
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 Minda Wagenmaker



 
 
 
 
 

ANALYTICAL SENSITIVITY ANALYSIS METHODOLOGY FOR THE CO-DESIGN 

OF THERMAL MANAGEMENT SYSTEMS 

 

 

 

 

 

 

 

BY 

 

MINDA JOY WAGENMAKER 

 

 

 

 

 

 

 

THESIS 

 

Submitted in partial fulfillment of the requirements 

for the degree of Master of Science in Mechanical Engineering 

in the Graduate College of the  

University of Illinois Urbana-Champaign, 2021 

 

 

 

 

Urbana, Illinois 

 

 

Adviser: 

  

 Professor Andrew Alleyne 

 

  



 ii  

Abstract 

This thesis presents an analytical sensitivity analysis methodology to be used in a co-

design approach to simultaneously optimize plant parameter variables and controller gains. 

Sensitivity analysis methods are commonly used in system design. The sensitivity of the 

system output to design variables can be calculated either analytically or numerically. These 

sensitivities inform the engineer which variables should be the focus of the majority of time 

and effort to yield the optimal result or , conversely, which variables are inconsequential and 

can be removed from the optimization design space. Sensitivity analysis methods are also used 

in control system design. The controller design is influenced by the analysis of how system 

parameters affect the controlled states. This thesis presents a plant and controller co-design 

approach where the system parameters which affect the plant output and the ones which affect 

the controlled states the most are identified. These parameters are optimized using a brute-

force numerical method at the same time as the controller gains. This improved plant and 

controller pair is designed to lower the control input without sacrificing performance. By 

designing both the plant and the controller simultaneously, better results can be achieved than 

by only optimizing either the plant or controller.  

The methodology explored in this thesis is widely applicable to many other systems. 

However, it has been specifically designed to work with a graph-based modelling framework. 

This project was carried out with the intention of improving thermal management systems for 

electrified vehicles. A fluid loop with additional heat loads was used as the example framework 

to showcase the sensitivity analysis methods. This thesis demonstrates how optimizing the 

most influential parameters along with the controller gains, lowers the necessary control input, 

or pump energy, while improving tracking of a reference signal. 
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Chapter 1     

Introduction 

1.1 Motivation 

Sensitivity analysis methods are useful in understanding system models, because they help 

quantify how dependent the model outputs are on modeling assumptions or characteristics such as 

parameter values, initial conditions, and inputs. Sensitivity analysis methods can be either 

numerical or analytical. The finite difference method is a good example of a numerical approach, 

and involves numerically solving the governing differential equations of a model, while the 

modeling characteristics are being adjusted to different values. Then the effect had on the resulting 

model outputs can be compared for each characteristic adjustment to discern which characteristics 

the model outputs are most sensitive to. On the other hand, an analytical sensitivity analysis 

technique can use the model’s differential equations to analytically determine the dependence of 

the model output to various modeling characteristics. Analytical methods can be much quicker at 

calculating sensitivity than numerical methods and may have the potential to do so dynamically as 

the model itself changes.  

The motivation behind developing a sensitivity analysis methodology for graph-based 

models is to help inform the design process—this information will help the plant and controller 

designers know which modeling characteristics are insensitive and can be removed from the design 

optimization problem, and which ones have the largest impact on the system, and thus should be 

the focus of the majority of time, effort, and money spent on optimization. 
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1.2 Background 

1.2.1 Overview of Sensitivity Analysis Applications 

 

Sensitivity Analysis is a versatile and widely applicable field. The main goal of a sensitivity 

analysis is usually to either identify the most influential characteristics to focus on optimizing those 

or to find the least influential characteristics so that they can be discarded. 

Examples of situations where the most influential characteristics are sought after include 

risk mitigation, uncertainty analysis and design optimization. Sensitivity analyses are useful in risk 

management because they can identify the most significant risk factors within a process. Then 

those factors can be prioritized to improve them first and thus mitigate the risk as quickly as 

possible. Additionally, the critical control points (CCP), or the points which have the potential to 

effect significant change in a system, could also be identified and focused on to achieve the desired 

results [1]. Sensitivity Analyses are often used in conjunction with Uncertainty Analyses of 

models. Once the uncertainties of the system outputs are known, a sensitivity analysis can be 

conducted on those uncertainties with respect to each of the inputs and parameters [2]. The 

sensitivity information will narrow down and help identify which components of the model should 

be improved to yield the greatest increase in overall model reliability. Finally, sensitivity analyses 

are useful in design optimization. Once the design objective is identified, a sensitivity analysis can 

be applied to discover which system parameters would have the greatest ability to reach that design 

objective. These few system parameters should then be the focus on the optimization efforts.  

There are also some scenarios where the least influential characteristics should be 

discarded. Sensitivity Analyses are also useful in model reduction for large and complex models 

[3]. If the main control parameters in the model are identified, they can be used to formulate a 

smaller model, which can produce similar outputs and requires less computational power and time 

to run.  

As discussed in the motivation section, there are two types of sensitivity analysis: 

numerical and analytical. The following sections in this chapter will discuss what others have done 

with sensitivity analysis tools in control system design and plant design optimizations. Most of the 

sensitivity analysis methods used in these discussions happen to be analytical methods, due to the 
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existence of linear models for the systems in question. When a linear model does not exist, a 

slower, less-accurate numerical method might be used, such as the finite-difference method. 

Regardless of being numerical or analytical, a sensitivity analysis involves calculating (either 

analytically or numerically) the gradient, or Jacobian, of how changing a particular model 

characteristic affects the model output. Suppose the model output, 𝑌, is a function of the set of 

model characteristics, 𝑋, as shown in Eq. (1.1) 

𝑌 = 𝑓(𝑋) (1.1) 

Then the sensitivity index of a particular characteristic, 𝑋𝑗, is shown in Eq. (1.2). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 ≡
𝜕𝑌

𝜕𝑋𝑗
 (1.2) 

To find the most influential characteristic, the sensitivity indices for each characteristic can 

be compared. Each of the sensitivity indices together form the Jacobian of the model output. The 

different types of sensitivity analyses and their applications are covered in more detail in Chapter 

3. The purpose of this chapter is to introduce the reader to the variety of situations where sensitivity 

analyses can be applied and get familiar with some examples of others who have applied sensitivity 

analysis tools to solve control system optimization and plant optimization problems. The final 

purpose of this chapter is to introduce and motivate opportunities to apply sensitivity analysis 

techniques to the intersection of control system and plant optimization in the form of a co-design 

approach.  

1.2.2 Sensitivity Analysis in Control Systems 

In every control system, there is always a plant which is given an exogenous control input 

signal to meet requirements, which often involves attaining a target. Thus, the main goal of a 

controller is to guarantee that the entire range of actual outputs fall within the set of values which 

satisfy a set of requirements. [4]  

This rule can be demonstrated by Eq (1.3), where 𝑌 is a vector of generalized outputs from 

the plant, 𝑀𝑌 is the set of values of 𝑌 for which the states of the plant satisfy the requirements 

specified by the engineer, and 𝑅𝑌 is the set of values of 𝑌 which can take place during plant 

operation. [4] 

𝑅𝑌 ⊂ 𝑀𝑌 (1.3) 
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This equation might be satisfied for the plant without any control signal if all the possible 

output vectors 𝑅𝑌 are already admissible states and satisfy the requirements for the plant, and thus 

𝑅𝑌 ⊂ 𝑀𝑌. However, once the plant is affected by disturbances this rule might become violated, 

necessitating outside help from a controller. 

Systems cannot be perfectly determined by their state variables and exogenous 

disturbances alone, they also have factors called parameters, which either effect the properties of 

the output vector 𝑌 directly, indirectly through affecting the properties of the disturbances, or by 

adjusting the initial conditions. Thus, the output is affected by a set of parameters, which could 

push it outside of the set of outputs which satisfy the system requirements.  

Parameters fall into two categories: technical parameters and parameters of environment 

and operating conditions. [4] Technical parameters are properties or values which can affect the 

system output for different example cases under the same operating conditions. An example of a 

technical parameter would be a physical property of the plant, such as plant size or material 

properties. Environmental parameters are ones which change the operating conditions of 

individual example cases, such as changing the properties of the disturbances or varying the initial 

conditions. An example of an environmental parameter is the ambient temperature or air humidity. 

Since it is the responsibility of the controller to keep the outputs within the set of allowable values 

while these technical and environmental parameters could push the system output outside of the 

set, the system’s sensitivity to variations in parameter values is critical for controller design. 

Therefore, sensitivity analysis techniques are applied to the system output to discern which 

parameters might push the system output outside of the permissible set 𝑀𝑌. If these parameters are 

expected to vary significantly during system operation, then this advises the controller design 

process. 

Precup et al. [5] incorporates a sensitivity analysis into their controller design, by 

constructing an objective function which contains the weighted sums of the control error along 

with the output sensitivity function. Thus, when a gravitation search algorithm (GSA) is used to 

minimize the objective function, the sensitivity with respect to parameters will be minimized at 

the same time as the control error. So, when the solution to the objective function is found, the 

system will also have the lowest sensitivity to changes in the parameters and thus be more reliable.  
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Lin et al. [6] combined sensitivity theory with ordinal optimization methodology [STOO] 

to solve an optimization problem. The ordinal optimization process works by using probabilities 

to solve for a sufficient solution, rather than the definitive best solution. Sensitivity theory is used 

to calculate the gradient of the objective function with respect to the change in each discrete 

variable’s value. These sensitivities are then compared for all the variables, and the ones with the 

smallest sensitivities are chosen as part of the selected subset. This helps significantly reduce the 

search space, and significantly reduce computation time compared to most optimization 

techniques. 

Brenna et al. [7] used sensitivity theory to design an automatic distributed voltage 

regulation system to better control the node voltages in the midst of the emerging distributed 

generation (DG) technology, which involves installing more generators into the medium-voltage 

distribution network (MVDN). Currently, the voltages of MVDNs are regulated by the On-Load 

Tap Changer (OLTC) of the high voltage / medium voltage (HV/MV) transformer. The OLTC 

controller does not guarantee that the network nodes will be at acceptable voltage levels after 

generators inject power into the network. Once reactive power is injected, the voltages rise in all 

the network nodes, some more than others. These nodes are shown in Fig. 1.1 as dots. Node 0 

represents the MV busbar and is regulated at a constant voltage value. The voltages of the other 

four nodes, 𝑉𝑖, depend on the reactive energy absorption, 𝑄𝑗, occurring at the generators/general 

loads of the other nodes. Since the generators in DG systems are often based on renewable energy, 

they can have unpredictable power-time profiles. Therefore, they could inject high power during 

a low load condition and cause some nodes to exceed the maximum voltage threshold. Each 

generator has its own Generator Remote Terminal Unit (GRTU) to connect it to a central Generator 

Control Center (GCC) control system to manage the generator reactive power. When the voltage 

in a generator’s node passes the maximum threshold, a signal is sent from the GRTU to the GCC. 

Then the GCC uses sensitivity analysis techniques to determine which generator has the capability 

to provide the maximum effect on the overloaded node voltage by absorbing the most reactive 

energy.   
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Figure 1.1: Medium Voltage Distribution Network with Four Nodes. 

This sensitivity analysis involves building a reactive sensitivity matrix to calculate the 

partial derivative of the node voltages, 𝑉𝑖, with respect to reactive power-variations, 𝑄𝑗. These 

partial derivatives are like the “gain” for the voltage variation in a certain node when a reactive 

power variation occurs in another node. These sensitivities, act as coefficients and are multiplied 

by the reactive power variation values to compose the sensitivity product. The sensitivity product 

is simply a normalized version of the sensitivity index, or the gain, described in Eq. (1.2). A 

normalized sensitivity product might be used if the engineer recognizes that the cost of 

incrementing the influential parameter is negligible, and the effect had by optimizing the parameter 

is more relevant. However, if it was costly to increment the parameters, an design engineer would 

be more interested in the ratio of effect had on the output with respect to the amount the parameter 

was increased. In this scenario an unnormalized sensitivity index would be utilized. 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =  
𝜕𝑉𝑖

𝜕𝑄𝑗
𝛥𝑄𝑗  (1.4) 

 

The best generator (BG) is found by comparing these sensitivity products and choosing the 

one with the most influence on the node where the voltage threshold was exceeded. This generator 

is then switched to reactive power absorption mode so that the voltage can be returned to 

acceptable levels. 

Zad et al. [8] built upon this work and worked on optimizing the reactive power absorption 

to keep the node voltages through the medium voltage distribution network within safe ranges. 

The sensitivity indices relating voltage, 𝑉𝑖, and reactive power variation, 𝑄𝐷𝐺𝑥, of each of the 𝑁 
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distributed generation (DG) units are used to formulate an equality constraint for an optimization 

algorithm. This algorithm picks which nodes should be used to absorb reactive power and how 

much power each of them should absorb to return the system voltages to appropriate levels. The 

objective function and constraints are shown in Eq. (1.5) – (1.7) below. 

 

Minimize objective function: 

∑|𝛥𝑄𝐷𝐺𝑥
|

𝑁

𝑥=1

 (1.5) 

Constraints: 

𝛥𝑉𝑡𝑜 𝑟𝑒𝑐𝑜𝑣𝑒𝑟 = −𝛥𝑉max𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = ∑
𝜕𝑉max𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝛿𝑄𝐷𝐺𝑥

𝛥𝑄𝐷𝐺𝑥

𝑁

𝑥=1

 (1.6) 

𝑄𝐷𝐺𝑥,𝑚𝑖𝑛
≤ 𝑄𝐷𝐺𝑥

≤ 𝑄𝐷𝐺𝑥,𝑚𝑎𝑥
 (1.7) 

 

Heuristic optimization tools, such as the particle swarm optimization (PSO) algorithm, can 

be used to solve this problem. 

These examples where sensitivity analysis tools were applied to control systems introduce 

some of the many applications of sensitivity analysis techniques. These examples show how 

sensitivity analyses can be used successfully in controller design. This next section will defend the 

benefits of applying sensitivity analysis techniques to plant design optimization problems through 

examples from the literature. Together these motivate the ability to apply sensitivity analysis tools 

to the co-design of both the plant and the controller, which is the topic of this thesis.  

1.2.3 Sensitivity Analysis in Design Optimization 

Engineers often rely heavily on their experience and intuition when it comes to plant 

design. These decisions could be better informed through a sensitivity analysis which could predict 

the outcome of design changes without requiring trial and error. Design sensitivity analysis (DSA) 

has been applied to system design problems to find the sensitivity of the system response to 

variations in its design variables. The system response is typically considered to be either the 

output values of state variables or the objective function of an optimization problem. The 
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sensitivity coefficients are defined as the gradient of the response functions with respect to the 

design variables. These sensitivities can inform the design optimization process to ensure the 

designed system’s performance is able to meet its objectives for the entire range of possible 

parameter variation or the entire range of loading conditions. Numerical sensitivity analysis 

methods, such as the finite difference method, or analytical sensitivity analysis methods can be 

used in design sensitivity analysis problems. Design sensitivity analyses can also be dynamic to 

account for time-varying uncertainties. This helps the engineer design products with the product’s 

entire lifecycle and corresponding changing uncertainties in mind. 

Caliano et al. [9] designed the absorption chiller and thermal energy storage system of a 

combined cooling, heat and power (CCHP) system with the help of a numerical sensitivity 

analysis. The nonlinear nature of the system model restricted the sensitivity analysis to be 

numerical, rather than analytical. A biomass-fueled combined heat and power (CHP) unit is used 

to provide electricity and hot water throughout the year. During the winter, it is also used for 

ambient heating and in the summer, it is used to power the absorption chiller. The thermal energy 

storage system is used to store excess heat generated by the CHP unit and use it later when the 

heat demand exceeds availability.   

 

Figure 1.2: Layout of the CCHP plant [9]. 



 9  

First, a sensitivity analysis was conducted on the effect the feed-in tariffs and premiums 

had on the economic viability and system design of these biomass-fired CCHP systems in Italy. 

Next, the sensitivities of the thermal energy storage system and absorption chiller sizes with 

respect to the economic and energetic performance of CCHP systems were evaluated. This 

iterative, numerical sensitivity analysis showed that the feed-in premium had a large effect on the 

thermal energy storage systems and the absorption chiller sizes. However, the feed-in tariff value 

had a negligible effect on the sizes of these components. The second sensitivity analysis showed 

the absorption chiller size to be significantly more influential on the CCHP system’s economic 

and energetic performance than the size of the thermal energy storage. Therefore, in designing this 

biomass-fired CCHP system, more effort should be placed in the design of the absorption chiller. 

Cho et al. [10] developed an analytical DSA approach to solve a topology design 

optimization problem for weakly coupled thermo-elasticity problems. Their goal was to find the 

optimal material distribution to maximize stiffness or minimize compliance of the structural 

system. The thermal and displacement fields were considered coupled since the design variables, 

the bulk densities of each element, are associated with both Young’s modulus and thermal 

conductivity. Therefore, temperature and displacement were considered in a common domain and 

used to derive the design sensitivity equations. An analytical sensitivity analysis technique was 

used to take the first-order derivatives of the general performance equation with respect to each of 

the design variables. The performance measure was the compliance of the plate. Through 

sensitivity analysis methods, the engineers could determine the effect the bulk density of each 

element had on the structural compliance, given a variety of both thermal and mechanical loads. 

Since topology optimization involves many design variables, one for each element, a gradient-

based optimization was used in conjunction with the sensitivity analysis. These results informed 

the engineer’s design decisions in designing the material distribution to optimize stiffness, specific 

to the expected loading conditions. 

Xu et al. [11] used a time-varying sensitivity analysis to optimize the design of a 

mechanical system which experiences time-varying uncertainties. Design optimization is often 

inaccurate if it does not consider the time varying nature of uncertainties, such as material 

properties, operating environments, and loads. Therefore, there have already been efforts made to 

consider the time-varying uncertainty of a single variable in the optimization design process to 
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maximize product value for the entire product life cycle. However, since mechanical systems 

usually have multiple variables, each with their own time-varying uncertainties, these all need to 

be considered. This motivates a sensitivity analysis to determine which time-varying uncertainties 

of which variables have the most influence on the system performance, or the highest reliability 

sensitivity. The sources for these uncertainties are the ones which should be strictly controlled 

during design and manufacture. Xu et al. proposed a novel multidisciplinary robust design 

optimization (MRDO) method which takes the time-varying uncertainties into account and causes 

the objective function to be more robust as well as the system time-varying reliability sensitivity. 

The optimization results for the proposed MRDO method were 3.3% higher than for the 

conventional multidisciplinary design optimization (MDO) method. 

Sensitivity analyses are a well-established method for aiding in plant design.  They can be 

applied to virtually any type of plant and all work in a similar way. They all identify the parameters 

which influence the system output the most, either through numerical methods or by analytically 

calculating the Jacobian if a linear or linearized model exists. There are many more examples in 

the literature of sensitivity analysis techniques being applied to system. These examples range 

from biomass supply chains [12] to wind turbines [13] to ethyl acetate production flowsheets [14].  

Clearly applying sensitivity analysis tools to optimize the plant design is not new. 

However, there exists room for innovation in the intersection of plant and controller co-design. 

This thesis aims to develop a set of sensitivity analysis tools for graph-based models that can 

identify the plant parameters which effect the system output and the controller effort the most. 

Once these parameters are identified, they can be optimized alongside the controller gains to yield 

the best controller and plant design pair according to the system objectives. The following 

subsection seeks to explore what has already been done in the co-design field and motivate the 

opportunity for future work in this area. 

1.2.4 Sensitivity Analysis in Controller Co-design 

1.2.4.1 Sampling-Based Global Sensitivity Analysis 

Abolmoali et al. [15] analyzed the suitability of a sampling-based (numerical), global 

sensitivity analysis (GSA) technique to help a PI controller drive a coolant supply temperature to 

a set point in the presence of a pulsed thermal load. Sobol’s variance decomposition method was 
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used to identify the component parameters and input factors which have the most influence on the 

thermal management system’s performance for the entire distribution of the output. Knowing 

which regions of the design space should be explored, and which regions to ignore greatly 

simplifies the challenging design optimization task.  

The Sobol method starts with a model, which maps the k-vector 𝑋, belonging to ℝ𝑘, to the 

output 𝑌, belonging to ℝ, as shown in Eq. (1.8).  

𝑌 = 𝑓(𝑋), 𝑋 ∈ 𝛺, 𝛺 ⊂ ℝ𝑘  (1.8) 

As will be discussed further in Chapter 3, a local sensitivity analysis, shown in Eq. (1.9), 

involves finding the first derivative of the model with respect to a parameter of interest, 𝑋𝑗. These 

partial derivatives of the model output are also referred to as the Jacobian. 

𝐿𝑜𝑐𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 ≡
𝜕𝑌

𝜕𝑋𝑗
 (1.9) 

However, the Sobol method is a global sensitivity analysis and can explore the entire range 

of parameter variation, not just a small interval around the nominal values. Suppose the system 

model 𝑓(𝑋) from Eq. (1.8) is a square-integrable function. We can express it as a sum of the mean 

of 𝑓(𝑋) over the k-dimensional domain (𝑓0) and a series of sums of functions dependent on 1,2, 

…, k factors, as shown in Eq. (1.10). 

𝑌 =  𝑓(𝑋) =  𝑓0 + ∑𝑓𝑖(𝑋𝑖)

k

i=1

+ ∑

𝑘−1

𝑖=1

∑ 𝑓𝑖𝑗

𝑘

𝑗=i+1

(𝑋𝑖, 𝑋𝑗) + ⋯+ f12…k (1.10) 

Since the functions 𝑓𝑖, 𝑓𝑖𝑗 , … , 𝑓12…𝑘 are orthogonal with respect to the indices corresponding 

to their subscripts over the domain of integration, the variance of 𝑓(𝑋) can be expressed as in Eq. 

(1.11). 

𝑉[𝑓(𝑋)] =  ∫

1

0

[∑𝑓𝑖
2(𝑋𝑖)

𝑘

𝑖=1

+ ∑

𝑘−1

𝑖=1

∑ 𝑓𝑖𝑗
2

𝑘

𝑗=i+1

(𝑋𝑖, 𝑋𝑗) + 𝑓12…𝑘
2 ] 𝑑𝑋 (1.11) 

Since 𝑌 = 𝑓(𝑋) is dependent on the values of the parameters 𝑋𝑖, the conditional variance 

of 𝑌 can be written as in Eq. (1.12)  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑌 ≡ 𝑉(𝑌|𝑋𝑖) (1.12) 
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Similarly, the unconditional variance of 𝑌 can be written as 𝑉(𝑌). The expected value of 

the conditional variance is shown in Eq. (1.13) and the variance of the conditional expectation in 

Eq. (1.14) [16]. 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ≡  𝐸𝑥𝑖
[𝑉(𝑌|𝑋𝑖)] (1.13) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 ≡  𝑉𝑥𝑖
[𝐸(𝑌|𝑋𝑖)] (1.14) 

The first order Sobol sensitivity index of 𝑌 with respect to 𝑋𝑖 can be written as the reduction 

of variance in 𝑌 if the input factor 𝑋𝑖 was fixed, as in Eq. (1.15). 

𝑆𝑖 =
𝑉𝑖

𝑉[𝑌]
=

𝑉𝑋𝑖
[𝐸𝑋~𝑖

[𝑌|𝑋𝑖]]

𝑉[𝑌]
 (1.15) 

Another metric used for analysis is the total effects index shown in Eq. (1.16). This index 

describes the main effect of 𝑋𝑖 in addition to all the interactions involving 𝑋~𝑖. 

