ (C ⊗ Ir)
∂B

∂Z
, (C.7b)

=
(
In ⊗ BT

)
Kn,q, (C.7c)

∂F

∂B
= ZT ⊗ Ir (C.7d)

Matrix Inverse: To derive the partial derivative of the matrix inverse, use the definition

of the inverse function In = X−1X, take the derivative of both sides using the product rule,
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then solve for ∂(X−1)
∂X

.

F (X) = X−1, (C.8a)
∂

∂X
(In = X−1X), (C.8b)

0 =
(
In ⊗XT

) ∂ (X−1)

∂X
+
(
X−1 ⊗ In

) ∂X
∂X

, (C.8c)

0 =
(
In ⊗XT

) ∂ (X−1)

∂X
+
(
X−1 ⊗ In

)
, (C.8d)

∂ (X−1)

∂X
= −

(
In ⊗XT

)−1 (
X−1 ⊗ In

)
(C.8e)

Quadratic Functions: To find ∂F
∂A

, use the substitution C = AX, apply product and

chain rule, and then plug in partials computed in earlier examples. To find ∂F
∂X

, do the same

thing, except differentiate with respect to X. Use (C.1b) to simplify.

F (A,X) = AXAT = C(A,X)AT , (C.9a)

∂F

∂A
= (Im ⊗ A)

∂C

∂A
+ (C ⊗ Im)

∂
(
AT

)
∂A

, (C.9b)

= (Im ⊗ A)
(
Im ⊗XT

)
+ (AX ⊗ Im)Kn,m, (C.9c)

=
(
Im ⊗ AXT

)
+ (AX ⊗ Im)Kn,m, (C.9d)

∂F

∂X
= (Im ⊗ A)

∂C

∂X
+ (C ⊗ Im)

∂
(
AT

)
∂X

, (C.9e)

= (Im ⊗ A) (A⊗ In) , (C.9f)

= (A⊗ A) (C.9g)

C.3 Partial Derivatives for the AALQR

The partial derivative computations for the input constrained variation of the AALQR are

provided in this section. The input constrained AALQR synthesis requires the state space

matrices A (ρ) ∈ Rx×x and B (ρ) ∈ Rx×u, the input constraints null space F (ρ) ∈ Ru×f , the

state weight matrix Q ∈ Rx×x, and the input weight matrix R ∈ Ru×u. The control synthesis

outputs a feedback control gain K (ρ) that is a used to control the system. Because the
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optimization evaluates designs for different values of ρ, Q, and R, it is necessary to compute

the sensitivities ∂K
ρ

, ∂K
Q

, and ∂K
R

. However, directly evaluating those sensitivities can be

challenging because the ARE is an implicit function, which is why OpenMDAO is used.

OpenMDAO provides the option to define the model equations as modular components, from

which OpenMDAO can efficiently compute the total derivatives from partial derivatives [115].

Therefore, OpenMDAO can automatically compute ∂K
ρ

, ∂K
Q

, and ∂K
R

from easier to derive

partial derivatives.

The input constrained AALQR synthesis (Section 5.3.4.3) is decomposed into 3 compo-

nents in OpenMDAO

R̄ = F TRF,

B̄ = BF

Component 1, (C.10a)

0 = PA+ ATP +Q− PB̄R̄−1B̄TP
}

Component 2, (C.10b)

K = R̄−1B̄TP
}

Component 3. (C.10c)

Note that the functional dependency on ρ is omitted for brevity. The following partial deriva-

tives are derived using the methods from Section C.2, so the full derivations are omitted.

Component 1 (C.10a): The outputs are R̄ ∈ Rf×f and B̄ ∈ Rx×f with inputs B ∈ Rx×u,

R ∈ Ru×u, and F ∈ Ru×f .

∂R̄

∂R
=

(
F T ⊗ F T

)
, (C.11a)

∂R̄

∂F
=

(
If ⊗ (RF )T

)
Kf,u +

(
F TR⊗ If

)
, (C.11b)

∂B̄

∂B
= Ix ⊗ F T , (C.11c)

∂B̄

∂F
= B ⊗ If (C.11d)
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Component 2 (C.10b): An implicit equation. The output is P̄ ∈ Rx×x with inputs

A ∈ Rx×x, B̄ ∈ Rx×f , R̄ ∈ Rf×f , and Q ∈ Rx×x.