𝑇𝑖 =
𝑉[𝑌] − 𝑉𝑋~𝑖

[𝐸𝑋𝑖
[𝑌|𝑋~𝑖]]

𝑉[𝑌]
 (1.16) 

The DAKOTA software suite [17], developed by Sandia National Laboratories, is used to 

create gaussian process surrogate models to accelerate the computation of the sensitivity indices. 

The generalized Sobol indices are then used to rank the input parameters in terms of influence on 

the output for a finite time interval. 

Abolmoali et al. [15] applied this methodology to the design of a vapor cycle system and a 

PI controller regulating the compressor speed to effectively reject a pulsed thermal load and drive 

a coolant supply temperature to a set point. The sensitivity analysis showed that the compressor 

speed control gain was the dominant factor and had the greatest effect on performance, followed 

by the condenser height, evaporator width, evaporator height, and valve exit diameter. The 

condenser length and width along with the evaporator length had a negligible effect on the output 

variance. 

Abolmoali et al.’s work [15] is an example of a co-design optimization problem where a 

sensitivity analysis was conducted on the design of both the plant and controller to meet a set of 

goals. Since this method is based on Sobol’s variance-based approach, it is a numerical method 

and required creating a surrogate model and running 500,000 model evaluations to obtain results.  
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1.2.4.2 Plant-Limited Co-Design Optimization 

Another instance where a sensitivity analysis was applied to a codesign problem is when 

Allison [18] explored the idea of using a sensitivity analysis to identify the most influential 

parameters of a plant to modify concurrently with control redesign to meet the performance 

requirements with new system applications. Complete plant redesign is expensive, but partial plant 

redesign is often necessary when control redesign alone cannot achieve the desired performance. 

Allison applies these Plant-Limited Co-Design (PLCD) techniques to a two-link robotic 

manipulator to achieve system-optimal designs with minimum-cost plant modifications. [18] The 

analytical sensitivity analysis is used to calculate the Jacobian (𝐽𝑝), or the partial derivative of each 

of the output requirements that still need to be met (�̅�𝑟𝑖(𝑝)) with respect to each of the model 

parameters (𝑝𝑗) shown in Eq. (1.17). The 𝑝 in �̅�𝑟𝑖(𝑝) indicates that the output requirements are 

dependent on the parameters, 𝑝. This makes sense, because for the Jacobian to be a non-zero value, 

�̅�𝑟𝑖(𝑝) must be at least somewhat dependent on some of the parameters. The 𝑗 subscript on 𝑝𝑗 

indicates which model parameter the partial derivative is being taken according to.  

𝐽𝑝 = 
𝜕�̅�𝑟𝑖(𝑝)

𝜕𝑝𝑗
, 𝑖 = 1, 2, … , 𝑛𝑟 , 𝑗 = 1, 2, … , 𝑛𝑝 (1.17) 

where 𝑛𝑟 is the number of unmet requirements and 𝑛𝑝 is the number of model parameters. 

In addition to calculating the Jacobian of the requirements that need to be met, it is also 

worth considering the cost of changing model parameters. These costs can be presented along with 

the effectiveness of changing the model parameters by calculating the cost Jacobian (𝐽𝑐), shown 

in Eq. (1.18). 

𝐽𝑐 = 
𝜕�̅�𝑟𝑖(𝑝)

𝜕𝑝𝑗
(
𝜕𝐶(𝑝)

𝜕𝑝𝑗
)

−1

=
𝜕�̅�𝑟𝑖(𝑝)

𝜕𝑐𝑗
, 𝑖 = 1, 2, … , 𝑛𝑟 , 𝑗 = 1, 2, … , 𝑛𝑝 (1.18) 

where 𝐶(𝑝) approximates the cost of changing all model parameters and 𝑐𝑗 represents the cost of 

changing model parameter 𝑝𝑗. 

Once the set of most influential model parameters (�̅�), such as inertia values or damping 

rates, are selected from the Jacobian matrices, it becomes necessary to choose the corresponding 

candidate set of physical plant modifications (�̅�𝑝), such as specific link lengths or radii. The set 

of control design variables (𝑥𝑐) are not limited since it is less expensive to modify the control 
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design variables. The PLCD optimization problem can then be constructed and is shown in Eq. 

(1.19). [18] 

𝑚𝑖𝑛
𝑥=[�̅�𝑝

𝑇,𝑥𝑐
𝑇]

𝑇
𝜙(𝑥) 

𝑠. 𝑡.  𝑔𝑝(𝑥) ≤ 0 (1.19) 

𝑔𝑟(𝑥) ≤ 0 

where 𝜙(𝑥) is a measure of deviation from the original plant design, 𝑔𝑝(𝑥) are plant design 

constraints and 𝑔𝑟(𝑥) are system performance requirements formulated as inequality constraints. 

Applying these PLCD methods to a mechatronic system redesign, Allison was able to 

identify the most influential physical design changes and optimize them alongside the controller 

design variables to produce a superior system-optimal design while greatly reducing plant 

modification cost. [18] 

1.2.4.3 Motivation for Co-Design in the Graph-Based Modelling Space 

This section has established the benefit and feasibility of using sensitivity analysis 

techniques in both the control design and plant design space. It has also introduced a few instances 

where sensitivity analysis tools benefitted the co-design process. This thesis seeks to add to that 

field of knowledge by developing a sensitivity analysis methodology to be used in a co-design 

application. This thesis will focus on developing an analytical sensitivity analysis, due to the pre-

existing, linearized, graph-based models, which will be covered in detail in Chapter 2, that are 

used to model the systems of interest. The analytical nature of this method will be able to solve for 

the local sensitivity on a ms timescale. This opens up the possibility to further this work and 

develop a method to dynamically solve for the sensitivities, using the current operating points as 

the nominal values. As for further details about the types of sensitivity analysis methods and which 

ones are best suited for the graph-based models, these can be found in Chapter 3. There, more 

detail will be provided to demonstrate how sensitivity analyses can be used to narrow the scope of 

variables to the most impactful ones on the plant and controller. This would allow for the 

optimization of controller gains and the most sensitive components at the same time to arrive at 

the optimized plant and controller pair in the least amount of time. 
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1.3 Organization of Thesis 

This thesis aims to introduce an analytical sensitivity analysis methodology applied to the 

DAEMOT graphing tools and the graph-based models which can be generated from them. This 

sensitivity analysis will aid in the plant and controller codesign to optimize system performance 

over a given mission profile.  

The remainder of the thesis is organized as follows. Chapter 2 explains the DAEMOT 

modeling framework, as well as the control-oriented, graph-based models which are developed 

from the governing equations of the DAEMOT models. Chapter 2 will provide an example of a 

fluid loop to demonstrate the power flow between components. Chapter 3 explores the pre-existing 

sensitivity analysis tools and the types of systems which are best suited for each sensitivity analysis 

approach. Chapter 4 will introduce the novel sensitivity analysis technique and apply it to the 

simple model introduced in Chapter 2. Chapter 4 will also introduce a thermal management system 

with parallel fluid flow branches and apply the sensitivity analysis methodology to the system. 

Chapter 5 will discuss the results of the sensitivity analysis and focus on the plant design 

optimization. Chapter 6 will consider both the controller gains and plant parameters in a co-design 

problem and analyze the results of that. Chapter 7 summarizes the conclusions and discusses 

opportunities for future work. 
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Chapter 2     

Modeling 

2.1 DAEMOT Toolbox 

This thesis uses the DAEMOT toolbox in Simulink to model the hydraulic and thermal 

domains of single-phase, fluid-thermal component models. Each of the DAEMOT components is 

governed by differential equations for the temperature, pressure, and mass flow rates. These 

differential equations are solved numerically over the course of the simulation in Simulink. 

Although this thesis focuses on fluid-thermal component models, the sensitivity analysis proposed 

in this work could be extended to any combination of thermal, hydraulic, mechanical, or electrical 

power domains, where storage, transport, or conversion of conserved quantities, such as mass or 

energy, happens. [19]  

Each of the DAEMOT components has an input and output bus, which contains a 

temperature, pressure, and mass flow rate value. When building a simulation-based model, it is 

important to remember that the calculation of mass flow rate and pressure are linked and alternate. 

For example, the pressure of the previous and following components are used to calculate mass 

flow rate through the component in the middle, as shown in Fig.2.1 and Eq. (2.1).  

 

 

Figure 2.1: Alternating Mass Flow Rate and Pressure Calculations. 
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�̇� = 𝜌𝐴𝑐√
2(𝑝𝑡𝑎𝑖𝑙 − 𝑝ℎ𝑒𝑎𝑑 + 𝜌𝑔𝛥ℎ)

𝜌 (𝑓
𝐿
𝐷 + 𝐾𝐿)

 (2.1) 

where 𝑝𝑡𝑎𝑖𝑙 and 𝑝ℎ𝑒𝑎𝑑 are the pressures of the upstream and downstream components, 𝜌 is 

the density of the fluid, 𝐴𝑐 , 𝐿, 𝐷 are the cross sectional area, length, and diameter of the component, 

respectively, 𝑔 is the gravitational constant, 𝛥ℎ is the height difference between the inlet and outlet 

flow, 𝑓 is the friction factor, and 𝐾𝐿 is the minor loss coefficient. 

Similarly, the mass flow rates into the upstream and downstream components are used to 

calculate the outlet pressure of the component in between them, as shown in Fig. 2.1 and Eq. (2.2). 

�̇�𝑡𝑎𝑖𝑙 =
(�̇� − �̇�𝑡𝑎𝑖𝑙)

𝑉 ⋅ 𝜌 ⋅ (
1

𝐸𝑓𝑙𝑢𝑖𝑑
+ 𝐷

(1 −
𝑣
2)

𝑡 ⋅ 𝐸
)

 (2.2)

 

where �̇�𝑡𝑎𝑖𝑙 is the time derivative of the output pressure, �̇� and �̇�𝑡𝑎𝑖𝑙 are the mass flow 

rates into and out of the component, 𝑉 is the volume of fluid in the component, 𝜌 is the density of 

that fluid, 𝐸𝑓𝑙𝑢𝑖𝑑 is the bulk modulus, 𝐷 is the diameter of the component, 𝑣 is the tube poisson 

ratio, 𝑡 is the tube wall thickness, and 𝐸 is the tube modulus of elasticity. 

Sometimes a component, such as the cold plate, might have both a mass flow rate-

calculating and pressure-calculating block, but the mass flow and pressure calculations will always 

alternate. By alternating the pressure and mass flow calculating blocks, the DAEMOT component 

models can be combined to form a model of a system, making the toolbox modular and useful for 

building up complex models out of these simple components. 

The following section will discuss how the governing equations for these component 

models can be represented as graph-based models, comprised of vertices and oriented edges. The 

capacitances and resistances of these vertices and edges are directly determined from the governing 

differential equations of the components.  

 

2.2 Graph Based Modeling Basics 

Graph-based models are used to perform dynamic modeling and analysis of a system by 

representing the power flow in a system. One of the biggest strengths graph-based models offer is 
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their ability to represent the power flow through models which span the thermal, hydraulic, 

mechanical, and electrical power domains. This power domain agnosticism comes from the models 

being founded in conservation of energy equations, which supports easy conversion between 

different domains. This allows for the modeling of a wide variety of systems, such as thermal 

management systems, aircraft and hybrid-electric UAV powertrains, and hybrid energy storage 

systems [20] [21] [22] [23]. These models can also be built up in a modular way since individual 

components or subsystems can be combined to build up larger systems. This greatly simplifies the 

validation of a large and complex model, since each of its components can be isolated and validated 

separately. Graph-based models also allow for variable fidelity and the number of dynamic states 

can easily be expanded to form more complex or simplified to create less complex and detailed 

models. The structure of graph-based models also allows them to be easily scaled to various sizes 

and can be solved in a computationally efficient way [24]. For these reasons, graph-based models 

are an excellent modeling medium for control-oriented efforts for the energy exchange of multi-

domain power systems.  

The general idea of the oriented graph model 𝐺 = (𝑣, 𝑒) is to represent the storage and 

exchange of energy in the system it is modeling. 𝐺 consists of vertices 𝑣 and edges 𝑒. 𝑣 represents 

the set of vertices and is an equivalent representation to [𝑣𝑖], 𝑖 ∈ [1: 𝑁𝑣] where 𝑁𝑣 is the number 

of vertices in 𝐺. Similarly, 𝑒 represents the set of edges and is equivalent to [𝑒𝑗], 𝑗 ∈ [1: 𝑁𝑒] where 

𝑁𝑒 is the number of edges in 𝐺. Each oriented edge, 𝑒𝑗, connects a vertex at the tail of the 

edge, 𝑣𝑗
𝑡𝑎𝑖𝑙, to another vertex at its head, 𝑣𝑗

ℎ𝑒𝑎𝑑. The set of edges which are oriented into a vertex, 

𝑣𝑖, are represented by the set 𝑒𝑖
ℎ𝑒𝑎𝑑 = {𝑒𝑗|𝑣𝑗

ℎ𝑒𝑎𝑑 = 𝑣𝑖}. Similarly, the set of edges oriented out of 

a vertex, 𝑣𝑖, are represented by the set 𝑒𝑖
𝑡𝑎𝑖𝑙 = {𝑒𝑗|𝑣𝑗

𝑡𝑎𝑖𝑙 = 𝑣𝑖} [25]. Each vertex, 𝑣𝑖, of the graph 𝐺 

has a dynamic state, 𝑥𝑖, which represents the amount of energy stored in it, and a corresponding 

storage capacitance, 𝐶𝑖. And each edge, 𝑒𝑗, has an associated positive power flow, 𝑃𝑗, which is 

oriented from 𝑣𝑗
𝑡𝑎𝑖𝑙 to 𝑣𝑗

ℎ𝑒𝑎𝑑. The dynamic states, 𝑥, and the power flows, 𝑃, form the system 𝑆, 

which follows the conservation equation, as shown in Eq. (2.3). 

𝐶𝑖�̇�𝑖 = ∑ 𝑃𝑗

{𝑗|𝑒𝑗∈𝑒𝑖
ℎ𝑒𝑎𝑑}

− ∑ 𝑃𝑗

{𝑗|𝑒𝑗∈𝑒𝑖
𝑡𝑎𝑖𝑙}

 (2.3)
 



 19  

Eq. (2.4) shows how the power flow, 𝑃𝑗, of edge 𝑗 is a function of the adjacent vertices as 

well as the input signal 𝑢𝑗 .  

𝑃𝑗 = 𝑓𝑗(𝑥𝑗
𝑡𝑎𝑖𝑙 , 𝑥𝑗

ℎ𝑒𝑎𝑑 , 𝑢𝑗) (2.4) 

Eq. (2.3) and (2.4) are illustrated in Fig. 2.2 in a notional graph example. 

External disturbances are modeled in graph-based models by source edges, 𝑒𝑠 = [𝑒𝑗
𝑠], 𝑗 ∈

[1: 𝑁𝑠]. The power flows for these edges are represented by 𝑃𝑠 = [𝑃𝑗
𝑠]. Since source edges and 

power flows are external to the system, they are differentiated by dotted vertices or edges in Fig. 

2.2 and are not included in the internal edges 𝑒 of graph 𝐺 or the internal power flows 𝑃 of system 

𝑆. Similarly, sink states, modeled as 𝑥𝑡 = [𝑥𝑗
𝑡], 𝑗 ∈ [1, 𝑁𝑡], are also considered disturbances to the 

system and are not included in the state vector 𝑥 of system 𝑆. However, the sink vertices, 𝑣𝑡 =

[𝑣𝑗
𝑡], are still counted as vertices 𝑣 of graph 𝐺. Note that edges 𝑒𝑗 ∈ 𝑒 cannot connect two sink 

vertices to each other. An edge which is oriented into a sink must also be connected to a vertex, 

which is not a sink.  

 

Figure 2.2: Notional graph-based model. Modified from [19],[24]. 

The system model, 𝑆, resulting from the graph, 𝐺, can be converted to matrix form for 

efficient calculations, as shown in Eq. (2.5). This equation follows from the conservation equation 

Eq. (2.3) holding for each state 𝑥 in system 𝑆.  

𝑆:               𝐶�̇�(𝑡) = −�̅�𝑃(𝑡) + 𝐷𝑃𝑠(𝑡) (2.5) 
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where 𝐶 = 𝑑𝑖𝑎𝑔([𝐶𝑖]) is a diagonal matrix of the capacitances of the states 𝑥.  

The matrix 𝑀 = [𝑚𝑖𝑗] ∈ ℝ𝑁𝑣×𝑁𝑒 is the incidence matrix which maps the oriented edges to 

their adjacent verticies. Each of the values in the matrix 𝑀 can either be 1, -1, or 0 as shown in Eq. 

(2.6) 

𝑚𝑖𝑗 = {

1              ⅈf 𝑣𝑖  ⅈs the taⅈl of 𝑒𝑗,     

−1              ⅈf 𝑣𝑖  ⅈs the head of 𝑒𝑗 ,     

0              else.                                 

(2.6) 

𝑀 can be partitioned into �̅�, the part of the incidence matrix which maps the power flows 

to the non-sink states, 𝑥, and 𝑀, the part of the incidence matrix which maps the power flows to 

the sink states, 𝑥𝑡 (Eq. 2.7). 

𝑀 = [
�̅�
𝑀

]  wⅈth �̅� ∈ ℝ(𝑁𝑣−𝑁𝑡)×𝑁𝑒  and  𝑀 ∈ ℝ𝑁𝑡×𝑁𝑒  (2.7) 

Similarly, matrix 𝐷 = [𝑑𝑖𝑗] ∈ ℝ(𝑁𝑣−𝑁𝑡)×𝑁𝑠 maps the source power flows to the dynamic, 

non-sink states, 𝑥. Each element of 𝐷 is either a 0 or a 1, as shown in Eq. (2.8). 

𝑑𝑖𝑗 = {
1             ⅈf 𝑣𝑖  ⅈs the head of 𝑒𝑗

𝑠,

0             else.                                
 (2.8) 

The 𝑀 and 𝐷 matrices which represent the structure of the example graph in Fig. 2.2 are 

in Eq. (2.9). 

𝑀 =

[
 
 
 
 
 

1 0 0 0 0 0
−1 1 1 0 0 0
0 −1 0 1 1 0
0 0 −1 −1 0 1
0 0 0 0 −1 0
0 0 0 0 0 −1]

 
 
 
 
 

, 𝐷 = [

1 0
0 1
0 0
0 0

] (2.9) 

Now that the general form of the graph-based model is established, the following 

subsections will cover the governing equations for each of the components used to build up system 

models. First the governing equations used in the DAEMOT models will be highlighted, followed 

by how these equations translate into the thermal domain of the graph-based modeling framework. 

2.2.1 Reservoir Component 

The reservoir, or tank, component is very commonly used in modeled systems and 

functions as a thermal storage element. The DAEMOT reservoir model has three states it is solving 

for: the temperature of the fluid in the reservoir (𝑇𝑓), the temperature of the reservoir wall (𝑇𝑤), 
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and the pressure in the reservoir (𝑝). To represent the pressure, 𝑝, in 𝑘𝑃𝑎 units, a conversion rate 

of 1000 must be included in Eq. (2.12). The equations for the state derivatives are as follows: 

�̇�𝑓 =
�̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓

⋅ (𝑇𝑖𝑛 − 𝑇𝑓)

𝑀𝑓 ⋅ 𝑐𝑃𝑓

−
𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤)

𝑀𝑓 ⋅ 𝑐𝑃𝑓

 (2.10) 

�̇�𝑤 =
𝑄𝑎𝑚𝑏

𝑀𝑤 ⋅ 𝑐𝑃𝑤

 +
𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤)

𝑀𝑤 ⋅ 𝑐𝑃𝑤

 (2.11) 

�̇� =
(�̇�𝑖𝑛 − �̇�𝑜𝑢𝑡) ⋅ 𝑔

1000 ⋅ 𝐴𝑐𝑟𝑜𝑠𝑠
 (2.12) 

where 𝑐𝑃𝑓
 and 𝑐𝑃𝑤

 are the specific heat values for the fluid and wall, respectively, 𝑀𝑓 and 

𝑀𝑤 are the masses of the fluid and wall, respectively, �̇�𝑖𝑛 and �̇�𝑜𝑢𝑡 are the mass flow rates into 

and out of the reservoir, respectively, 𝐻 is the heat transfer coefficient and 𝐴ℎ𝑡 is the heat transfer 

area between the fluid and the wall, 𝐴𝑐𝑟𝑜𝑠𝑠 is the cross sectional area of the reservoir, 𝐷 and ℎ are 

the reservoir diameter and height, respectively, 𝑔 is the gravitational constant, and 𝑄𝑎𝑚𝑏 is the 

heat load applied to the reservoir wall from the ambient air. If the reservoir is assumed to be 

cylindrival, 𝐴ℎ𝑡, 𝐴𝑐𝑟𝑜𝑠𝑠, and 𝑀𝑓 can be expressed in Eq. (2.13) – (2.15). 

𝐴ℎ𝑡 = 𝜋 ⋅ ℎ ⋅ 𝐷 (2.13) 

𝐴𝑐𝑟𝑜𝑠𝑠 =  𝜋 ⋅ 𝐷
2

4⁄  (2.14) 

𝑀𝑓 =  𝜌 ⋅ 𝐴𝑐𝑟𝑜𝑠𝑠 ⋅ ℎ (2.15) 

To model the interaction between the ambient air and the reservoir as a temperature 

difference instead of a heat load, simply rewrite Eq. (2.11) as Eq. (2.16).  

�̇�𝑤 =
𝐻𝑎𝑚𝑏 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑎𝑚𝑏 − 𝑇𝑤)

𝑀𝑤 ⋅ 𝑐𝑃𝑤

 +
𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤)

𝑀𝑤 ⋅ 𝑐𝑃𝑤

 (2.16) 

where 𝐻𝑎𝑚𝑏 is the heat transfer coefficient between the ambient air and the reservoir wall 

and 𝑇𝑎𝑚𝑏 is the temperature of the ambient air. 

A schematic of the reservoir inputs and outputs is shown in Fig. 2.3. The green, blue, and 

red lines, which represent the pressure, mass flow rate, and temperature signals, are combined in 

a bus and are the first input of the reservoir component. The second input is a heat load from the 

ambient air. This could either be a positive value, adding thermal energy to the reservoir, or a 

negative value, which removes thermal energy. The red circle with a line through it represents a 

terminator block. This means that the reservoir does not use the upstream pressure, which was sent 
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to it in the bus for its calculations. Since the reservoir is a pressure calculating block, it requires 

the upstream and downstream mass flow rates and not the upstream pressure. The transparent line 

represents information which came from a source block. Since the reservoir does not calculate 

mass flow rate, but requires the upstream and downstream mass flow rates to calculate pressure, it 

is passed the downstream mass flow rate by a sink block and accesses it with a source Simulink 

block. 

 

Figure 2.3: Schematic of a Reservoir Component. 

Equations (2.10) – (2.12) are solved in Simulink by an ordinary differential equation (ODE) 

solver to find the temperature of the fluid in the reservoir (𝑇𝑓), the temperature of the reservoir 

wall (𝑇𝑤), and the pressure in the reservoir. For modeling in the thermal energy domain, only the 

temperature differential equations, Equations (2.10) and (2.11), are converted into a graph-based 

modeling form. 

In graph-based modeling, the dynamics are derived from conservation equations. For the 

thermal domain, the conservation of thermal energy is used, shown in Eq. (2.17). 

�̇�𝑠𝑡 = 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 (2.17) 

where 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡 are the power flows into and out of the component, respectively, and 

𝐸𝑠𝑡 is the energy stored in the component as shown in Eq. (2.18).  

𝐸𝑠𝑡 = 𝑀 ⋅ 𝑐𝑃 ⋅ 𝑇 (2.18) 

The time derivative of the stored energy is shown in Eq. (2.19).  

�̇�𝑠𝑡 = �̇� ⋅ 𝑐𝑃 ⋅ 𝑇 + 𝑀 ⋅ 𝑐𝑃 ⋅ �̇� (2.19) 

However, most components do not have a dynamic fluid mass and are considered flooded; 

so, �̇�𝑠𝑡 ≈ 𝑀 ⋅ 𝑐𝑃 ⋅ �̇�. The only exception to this is the reservoir’s fluid vertex, because reservoirs 

have a dynamic mass due to the flow in not always equalling the flow out. To be able to state that 
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�̇�𝑠𝑡 ≈ 𝑀 ⋅ 𝑐𝑃 ⋅ �̇� for all thermal components, the term �̇� ⋅ 𝑐𝑃 ⋅ 𝑇 can be considered a virtual power 

flow to represent the thermal energy that is lost or gained due to the changing fluid mass. This 

assumes perfect mixing within the reservoirs. This virtual power edge leads into a separate sink 

vertex which tracks the reservoir storage. Since the reservoir’s �̇� ⋅ 𝑐𝑃 ⋅ 𝑇 term is captured by a 

virtual power flow, the vertex storage capacitance for all thermal components can be represented 

as 𝑀 ⋅ 𝑐𝑃, where the mass, 𝑀, can be calculated by multiplying the density of the vertex material 

by the volume of the vertex in any given component, and 𝑐𝑝 is the specific heat of the vertex 

material. These are the capacitance values that compose the matrix 𝐶 = 𝑑𝑖𝑎𝑔([𝐶𝑖]) from Eq. (2.5). 

The power flow matrix 𝑃(𝑡) from Eq. (2.5) is composed of the convective, advective, or 

external input power flows. Convective edges, shown in Eq. (2.20), describe the power flow 

between wall and fluid vertices, or between the ambient air mass and a wall vertex, if the ambient 

air is represented as a temperature instead of as a heat load. These edges are modeled as red arrows 

in Fig. 2.4, 2.6, and 2.8. Advective edges, shown in Eq. (2.21), represent the thermal energy that 

is transported by fluid flow through the system. These edges are modeled as blue arrows in Fig. 

2.4, 2.6, 2.8, 2.10, 2.12, and 2.14. 

𝑃𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑥𝑡𝑎𝑖𝑙 − 𝑥ℎ𝑒𝑎𝑑) (2.20) 

𝑃𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 = �̇� ⋅ 𝑐𝑃 ⋅ 𝑥𝑡𝑎𝑖𝑙 (2.21) 

where 𝑥𝑡𝑎𝑖𝑙  is the upstream fluid temperature entering the component and 𝑥ℎ𝑒𝑎𝑑 is the 

downstream fluid temperature exiting the vertex. For the graph-based models, the dynamic mass 

flow rates, �̇�, are treated as virtual inputs. 

It is not difficult to see that Eq. (2.10) and (2.11) share the same structure as Eq. (2.17). If 

both sides of Eq. (2.10) were multiplied by the fluid capacitance, 𝐶𝑓𝑙𝑢𝑖𝑑 = 𝑀𝑓 ⋅ 𝑐𝑃𝑓
, and both sides 

of Eq. (2.11) were multiplied by the wall capacitance, 𝐶𝑤𝑎𝑙𝑙 = 𝑀𝑤 ⋅ 𝑐𝑃𝑤
 then we would get the 

equations shown in Eq. (2.22) and Eq. (2.23) respectively.  

𝑀𝑓 ⋅ 𝑐𝑃𝑓
⋅ �̇�𝑓 = �̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓

⋅ (𝑇𝑖𝑛 − 𝑇𝑓) − 𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤) (2.22) 

𝑀𝑤 ⋅ 𝑐𝑃𝑤
⋅ �̇�𝑤 = 𝑄𝑎𝑚𝑏 + 𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤) (2.23) 

where 𝑀𝑓 ⋅ 𝑐𝑃𝑓
⋅ �̇�𝑓 = 𝐶𝑓𝑙𝑢𝑖𝑑 ⋅ �̇�𝑓 and 𝑀𝑤 ⋅ 𝑐𝑃𝑤

⋅ �̇�𝑤 = 𝐶𝑤𝑎𝑙𝑙 ⋅ �̇�𝑤 are the time derivatives of 

the energy storage, �̇�𝑠𝑡, from Eq. (2.17), �̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓
⋅ 𝑇𝑖𝑛 and −�̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓

⋅ 𝑇𝑓 are the advective flows 

into and out of the fluid vertex respectively, −𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤) is the convective power flow 
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out of the fluid vertex and into the wall vertex, and 𝑄𝑎𝑚𝑏 is the input power flow into the reservoir 

wall vertex. 

The power flows are structured in terms of edge coefficients when building matrix 𝑃. The 

power flow equation for all components can be represented by the general equation shown in Eq. 

(2.24). 

𝑃 = 𝑒1 ⋅ 𝑇𝑡𝑎𝑖𝑙 + 𝑒2 ⋅ 𝑇ℎ𝑒𝑎𝑑 + 𝑒3 ⋅ 𝑇𝑡𝑎𝑖𝑙 ⋅ �̇� + 𝑒4 ⋅ 𝑇ℎ𝑒𝑎𝑑 ⋅ �̇� (2.24) 

where 𝑐𝑖 are the edge coefficients. 

Using Eq. (2.22) as an example, the edge coefficients for the reservoir’s fluid vertex are 

shown in Eq. (2.25). 

𝑒1 =  𝐻 ⋅ 𝐴ℎ𝑡;        𝑒2 = −𝐻 ⋅ 𝐴ℎ𝑡;        𝑒3 = �̇�1 ⋅ 𝑐𝑃𝑓
;        𝑒4 = −�̇�2 ⋅ 𝑐𝑃𝑓

 (2.25) 

Similarly, the edge coefficients which represent the power flows into the wall vertex in Eq. 

(2.23) are shown in Eq. (2.26). 

𝑒1 = −𝐻 ⋅ 𝐴ℎ𝑡;        𝑒2 =  𝐻 ⋅ 𝐴ℎ𝑡 (2.26) 

Arranging these equations in the 𝐶, �̇�(𝑡), �̅�, 𝑃(𝑡), 𝐷, and 𝑃𝑠(𝑡) matrices, in Eq. (2.27) – 

(2.32), we can model the reservoir in the form of Eq. (2.5). 

𝐶 = 𝑑𝑖𝑎𝑔 ([𝑀𝑓 ⋅ 𝑐𝑃𝑓
   𝑀𝑤 ⋅ 𝑐𝑃𝑤

]) (2.27) 

�̇�(𝑡) = [�̇�𝑓   �̇�𝑤]
𝑇

(2.28) 

�̅� = [
−1 −1
1 0

] (2.29) 

𝑃(𝑡) = [𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤)     𝑚2̇ ⋅ 𝑐𝑃 ⋅ 𝑇𝑓]
𝑇

(2.30) 

𝐷 = [
1 1 0
0 0 1

] (2.31) 

𝑃𝑠(𝑡) = [𝑚1̇ ⋅ 𝑐𝑃 ⋅ 𝑇𝑠𝑜𝑢𝑟𝑐𝑒      (𝑚2̇ − 𝑚1̇ ) ⋅ 𝑐𝑃 ⋅ 𝑇𝑓       𝑄𝑎𝑚𝑏]
𝑇

(2.32) 

 

Therefore, a reservoir can be modeled as a graph-based model as shown in Fig. 2.4. 
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Figure 2.4: Graph-Based Model of a Reservoir Component. 

2.2.2 Cold Plate Component 

Another common component is the cold plate, which is used to increase or decrease the 

thermal energy in a system. It consists of an aluminum plate with copper tubing running through 

it. The model structure of the cold plate is very similar to the reservoir component, except that it 

is flooded, meaning the mass of fluid in the cold plate remains constant. The equations for solving 

the state derivatives, temperature of the fluid in the cold plate (𝑇𝑓), temperature of the cold plate 

wall (𝑇𝑤), and pressure in the cold plate (𝑝), are shown in Eq. (2.33) – (2.35). 

�̇�𝑓 =
�̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓

⋅ (𝑇𝑖𝑛 − 𝑇𝑓)

𝑀𝑓 ⋅ 𝑐𝑃𝑓

−
𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤)

𝑀𝑓 ⋅ 𝑐𝑃𝑓

 (2.33) 

�̇�𝑤 =
𝑄𝑎𝑚𝑏

𝑀𝑤 ⋅ 𝑐𝑃𝑤

+
𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤)

𝑀𝑤 ⋅ 𝑐𝑃𝑤

 (2.34) 

�̇� =
(�̇� − �̇�𝑜𝑢𝑡)

𝑉 ⋅ 𝜌 ⋅ (
1

𝐸𝑓𝑙𝑢𝑖𝑑
+ 𝐷

(1 −
𝑣
2)

𝑡 ⋅ 𝐸
)

 (2.35)
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where 𝑉 is the volume of the cold plate tube, 𝜌 is the density of the fluid, 𝐸𝑓𝑙𝑢𝑖𝑑 is the bulk 

modulus of the fluid, 𝑣 is the poisson ratio, 𝑡 is the tube thickness, and 𝐸 is the bulk modulus of 

the tube. The volume of the cold plate is defined by its shape and shown in Eq. (2.36). 

𝑉 = 𝐿 ⋅ 𝜋 ⋅ 𝐷
2

4⁄  (2.36) 

where 𝐿 is the total length of the cold plate tube and 𝐷 is the diameter of that tube. A 

schematic of the cold plate component’s inputs and output is shown in Fig. 2.5. 

 

Figure 2.5: Schematic of a Cold Plate Component. 

Like the reservoir, to model the cold plate as a graph-based model in the thermal domain, 

it must be broken down into vertex capacitances and edge coefficients. The capacitance of the fluid 

vertex and wall vertex are described as Eq. (2.37) and (2.38) respecticely. 

𝐶𝑓𝑙𝑢𝑖𝑑 = 𝑀𝑓 ⋅ 𝑐𝑃𝑓
= 𝜌 ⋅ 𝑉 ⋅ 𝑐𝑃𝑓

 (2.37) 

𝐶𝑤𝑎𝑙𝑙 = 𝑀𝑤 ⋅ 𝑐𝑃𝑤
(2.38) 

The edge coefficients for a cold plate component contain advective and convective terms, 

similar to the reservoir component. These coefficients for the fluid and wall vertices are shown in 

Eq. (2.39) and (2.40) respectively. 

𝑒1 =  𝐻 ⋅ 𝐴ℎ𝑡;        𝑒2 = −𝐻 ⋅ 𝐴ℎ𝑡;        𝑒3 = �̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓
;        𝑒4 = −�̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓

 (2.39) 

𝑒1 = −𝐻 ⋅ 𝐴ℎ𝑡;        𝑒2 =  𝐻 ⋅ 𝐴ℎ𝑡 (2.40) 

Therefore, a cold plate modeled as a graph-based model is shown in Fig. 2.6. 
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Figure 2.6: Graph-Based Model of a Cold Plate Component. 

  

2.2.3 Heat Exchanger Component  

Another component often used in modeling is the brazed plate liquid-to-liquid heat 

exchanger, which allows thermal energy to transfer between liquid loops. The heat exchanger has 

five states it solves for in the DAEMOT model: the fluid temperatures on sides one and two, the 

wall temperature, and the pressures on sides one and two. A schematic of the heat exchanger inputs 

and outputs is shown in Fig. 2.7. 

 

Figure 2.7: Schematic of a Liquid-to-Liquid Heat Exchanger Component. 
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The differential equations which are used to solve for the heat exchanger’s states are shown 

in equations (2.41) – (2.45). 

�̇�𝑓,1 =
�̇�𝑖𝑛,1 ⋅ 𝑐𝑃𝑓,1

⋅ (𝑇𝑖𝑛,1 − 𝑇𝑓,1)

𝑀𝑓,1 ⋅ 𝑐𝑃𝑓,1

−
𝐻1 ⋅ 𝐴ℎ𝑡,1 ⋅ (𝑇𝑓,1 − 𝑇𝑤)

𝑀𝑓,1 ⋅ 𝑐𝑃𝑓,1

 (2.41) 

�̇�𝑓,2 =
�̇�𝑖𝑛,2 ⋅ 𝑐𝑃𝑓,2

⋅ (𝑇𝑖𝑛,2 − 𝑇𝑓,2)

𝑀𝑓,2 ⋅ 𝑐𝑃𝑓,2

−
𝐻2 ⋅ 𝐴ℎ𝑡,2 ⋅ (𝑇𝑓,2 − 𝑇𝑤)

𝑀𝑓,2 ⋅ 𝑐𝑃𝑓,2

 (2.42) 

�̇�𝑤 =
𝐻1 ⋅ 𝐴ℎ𝑡,1 ⋅ (𝑇𝑓,1 − 𝑇𝑤)

𝑀𝑤 ⋅ 𝑐𝑃𝑤

+
𝐻2 ⋅ 𝐴ℎ𝑡,2 ⋅ (𝑇𝑓,2 − 𝑇𝑤)

𝑀𝑤 ⋅ 𝑐𝑃𝑤

 (2.43) 

�̇�1 =
(�̇�1 − �̇�𝑜𝑢𝑡,1)

𝑉1 ⋅ 𝜌1 ⋅ (
1

𝐸𝑓𝑙𝑢𝑖𝑑,1
)
 (2.44)

 

�̇�2 =
(�̇�2 − �̇�𝑜𝑢𝑡,2)

𝑉2 ⋅ 𝜌2 ⋅ (
1

𝐸𝑓𝑙𝑢𝑖𝑑,2
)
 (2.45)

 

However, for the thermal domain graph-based model only Eq. (2.41) – (2.43) are necessary 

and these can be rearranged into the form of the general equation: Eq. (2.5) by populating the 

following matrices in Eq. (2.46) – (2.51). 

𝐶 = 𝑑𝑖𝑎𝑔 ([𝑀𝑓,1 ⋅ 𝑐𝑃𝑓,1
    𝑀𝑓,2 ⋅ 𝑐𝑃𝑓,2

    𝑀𝑤 ⋅ 𝑐𝑃𝑤
]) (2.46) 

 

�̇�(𝑡) = [�̇�𝑓,1   �̇�𝑓,2   �̇�𝑤]
𝑇

(2.47) 

 

�̅� =  [
−1 0 −1 0
0 −1 0 −1
1 1 0 0

] (2.48) 

𝑃(𝑡) =  

[
 
 
 
 
𝐻1 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓,1 − 𝑇𝑤)

𝐻2 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓,2 − 𝑇𝑤)

𝑚3̇ ⋅ 𝑐𝑃 ⋅ 𝑇𝑓,1

𝑚4̇ ⋅ 𝑐𝑃 ⋅ 𝑇𝑓,2 ]
 
 
 
 

(2.49) 

 

𝐷 = [
1 0
0 1
0 0

] (2.50) 
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𝑃𝑠(𝑡) = [𝑚1̇ ⋅ 𝑐𝑃 ⋅ 𝑇𝑠𝑜𝑢𝑟𝑐𝑒,1     𝑚2̇ ⋅ 𝑐𝑃 ⋅ 𝑇𝑠𝑜𝑢𝑟𝑐𝑒,2]
𝑇

(2.51) 

 

The heat exchanger can be represented pictorially by Fig. 2.8 below.  

 

 

Figure 2.8: Graph-Based Model of a Liquid-to-Liquid Heat Exchanger. 

2.2.4 Split/Junction Component 

A split or junction component allows several fluid flows to either split off from a single 

flow or combine to form a single flow. The governing equations for the time derivative of the 

split/junction states are shown in Eq. (2.52) and (2.53). 

 

�̇�𝑓 =
𝑐𝑃𝑓

⋅ (∑ �̇�𝑖𝑛,𝑛
𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛𝑝𝑢𝑡𝑠

𝑛=1
⋅ 𝑇𝑖𝑛,𝑛 − ∑ �̇�𝑜𝑢𝑡,𝑚

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑚=1
⋅ 𝑇𝑓)

𝑀𝑓 ⋅ 𝑐𝑃𝑓

 (2.52) 

�̇� =
(�̇� − �̇�𝑜𝑢𝑡)

𝑉 ⋅ 𝜌 ⋅ (
1

𝐸𝑓𝑙𝑢𝑖𝑑
+ 𝐷

(1 −
𝑣
2)

𝑡 ⋅ 𝐸
)

 (2.53)
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Schematics of both the split and junction components are shown in Fig. 2.9. Again, the 

transparent arrows represent information that was obtained from a source block. The downstream 

components sent the mass flow rates they were receiving to the split or junction component through 

a sink block, so that the split or junction could know how much mass flow to output. 

 

Figure 2.9: Schematic of Split and Junction Components. 

Here the capacitance of the temperature state vertex is 𝑀𝑓 ⋅ 𝑐𝑃𝑓
 and the edge coefficients 

are each of the mass flow rates into or out of the component multiplied by the specific heat of the 

fluid. The graph-based model of a split or junction component is shown in Fig. 2.10. This figure 

shows two inputs and two outputs to the split/junction component, however there can be up to any 

number of inputs or any number of outputs, making the component either a junction or a split. 

 

Figure 2.10: Graph-Based Model of a Split/Junction. 
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2.2.5 Valve Component 

The valve component is used to direct mass flow through a system by controlling the 

percentage split. Like the split component, there is only one vertex with a single temperature state, 

and this is shown in Eq. (2.54) 

�̇�𝑓 =
�̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓

⋅ (𝑇𝑖𝑛 − 𝑇𝑓)

𝑀𝑓 ⋅ 𝑐𝑃𝑓

(2.54) 

A schematic of the valve component’s inputs and outputs for the DAEMOT model is 

shown in Fig. 2.11. 

 

Figure 2.11: Schematic of Valve Component. 

The capacitance of the valve is described as 𝐶 = 𝑀𝑓 ⋅ 𝑐𝑃𝑓
, the power flow is given by 𝑃 =

 −�̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓
⋅ 𝑇𝑓, and the input power flow, 𝑃𝑠 is �̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓

⋅ 𝑇𝑖𝑛. The valve can be represented by 

Fig. 2.12 below. 

 

Figure 2.12: Graph-Based Model of a Valve. 
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2.2.6 Tube Component 

The tube component, also called a pipe, is used to direct flow through the system. The tube 

components are rarely included in the graph-based model, since most of the time the head loss 

experienced by the tube is so small, that the tube dynamics are negligible. Regardless, they are still 

commonly used in the DAEMOT models and those governing equations are shown in Eq. (2.55) 

– (2.56). 

�̇�𝑓 =
�̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓

⋅ (𝑇𝑖𝑛 − 𝑇𝑓)

𝑀𝑓 ⋅ 𝑐𝑃𝑓

−
𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤)

𝑀𝑓 ⋅ 𝑐𝑃𝑓

 (2.55) 

 

�̇�𝑤 =
𝐻1 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤)

𝑀𝑤 ⋅ 𝑐𝑃𝑤

+
𝐻2 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑎𝑚𝑏 − 𝑇𝑤)

𝑀𝑤 ⋅ 𝑐𝑃𝑤

 (2.56) 

The schematic of the tube component in DAEMOT is shown in Fig 2.13. 

 

Figure 2.13: Schematic of Tube Component. 

Should the tube be included in the graph-based model, it would be represented as a structure 

shown in Fig. 2.14. 

 

Figure 2.14: Graph-Based Model of a Tube. 
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2.3 Example System 1 

2.3.1 Modeling with the DAEMOT Toolbox 

The purpose of this next section is to give of an example of how to build up a DAEMOT 

model and convert it to a graph-based model. This example will model a flow coming from a mass 

flow rate source through two cold plates in series before exiting into a pressure sink. Fig. 2.15 

shows a schematic of this system and Fig. 2.16 shows the same system, just as a DAEMOT model. 

 

Figure 2.15: Schematic of Example System. 

 

Figure 2.16: Example System as a DAEMOT Model. 

Notice how the component blocks alternate between calculating the mass flow rate and 

pressure. The cold plate component calculates both the mass flow rate and pressure, but it 

calculates the mass flow rate first, which is why the symbols at its base have the “-----” symbol, 

which represents mass flow calculation, before the “(P)” symbol, which represents pressure 

calculation. Therefore, since the cold plate calculates mass flow rate first, it is expecting a pressure 

input and because it calculates pressure last, it will produce a pressure output. This means we can 

connect two cold plates together in series without requiring any conversion blocks between them. 

 There are two components commonly used as make-shift conversion blocks. The 

split/junction block requires a mass flow rate input and uses knowledge of that mass flow rate 
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input along with the downstream mass flow rate of the following component to calculate the 

pressure in the component. When the split/junction component is set to only have one input and 

one output it can essentially act as a pressure calculator. Similarly, the tube, or pipe, can be used 

as a mass flow calculator. If the heat transfer coefficient between the ambient temperature is set to 

zero and the tube length is given a tiny value, the interaction with the ambient air and pressure loss 

across the tube can be minimized. 

Each of the components are given names composed of the component letters followed by 

a number. This allows the “Batch_Assign_Params.m” script to populate all of the component 

parameters based on the values set in the “Setup_Component_Params.m” script. Make sure the 

number of any component does not exceed the total number of that component specified in 

“Setup_Component_Params.m”. The easiest way to avoid this issue is to name the components in 

ascending order. For example, if you state the number of cold plates (N_cp) is two, you should 

name the cold plates “cp1” and “cp2.” If you name your cold plate components “cp2” and “cp3,” 

only cp2 will have its parameters replaced with the variable names that are updated in 

“Setup_Component_Params.m,” and cp3 will keep the nominal parameter values from the library 

and cannot be edited as easily. 

The cold plate component is expecting a bus with a signal called “Q_kW.” Either the heat 

load should be named “Q_kW” and fed into a bus creator, as shown in Fig. 2.16, or the bus selector 

under the hood of the cold plate component should be deleted. 

Figure 2.17 shows the temperatures in the system immediately after the source, after the 

fluid has passed through Cold Plate 1, and after the fluid has passed through Cold Plate 2. Since 

the heat load into Cold Plate 2 is 2 kW, whereas the heat load into Cold Plate 1 is only 1 kW, the 

increase in temperature due to Cold Plate 2 is expected to be higher than the increase due to Cold 

Plate 1. 
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Figure 2.17: Temperatures Throughout Example System. 

From Fig. 2.17 it is clear the heat load on Cold Plate 1 has increased the fluid temperature 

by 0.5 °C and Cold Plate 2 is responsible for the remaining 1 °C increase in the fluid temperature 

as it flowed through the system. 

Suppose the capacitance of the wall in Cold Plate 2 is doubled from 1 kg to 2 kg. The 

system should eventually reach the same temperature at steady state; however, the added 

capacitance in Cold Plate 2’s wall should slow down the heat transfer rate. This intuition is verified 

by the temperature plots in Fig. 2.18. 

 

Figure 2.18: Temperatures Through Example with Large Cold Plate 2 Wall Mass. 