∂P

∂P
=

(
Ix ⊗ AT

)
+
(
AT ⊗ Ix

)
−

(
Ix ⊗

(
B̄R̄−1B̄TP

)T)−
(
PB̄R̄−1B̄T ⊗ Ix

)
, (C.12a)

∂P

∂A
= (P ⊗ Ix) +

(
Ix ⊗ P T

)
Kx,x, (C.12b)

∂P

∂B̄
= − (P ⊗ P )

((
Ix ⊗ B̄R̄−1

)
+
(
B̄R̄−1 ⊗ Ix

)
Kf,x

)
, (C.12c)

∂P

∂Q
= Ixx, (C.12d)

∂P

∂R̄
=

(
PB̄ ⊗ PB̄

) (
If ⊗ R̄T

)−1 (
R̄−1 ⊗ If

)
(C.12e)

Component 3 (C.10c): The output is K ∈ Rf×x with inputs B̄ ∈ Rx×f , R̄ ∈ Rf×f , and

P ∈ Rx×x.

∂K

∂B̄
=

(
R̄−1 ⊗ P T

)
Kf,x, (C.13a)

∂K

∂R̄
= −

(
If ⊗

(
B̄TP

)T) (
If ⊗RT

)−1 (
R−1 ⊗ If

)
, (C.13b)

∂K

∂P
= R̄−1B̄T ⊗ Ix (C.13c)
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Appendix D

Supplemental Topology Optimization Figures

This section includes supplemental figures from Chapter 5 and includes all topologies classes

(Figure D.1, the best 21 TMS designs (Figure D.2), all state in input trajectories for each

mission (Figure D.3), and the distance-sorted search evaluation metrics for each mission

(Figure D.4).
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Figure D.1: All 37 unique classes of thermal management system architectures represented
by rooted trees.
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Figure D.1 (cont.): All 37 unique classes of thermal management system architectures
represented by rooted trees.

218



Figure D.2: The 21 highest performing TMS architectures represent by rooted trees.
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Figure D.3: The optimal TMS temperature state and flow rate input trajectories for each
of the 21 feasible missions.
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Figure D.3 (cont.): The optimal TMS temperature state and flow rate input trajectories
for each of the 21 feasible missions.
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Figure D.3 (cont.): The optimal TMS temperature state and flow rate input trajectories
for each of the 21 feasible missions.
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Figure D.3 (cont.): The optimal TMS temperature state and flow rate input trajectories
for each of the 21 feasible missions.
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Figure D.3 (cont.): The optimal TMS temperature state and flow rate input trajectories
for each of the 21 feasible missions.

224



0 110 220 330 440

30

40

50

60

70

CP 1

CP 2

CP 3

CP 4

0 110 220 330 440

0

0.05

0.1

(u) Mission 21

Figure D.3 (cont.): The optimal TMS temperature state and flow rate input trajectories
for each of the 21 feasible missions.

225



0 5 10 15 20 25

0

20

40

60

80

100

0

20

40

60

80

100

1 2 3 4 5 6 7

(a) Mission 1

0 5 10 15 20 25

0

20

40

60

80

100

0

20

40

60

80

100

1 2 3 4 5 6 7

(b) Mission 2

0 5 10 15 20 25

0

20

40

60

80

100

0

20

40

60

80

100

1 2 3 4 5 6 7

(c) Mission 3

0 5 10 15 20 25

0

20

40

60

80

100

0

20

40

60

80

100

1 2 3 4 5 6 7
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Figure D.4: The distance-sorted search optimization metrics for each mission.
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(h) Mission 8

Figure D.4 (cont.): The distance-sorted search optimization metrics for each mission.
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Figure D.4 (cont.): The distance-sorted search optimization metrics for each mission.
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Figure D.4 (cont.): The distance-sorted search optimization metrics for each mission.
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Figure D.4 (cont.): The distance-sorted search optimization metrics for each mission.
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(u) Mission 21

Figure D.4 (cont.): The distance-sorted search optimization metrics for each mission.
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