Suppose the heat transfer coefficient for Cold Plate 2 is halved from 4000 
𝑊

𝑚2⋅𝐾
 to 2000

𝑊

𝑚2⋅𝐾
. 

The rate of heat transfer should decrease even more, which is demonstrated in Fig 2.19 below. 
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Figure 2.19: Temperatures Through Example with Large Wall and Small HTC for CP2. 

This logical verification of the Example 1 system DAEMOT model completes this section 

on modeling in DAEMOT. The next section will cover how to convert the example system, shown 

in Fig 2.16, into a graph-based model. 

2.3.2 Modeling as a Graph-Based Model 

Each of the DAEMOT components has an equivalent graph-based model representation 

shown in Fig. 2.4, 2.6, 2.8, 2.10, 2.12, and 2.14. Since graph-based models are inherently modular, 

these individual component graph models can simply be connected, similar to how the DAEMOT 

model was constructed. 

Since the split/junction component used in Example 1 only has one input and one output, 

its graph model is identical to that of the tube. When all the components that were present in the 

DAEMOT model are replaced by their graph-based model counterparts, it results in the model 

shown in Fig. 2.20. 

 

Figure 2.20: Full Graph-Based Model of Example 1. 
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Both the split/junction and tube component, used to calculate the pressure and mass flow 

rate for the DAEMOT system, have a negligible effect on the dynamics of the system. Therefore, 

these components can be excluded from the graph-based model for simplicity. This simplified 

model is shown in Fig. 2.21. 

 

Figure 2.21: Simplified Graph-Based Model of Example 1. 

One of the first steps of creating a graph-based model is to number all the vertices and 

edges to keep track of them. The simplest numbering scheme is shown in Fig. 2.22.  

 

Figure 2.22: Numering Scheme for Example 1 Graph Model. 

The model in Fig 2.21 has four non-sink state vertices, numbered 1-4, in Fig. 2.22. There 

is also one sink vertex, which is numbered 5, in Fig. 2.22. Only vertices 1-4 have associated 

capacitance values and these can be calculated using Eq. (2.37) and (2.38). There are four edges, 

numbered 1-4, in Fig. 2.22. The arrow which is labeled 𝑃𝑠,1 is not an edge, but an input power 

flow. The heat loads acting on the cold plate walls are also considered input power flows and are 

numerated as 𝑃𝑠,2 and 𝑃𝑠,3. The power flows along edges 1-4 are denoted in Fig. 2.21 and the edge 

coefficients can be found using Eq. (2.39) and (2.40).  



 38  

Once all the information regarding the structure of the graph model is entered, both the 

incidence matrix and 𝐷 matrix can be built. The incidence matrix maps each of the edges to their 

neighboring vertices and the 𝐷 matrix maps each of the input power flows to the correct vertices. 

These matrices for the model in Fig. 2.22 are shown in Eq. (2.57). 

𝑀 =

[
 
 
 
 

1 0 0 0
−1 1 0 0
0 0 1 0
0 −1 −1 1
0 0 0 −1]

 
 
 
 

, 𝐷 = [

0 1 0
1 0 0
0 0 1
0 0 0

] (2.57) 

The capacitance matrix, 𝐶, can be built by diagonalizing the vector of the vertex 

capacitances. The input power flow matrix, 𝑃𝑠, is a vector of each of the input power flows. The 

mass flow rates through edges 2 and 4 can be recorded from the DAEMOT model and sent to the 

graph model as a virtual input. These mass flow rates are then multiplied with the correct edge 

coefficients to form part of the power flow matrix, 𝑃. Then the power flows which require 

knowledge of the temperature states are calculated using the temperatures of the vertices from the 

previous time step. Finally, the state derivatives are solved for using Eq. (2.58). Further details 

regarding graph-based modeling can be found in [19] – [25]. 

�̇�(𝑡) = 𝑖𝑛𝑣(𝐶) ∗ −�̅�𝑃(𝑡) + 𝑖𝑛𝑣(𝐶) ∗ 𝐷𝑃𝑠(𝑡) (2.58) 

If the setup in Fig. 2.19 is replicated, where the wall mass is doubled and the heat transfer 

coefficient is halved for Cold Plate 2, the graph-based model in Fig. 2.21 can produce the same 

results as the DAEMOT model in Fig. 2.16. The system temperatures are compared in Fig. 2.23. 

 

Figure 2.23: Temperatures of DAEMOT Model and Graph-Based Model Compared. 
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These modeling procedures are used throughout this thesis to model the different systems. 

The structure of the graph-based modeling framework will be particularly important, since it is 

integral to the sensitivity analysis outlined in the following chapters. 
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Chapter 3     

Sensitivity Analysis 

3.1 Background 

Sensitivity analyses can help to understand how variation in a model’s parameters or inputs 

affect the model’s output. This information is useful for figuring out which parameters should be 

the focus for reducing output uncertainty, which parameters are insignificant and can be removed 

from the model, which inputs most affect the output variability, and which parameters are most 

correlated to the output. These techniques are also useful for testing to see what might happen to 

the model if an input parameter is changed without actually having to change the parameter. [26] 

Sensitivity analyses can be classified as either local or global. Local sensitivity analyses 

focus on the model parameters and help determine how their uncertainty, or deviation from an 

optimal reference parameter set, would affect the model performance. A local sensitivity analysis 

is valid only for parameter values near the nominal values. The local sensitivity can be solved by 

analytically calculating the partial derivatives of the model output, 𝑌, with respect to the 

parameters of interest, 𝜃𝑗 , as shown in Eq. (3.1). Together these partial derivatives are referred to 

as the Jacobian. Another method for solving the local sensitivity includes using a numerical finite 

difference approach, further explained in subsection (3.3.1).  

𝐿𝑜𝑐𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 ≡
𝜕𝑌

𝜕𝜃𝑗
 (3.1) 

A global sensitivity analysis is valid for the entire range of parameter values and thus is 

difficult to calculate for nonlinear systems. For this reason, most sensitivity analysis methods for 

nonlinear systems focus on finding the local sensitivity, and the results will be dependent on the 

nominal set of parameter values, or a specific operating point, when the sensitivity analysis was 

performed. 

If the general form of the system fits and can be represented by the differential equation in 

Eq. (3.2), then the sensitivity function of that system can be represented by Eq. (3.3). 
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d𝑥

d𝑡
= 𝑓(𝑥, 𝜃) (3.2) 

𝜎(𝑡, 𝜃0) =
𝜕𝑥(𝑡, 𝜃)

𝜕𝜃
 (3.3) 

where 𝑥 is an n-dimensional vector of state variables,  𝜃 is a p-dimensional vector of system 

parameters and 𝑡 is the independent variable. The states are sometimes referred to as the output of 

the system, so the sensitivity of the system with respect to its parameters could be called the output 

sensitivity. The output sensitivity function is defined as the limit in Eq. (3.4). 

𝜎(𝑡, 𝜃0) =
𝜕𝑥(𝑡, 𝜃𝑗)𝑖

𝜕𝜃𝑗
= 𝑙𝑖𝑚

𝜕𝜃𝑗→0

𝑥𝑖(𝑡, 𝜃0 + 𝛿𝜃𝑗) − 𝑥𝑖(𝑡, 𝜃0)

𝛿𝜃𝑗
 (3.4) 

 

3.1.1 Input vs. Parameter Sensitivity 

Sensitivity analyses can be used to calculate the sensitivities of the system output to both 

the inputs and the parameters. From the example system of two cold plates in series, laid out in 

Section 2.3, we can consider the system output to be the temperature of the fluid after it passes 

through both cold plates and heads towards the sink. The system inputs are the temperature of the 

fluid entering the system and the heat loads applied to the cold plates. The system parameters of 

Example 1 from Section 2.3 would include sizing variables, material physical properties, or mass 

flow rates. 

An input sensitivity analysis could determine whether changing the input fluid temperature 

by a single unit of one degree Celsius would influence the final output temperature more than if 

either of the cold plate’s heat loads were increased by a single unit of 1 kW. This sensitivity 

analysis would also be able to reveal which cold plate’s heat load has a greater effect on the output 

temperature. Any difference between the heat load effectiveness could be due to differences in 

either cold plate’s nominal parameters, such as sizing or thermal properties, or the discrepancy 

could be due to the structure of the system. However, since the cold plates in Example 1 are in 

series, any difference in input heat load influence would be due to parameter differences. 

A parameter sensitivity analysis would be able to discern which parameters have the most 

influence on the system output. Assuming all the inputs (source temperature or heat loads) are held 

constant, this analysis would be able to reveal information such as how one cold plate’s heat 
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transfer coefficient affects the final temperature of the system compared to another cold plate’s 

heat transfer coefficient. It could also reveal which parameters of the most influential cold plate is 

the most influential of them all, because maybe a sizing variable can make more of a difference 

than the heat transfer coefficient. The sensitivity analysis would also be able to compare the effect 

of adjusting the mass flow rate through the system against the effect of adjusting the sizing and 

material property parameters. This comparison is useful to inform the engineer of the optimal 

changes they could make to the system to meet their goals. 

 

3.2 Analytical Techniques 

Generally, graph models where the system can be represented by a cluster of vertices and 

edges are often able to be solved analytically. Some graph models include Markov chain models, 

Bond Graphs, and the Graph-Based Models detailed in Chapter 2. Sections 3.2.1 – 3.2.5 will touch 

on some of the work that has already been done to perform analytical sensitivity analyses on these 

types of models. 

The analytical sensitivity of a system is equivalent to the partial derivatives of the system 

outputs with respect to each of the parameters or inputs, otherwise known as the Jacobian. These 

derivatives can be solved by symbolic differentiation, as described in Section 3.2.1, or by 

automatic differentiation, as described in 3.2.2. Section 3.2.3 explains how a transfer function 

structure inherently communicates the sensitivity of the output with respect to an input. 

Additionally, if a system was able to be represented as a transfer function, the partial derivative of 

the transfer function with respect to a parameter is equivalent to finding the sensitivity of the 

system transfer function to a parameter. To find the sensitivity of the system output with respect 

to that parameter, the sensitivity of the system transfer function could be multiplied by the system 

input at the frequency of interest. Sections 3.2.4 and 3.2.5 cover work that has already been done 

in finding the sensitivities of specific model structures, such as discrete event dynamic systems 

and bond graphs. 
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3.2.1 Symbolic Differentiation 

Symbolic differentiation is an exact method for finding the sensitivities and can generate 

the symbolic expressions, which may be useful in combining modular sub-systems. However, this 

method is very memory intensive and slow. Fig. 3.1 demonstrates an example of a symbolic 

differentiation calculation done in Matlab, using the matlab function “diff()”.  

 

Figure 3.1: Example of Symbolic Differentiation in Matlab. 

If this code is run in Matlab, the resulting partial derivatives of the equation “eqtn” are 

shown in Fig 3.2.  

  

Figure 3.2: Symbolic Differentiation Example Solution. 

These derivatives are still in symbolic form and can be replaced by numerical values using 

the matlab function “subs().” This method is very precise at solving for the exact derivatives of 

large and complex equations. However, it is computationally expensive and could be very slow 

for large systems with many variables. An alternative analytical differentiaton method, which is 

equally exact but has the potential to save on computation time, is automatic differentiation, further 

explained in Section 3.2.2. 

3.2.2 Automatic Differentiation 

Automatic differentiation is a way to calculate the Jacobian of a function, or the partial 

derivatives of the function with respect to some of the inputs (sensitivity). Margossian [27] 
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describes this method by converting a function, such as Eq. 3.5, into an expression graph, an 

example of which is shown in Fig. 3.3.  

𝑓(𝑦, 𝜇, 𝜎) = −
1

2
(
𝑦 − 𝜇

𝜎
)
2

− 𝑙𝑜𝑔(𝜎) −
1

2
𝑙𝑜𝑔(2𝜋) (3.5) 

 

Figure 3.3: An Expression Graph Representation of Eq. 3.5. [27] 

The parameters of interest, 𝜇 and 𝜎, are represented as gray nodes at the base, or leaves, of 

the tree, and the final output is the root of the tree. There are two algorithmic mechanisms which 

can solve this expression graph: the forward mode and the reverse mode, each with its own benefits 

and tradeoffs.  

The Jacobian is a matrix of each of the partial derivatives of 𝑓 and each element of 𝐽 is 

represented by 𝐽𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗
. If 𝑓 can be represented as a composite function,  𝐽 = 𝐽ℎ∘𝑔 = 𝐽ℎ(𝑔(𝑥)) ⋅

𝐽𝑔(𝑥), then 𝐽𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗
= 

𝜕ℎ𝑖

𝜕𝑔1

𝜕𝑔1

𝜕𝑥𝑗
+

𝜕ℎ𝑖

𝜕𝑔2

𝜕𝑔2

𝜕𝑥𝑗
+ ⋯+ 

𝜕ℎ𝑖

𝜕𝑔𝑘

𝜕𝑔𝑘

𝜕𝑥𝑗
  by the chain rule. 

The target function 𝑓 can be broken into several composite functions, corresponding to 

several Jacobian matrices. I.e., if 𝑓 = 𝑓𝐿 ∘ 𝑓𝐿−1 ∘ … ∘ 𝑓1, then 𝐽 = 𝐽𝐿 ⋅ 𝐽𝐿−1 ⋅ … ⋅ 𝐽1. If 𝑢 is the 

initial tangent, or the vector of input variables whose sensitivities are being assessed, and 𝑢𝑙 = 𝐽𝑙 ⋅

𝑢𝑙−1, then the forward sweep, 𝐽 ⋅ 𝑢, can be represented as 𝐽𝐿 ⋅ 𝐽𝐿−1 ⋅ … ⋅ 𝐽1 ⋅ 𝑢 =  𝐽𝐿 ⋅ 𝑢𝐿−1. 
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For the forward mode, the initial tangent, 𝑢, should be set to 1 for the 𝑗th input and 0 for 

all the others to isolate one column of the Jacobian matrix and find the partial derivatives of all the 

system outputs with respect to one input at a time. Thus 𝐽⋅𝑗 = 𝐽 ⋅ 𝑢𝑗 , where 𝐽⋅𝑗 is the entire 𝑗th 

column of the Jacobian matrix. Therefore, using the forward mode, it takes as many passes as there 

are individual inputs to solve for the entire Jacobian matrix. During the trace calculations, an 

evaluation trace to calculate the values of the function for each of the intermediate steps and a 

derivative trace to calculate each of the directional derivatives for each node are calculated 

simultaneously. An example of trace calculations is shown in Fig. 3.4. 

 

 

Figure 3.4: Forward Trace Calculations [27] 

The reverse mode involves calculating the adjoints of various variables with respect to the 

output variables. A reverse mode sweep calculates 𝐽𝑇�̅�, where �̅� is an initial cotangent vector. 

Similar to how 𝑢 was set to be 1 for the 𝑗th input and 0 for all others in the forward mode, �̅� can 

be set to 1 for the 𝑖th element and 0 for all others to isolate one row of the Jacobian matrix. Thus 

𝐽𝑖⋅ = 𝐽 ⋅ 𝐽𝑇�̅�𝑖, where 𝐽𝑖⋅ is the entire 𝑖th row of the Jacobian matrix. Once the forward evaluation 

trace is executed, the reverse mode begins with the final output, sets the adjoint with respect to 
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itself to 1, and calculates back the successive adjoints until the inputs are reached. These reverse 

adjoint traces are run for as many times as there are outputs. However, since the forward evaluation 

trace must be run first to determine the function value and values at each node before the adjoint 

trace is run, this method is marginally slower and requires more overhead to save the function 

values until they are needed for the reverse trace. But, if there are significantly more inputs than 

outputs, the reverse mode performs better for solving the automatic differentiation problem. An 

example of the reverse trace calculations is shown in Fig. 3.5. 

 

Figure 3.5: Reverse Trace Calculations [27] 

Automatic differentiation is a quick and accurate method of finding the system Jacobian, 

or the sensitivity of each of the outputs to each of the inputs. It is also significantly less memory 

intensive than a symbolic differentiation method. The main drawback for automatic differentiation 

algorithms is that they require thought and to be coded carefully, whereas a simple symbolic 

differentiation function doesn’t require much structuring or planning. Since the automatic 

differentiation method is not automated (yet), it must be implemented carefully for accurate results 

and optimal performance. 
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3.2.3 Transfer Function Method 

Another method for calculating the sensitivities of a system with respect to its parameters 

is the transfer function method. First, the system must be represented as a transfer function, 
𝑦(𝑠)

𝑢(𝑠)
. 

This form represents the system’s output with respect to the system input in the frequency domain. 

This representation is an alternative to the output function in the time domain, 𝑦(𝑡), which simply 

represents the system states or output. Therefore, calculating the sensitivity of the transfer function 

with respect to the parameters yields Eq. 3.6, as opposed to the output sensitivity function, shown 

in Eq. 3.3. Borutzky [28] defines the unnormalized sensitivity function defined in the frequency 

domain as follows:  

𝑆(𝑠) =
𝜕 (

𝑦(𝑠)
𝑢(𝑠)

)

𝜕 (𝜃)
 (3.6)

 

where 𝑦(𝑠) are the system states and also the outputs, 𝑢(𝑠) are the system inputs, and 𝜃 

are the system parameters for which the transfer function sensitivity will be calculated. Calculating 

the sensitivities of the system transfer functions requires the system to be linear or linearized so 

that it can first be represented as a transfer function or a transfer matrix. This may restrict the types 

of models which this approach is applicable to. 

The resulting sensitivities of transfer functions won’t depend on the input signal values 

themselves. Thus, the input signals do not need to be standardized as step or impulse functions to 

allow for parameter sensitivity comparisons across the various inputs. Another way to look at the 

transfer function sensitivity is that it determines the sensitivity of the output to each of the 

parameters, given a single unit of the input. Therefore, increasing or decreasing a particular input 

value can scale up and down the contribution to the output sensitivity of that input. 

Calculating the sensitivity in the frequency domain makes it easier to calculate the system 

sensitivities. The reason behind this is that for modular modeling frameworks, each component 

can be represented as a single transfer function and combining individual component’s transfer 

functions is quite trivial. Two transfer functions in series can simply be multiplied together to yield 

the system transfer function. Similarly, two transfer functions in parallel can be added together to 

find the system transfer function. These principles can be applied to any system composed of a 

combination of subsystems in series, parallel, and in feedback loops where each subsystem can be 
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represented as a separate transfer function. An example of common block diagram reduction rules 

is shown in Fig. 3.6. 

 

Figure 3.6: Transfer Function Combination Rules. 

This method is the one which was chosen for this study to develop a sensitivity analysis 

method for pre-existing graph-based modeling techniques. These graph-based models are 

composed of clusters of vertices and edges which represent different components across various 

energy domains. Each of these components is governed by a set of ordinary differential equations 

(ODEs) which can be linearized without much trouble to allow them to be written as a transfer 

function in the frequency domain. Therefore, combining these transfer functions together to form 

the entire system equation becomes very simple. This ability to build up the system equation from 

the models so easily is the main reason for selecting this approach. The representation of the system 

output in a single equation makes calculating the sensitivity of the output with respect to the 

parameters very simple. Using the symbolic differentiation tools in MATLAB, the partial 

derivatives of the transfer function equation can be calculated quickly and precisely. Assuming a 
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reasonably sized system, this is a quick calculation method, especially when compared to 

numerical approaches. 

 

3.2.4 Discrete Event Dynamic Systems Model Sensitivity 

Sensitivity analyses have several potential applications. A common use is to identify the 

most influential variables to the system outputs when compared to the other variables. This helps 

to narrow down and focus design efforts on the few most important variables when optimizing the 

system for desired performance metrics. Sensitivity analyses can also be used to design a more 

reliable plant, by identifying the parameters or components which contribute the most to the 

system’s uncertainty. This is done by applying a sensitivity analysis to an uncertainty analysis of 

a system, thus revealing which components should be focused on to improve the overall reliability 

the most.   

One of the most prevalent graphical modeling methods for modeling uncertainty is a fault 

tree. Ou and Dugan [29] have shown how cyclical modular dynamic fault trees can be simplified 

as acyclical Markov chains for the sensitivity calculation. 

Cao and Ho [30] have done work in designing an infinitesimal perturbation analysis (IPA) 

sensitivity analysis approach for Markov chains and other discrete event dynamic systems 

(DEDS). A DEDS differs from a continuous variable dynamic system (CVDS), in that it is not 

based on a set of differential equations. Instead, it models the complex interactions in the timing 

of various discrete objects or events, like jobs and resources. The trajectories of a CVDS model 

are the solutions to a set of differential equations, whereas the trajectories of a DEDS model are 

piecewise, constant, and event-driven, while still being very much dynamic. 

Markov chain models are often used in the intersection of sensitivity and uncertainty 

analyses. There has been some interesting work done to calculate the sensitivity of these discrete 

event dynamic system models. This is a very important problem, as many real-world systems such 

as production lines, computer communication networks, and traffic systems are described as 

discrete event dynamic systems, and knowing how to optimize throughput, latency, and work-in-

progress of such processes would greatly improve many areas of life. The sample paths or 

behaviors of the system can be better designed to control tasks such as admission of a job into a 
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queue, routing the job to appropriate resources, and determining the order of service by the 

resources if the sensitivities of the model to specific system parameters are known. However, since 

the focus on this thesis is to design a sensitivity analysis for a continuous-variable dynamic system, 

such as the one described in Section 2.3, a DEDS sensitivity analysis methodology will not be 

relevant to this study. 

 

3.2.5 Bond Graph Sensitivity Analysis Techniques 

Bond Graphs are the most similar pre-existing model structure to the graph-based models 

considered in this study. Like graph-based models, bond graphs can model energy flow across 

various energy domains by use of conservation equations [31]. Each of the directional bonds, 

which represented the energy exchange between two ports of different nodes, has two power 

variables: effort and flow. Depending on the energy domain, effort and flow may represent 

different variables. In the electronic energy domain, the effort is voltage, and the flow is current. 

In the thermodynamic energy domain, effort is temperature and flow is the entropy flow rate. And, 

in the hydraulic domain effort is pressure and flow is volumetric flow rate. A notable amount of 

work has already been done to calculate the sensitivity of these bond graphs to their system 

parameters, therefore these studies are useful in attempting to develop a sensitivity analysis for the 

graph-based model structure.  

Borutzky [32] uses a symbolic method to solve for system sensitivity of a bond graph. He 

creates an “incremental bond graph,” which is like the standard bond graph, except that it relates 

the incremental efforts and flows (delta e, delta f) to specific parameter changes, represented by 

sources. These sources, which represent the parameter changes, are the only differences between 

the incremental bond graphs and the initial bond graphs. Therefore, solving the equations of the 

incremental bond graph directly solves for the unnormalized sensitivities—the partial derivatives. 

This methodology is shown below and is equivalent to symbolically differentiating the system 

equations in state-space form with respect to each of the parameters.  

Suppose the system equations of the initial bond graph can be written in the general state 

space form, shown in Eq. (3.7) – (3.8). 

�̇�(𝑡) = 𝐴(𝑝)𝑥(𝑡) + 𝐵(𝑝)𝑢(𝑡) (3.7) 



 51  

𝑦(𝑡) = 𝐶(𝑝)𝑥(𝑡) + 𝐷(𝑝)𝑢(𝑡) (3.8) 

where �̇�(𝑡) is the time derivative of the state vector, 𝑥(𝑡) is the state vector, 𝑢(𝑡) is the 

input vector, 𝑦(𝑡) is the output vector, 𝐴(𝑝), 𝐵(𝑝), 𝐶(𝑝), and 𝐷(𝑝) are all time-invariant and 

parameter dependent matrices, called the system matrix, input matrix, output matrix, and 

feedthrough matrix, respectively. Then the incremental bond graph can be represented by Eq. (3.9) 

and (3.10). 

𝛥�̇�(𝑡) = 𝐴(𝑝)𝛥𝑥(𝑡) + �̃�(𝑥(𝑡), 𝑢(𝑡), 𝑝)𝛥𝑝 (3.9) 

𝛥𝑦(𝑡) = 𝐶(𝑝)𝛥𝑥(𝑡) + �̃�(𝑥(𝑡), 𝑢(𝑡), 𝑝)𝛥𝑝 (3.10) 

where 𝛥𝑝 represents the parameter changes and matrices �̃� and �̃� depend on both the 

nominal values for 𝑥(𝑡) and 𝑢(𝑡) which satisfy the initial bond graph equations, and on the 

parameter 𝑝. Eq. (3.11) and (3.12) show the results from taking the Laplace transform of both sets 

of equations. 

(𝑠𝐼 − 𝐴)(ℒ𝑥)(𝑠) = 𝐵ℒ(𝑠)𝑢 (3.11) 

(𝑠𝐼 − 𝐴)(ℒ𝛥𝑥)(𝑠) = (ℒ�̃�)(𝑠)𝛥𝑝 (3.12) 

When ℒ𝛥𝑥 in Eq. (3.11) and (3.12) is substituted with ℒ(𝐶−1𝛥𝑦(𝑡) −

𝐶−1 �̃�(𝑥(𝑡), 𝑢(𝑡), 𝑝)𝛥𝑝), it yields Eq. (3.13) below. 

ℒ𝛥𝑦(𝑡)(𝑠) = [𝐶(𝑠𝐼 − 𝐴)−1ℒ�̃� +  ℒ�̃�]𝛥𝑝 (3.13) 

If 𝛥𝑝 is considered an infinitesimal parameter change, then Eq. (3.13) approximates the 

sensitivity matrix in Eq. (3.14). 

𝑆(𝑠) ≔
𝜕ℒ𝑦

𝜕𝑝
= [𝐶(𝑠𝐼 − 𝐴)−1ℒ�̃� +  ℒ�̃�] (3.14) 

It is worth noting that the �̃� and �̃� matrices are equivalent to the partial derivatives of the 

initial bond graph equations with respect to a parameter. This equivalence is shown in Eq. (3.15) 

– (3.16).  

�̃� =  
𝜕

𝜕𝑝
(𝐴𝑥 + 𝐵𝑢)(𝑡) (3.15) 

�̃� =  
𝜕

𝜕𝑝
(𝐶𝑥 + 𝐷𝑢)(𝑡) (3.16) 

This shows that the sensitivity matrix can be computed by symbolic differentiation and that 

the incremental bond graph method is mathematically equivalent to simply taking the partial 
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derivative of a state space model. However, the strength of using the incremental bond graph to 

derive the sensitivity matrix in Eq. (3.14) is that it is a simple way to calculate the sensitivity matrix 

when starting from a bond graph model. Once the incremental bond graph is built, the equations 

are derived in the same way as they would be for a normal bond graph. This incremental bond 

graph approach is very powerful for calculating all the unnormalized sensitivities of linear time-

invariant models in one step using symbolic differentiation.  

The main drawback of this approach is that it only works for bond graphs and would require 

converting the model of interest into an initial bond graph before constructing the incremental 

bond graph to find the sensitivities. And since a symbolic differentiation is mathematically 

equivalent, if the model is not already in a bond graph structure, it will be simpler to calculate the 

partial derivatives with a symbolic toolbox directly. The goal of this thesis is to develop a 

sensitivity analysis methodology for pre-existing graph-based modeling techniques, which already 

have many more analysis tools (e.g. model order reduction) for advanced control design than bond 

graphs have to offer [24]. Therefore, it would be counter-productive to remodel all of the 

components as bond graph models simply for the sensitivity analysis which can also be obtained 

by calculating the symbolic differentiation of the system equations with respect to parameters, as 

described in Section 3.2.1 and will be described further in Chapter 4. 

Other work on developing sensitivity analysis tools have been done by Cabanelllas et al. 

[33] and Gawthrop [34] to develop “pseudo-bond graphs” and “sensitivity bond graphs”, 

respectively. However, these methods also require the models to be restructured as bond graphs 

for the sensitivity analysis. It would be much simpler to develop a sensitivity analysis methodology 

for the existing graph-based modeling technology. 

3.3 Numerical Techniques 

Numerical techniques are suitable sensitivity analysis methods when the model is very 

complicated or non-linear that it cannot be solved analytically. Numerical methods usually take 

longer to solve and do not reach exact answers, but they can reach close approximations and are 

usually easier to set up. The most common numerical technique is the finite difference method and 

will be discussed in Section 3.3.1. Then Section 3.3.2 will explain a numerical approach which 
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uses ordinary differential equation (ODE) solvers to solve for the sensitivities of a complex graph-

theoretic model structure. 

3.3.1 Finite Difference Method 

The finite difference method is sometimes referred to as the brute force or indirect method 

and is commonly used to solve for local sensitivities of non-linear functions. The output sensitivity 

function, shown in Eq. (3.17) can be solved by picking a small perturbation of the parameters and 

calculating the output with and without that perturbation added to the nominal parameter values, 

then dividing by the chosen perturbation amount.  

𝜎(𝑡, 𝜃0) =
𝜕𝑦(𝑡, 𝜃𝑗)𝑖

𝜕𝜃𝑗
= 𝑙𝑖𝑚

𝜕𝜃𝑗→0

𝑦𝑖(𝑡, 𝜃0 + 𝛿𝜃𝑗) − 𝑦𝑖(𝑡, 𝜃0)

𝛿𝜃𝑗

(3.17) 

Therefore, the perturbation of the parameters, or 𝛿𝜃𝑗 , from the nominal parameter values 

must be very small to give an accurate partial derivative. The central difference formula, shown in 

Eq. (3.18), can also be used to approximate the partial derivative. 

𝜕𝑦(𝑡, 𝜃𝑗)𝑖

𝜕𝜃𝑗
≈

𝑦𝑖(𝑡, 𝜃0 + 𝛿𝜃𝑗) − 𝑦𝑖(𝑡, 𝜃0 − 𝛿𝜃𝑗)

2𝛿𝜃𝑗
 (3.18) 

The principal behind this method is explained by the Taylor series expansion in Eq. (3.19) 

below. 

𝜕𝑦(𝑡, 𝜃𝑗)𝑖

𝜕𝜃𝑗
= 

𝑦𝑖(𝑡, 𝜃0 + 𝛿𝜃𝑗) − 𝑦𝑖(𝑡, 𝜃0) −
1
2

(
𝜕2𝑦(𝑡, 𝜃𝑗)𝑖

𝜕𝜃𝑗
2 )𝛥𝜃𝑗

2 − ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠

𝛥𝜃𝑗
 (3.19)

 

De Pauw and Vanrolleghem [35] found that an optimal perturbation factor exists for the 

central difference formula. This is because there are numerical inaccuracies using the finite 

difference method when the perturbation factor is too small. And, if the perturbation factor is too 

large, the central difference formula strays further from the true partial derivative and leads to less 

accurate results due to model non-linearities. The optimal perturbation factor is calculated by 

minimizing a set of four criteria which relate to the error, or difference, between the sensitivity 

function with a positive and with a negative perturbation. These criteria are the sum of squared 

errors (SSE), the sum of absolute errors (SAE), the maximum relative error (MRE), and the sum 
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of relative errors (SRE) [35]. Since these errors are calculated around a set of nominal parameters, 

the optimal perturbation factor is a function of the nominal parameters chosen. 

Once the optimal perturbation factor is found, each of the system parameters should be 

adjusted according to that perturbation factor one at a time. Other than the single parameter whose 

sensitivity is being assessed, all parameters should be set to nominal values. The parameter which, 

when perturbed, results in the overall system’s largest output difference compared to the nominal 

system’s output is the parameter the system is most sensitive to. Likewise, the second-most 

sensitive parameter results in the second-largest output difference from the nominal case. In the 

same way, the parameters for which, when perturbed, the system’s output is closest to that of the 

nominal system are the ones which the system is least sensitive to. These parameters can be 

removed from time-consuming optimization problems, allowing more resources to be focused on 

the parameters with the highest sensitivity. 

The finite difference method is particularly beneficial because it allows for finding the 

sensitivity of the system to all the parameters and inputs, even if the system’s governing equations 

are impossible to solve analytically. If the system’s equations can be solved with a numerical 

solver, it is possible to perturb each of the parameters individually and compare the outputs of 

those simulations. 

However, the main drawback of the finite difference method is that since the system 

equations are being solved numerically, the sensitivity formula can only be approximated. This 

approximation is also dependent on the chosen perturbation factor, which should be optimized for 

the set of nominal parameters. Secondly, this method is extremely time consuming. Each 

simulation or calculation takes time and must be run again for each parameter perturbation. If the 

number of parameters is large and the simulation is slow, this could easily lead to a very long 

computation time. Therefore, if a model’s governing equations can be solved analytically, using 

an analytical sensitivity analysis increases the accuracy of the result and takes less time to 

calculate. 
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3.3.2 Graph-Theoretic Sensitivity Analysis 

Banerjee [36] describes graph-theoretic models as a method for modeling systems. These 

models, like bond graphs and graph-based models, are oriented linear graphs made up of a 

combination of nodes and edges. Much like bond graphs, each of the edges have an effort and a 

flow variable, which are described as “across” and “through” variables, respectively. 

At the heart of this proposed algorithm is the ability to generate governing equations and 

sensitivity equations simultaneously from the linear graph representation of the system. Rather 

than solve for the sensitivity of pre-existing governing equations, the algorithm generates simpler 

and more controllable sensitivity and system equations, allowing for more efficient computation. 

Once the graph model has been constructed, the governing equations can be extracted from 

the model and modified to be a linear set of ordinary differential equations (ODEs) in matrix form, 

shown in Eq. (3.20). This example is for a mechanical, robot system, however it could be 

generalized to any power domain. 

𝑀�̇� = 𝐹(𝑞) (3.20) 

where 𝑀 is the mass matrix, 𝑞 is the state vector and 𝐹 represents the torques and is a 

function of 𝑞. This linear graph model can be expanded into a sensitivity graph model, from which 

the sensitivity equations can be derived. A new combined mass matrix, 𝛤, a new state matrix, 𝜗, 

and a new torque matrix, 𝛺, are developed as shown in the equations (3.21) – (3.23). 

𝛤 =

[
 
 
 
 
𝑀𝑏 + ∑

𝜕𝑀𝑖𝑗

𝜕𝑞𝑘
𝑞𝑘𝑏

𝑛

𝑘=1

𝑀

𝑀 0]
 
 
 
 

 (3.21) 

�̇� = [
�̇�
�̇�𝑏

] (3.22) 

𝛺 = [
𝐹𝑏 + 𝐹𝑞𝑞𝑏

𝐹
] (3.23) 

where 𝑀𝑏 is the mass matrix, with each element as the partial derivative of 𝑀𝑖𝑗 with respect 

to parameter 𝑏. Similarly, 𝑞𝑘𝑏, is the partial derivative of the 𝑘th element of 𝑞 with respect to 𝑏, 

and 𝑞𝑏 is the entire vector 𝑞 with respect to 𝑏. Finally, 𝐹𝑏 is the vector 𝐹 with respect to 𝑏. 

Together, these expanded matrices and the vector form the governing equations for the 

sensitivity graph, shown in Eq. (3.24). 
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𝛤�̇� = 𝛺 (3.24) 

This set of sensitivity ordinary differential equations (ODEs) can be solved numerically to 

find the state variables and their sensitivities with respect to time. This method is very successful 

at applying numerical sensitivity analysis techniques to a graph model and coming up with a 

systematic procedure to find the sensitivities with respect to all the parameters. However, this 

algorithm relies on numerical methods, which cannot give an exact solution and take a lot of time 

to solve. 

Therefore, for this thesis an analytical sensitivity analysis method has been chosen, since 

the graph-based models can be linearized about a single operating point considering constant mass 

flow rates. As mentioned in Section 3.2.3, the transfer function sensitivity analysis method will be 

used to represent the graph-based model as a transfer function equation. Then MATLAB’s 

symbolic differentiation toolbox will be used to solve for the sensitivities of the model to each of 

the parameters. More details regarding this procedure will be covered in Chapter 4. 
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Chapter 4     

Sensitivity Analysis Methodology for Transfer 

Function System Representation 

 

4.1 Summary 

This section will walk through how to represent two example systems, the one from Section 

2.3 and a new system, as set of transfer functions, with one transfer function for each input signal. 

This system transfer function describes the ratio of the amplitude of the output signal with respect 

to the amplitude of the input signal for each input signal frequency. This is called the transfer 

function’s gain. There is also a phase component to the transfer function; however, only the gain 

component will be discussed in this study. The partial derivative of each individual transfer 

function with respect to the system parameters will be calculated, resulting in a “sensitivity bode 

plot.” This plot describes how sensitive the ratio of the system’s output amplitude to the system’s 

input amplitude is to one of the system parameters, given a specific input signal frequency. Each 

sensitivity bode plot details the contribution from each input to the change in output signal 

amplitude when the input signal’s amplitude and frequency are known. Therefore, at a set of given 

input signal amplitudes and frequencies, the contributions from each of the input’s sensitivity bode 

plots can be added to determine the total effect each parameter has on the output amplitude. These 

parameter sensitivities can then be compared and the parameters which have the highest combined 

effect on the output signal amplitude can be identified. These are the parameters where most of 

the the optimization efforts should be placed to yield the greatest effect on the system. 
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4.2 Conducting a Sensitivity Analysis of Example System 1 from 

Chapter 2 

This section covers the sensitivity analysis of Example 1, described in Section 2.3. The 

graph model is pictured in Fig. 4.1 below for reference. 

 

Figure 4.1: Simplified Graph-Based Model of Example System 1 

The output of this system is selected to be the temperature of the fluid exiting the system, 

which is equivalent to the temperature of Cold Plate 2: 𝑇𝑐𝑝2,𝑓. The numbering scheme is included 

in Fig. 4.2 below for reference. 

 

Figure 4.2: Numering Scheme for Example Graph Model. 

4.2.1 Representing Example 1 as a set of Transfer Functions 

The first step in conducting the transfer function method sensitivity analysis is building up 

the transfer functions which represent the system model. First, the system output, which the 

sensitivity analysis will be applied to, must be identified. Each of the individual subsystem level 

transfer functions must be combined to represent the chosen output as a total system transfer 
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function. Example System 1 consists of two components, and thus two subsystems, which must be 

combined to yield the output value. Each component is considered its own subsystem and for the 

cold plate, this subsystem consists of two capacitances: a wall capacitance and a fluid capacitance. 

For this study, the output temperature of the fluid as it leaves the system via the sink is chosen as 

the output value of interest. The sensitivity analysis will be applied to this value to determine its 

sensitivity to each of the parameters.  

The component subsystems must be broken up into transfer functions for each input and 

output of each component before they can be combined. The governing differential equations of 

the first component, Cold Plate 1, are shown in Eq. (4.1) and (4.2).  

�̇�𝑓 =
�̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓

⋅ (𝑇𝑖𝑛 − 𝑇𝑓)

𝑀𝑓 ⋅ 𝑐𝑃𝑓

−
𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤)

𝑀𝑓 ⋅ 𝑐𝑃𝑓

 (4.1) 

�̇�𝑤 =
𝑄𝑎𝑚𝑏

𝑀𝑤 ⋅ 𝑐𝑃𝑤

+
𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (𝑇𝑓 − 𝑇𝑤)

𝑀𝑤 ⋅ 𝑐𝑃𝑤

 (4.2) 

The inputs to the component subsystem are the temperature of the incoming fluid, 𝑇𝑖𝑛, and 

the heat load applied to the sub-system, 𝑄𝑎𝑚𝑏. The outputs are the fluid temperature, 𝑇𝑓, and the 

wall temperature, 𝑇𝑤. Together, these result in four transfer functions representing the power flow 

through a cold plate component: 
𝑇𝑓

𝑇𝑖𝑛
, 

𝑇𝑓

𝑄𝑎𝑚𝑏
, 

𝑇𝑤

𝑇𝑖𝑛
, and 

𝑇𝑤

𝑄𝑎𝑚𝑏
. It is important to keep in mind the end 

goal of what was chosen as the total system output in identifying which component-level transfer 

functions affect that value. Since the fluid temperature as it exits the system was chosen as the 

output, only transfer functions 
𝑇𝑓

𝑇𝑖𝑛
 and 

𝑇𝑓

𝑄𝑎𝑚𝑏
 are relevant to the sensitivity analysis.  

These signals must also be converted from temperature to energy before they can be added, 

due to the conservation of energy principles. For example, assume the flow passing through a cold 

plate reaches 20 °C when there is no heat load, and the heat load heats the fluid in the cold plate 

to 25 °C when there is no fluid movement. Together, these do not result in an exit temperature of 

45 °C. But the energy increase due to both the advective fluid flow and the convective interaction 

with the heat load can be added since energy is conserved. Then the resulting energy can be 

converted back to temperature by dividing by the component capacitance. So, rather than setting 

the component subsystem outputs to the temperature contribution of the fluid due to the inputs, the 

outputs should be set to the energy contribution: 
𝐸𝑓

𝑇𝑖𝑛
 and 

𝐸𝑓

𝑄𝑎𝑚𝑏
. Once the energy contributions from 
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both inputs are added together, dividing by the fluid capacitance will convert the signal back to 

temperature to be read as the temperature input for the next sub-system, as illustrated in Fig. 4.3.  

 

Figure 4.3: Block Diagram Representation of Example System 1 

Eq. (4.1) and (4.2) can be converted to Eq. (4.3) and (4.4) to represent the energy of the 

vertices as the states, instead of the system states being the temperatures of the vertices. Note that 

the conversion factor of 1000 in Eq. (4.4) converts the input heat load from kW to W.  

�̇�𝑓 = �̇�𝑓 ⋅ 𝑀𝑓 ⋅ 𝑐𝑃𝑓
= �̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓

⋅ (𝑇𝑖𝑛 −
𝐸𝑓

𝑀𝑓 ⋅ 𝑐𝑃𝑓

) − 𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (
𝐸𝑓

𝑀𝑓 ⋅ 𝑐𝑃𝑓

−
𝐸𝑤

𝑀𝑤 ⋅ 𝑐𝑃𝑤

) (4.3) 

�̇�𝑤 = �̇�𝑤 ⋅ 𝑀𝑤 ⋅ 𝑐𝑃𝑤
= 1000 ⋅ 𝑄𝑎𝑚𝑏 + 𝐻 ⋅ 𝐴ℎ𝑡 ⋅ (

𝐸𝑓

𝑀𝑓 ⋅ 𝑐𝑃𝑓

−
𝐸𝑤

𝑀𝑤 ⋅ 𝑐𝑃𝑤

) (4.4) 

Eq. (4.3) and (4.4) can be written in a general state space form as in Eq. (4.5). This will 

make it easier to convert the system equations from the time domain to the frequency domain. 

[
�̇�𝑓

�̇�𝑤

] =

[
 
 
 
 −

�̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓

𝑀𝑓 ⋅ 𝑐𝑃𝑓

−
𝐻 ⋅ 𝐴ℎ𝑡

𝑀𝑓 ⋅ 𝑐𝑃𝑓

𝐻 ⋅ 𝐴ℎ𝑡

𝑀𝑤 ⋅ 𝑐𝑃𝑤

𝐻 ⋅ 𝐴ℎ𝑡

𝑀𝑓 ⋅ 𝑐𝑃𝑓

−
𝐻 ⋅ 𝐴ℎ𝑡

𝑀𝑤 ⋅ 𝑐𝑃𝑤]
 
 
 
 

[
𝐸𝑓

𝐸𝑤
] + [

�̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓
0

0 1000
] [

𝑇𝑖𝑛

𝑄𝑎𝑚𝑏
] (4.5) 

For simplicity, in this study the parameters of interest have been selected to be the edge 

coefficients and vertex capacitances, instead of the sizing parameters or material properties. 

Therefore, each of the terms in the matrices in Eq. (4.5) must be represented in terms of the vertex 

capacitance and edge coefficient values. The vertex capacitances of a cold plate component were 

defined in Eq. (2.37) and (2.38) and are shown again in Eq. (4.6) and (4.7). 

𝐶𝑓𝑙𝑢𝑖𝑑 = 𝑀𝑓 ⋅ 𝑐𝑃𝑓
= 𝜌 ⋅ 𝑉 ⋅ 𝑐𝑃𝑓

 (4.6) 
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𝐶𝑤𝑎𝑙𝑙 = 𝑀𝑤 ⋅ 𝑐𝑃𝑤
(4.7) 

According to the numbering system in Fig. 4.2, Cold Plate 1’s wall vertex is vertex 1 and 

the fluid vertex is vertex 2. Therefore, Eq. (4.8) and (4.9) show 𝐶1 and 𝐶2. 

𝐶1 = 𝑀𝑤 ⋅ 𝑐𝑃𝑤
(4.8) 

𝐶2 = 𝑀𝑓 ⋅ 𝑐𝑃𝑓
(4.9) 

The term �̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓
 represents the advective edge entering Cold Plate 1. According to Fig 

4.2, this edge is the input power flow, 𝑃𝑠,1. However, since the cold plate component is flooded, 

the mass flow rates into and out of the system are equal. This means the edge coming out of Cold 

Plate 1, 𝐸2, is also equal to the advective edge coefficient: �̇�𝑖𝑛 ⋅ 𝑐𝑃𝑓
. The term 𝐻 ⋅ 𝐴ℎ𝑡 represents 

the convective heat transfer between the wall and the fluid vertices, which is represented by 𝐸1, 

according to Fig. 4.2. 

Therefore, replacing these capacitance and edge coefficient values with their symbols 

yields a simplified state space representation of a cold plate component in Eq. (4.10). 

[
�̇�𝑓

�̇�𝑤

] =

[
 
 
 −

𝐸2

𝐶2
−

𝐸1

𝐶2

𝐸1

𝐶1

𝐸1

𝐶2
−

𝐸1

𝐶1]
 
 
 

[
𝐸𝑓

𝐸𝑤
] + [

𝐸2 0
0 1

] [
𝑇𝑖𝑛

𝑄𝑎𝑚𝑏
] (4.10) 

Eq. (4.10) only represents the component Cold Plate 1. The system and input matrices, 𝐴 

and 𝐵, look different for each component type. It is helpful to represent each component by the 

basic state space form in Eq. (4.11) and (4.12) and simply substitute back in the capacitances and 

edge coefficients for each component, once they have all been converted to the frequency domain 

in Eq. (4.23) and (4.24). 

�̇� = 𝐴𝑥 + 𝐵𝑢 (4.11) 

[
�̇�1

�̇�2
] = [

𝑎1 𝑎2

𝑎3 𝑎4
] [

𝑥1

𝑥2
] + [

𝑏1 0
0 𝑏2

] [
𝑢1

𝑢2
] (4.12) 

The substitutions for Cold Plate 1 are shown in Eq. (4.13) – (4.17). 

�̇�1 = �̇�𝑓,2;  𝑥1 = 𝐸𝑓,2 (4.13) 

�̇�2 = �̇�𝑤,1;  𝑥2 = 𝐸𝑤,1 (4.14) 

𝑢1 = 𝑇𝑖𝑛,1;  𝑢2 = 𝑄𝑎𝑚𝑏,1 (4.15) 

𝑎1 = −
𝐸2

𝐶2
−

𝐸1

𝐶2
;  𝑎2 =

𝐸1

𝐶1
;   𝑎3 =

𝐸1

𝐶2
;  𝑎4 = −

𝐸1

𝐶1
 (4.16) 
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𝑏1 = 𝐸2;  𝑏2 = 1000 (4.17) 

Similarly, the substitutions for Cold Plate 2 are shown in Eq. (4.18) – (4.22). In the interest 

of grouping co-dependent edge coefficients together for a more accurate sensitivity analysis, all 

edge coefficients which represent the advective flow through the cold plates will be written as 𝐸2. 

This is only valid for advective edges which share the same mass flow rate and specific heat value, 

meaning 𝐸2 is the only edge for which this applies in this system. 

�̇�1 = �̇�𝑓,4;  𝑥1 = 𝐸𝑓,4 (4.18) 

�̇�2 = �̇�𝑤,3;  𝑥2 = 𝐸𝑤,3 (4.19) 

𝑢1 = 𝑇𝑖𝑛,2;  𝑢2 = 𝑄𝑎𝑚𝑏,2 (4.20) 

𝑎1 = −
𝐸2

𝐶4
−

𝐸3

𝐶4
;  𝑎2 =

𝐸3

𝐶3
;   𝑎3 =

𝐸3

𝐶4
;  𝑎4 = −

𝐸3

𝐶3
 (4.21) 

𝑏1 = 𝐸2;  𝑏2 = 1000 (4.22) 

The basic state space representation in Eq. (4.12) can be converted to the frequency domain 

by taking the Laplace transform of it, yielding Eq. (4.23) and (4.24). 

𝑠𝑋1(𝑠) = 𝑎1𝑋1(𝑠) + 𝑎2𝑋2(𝑠) + 𝑏1𝑈1(𝑠) (4.23) 

𝑠𝑋2(𝑠) = 𝑎3𝑋1(𝑠) + 𝑎4𝑋2(𝑠) + 𝑏2𝑈2(𝑠) (4.24) 

Combining the terms, 𝑋1(𝑠) and 𝑋2(𝑠), results in Eq. (4.25) and (4.26). 

𝑋1(𝑠)(𝑠 − 𝑎1) = 𝑎2𝑋2(𝑠) + 𝑏1𝑈1(𝑠) (4.25) 

𝑋2(𝑠)(𝑠 − 𝑎4) = 𝑎3𝑋1(𝑠) + 𝑏2𝑈2(𝑠) (4.26) 

Substituting Eq. (4.26) into (4.25) results in Eq. (4.27) – (4.29). 

𝑋1(𝑠)(𝑠 − 𝑎1) = 𝑎2

𝑎3𝑋1(𝑠) + 𝑏2𝑈2

(𝑠 − 𝑎4)
+ 𝑏1𝑈1(𝑠) (4.27) 

→ 𝑋1(𝑠) (𝑠 − 𝑎1 −
𝑎2𝑎3

(𝑠 − 𝑎4)
) =

𝑎2𝑏2𝑈2

(𝑠 − 𝑎4)
+ 𝑏1𝑈1(𝑠) (4.28) 

→ 𝑋1(𝑠) (
𝑠(𝑠 − 𝑎4) − 𝑎1(𝑠 − 𝑎4) − 𝑎2𝑎3

(𝑠 − 𝑎4)
) =

𝑎2𝑏2𝑈2

(𝑠 − 𝑎4)
+ 𝑏1𝑈1(𝑠) (4.29) 

To solve for the transfer functions of interest, namely 
𝐸𝑓

𝑇𝑖𝑛
 and 

𝐸𝑓

𝑄𝑎𝑚𝑏
, Eq. (4.29) must be 

arranged into the forms 
𝑋1(𝑠)

𝑈1(𝑠)
 and 

𝑋1(𝑠)

𝑈2(𝑠)
 respectively, as shown in Eq. (4.30) and (4.31). 

𝑋1(𝑠)

𝑈1(𝑠)
=

𝑏1(𝑠 − 𝑎4)

𝑠(𝑠 − 𝑎4) − 𝑎1(𝑠 − 𝑎4) − 𝑎2𝑎3
=

𝑏1𝑠 − 𝑏1𝑎4

𝑠2 − 𝑠(𝑎1 + 𝑎4) + 𝑎1𝑎4 − 𝑎2𝑎3
 (4.30) 
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𝑋1(𝑠)

𝑈2(𝑠)
=

𝑎2𝑏2

𝑠(𝑠 − 𝑎4) − 𝑎1(𝑠 − 𝑎4) − 𝑎2𝑎3
=

𝑎2𝑏2

𝑠2 − 𝑠(𝑎1 + 𝑎4) + 𝑎1𝑎4 − 𝑎2𝑎3
 (4.31) 

This is the general form of a component subsystem’s transfer functions. Notice that the 

signs in the denominators of the transfer functions have alternating signs. However, this does not 

necessarily mean that the poles are unstable, unless the coefficients 𝑎1, 𝑎2, 𝑎3, and 𝑎4 all have the 

same sign. Once the values for these coefficients are substituted back in, the denominators reveal 

all positive coefficients, indicating stable poles and thus stable dynamics in Eq. (4.32) – (4.35). 

For each individual component, the terms 𝑋1(𝑠), 𝑈1(𝑠), and 𝑈2(𝑠) in Eq. (4.30) and (4.31) need 

to be replaced with the appropriate outputs and inputs, typically with energy as the output (so it 

can be added to other energy terms of the same vertex) and with input temperature as one of the 

input signals. In this case, 𝑋1(𝑠) is standing in for 𝐸𝑓,2(𝑠), and 𝑈1(𝑠) and 𝑈2(𝑠) represent 𝑇𝑖𝑛,1(𝑠) 

and 𝑄𝑎𝑚𝑏,1(𝑠), respectively. The terms 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏1, and 𝑏2 can be replaced with the 

appropriate vertex capacitances and edge coefficients for the modeled component, such as Eq. 

(4.16) and (4.17) or Eq. (4.21) and (4.22). The transfer function equations which model Cold Plate 

1 are shown in Eq. (4.32) and (4.33) while the equations for Cold Plate 2 are shown in Eq. (4.34) 

and (4.35). These result in the block diagram representation shown in Fig. 4.4. 

𝐸𝑓,2(𝑠)

𝑇𝑖𝑛,1(𝑠)
=

𝐸𝑓,2(𝑠)

𝑃𝑠,1(𝑠)
=

𝐸2𝑠 +
𝐸1𝐸2

𝐶1

𝑠2 + 𝑠 (
𝐸2

𝐶2
+

𝐸1

𝐶2
+

𝐸1

𝐶1
) +

𝐸1𝐸2

𝐶1𝐶2

(4.32) 

𝐸𝑓,2(𝑠)

𝑄𝑎𝑚𝑏,1(𝑠)
=

𝐸𝑓,2(𝑠)

𝑃𝑠,2(𝑠)
=

𝐸1

𝐶1

𝑠2 + 𝑠 (
𝐸2

𝐶2
+

𝐸1

𝐶2
+

𝐸1

𝐶1
) +

𝐸1𝐸2

𝐶1𝐶2

 (4.33) 

 

𝐸𝑓,4(𝑠)

𝑇𝑖𝑛,2(𝑠)
=

𝐸𝑓,4(𝑠)

𝐸𝑓,2,𝑡𝑜𝑡𝑎𝑙(𝑠)

𝐶2

=
𝐸2𝑠 +

𝐸2𝐸3

𝐶3

𝑠2 + 𝑠 (
𝐸2

𝐶4
+

𝐸3

𝐶4
+

𝐸3

𝐶3
) +

𝐸2𝐸3

𝐶3𝐶4

(4.34) 

𝐸𝑓,4(𝑠)

𝑄𝑎𝑚𝑏,2(𝑠)
=

𝐸𝑓,4(𝑠)

𝑃𝑠,3(𝑠)
=

𝐸3

𝐶3

𝑠2 + 𝑠 (
𝐸2

𝐶4
+

𝐸3

𝐶4
+

𝐸3

𝐶3
) +

𝐸2𝐸3

𝐶3𝐶4

  (4.35) 
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Figure 4.4: Symbolic Block Diagram of Example 1. 

The block diagram above can be simplified into Eq. (4.36) using the foundational block 

diagram reduction rules shown in Fig. 3.6.  

((𝑃𝑠,1 ∗
𝐸𝑓,2(𝑠)

𝑃𝑠,1(𝑠)
+ 𝑃𝑠,2 ∗

𝐸𝑓,2(𝑠)

𝑃𝑠,2(𝑠)
) ∗

1

𝐶2
∗

𝐸𝑓,4(𝑠)

𝑇𝑓,1(𝑠)
+ 𝑃𝑠,3 ∗

𝐸𝑓,4(𝑠)

𝑃𝑠,3(𝑠)
) ∗

1

𝐶4
= 𝑇𝑓,4 (4.36) 

The last step before taking the partial derivatives of each of the system transfer functions 

is to represent the system output of interest, 𝑇𝑓,4, in terms of each of the system inputs, namely 

𝑃𝑠,1, 𝑃𝑠,2, and 𝑃𝑠,3. This yields the total system transfer functions in Eq. (4.37) – (4.39). 

𝑇𝑓,4(𝑠)

𝑃𝑠,1(𝑠)
=  

𝐸𝑓,2(𝑠)

𝑃𝑠,1(𝑠)
∗

1

𝐶2
∗
𝐸𝑓,4(𝑠)

𝑇𝑓,2(𝑠)
∗

1

𝐶4
 (4.37) 

𝑇𝑓,4(𝑠)

𝑃𝑠,2(𝑠)
=  

𝐸𝑓,2(𝑠)

𝑃𝑠,2(𝑠)
∗

1

𝐶2
∗
𝐸𝑓,4(𝑠)

𝑇𝑓,2(𝑠)
∗

1

𝐶4
 (4.38) 

𝑇𝑓,4(𝑠)

𝑃𝑠,3(𝑠)
=  

𝐸𝑓,4(𝑠)

𝑃𝑠,3(𝑠)
∗

1

𝐶4
 (4.39) 

When the transfer functions 
𝐸𝑓,2(𝑠)

𝑃𝑠,1(𝑠)
, 

𝐸𝑓,2(𝑠)

𝑃𝑠,2(𝑠)
, 

𝐸𝑓,4(𝑠)

𝑇𝑓,2(𝑠)
, and 

𝐸𝑓,4(𝑠)

𝑃𝑠,3(𝑠)
 in Eq. (4.37) – (4.39), are 

replaced by their capacitance and edge coefficient values from Eq. (4.32) – (4.35), they yield the 

final form of the system transfer functions which will be used in the sensitivity analysis. These 

equations are shown below in Eq. (4.40) – (4.42). 

𝑇𝑓,4(𝑠)

𝑃𝑠,1(𝑠)
=  

𝐸2𝑠 +
𝐸1𝐸2

𝐶1

𝑠2 + 𝑠 (
𝐸2

𝐶2
+

𝐸1

𝐶2
+

𝐸1

𝐶1
) +

𝐸1𝐸2

𝐶1𝐶2

∗
1

𝐶2
∗

𝐸2𝑠 +
𝐸2𝐸3

𝐶3

𝑠2 + 𝑠 (
𝐸2

𝐶4
+

𝐸3

𝐶4
+

𝐸3

𝐶3
) +

𝐸2𝐸3

𝐶3𝐶4

∗
1

𝐶4
 (4.40) 
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𝑇𝑓,4(𝑠)

𝑃𝑠,2(𝑠)
=  

𝐸1

𝐶1

𝑠2 + 𝑠 (
𝐸2

𝐶2
+

𝐸1

𝐶2
+

𝐸1

𝐶1
) +

𝐸1𝐸2

𝐶1𝐶2

∗
1

𝐶2
∗

𝐸2𝑠 +
𝐸2𝐸3

𝐶3

𝑠2 + 𝑠 (
𝐸2

𝐶4
+

𝐸3

𝐶4
+

𝐸3

𝐶3
) +

𝐸2𝐸3

𝐶3𝐶4

∗
1

𝐶4
 (4.41) 

𝑇𝑓,4(𝑠)

𝑃𝑠,3(𝑠)
=  

𝐸3

𝐶3

𝑠2 + 𝑠 (
𝐸2

𝐶4
+

𝐸3

𝐶4
+

𝐸3

𝐶3
) +

𝐸2𝐸3

𝐶3𝐶4

∗
1

𝐶4
 (4.42) 

 

4.2.2 Finding the Sensitivities of each of the System Transfer Functions  

As discussed in Section 3.2.3, the sensitivity of a transfer function to system parameters is 

found by taking the partial derivative of the transfer function with respect to the parameters of 

interest. This is re-iterated in Eq. (4.43) below. 

𝑆(𝑠) =
𝜕 (

𝑦(𝑠)
𝑢(𝑠)

)

𝜕 (𝜃)
 (4.43)

 

Therefore, the sensitivities of the three system transfer functions, 
𝑇𝑓,4(𝑠)

𝑃𝑠,1(𝑠)
, 

𝑇𝑓,4(𝑠)

𝑃𝑠,2(𝑠)
, and 

𝑇𝑓,4(𝑠)

𝑃𝑠,3(𝑠)
, 

can be found by taking the partial derivatives of each of them individually to each of the vertex 

capacitances and edge coefficients.  

Suppose there is interest in knowing the effect parameter 𝐶2 has on the output temperature 

𝑇𝑓,4, compared to parameter 𝐶4. The plots in Fig. 4.5 demonstrate the sensitivity bode plots for 

each input’s transfer function. 

 

Figure 4.5: Sensitivities of the System Transfer Functions to Parameters 𝑪𝟐 and 𝑪𝟒. 
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Notice that the transfer function relating the output temperature to the input Heat Load 2 is 

only dependent on parameter 𝐶4, since parameter 𝐶2 is the fluid vertex of Cold Plate 1, which is 

not along the path of the Heat Load 2 transfer function. Also notice that at the lowest frequencies 

the sensitivities of each of the transfer functions to either parameter decreases to miniscule values. 

This suggests that at steady state neither parameter has any effect on the output signal’s amplitude. 

Therefore, to see an effect on the output signal when compared to the nominal case, the input signal 

needs to have a non-zero frequency.  

Let all three inputs have a frequency of 0.5 rad/s. The transfer functions for each of these 

inputs can be used to determine the output signal amplitude for nominal parameter values. This is 

done by selecting the frequency of each of the input signals, finding the ratio of output amplitude 

to input amplitude at that frequency, and multiplying that ratio by the input amplitude for each 

input. This results in three different contributions to the total output amplitude. Adding the three 

contributions from each of the inputs follows from the principle of superposition, as shown in Fig. 

4.6.  

 

Figure 4.6: Applying Superposition Principle at Specific Input Frequencies. 

To demonstrate this by numerical simulation, let the source temperature have an amplitude 

of 20 (°C), and Heat Load 1 and 2 have amplitudes of 1 (kW), and 2 (kW), respectively. Let the 

frequency for all the input signals be 0.5 rad/s. Fig. 4.7 shows the resulting output amplitude 

estimation following from the procedure illustrated in Fig. 4.6. 
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Figure 4.7: Output Amplitude Based on Input Signal Amplitudes and Frequencies. 

The estimated output amplitude of Example System 1 is 16.61 as shown in Fig. 4.7 above. 

Note that the x scale is meaningless for all such superposition plots. This plot represents the single 

value 16.61 as the output amplitude, given the input signal amplitudes and frequencies. The 

numerical verification of the actual output signal (purple line) is shown in Fig. 4.8. 

 

Figure 4.8: Numerical Verification of Output Signal Amplitude. 

Finding the total effect of each parameter on the final output signal amplitude is a similar 

process. Instead of multiplying the output to input amplitude ratio by the input amplitude, the 
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partial derivative of the output to input amplitude, or the input-specific transfer function, should 

be multiplied by the input signal amplitude. Once the sensitivities of each transfer function to a 

specific parameter are calculated at the chosen input signal frequencies, these can be added 

together to find the total impact the parameter has on the output signal amplitude. These steps are 

illustrated in Fig. 4.9 below. 

 

Figure 4.9: Applying Superposition Principle to Transfer Function Sensitivity Function. 

This tool can help figure out whether parameter 𝐶2 or 𝐶4 is more influential to the output 

amplitude, given all three inputs have frequencies of 0.5 rad/s. Returning to the sensitivity bode 

plots in Fig. 4.5, recall that at 0.5 rad/s, both the Source Temperature and Heat Load transfer 

functions are equally sensitive to 𝐶2 and 𝐶4. However, Heat Load 4 is only sensitive to 𝐶4. So, 

altogether the output amplitude will be more sensitive to parameter 𝐶4. As expected, Fig. 4.10 

predicts that when all input signals are at 0.5 rad/s, the output temperature is more sensitive to 𝐶4 

than to 𝐶2. 

Like Fig. 4.7 representing the output amplitude, Fig. 4.10 represents the sensitivity of the 

output amplitude with respect to each parameter. These sensitivities are single values and could 

have been communicated as a bar chart with one bar for each parameter. However, this would 

make it more difficult to compare the far-left bars with the far-right ones if there were more than 

a few parameters being plotted. For this reason, a 2-dimensional plot was chosen instead to better 

compare each of the parameter sensitivities. Each parameter sensitivity is plotted as a horizontal 

line across the figure. This means that the x-axis is meaningless and the y-axis, which shows the 

sensitivities of the output signal amplitude, is the focus of the plot. 
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Figure 4.10: Sensitivity of Output Amplitude to Parameters 𝑪𝟐 and 𝑪𝟒. 

Since the difference in output signal amplitude for the parameters is so small, the numerical 

verification, shown in Fig. 4.11, shows a marginal difference in influence between parameters 𝐶2 

and 𝐶4.  

 

Figure 4.11: Numerical Verification of Parameter 𝑪𝟒 having a higher influence on the 

Output Amplitude. 

Therefore, let the amplitude of Heat Load 2 be 50 kW to highlight this difference in 

sensitivity better, when shown through numerical simulation. Fig. 4.12 shows the new predicted 

sensitivity of the output amplitude to parameters 𝐶2 and 𝐶4, and Fig. 4.13 shows the numerical 

verification of how each of the parameters influence the output amplitude when they are perturbed. 
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Notice how, in Fig. 4.13, when 𝐶4 is perturbed the resulting output signal has a smaller amplitude 

and is further from the nominal case (where neither parameter is perturbed) than when 𝐶2 is 

perturbed. 

 

Figure 4.12: Sensitivity of Output Amplitude to 𝑪𝟐 and 𝑪𝟒 when Heat Load 2 = 50 kW. 

 

Figure 4.13: Numerical Verification of Parameter 𝑪𝟒 having a higher influence when Heat 

Load 2 = 50 kW. 

Now that the basics of comparing the sensitivities of the output amplitude to two 

parameters are understood, the next subsection will cover identifying and numerically verifying 

the most influential parameters of this system, given a set of input signal amplitudes and 

frequencies. 
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4.2.3 Identifying the Most Influential Parameters to the System Output 

Amplitude 

To identify the parameters the system is most sensitive to, the “sensitivity bode plots”, or 

the partial derivatives of each of the input-specific transfer functions to the parameters, are crucial. 

These are shown below in Fig. 4.14 – 4.16.  

 

Figure 4.14: Sensitivity Bode Plot of Input 1: Source Temperature. 

 

Figure 4.15: Sensitivity Bode Plot of Input 2: Heat Load 1. 
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Figure 4.16: Sensitivity Bode Plot of Input 3: Heat Load 2. 

Each sensitivity bode plot is zoomed in around the frequency 1 rad/s in Fig. 4.17 – 4.19.  

 

Figure 4.17: Close up of Fig. 4.14 around 1 rad/s. 

The parameters the source transfer function appears to be most sensitive to, for an input 

signal at 1 rad/s, are 𝐶2 and 𝐶4, closely followed by 𝐸2, and then by 𝐸1 and 𝐸3. According to Fig. 

4.2, these are the fluid capacitances of Cold Plate 1 and 2, the advective edge of fluid flow through 

the system and the convective edges between Cold Plate 1 and 2’s fluid and wall vertices. This 

makes intuitive sense that the transfer function which relates the output temperature to the input 

temperature the most are the fluid capacitances. Since for this input-specific transfer function all 

the heat loads are considered to be zero, the capacitances of the cold plate walls will not be as 

influential to the output temperature. 
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Figure 4.18: Close up of Fig. 4.15 around 1 rad/s. 

The parameters that the Heat Load 1 transfer function is most sensitive to include 𝐸1, the 

convective edge between Cold Plate 1’s fluid and wall vertices, followed by 𝐶1, the wall 

capacitance of cold plate 1 which Heat Load 1 is applied to. This also makes intuitive sense that 

the cold plate wall capacitance and the heat transfer coefficient between the cold plate fluid and 

the wall for Cold Plate 1 would have the greatest impact on the output temperature for the transfer 

function whose input is the heat load on Cold Plate 1. 

 

Figure 4.19: Close up of Fig. 4.16 around 1 rad/s. 

The Heat Load 2 transfer function is most sensitive to the parameter 𝐸3, which represents 

the convective edge between Cold Plate 2’s fluid and wall vertices, followed by 𝐶3, the wall 
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capacitance of Cold Plate 2. Similar to the case for Cold Plate 1, it also makes intuitive sense that 

the wall capacitance and heat transfer coefficient for Cold Plate 2 are the most influential for the 

energy transfer from Heat Load 2 to the output temperature.  

When all three sensitivity bode plots are multiplied by the amplitude of their input signal 

and then added together, following the procedure from Fig. 4.9, they result in the ranking shown 

in Fig. 4.20. 

 

Figure 4.20: Sensitivity of Output Amplitude to All Parameters. 

This ranking can be numerically verified by Fig. 4.21. 

 

Figure 4.21: Numerical Verification of System with 1 rad/s Inputs 
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Notice how the source mass flow rate parameter has a much larger effect on the system 

than it is expected to. This is because the sensitivity analysis is only accurate around the nominal 

mass flow rates, and perturbing the mass flow rate, especially by as much as 2 kg/s, changes the 

linearized model and thus the sensitivity analysis based on that model considerably. Since the 

vertex capacitances do not affect the mass flow rate, they are expected to produce more accurate 

results with the sensitivity analysis than the edge coefficients. Thus, the vertex capacitances will 

be the focus of the sensitivity analyses for this thesis.  

The estimated ranking of the output amplitude sensitivities to only the capacitance 

parameters is shown in Fig. 4.22 below, followed by the numerical verification of the capacitance 

parameters in Fig. 4.23. 

 

Figure 4.22: Sensitivity of Output Amplitude to Capacitance Parameters. 
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Figure 4.23: Numerical Verification of System to Capacitance Parameters. 

The parameter expected to have the greatest effect on the system, 𝐶4, does in fact lower the 

steady state amplitude of the output signal the most. This is closely followed by 𝐶2, and then 𝐶3 

and 𝐶1. Fig. 4.22 and 4.23 show agreement between them as to which parameters are more 

influential on the output signal amplitude. This concludes the walk-through of Example 1.  

4.3 Conducting a Sensitivity Analysis of Example System 2 

This next section applies the sensitivity analysis techniques discussed in Section 4.2 to 

another system, which will be referred to as Example 2 moving forward. Example 2 is the subject 

of the plant and controller co-design methods, which will be further explored in Chapter 6. The 

remainder of this chapter will set up the plant sensitivity analysis for Example 2 and the results of 

the Sensitivity Analysis will be discussed in Chapter 5.  

4.3.1 Defining Example 2  

Example 2 has been chosen to be a fluid loop with a single source input and a single sink 

output. Immediately after the source, the fluid flow passes through Cold Plate1. Then it reaches a 

split, where the flow branches off into two parallel flows through the system. The top branch has 

two cold plates in series and the bottom branch has a single cold plate component within it. This 
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flow split is controlled by a valve component, which designates how much fluid flows into the top 

branch by a number between 0 and 1. This schematic of Example 2 is shown in Fig. 4.24.  

 

Figure 4.24: Schematic of Example 2. 

The red circle with a line through it represents terminator blocks which ignore the 

information coming from the previous component through the bus. Although not pictured in the 

schematic, each component is also passing back the first bus signal property it calculates by a sink 

block to the previous component. For example, the cold plate components pass the mass flow rate 

they calculate to their previous component, and the junction components pass back the pressure 

they calculate to all the components that flow into them. This system is set up with five inputs 

which can be altered by the user: the temperature of the source flow and the heat loads on Cold 

Plates 1 – 4. These inputs values can range from constant values of 0 rad/s to sinusoidal signals of 

any frequency. There are also two factors which can be controlled to adjust the temperature states 

in this system: the mass flow rate of fluid entering the system and the percentage split of fluid 

leading to the top branch, as opposed to the bottom branch. For now, the model is given a constant 

mass flow rate of 1.67348 kg/s and valve split of 0.5. These values will hold until controllers are 

introduced to the system in Chapter 6. A graph model representation of Example 2 is shown in 

Fig. 4.25. 
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Figure 4.25: Simplified Graph Model of Example 2. 

The graph model shown in Fig. 4.25 is simplified from Fig 4.24, because there is no need 

to represent the conversion blocks, such as pipes or junctions which only have one input, since 

they have a negligible effect on the system dynamics. They are only included in the Simulink 

model to convert between calculating mass flow rate and pressure. The valve component also does 

not have a large effect on the system temperatures, other than by directing flow to the two branches. 

The temperature of the flow entering the valve is the same as the temperatures which will pass 

through to both the top branch and the bottom branch. However, the valve is still included in the 

graph model for clarity of how the flow rates are adjusted. Each of the vertices and each of the 

edges are numbered in the graph-based model, shown in Fig. 4.26. 

 

Figure 4.26: Numbered Graph Model of Example 2. 
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All the components in Example 2 are flooded, meaning the mass flow into a component is 

the same as the mass flow out of the component. Therefore, there are two independent mass flow 

rates which describe the mass flow through the entire system: the flow rate into the system, 𝐸2, 

and the flow rate to the top branch, 𝐸3. Thus, all the advective edges can be described as either 

𝐸2, 𝐸3, or 𝐸2 − 𝐸3. 

 Now that Example 2 has been defined and modeled, Section 4.3.2 will expand on how it 

can be represented as a set of transfer functions, one for each input. 

4.3.2 Representing Example 2 as a set of Transfer Functions 

The graph model of Example 2 consists of three component types: cold plates, a valve, and 

a junction. These are the components for which the output-to-input transfer functions must be 

derived. Since the temperature of the fluid leaving the system along edge 11 has been chosen as 

the output value, the individual exit temperatures for each of the components should be the outputs 

for their transfer functions. One of the inputs needs to be the temperature of the previous 

component so that the component transfer functions can be linked together as shown in Fig. 4.3.  

For the valve component, the two transfer functions would be 
𝑜𝑢𝑡𝑝𝑢𝑡 1 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑖𝑛𝑝𝑢𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
 and 

𝑜𝑢𝑡𝑝𝑢𝑡 2 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑖𝑛𝑝𝑢𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
. Both are equal to 1 since the valve component does not affect the temperature 

of the fluid flow, meaning that the valve component transfer function can be omitted from the total 

system transfer function equation. The junction component has two inputs and one output, 

resulting in the following two transfer functions: 
𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑖𝑛𝑝𝑢𝑡 1 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
 and 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑖𝑛𝑝𝑢𝑡 2 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
. Each 

of the cold plate components has two outputs and two inputs, resulting in the following four 

transfer functions: 
𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑖𝑛𝑝𝑢𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
, 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

ℎ𝑒𝑎𝑡 𝑙𝑜𝑎𝑑
, 

𝑤𝑎𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑖𝑛𝑝𝑢𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
, and  

𝑤𝑎𝑙𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

ℎ𝑒𝑎𝑡 𝑙𝑜𝑎𝑑
. 

However, the wall temperature transfer functions are not included in the total system transfer 

function equation and can be omitted from the analysis. Since the cold plate components have two 

transfer functions which represent the output temperature from two different inputs, they can be 

added together by the principle of superposition. However, the temperatures cannot be added 

directly and should be converted to energy first, as shown in Fig. 4.3. Example 2 can be represented 

as the combination of each of the component transfer functions, as shown by the block diagram in 

Fig. 4.27. 
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Figure 4.27: Block Diagram of Example 2. 

 

The cold plate component transfer functions were derived in Section 4.2.1. Following the 

general state space form in Eq. (4.44) and the numbering scheme defined in Fig. 4.26, each of the 

substitutions for Cold Plate 1 is shown in Eq. (4.45 – 4.49). 

[
�̇�1

�̇�2
] = [

𝑎1 𝑎2

𝑎3 𝑎4
] [

𝑥1

𝑥2
] + [

𝑏1 0
0 𝑏2

] [
𝑢1

𝑢2
] (4.44) 

�̇�1 = �̇�𝑓,1;  𝑥1 = 𝐸𝑓,1 (4.45) 

�̇�2 = �̇�𝑤,2;  𝑥2 = 𝐸𝑤,2 (4.46) 

𝑢1 = 𝑇𝑖𝑛,1 (𝑃𝑠,1) ; 𝑢2 = 𝑄𝑎𝑚𝑏,1 (𝑃𝑠,2) (4.47) 

𝑎1 = −
𝐸2

𝐶1
−

𝐸1

𝐶1
;  𝑎2 =

𝐸1

𝐶2
;   𝑎3 =

𝐸1

𝐶1
;  𝑎4 = −

𝐸1

𝐶2
 (4.48) 

𝑏1 = 𝐸2;  𝑏2 = 1000 (4.49) 

For Cold Plate 2, the substitutions are shown in Eq. (4.50) – (4.54). 

�̇�1 = �̇�𝑓,3;  𝑥1 = 𝐸𝑓,3 (4.50) 

�̇�2 = �̇�𝑤,4;  𝑥2 = 𝐸𝑤,4 (4.51) 

𝑢1 = 𝑇𝑖𝑛,3 (𝑇𝑓,1) ; 𝑢2 = 𝑄𝑎𝑚𝑏,2 (𝑃𝑠,3) (4.52) 
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𝑎1 = −
𝐸3

𝐶3
−

𝐸4

𝐶3
;  𝑎2 =

𝐸4

𝐶4
;   𝑎3 =

𝐸4

𝐶3
;  𝑎4 = −

𝐸4

𝐶4
 (4.53) 

𝑏1 = 𝐸3;  𝑏2 = 1000 (4.54) 

For Cold Plate 3, the substitutions are shown in Eq. (4.55) – (4.59). 

�̇�1 = �̇�𝑓,5;  𝑥1 = 𝐸𝑓,5 (4.55) 

�̇�2 = �̇�𝑤,6;  𝑥2 = 𝐸𝑤,6 (4.56) 

𝑢1 = 𝑇𝑖𝑛,5 (𝑇𝑓,3) ; 𝑢2 = 𝑄𝑎𝑚𝑏,3 (𝑃𝑠,4) (4.57) 

𝑎1 = −
𝐸3

𝐶5
−

𝐸6

𝐶5
;  𝑎2 =

𝐸6

𝐶6
;   𝑎3 =

𝐸6

𝐶5
;  𝑎4 = −

𝐸6

𝐶6
 (4.58) 

𝑏1 = 𝐸3;  𝑏2 = 1000 (4.59) 

For Cold Plate 4, the substitutions are shown in Eq. (4.60) – (4.64). 

�̇�1 = �̇�𝑓,7;  𝑥1 = 𝐸𝑓,7 (4.60) 

�̇�2 = �̇�𝑤,8;  𝑥2 = 𝐸𝑤,8 (4.61) 

𝑢1 = 𝑇𝑖𝑛,7 (𝑇𝑓,1) ; 𝑢2 = 𝑄𝑎𝑚𝑏,4 (𝑃𝑠,5) (4.62) 

𝑎1 = −
(𝐸2 − 𝐸3)

𝐶7
−

𝐸9

𝐶7
;  𝑎2 =

𝐸9

𝐶8
;   𝑎3 =

𝐸9

𝐶7
;  𝑎4 = −

𝐸9

𝐶8
 (4.63) 

𝑏1 = (𝐸2 − 𝐸3);  𝑏2 = 1000 (4.64) 

 

Each of these substitutions can replace the terms in the frequency domain transfer function 

equations in Eq. (4.65) and (4.66).  

𝑋1(𝑠)

𝑈1(𝑠)
=

𝑏1(𝑠 − 𝑎4)

𝑠(𝑠 − 𝑎4) − 𝑎1(𝑠 − 𝑎4) − 𝑎2𝑎3
=

𝑏1𝑠 − 𝑏1𝑎4

𝑠2 − 𝑠(𝑎1 + 𝑎4) + 𝑎1𝑎4 − 𝑎2𝑎3
 (4.65) 

𝑋1(𝑠)

𝑈2(𝑠)
=

𝑎2𝑏2

𝑠(𝑠 − 𝑎4) − 𝑎1(𝑠 − 𝑎4) − 𝑎2𝑎3
=

𝑎2𝑏2

𝑠2 − 𝑠(𝑎1 + 𝑎4) + 𝑎1𝑎4 − 𝑎2𝑎3
 (4.66) 

These result in the transfer function equations for the four cold plates, shown in Eq. (4.67) – (4.74). 

𝐸𝑓,1

𝑃𝑠,1
=

𝐸2𝑠 +
𝐸1𝐸2

𝐶2

𝑠2 + 𝑠 (
𝐸2

𝐶1
+

𝐸1

𝐶1
+

𝐸1

𝐶2
) +

𝐸1𝐸2

𝐶1𝐶2

 (4.67) 

𝐸𝑓,1

𝑃𝑠,2
=

𝐸1

𝐶2
∗ 1000

𝑠2 + 𝑠 (
𝐸2

𝐶1
+

𝐸1

𝐶1
+

𝐸1

𝐶2
) +

𝐸1𝐸2

𝐶1𝐶2

 (4.68) 
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𝐸𝑓,3

𝑇𝑓,1
=

𝐸3𝑠 +
𝐸3𝐸4

𝐶4

𝑠2 + 𝑠 (
𝐸3

𝐶3
+

𝐸4

𝐶3
+

𝐸4

𝐶4
) +

𝐸3𝐸4

𝐶3𝐶4

 (4.69) 

𝐸𝑓,3

𝑃𝑠,3
=

𝐸4
𝐶4

∗ 1000

𝑠2 + 𝑠 (
𝐸3

𝐶3
+

𝐸4

𝐶3
+

𝐸4

𝐶4
) +

𝐸3𝐸4

𝐶3𝐶4

 (4.70) 

𝐸𝑓,5

𝑇𝑓,3
=

𝐸3𝑠 +
𝐸3𝐸6

𝐶6

𝑠2 + 𝑠 (
𝐸3

𝐶5
+

𝐸6

𝐶5
+

𝐸6

𝐶6
) +

𝐸3𝐸6

𝐶5𝐶6

 (4.71) 

𝐸𝑓,5

𝑃𝑠,4
=

𝐸6

𝐶6
∗ 1000

𝑠2 + 𝑠 (
𝐸3

𝐶5
+

𝐸6

𝐶5
+

𝐸6

𝐶6
) +

𝐸3𝐸6

𝐶5𝐶6

 (4.72) 

𝐸𝑓,7

𝑇𝑓,1
=

(𝐸2 − 𝐸3)𝑠 +
(𝐸2 − 𝐸3)𝐸9

𝐶8

𝑠2 + 𝑠 (
(𝐸2 − 𝐸3)

𝐶7
+

𝐸9

𝐶7
+

𝐸9

𝐶8
) +

(𝐸2 − 𝐸3)𝐸9

𝐶7𝐶8

 (4.73) 

𝐸𝑓,7

𝑃𝑠,5
=

𝐸9

𝐶8
∗ 1000

𝑠2 + 𝑠 (
(𝐸2 − 𝐸3)

𝐶7
+

𝐸9

𝐶7
+

𝐸9

𝐶8
) +

(𝐸2 − 𝐸3)𝐸9

𝐶7𝐶8

 (4.74) 

 

The system equations of the junction will be necessary to calculate the transfer function 

equations, 
𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑖𝑛𝑝𝑢𝑡 1 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
 = 

𝐸𝑓,9

𝑇𝑓,5
 and 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑖𝑛𝑝𝑢𝑡 2 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
 = 

𝐸𝑓,9

𝑇𝑓,7
, from Fig. 4.27. The junction 

component was detailed in Section 2.2.4 where the differential equation in Eq. (4.75) was 

introduced to define the junction dynamics. 

�̇�𝑓 =
𝑐𝑃𝑓

⋅ (∑ �̇�𝑖𝑛,𝑛
𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛𝑝𝑢𝑡𝑠

𝑛=1
⋅ 𝑇𝑖𝑛,𝑛 − ∑ �̇�𝑜𝑢𝑡,𝑚

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑚=1
⋅ 𝑇𝑓)

𝑀𝑓 ⋅ 𝑐𝑃𝑓

 (4.75) 

With two inputs and one output, Eq. (4.75) can be rewritten as Eq. (4.76) and (4.77). 

�̇�𝑓 =
𝑐𝑃𝑓

⋅ �̇�𝑖𝑛,1 ⋅ 𝑇𝑖𝑛,1 + 𝑐𝑃𝑓
⋅ �̇�𝑖𝑛,2 ⋅ 𝑇𝑖𝑛,2 − 𝑐𝑃𝑓

⋅ �̇�𝑜𝑢𝑡 ⋅ 𝑇𝑓

𝑀𝑓 ⋅ 𝑐𝑃𝑓

 (4.76) 

�̇�𝑓 = 𝑐𝑃𝑓
⋅ �̇�𝑖𝑛,1 ⋅ 𝑇𝑖𝑛,1 + 𝑐𝑃𝑓

⋅ �̇�𝑖𝑛,2 ⋅ 𝑇𝑖𝑛,2 − 𝑐𝑃𝑓
⋅ �̇�𝑜𝑢𝑡 ⋅

𝑇𝑓

𝑀𝑓 ⋅ 𝑐𝑃𝑓

(4.77) 
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Eq. (4.77) can be written in the general state space form for a single state and two inputs as shown 

in (4.78). Then Eq. (4.79) – (4.82) shows the substitutions of each of the general terms in Eq. (4.78) 

with the variables specific to the junction component in Example 2.  

[�̇�] = [𝑎][𝑥] + [𝑏1   𝑏2] [
𝑢1

𝑢2
] (4.78) 

�̇� =  �̇�𝑓,9;  𝑥 = 𝐸𝑓,9 (4.79) 

𝑢1 = 𝑇𝑓,5;  𝑢3 = 𝑇𝑓,7 (4.80) 

𝑎 =  −
𝐸2

𝐶9

(4.81) 

𝑏1 = 𝐸2;  𝑏2 = (𝐸2 − 𝐸3) (4.82) 

Once the Laplace transform is applied to Eq. (4.78) it results in Eq. (4.83), which can be arranged 

to the junction component transfer functions in Eq. (4.84) – (4.85). 

𝑋1(𝑠) ∗ 𝑠 = 𝑎 ∗ 𝑋1(𝑠) + 𝑏1 ∗ 𝑈1(𝑠) + 𝑏2 ∗ 𝑈2(𝑠) (4.83) 

𝑋1(𝑠)

𝑈1(𝑠)
=

𝐸𝑓,9

𝑇𝑓,5
=

𝐸2

𝑠 +
𝐸2

𝐶9

 (4.84)
 

𝑋1(𝑠)

𝑈2(𝑠)
=

𝐸𝑓,9

𝑇𝑓,7
=

(𝐸2 − 𝐸3)

𝑠 +
𝐸2

𝐶9

 (4.85)
 

Finally, all the component transfer functions can be combined to form the entire system transfer 

functions which relate the output fluid temperature to each of the system inputs. The block diagram 

shown in Fig. 4.27 can be simplified to Eq. (4.86) – (4.91). 

𝑃𝑠,1 ∗
𝑇𝑓,9

𝑃𝑠,1
+ 𝑃𝑠,2 ∗

𝑇𝑓,9

𝑃𝑠,2
+ 𝑃𝑠,3 ∗

𝑇𝑓,9

𝑃𝑠,3
+ 𝑃𝑠,4 ∗

𝑇𝑓,9

𝑃𝑠,4
+ 𝑃𝑠,5 ∗

𝑇𝑓,9

𝑃𝑠,5
= 𝑇𝑓,9 (4.86) 

where 

𝑇𝑓,9 

𝑃𝑠,1
=

𝐸𝑓,1

𝑃𝑠,1
∗

1

𝐶1
∗ (

𝐸𝑓,3

𝑇𝑓,1
∗

1

𝐶3
∗

𝐸𝑓,5

𝑇𝑓,3
∗

1

𝐶5
∗
𝐸𝑓,9

𝑇𝑓,5
+

𝐸𝑓,7

𝑇𝑓,1
∗

1

𝐶7
∗

𝐸𝑓,9

𝑇𝑓,7
) ∗

1

𝐶9
 (4.87) 

𝑇𝑓,9 

𝑃𝑠,2
=

𝐸𝑓,1

𝑃𝑠,2
∗

1

𝐶1
∗ (

𝐸𝑓,3

𝑇𝑓,1
∗

1

𝐶3
∗

𝐸𝑓,5

𝑇𝑓,3
∗

1

𝐶5
∗
𝐸𝑓,9

𝑇𝑓,5
+

𝐸𝑓,7

𝑇𝑓,1
∗

1

𝐶7
∗

𝐸𝑓,9

𝑇𝑓,7
) ∗

1

𝐶9
 (4.88) 

𝑇𝑓,9 

𝑃𝑠,3
=

𝐸𝑓,3

𝑃𝑠,3
∗

1

𝐶3
∗

𝐸𝑓,5

𝑇𝑓,3
∗

1

𝐶5
∗
𝐸𝑓,9

𝑇𝑓,5
∗

1

𝐶9
 (4.89) 

𝑇𝑓,9 

𝑃𝑠,4
=

𝐸𝑓,5

𝑃𝑠,4
∗

1

𝐶5
∗

𝐸𝑓,9

𝑇𝑓,5
∗

1

𝐶9
 (4.90) 
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𝑇𝑓,9 

𝑃𝑠,5
=

𝐸𝑓,7

𝑃𝑠,5
∗

1

𝐶7
∗

𝐸𝑓,9

𝑇𝑓,7
∗

1

𝐶9
 (4.91) 

Eq. (4.87) – (4.91) represent the five input-specific transfer functions which relate the system 

output to all the input signals. The component-level transfer functions within Eq. (4.87 – 4.91) can 

be replaced with Eq. (4.67) – (4.74) and (4.84) – (4.85) to put the system-level transfer functions 

in terms of all the vertex capacitances and edge coefficients. Then the partial derivative of the 

system, expressed as a set of transfer functions, with respect to each of the capacitances and edge 

coefficients can be solved for. This sensitivity analysis will disclose the vertex capacitances or 

edge coefficients which have the greatest effect on the output temperature, 𝑇𝑓,9. 

 

Figure 4.28: Bode Plots of the System Transfer Function Equations. 

4.3.3 Finding the Sensitivities of each of the System Transfer Functions  

The final step of the sensitivity analysis is to take the partial derivatives of each of the 

system transfer functions with respect to each of the system parameters: vertex capacitances and 

edge coefficients. MATLAB’s symbolic toolbox can be utilized to perform these calculations. The 

parameter sensitivities must be calculated at specified input signal amplitudes and frequencies and 

then added together to generate the total effect each parameter has on the output signal for a 
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specific set of input signals. This is equivalent to taking the partial derivative of Eq. (4.86) with 

respect to system parameters, 𝜃, shown in Eq. (4.92). 

𝑃𝑠,1 ∗
𝜕

𝑇𝑓,9

𝑃𝑠,1

𝜕𝜃
+ 𝑃𝑠,2 ∗

𝜕
𝑇𝑓,9

𝑃𝑠,2

𝜕𝜃
+ 𝑃𝑠,3 ∗

𝜕
𝑇𝑓,9

𝑃𝑠,3

𝜕𝜃
+ 𝑃𝑠,4 ∗

𝜕
𝑇𝑓,9

𝑃𝑠,4

𝜕𝜃
+ 𝑃𝑠,5 ∗

𝜕
𝑇𝑓,9

𝑃𝑠,5

𝜕𝜃
=

𝜕𝑇𝑓,9

𝜕𝜃
(4.92)

 

The method of taking the partial derivative of the system transfer function equations is outlined in 

detail for Example 1 in Section 4.2.2. These same steps can be applied to Example 2 in a similar 

manner. 

This concludes the setup and discussion of the transfer function sensitivity analysis method. 

The results and discussion for the sensitivity analysis of Example 2 are found in Chapter 5.  
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Chapter 5   

Sensitivity Analysis Results and Discussion  

 

5.1 Summary 

This chapter focuses on the sensitivity analysis and its simulation-based numerical 

verification of Example System 2, shown in Fig. 5.1. 

 

Figure 5.1: Graph Model of Example 2. 

The sensitivity of the output temperature with respect to each of the parameters will be 

determined for four different scenarios. For the first scenario, all the input signals will have 

constant values. This means the input signals for this scenario will be at 0 rad/s. The second 

scenario involves the first input, the source temperature, having a non-zero frequency of 1 rad/s. 

Then for the third scenario, only the second and third inputs, Heat Loads 1 and 2, will have non-

zero frequencies of 1 rad/s and 0.5 rad/s, respectively. Finally, the fourth scenario involves all the 

inputs signals having non-zero frequencies of 1 rad/s, 1 rad/s, 0.5 rad/s, 0.1 rad/s, and 1.5 rad/s for 

Inputs 1-5 respectively. The sensitivity bode plots will be referenced for each of the input signals 
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at their respective frequencies and the total contributions each parameter has on the combined 

transfer functions will be calculated. Finally, each of the parameters will be perturbed individually 

by several increasing values and the effects had on the output signal will be recorded and compared 

across the parameters. This will show which parameter has the greatest influence on the output 

signal by how far the output signal amplitude deviates from the nominal value when that parameter 

is perturbed. 

Before the partial derivatives of the input-specific transfer functions with respect to the 

system parameters can be calculated, those system transfer functions must be derived. This step 

was shown in detail in Section 4.3 and the resulting transfer function bode plots are included again 

in Fig. 5.2. 

 

Figure 5.2: Input-Specific System Transfer Functions for Example 2. 

MATLAB’s symbolic toolbox can then be utilized in taking the partial derivatives of each 

of the input transfer function equations to the system parameters. The resulting partial derivatives 

are shown in Fig. 5.3. 



 88  

 

Figure 5.3: Sensitivity Bode Plots for Example 2. 

Each of these five plots shows how the sensitivity of the transfer function gains to the 

system parameters change with the input frequencies. The next sections explain how the sensitivity 

bode plots can be used to figure out the sensitivity of the system output for any combination of 

input signal frequencies. 

5.2 Constant Inputs 

The first scenario to be discussed is when all the input signals, namely the source 

temperature and Heat Loads 1-4, are at constant values. They are not sinusoidal and do not change 

with time. Such constant values are at 0 rad/s or have a frequency of zero. The system transfer 

functions, shown in Fig. 5.4, can be used to determine how each of the input signals affect the 

resulting output signal amplitude.  
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Figure 5.4: Transfer Function Gains for Input Signals at 0 rad/s. 

The gain at zero frequency, or the DC gain, is found by reading the magnitude of the bode 

plot at the lowest frequency shown. For Input Signal 1, the DC gain is 0 dB. The conversion 

between dB and the transfer function gain is shown in Eq. (5.1). 

10𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑑𝐵 20⁄ = 𝑔𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 (5.1) 

Thus, the gain of the output with respect to the input when Input 1 is the only input, is 1- or unity. 

Physically, this means that the output temperature equals the input temperature when there are no 

heat loads. Notice that the DC gain for Heat Load 1-4 are all -10.5 dB, or a gain of 0.2985. These 

are the heat loads which are applied to Cold Plate 1 before the valve, Cold Plate 2 in the top branch, 

Cold Plate 3 also in the top branch, and Cold Plate 4 in the top branch. Fig. 5.1 can be referenced 

as a reminder of the system layout. Having equal DC gains implies that all four inputs would have 

an equal effect on the output temperature if the input signal amplitudes were also equal. However, 

from row 3 of Table 5.1, it is clear that Heat Load 4 has the highest amplitude, followed by Heat 

Load 3, then Heat Loads 1 and 2. This means that Heat Load 4 has a greater impact in this scenario 

than Heat Loads 1, 2, or 3, as seen in row 4 of Table 5.1.  
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 Source  Heat Load 1  Heat Load 2 Heat Load 3  Heat Load 4  Total 

0 freq value (dB) 0 -10.5 -10.5 -10.5 -10.5  

0 freq (gain) 1 0.2985 0.2985 0.2985 0.2985  

Amplitude 20 1 1 2 5  

Amplitude*gain 20 0.2985 0.2985 0.5971 1.4927 22.69 

Table 5.1: Breakdown of Contributions to Output Amplitude from Input Signals. 

The final column in Table 5.1 shows the sum of each of the contributions to the output 

temperature from the five input signals. Each of the input signal amplitudes and frequencies factor 

into this value. These add up to a total value of 22.69 °C. The numerical verification for the 

estimated output amplitude for this scenario is shown in Fig. 5.5 and verifies the final output 

temperature of 22.69 °C. This indicates that using the principle of superposition to combine the 

system transfer functions of each input signal is valid. Fig. 5.6 is included below as a visualization 

of the calulations shown in Table 5.1. 

 

Figure 5.5: Numerical Verification of Output Amplitude with Constant Inputs. 
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Figure 5.6: Applying the Superposition Principle at Specific Input Frequencies. 

Next, the partial derivatives of each of the system transfer functions, shown in Fig. 5.4, to 

the capacitance parameters must be taken. These are called the “sensitivity bode plots” and are 

shown in Fig. 5.3. Since the frequencies of all the input signals are at 0 rad/s, only the far-left side 

of the bode plots, where the frequencies are low, is relevant. Notice how as the frequencies get 

lower, the sensitivities of the transfer functions to each of the parameters also gets lower. This 

implies that when all the input signals are at 0 rad/s, none of the capacitance values have any effect 

on the system transfer function gains. Regardless of how large any of the capacitances are, the 

ratio of output temperature to each of the inputs will always be the same at steady state and result 

in a temperature around 22.7 °C. In this case, when all the inputs are constant signals, it is not hard 

to tell that the sensitivity of the output with respect to the parameters will be zero, but it will not 

always be this easy to figure out. This supports the need for the procedure visualized in Fig. 5.7 to 

combine the sensitivity bode plots in a more readable format, shown in Fig. 5.8. 
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Figure 5.7: Applying Superposition Principle to Transfer Function Sensitivity Function. 

Note that the numeric ratios in Fig. 5.7 are all zero. Therefore, the actual amplitudes of 

each of the input signals are irrelevant and the sum 
𝜕𝑇𝑓,9

𝜕𝜃
 equals zero. Refer to Eq. 5.2 for a written 

representation of Fig. 5.7. 

𝑃𝑠,1 ∗
𝜕

𝑇𝑓,9

𝑃𝑠,1

𝜕𝜃
+ 𝑃𝑠,2 ∗

𝜕
𝑇𝑓,9

𝑃𝑠,2

𝜕𝜃
+ 𝑃𝑠,3 ∗

𝜕
𝑇𝑓,9

𝑃𝑠,3

𝜕𝜃
+ 𝑃𝑠,4 ∗

𝜕
𝑇𝑓,9

𝑃𝑠,4

𝜕𝜃
+ 𝑃𝑠,5 ∗

𝜕
𝑇𝑓,9

𝑃𝑠,5

𝜕𝜃
=

𝜕𝑇𝑓,9

𝜕𝜃
(5.2)

 

 



 93  

 

Figure 5.8: Sensitivity of the Output to the Capacitance Parameters under Constant Inputs. 

Fig. 5.8 shows the results of Eq. (5.2) for each of the parameters. Since Eq. (5.2) yields a 

single number, this information could have been communicated as a bar chart with one bar for 

each parameter. However, this would make it more difficult to compare parameters which are 

located on opposite ends of the plot, although in this case each of the bars would all have a height 

of zero. For this reason, a 2-dimensional plot was chosen instead to better compare each of the 

parameters. This plot is shown in Fig. 5.8 and each parameter value is plotted as a horizontal line 

across the figure. This means that the x-axis is meaningless and the y-axis, which shows the 

sensitivities of the output signal amplitude, is the focus of the plot. The total system output was 

chosen to be the temperature of the fluid as it leaves the system, namely the temperature leaving 

vertex 9. Therefore, the total system output can be written as 𝑇𝑓,9, or the temperature of the fluid 

in vertex 9. As expected, the sensitivities of each of the total system output, 𝑇𝑓,9, are all zero.  

5.2.1 Numerical Verification 

To support the prediction in Fig. 5.8, each of the capacitance parameters can be perturbed 

individually before re-running the simulation to see if changing the parameter values affects the 

system output. Fig. 5.9 shows a series of numbers added to each of the parameters on the x-axis. 

The y-axis shows the steady-state amplitude of the output signal when the parameter was perturbed 

by the amount shown on the x-axis.  
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Figure 5.9: Numerical Verification of Sensitivity Analysis with Constant Inputs. 

Notice the scale on the y-axis and how the amplitude of the output signal, regardless of any 

parameter perturbation, is always zero. The relative increases in amplitude between parameter 

perturbation values of 1.5 and 2 are due to the imperfections in the linearized model. The 

perturbation value of 2 is the farthest from the nominal values, where the model was linearized 

about. Therefore, this point is the least accurate. There are also minor inaccuracies between the 

other perturbation values; however, they do not appear on this plot since they are much less, due 

to being closer to the nominal parameter values. Hence, based on the scale of the y-axis, this plot 

demonstrates that the steady state output amplitude is insensitive to all the capacitance parameters. 

Fig. 5.10 shows a time trace of the system output and demonstrates how the nominal set of 

parameters and the set of parameters when either 𝐶3, the fluid capacitance of Cold Plate 2, or 𝐶4, 

the wall capacitance of Cold Plate 2, is perturbed do not affect the steady state amplitude of the 

output signal. 
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Figure 5.10: Perturbed Simulations Compared Against Nominal Case. 

Even though the steady-state responses of the system with differing parameter values are 

equal, the time responses do vary when the capacitance values are adjusted. Fig. 5.11 demonstrates 

how the nominal set of parameters show the quickest time response and the smallest time constant. 

However, when the fluid and wall capacitances of Cold Plate 2 are increased, they slow down the 

time response, resulting in a greater time constant. Physically perturbing the fluid capacitance adds 

more fluid to the system, specifically in Cold Plate 2. This results in slowing down the rate at 

which the fluid in the system, and thus the fluid exiting the system, heats up. Similarly, when the 

capacitance of the wall in Cold Plate 2 is larger, the cold plate wall takes longer for the heat load 

to heat it up and subsequently takes longer to heat up the fluid passing by it. This also results in 

increasing the time taken for the temperature of the fluid leaving the system to reach its steady 

state value. 
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Figure 5.11: Zoomed-In Image of Fig 5.10 to Show the Varying Time Responses. 

From Fig. 5.11, perturbing 𝐶4 is shown to slow down the time response more than 

perturbing 𝐶3 does. This has not yet been analytically determined using the sensitivity analysis 

methods outlined in this thesis. This work discusses the sensitivities of the steady state transfer 

function gain only, and not the sensitivity of the transient dynamics. Although this is outside the 

scope of this thesis, this would be an interesting topic for further study and will be discussed again 

in the future work section of Chapter 7.  

5.3 Input 1 as a 1 rad/s Sinusoidal Wave 

The second scenario to be discussed is when all the input signals are constant except for 

Input 1, the source temperature, which has a frequency of 1 rad/s. The estimated output amplitude 

contributions from each of the transfer functions are shown in Fig. 5.12 and summed together in 

Table 5.2. 
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Figure 5.12: Transfer Function Gains when Input 1 is at 1 rad/s and the Rest are Constant. 

 Source  Heat Load 1  Heat Load 2 Heat Load 3  Heat Load 4  Total 

Value at freq of 

interest (dB) 

-4.65 -10.5 -10.5 -10.5 -10.5  

Convert to gain 0.5855 0.2985 0.2985 0.2985 0.2985  

Amplitude 20 1 1 2 5  

Max Value *gain +11.71 0.2985 0.2985 0.5971 1.4927 14.40 

Min Value *gain -11.71 0.2985 0.2985 0.5971 1.4927 -9.02 

Table 5.2: Breakdown of Contributions to Output Amplitude from Input Signals. 

Notice in Table 5.2 that the amplitude of the source temperature is 20, but it has a maximum 

value of 20 and a minimum of -20. This is because Input 1 now has a frequency of 1 rad/s, so the 

amplitude oscillates between values of -20 and 20. The first row of Table 5.2 records the gain in 

dB for each of the input frequencies of interest. For Input 1, the frequency of interest is 1 rad/s, 

and for the rest of the inputs the frequency of interest is 0 rad/s. Fig. 5.12 shows how the magnitude 

in dB is found for each of the input-specific system transfer functions at their desired frequencies. 

Row 2 of Table 5.2 converts these values to gains and row 3 shows the amplitude of the input 
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signal. The amplitude is used to determine the maximum and minimum values of the signal, which 

will be multiplied by the gains to yield the entries in rows 4 and 5. The final column in table 5.2 

shows the sum of the contributions from each transfer function and predicts that the output signal 

will oscillate between a maximum value of 14.40 and a minimum of -9.02. The numerical 

verification of Scenario 2 is shown in Fig. 5.13. 

 

Figure 5.13: Numerical Verification of Output Amplitude with Input 1 at 1 rad/s. 

The peak of the output signal is very close to 14.39 and the trough is close to -8.97. These 

values are very close and build confidence in the system equations that will be used for the 

sensitivity analysis. Any minor discrepancy between the estimate and the numerical verification 

could either be due to the assumption made by the graph model that the mass flow rates are always 

constant or due to the lack of definition in the sinusoidal input signal. To improve this, the sample 

time in the sine wave block in Simulink could be set to a small value, such as 0.01 s or 0.001 s. 

This would lead to more accurate results; however, the simulation will take much longer and the 

level of detail in Fig. 5.13 is already more than sufficient to identify the top few parameters in the 

sensitivity analysis. 

Fig. 5.14 highlights the sensitivity of the system transfer functions, shown in Fig. 5.12, to 

each of the parameters. The partial derivatives of the output over the first input transfer function 

are zoomed in to show the ranking of the parameter influence around 1 rad/s. Notice how the top 

five most-influential parameters are all fluid capacitances, and the bottom four least-influential 
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parameters are all wall capacitances. This makes physical sense, because the source temperature 

transfer function relates the gain between the output flow temperature over the input flow 

temperature. Therefore, increasing the fluid capacitance of the components will have a greater 

effect in filtering out the high frequencies of the sinusoidal input signal, because they directly 

impact the total system’s fluid capacitance. If there is more fluid in the system, the rate at which 

the system reacts to the input flow, which dips down to -20 °C and increases again to 20 °C, will 

slow down. This has a filtering effect on the system temperature and results in a lower amplitude 

of the output temperature signal. While the wall capacitances might slow down the heat transfer 

through the system by their convective interactions with the fluid, they cannot come close to the 

effect of directly increasing the fluid capacitances. This is demonstrated by the sensitivity ranking 

of Input 1’s sensitivity bode plot, shown in the top left plot of Fig. 5.14.  

 

Figure 5.14: Sensitivity Bode Plots when Input 1 is at 1 rad/s and the Rest are Constant. 

Combining all the sensitivity bode plots for each input together in the manner described in 

Fig. 5.7 results in the sensitivity plot in Fig. 5.15. Since all the inputs, other than Input 1, have 

frequencies of zero and the DC gains of these sensitivity bode plots are negligible, the combined 
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sensitivity plot greatly resembles the sensitivity bode plot of Input 1 at the frequency of interest: 1 

rad/s. 

 

Figure 5.15: Sensitivity Plot of Scenario 2. 

Notice how the fluid capacitances, 𝐶9, 𝐶1, 𝐶7, 𝐶3, and 𝐶5, are significantly more influential to the 

output temperature than the wall capacitances, 𝐶2, 𝐶8, 𝐶6, and 𝐶4. This ranking is verified through 

numerical simulation in Section 5.3.1 below. 

5.3.1 Numerical Verification 

Fig. 5.16 shows the resulting amplitude of the output signal at steady state when each of 

the capacitance parameters are perturbed.  
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Figure 5.16: Numerical Verification of Scenario 2. 

A horizontal line means that no matter what the parameter values were perturbed to, the 

resulting output signal remained constant in amplitude. This indicates that the output signal 

amplitude is insensitive to the parameters which produce horizontal lines. However, the lines with 

the greatest slope where the parameters deviate from the nominal parameters (small perturbations) 

indicate the parameters which the output temperature is the most sensitive to. The sensitivity 

analysis is most accurate when the parameter values are close to the nominal values, because that 

is the point the graph-based model was linearized about and the mass flow rates were taken from. 

The further the deviation from the nominal values, the less accurate the model which was used to 

predict sensitivity becomes. The parameters which produce the steepest lines near the nominal 

values for Scenario 2 are 𝐶3, 𝐶5, 𝐶7, 𝐶1, and 𝐶9, respectively. These don’t line up perfectly with 

the predictions in Fig. 5.15, which shows 𝐶9 as the most influential, followed by 𝐶7 and 𝐶1, then 

𝐶3 and 𝐶5.  However, both identify that the fluid capacitances are close together in influence and 

significantly more influential than the wall capacitances. Possible explanations for this deviation 

include the model imperfections due to linearizing it and assuming constant mass flow rates, low 

definition in the sinusoidal waves acting as inputs, and inaccuracies in how the steady state 

amplitude is calculated. Once the simulation has finished running, the last 10% of the temperature 

data is examined, and the maximum and the minimum values in that section are added together 

and divided by two. This is then recorded as the steady state amplitude when the parameter in 

question was perturbed by a given amount. There can be inaccuracies in this calculation if the 
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output signal value spikes at any point in the final 10% or dips lower than it should due to numeric 

errors in the simulation.  

Fig. 5.17 shows a time trace of the simulation with the nominal set of parameters compared 

to the simulation results when parameters 𝐶3 and 𝐶4 are individually perturbed by a value of 2. 

Notice that the fluid capacitance, 𝐶3, has a much greater filtering effect on the output signal than 

the wall capacitance, 𝐶4. Perturbing the wall capacitance did not change the output signal from 

what it was with the set of nominal parameters, just as the horizontal line for parameter 𝐶4 in Fig. 

5.16 demonstrated. Fig. 5.18 shows a zoomed-in version of Fig. 5.17 to display the amplitude 

comparisons more clearly. 

 

Figure 5.17: Perturbed Simulations Compared Against Nominal Case for Scenario 2. 

 

Figure 5.18: Zoomed-In Image of Fig 5.17. 
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5.4 Inputs 2 and 3 as Sinusoidal Waves at 1 and 0.5 rad/s 

The third scenario is defined by setting all the input signal frequencies to 0 rad/s, except 

for Inputs 2 and 3, which have frequencies of 1 rad/s and 0.5 rad/s, respectively. The system 

transfer functions shown in Fig. 5.19 are used to estimate the resulting output amplitude based on 

the input signal frequencies. The magnitude of the gain is converted from dB and multiplied by 

each of the input signal amplitudes in Table 5.3. Finally, the contributions to the output signal 

amplitude are added together to estimate the total output signal amplitude. 

 

Figure 5.19: Transfer Function Gains for Scenario 3. 

 Source  Heat Load 1  Heat Load 2 Heat Load 3  Heat Load 4  Total 

Value at freq of 

interest (dB) 

0 -23.5 -17.2 -10.5 -10.5  

Convert to gain 1 0.0668 0.1380 0.2985 0.2985  

Amplitude 20 1 1 2 5  

Max Value *gain 20 +0.0668 +0.1380 0.5971 1.4927 22.29 

Min Value *gain 20 -0.0668 -0.1380 0.5971 1.4927 21.89 

Table 5.3: Breakdown of Contributions to Output Amplitude from Input Signals. 
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The final column of Table 5.3 indicates that the output signal will oscillate between 22.22 

°C and 21.96 °C. The numerical verification shows oscillation between 22.29 °C and 21.95 °C in 

Fig. 5.20. Therefore, Fig. 5.20 shows the system transfer functions remain reliable at other 

frequencies and supports their further use in the next step of the sensitivity analysis.  

 

Figure 5.20: Numerical Verification of Output Amplitude for Scenario 3. 

Next, the partial derivatives of each of the system transfer functions with respect to the 

parameters are calculated. These sensitivity bode plots for Scenario 3 are shown in Fig. 5.21. 

Notice that the sensitivities of the transfer functions for Inputs 1, 4, and 5 continue to decrease at 

low frequencies. Since Inputs 1, 4, and 5 are constant values, the sensitivity bode plots indicate the 

contributions to the output temperature from Input Signals 1, 4, and 5 are insensitive to any of the 

parameters. Therefore, the only contributions to the output temperature which are sensitive to 

changes in parameters are the ones from Input Signals 2 and 3. The sensitivity bode plots for the 

transfer functions of Inputs 2 and 3 are zoomed-in to the frequencies of interest, namely 1 rad/s 

and 0.5 rad/s, respectively.  
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Figure 5.21: Sensitivity Bode Plots for Scenario 3. 

Remember that both Heat Load 1 and Heat Load 2 have the same magnitude of 1 kW, 

meaning that they will be weighted equally. Across both transfer functions of Heat Loads 1 and 2, 

parameter 𝐶4 has the highest value of -78 dB. Since the transfer functions are equally weighted, 

this might mean 𝐶4 is the most influential. However, 𝐶4 is only the most influential parameter in 

one sensitivity bode plot, and other parameters, such as 𝐶3 and 𝐶5, have high magnitudes in both 

sensitivity bode plots of interest, namely the sensitivities of the transfer functions relating the 

output temperature to Heat Loads 1 and 2. Therefore, it is not immediately apparent whether 

parameter 𝐶4 or parameters 𝐶3 and 𝐶5 will be the most influential overall. 

Parameter 𝐶2 is the most influential parameter for the Heat Load 1 transfer function. 

However, it does not even appear in the sensitivity bode plot for the transfer function of Heat Load 

2, indicating it has no effect on that transfer function. This is because 𝐶2 is the wall capacitance of 

Cold Plate 1, and the transfer function of Heat Load 2 happens after the fluid has already passed 

through the first cold plate. Therefore, 𝐶2 has no effect on that transfer function which relates the 

output to the third input. This makes it impossible for 𝐶2 to surpass parameter 𝐶4 in influence, 

since 𝐶4 had a higher magnitude to begin with and also appears in more transfer function equations. 
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The parameters that transfer functions 2 and 3 are most sensitive to are the wall 

capacitances. This makes sense physically, because Inputs 2 and 3 are heat loads on Cold Plates 1 

and 2. And the larger the capacitance of the cold plate wall is, the more energy it can absorb before 

heating up. This results in slowing down the transient dynamics and filtering the sine wave of the 

heat load applied to the cold plate wall. This ability to filter out some of the higher frequencies is 

increased when the capacitance of the cold plate wall increases. The reason 𝐶2 is the most 

impactful parameter to the Heat Load 1 transfer function and 𝐶4 is the most impactful parameter 

to the Heat Load 2 transfer function is that Heat Load 1 is applied directly to the wall capacitance 

𝐶2 and Heat Load 2 is applied directly to 𝐶4. The walls of the cold plates have the greatest impact 

on the transfer functions relating the output to the heat load applied to that cold plate.  

Although 𝐶4 has the single highest magnitude in the sensitivity bode plots, both transfer 

functions are affected significantly by parameters 𝐶3 and 𝐶5, the fluid capacitances of cold plates 

2 and 3. These cold plates are the only cold plates downstream of both sinusoidal heat loads, 

resulting in the output being the most sensitive to 𝐶3 and 𝐶5 out of all the other fluid capacitances.  

When the sensitivity bode plots are combined, following the methodology shown in Fig. 

5.7, they result in the sensitivity plot in Fig. 5.22. 

 

Figure 5.22: Sensitivity Plot of Scenario 3. 
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Figure 5.22 shows that the wall capacitance of Cold Plate 2, 𝐶4, is expected to be the most 

influential, followed by the wall capacitance of Cold Plate 1, 𝐶2. Then the fluid capacitances, 𝐶3 

and 𝐶5, are expected to be next, followed by the fluid capacitance of the junction, 𝐶9. Finally, 

parameters 𝐶7, 𝐶1, 𝐶6, and 𝐶8 are predicted to have the next greatest effects on the output signal, 

in that order. The numerical verification is shown in Fig. 5.23. 

5.4.1 Numerical Verification 

 

Figure 5.23: Numerical Verification of Scenario 3. 

Fig. 5.23 shows the steady state amplitude of the output signal for a variety of parameter 

perturbations. The highest four parameters, 𝐶4, 𝐶2, 𝐶5, and 𝐶3, are the top four parameters for both 

the sensitivity plot in Fig. 5.22 and the numerical verification in Fig. 5.23. The order of these 

parameters is correct as well, when looking at the slopes of the lines closest to the nominal 

parameters. The next four parameters are close, but the order is slightly jumbled up. However, this 

method is sufficiently accurate to identify the top few parameters, which become the focus of the 

optimization efforts. Fig. 5.24 and Fig. 5.25 below show the time traces of the output signal for 

both the nominal case and when parameters 𝐶3 and 𝐶4 are perturbed. Clearly, these parameters are 
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two of the ones which had the greatest impact on the system, as shown by the notable difference 

in amplitude when compared to the nominal case. 

 

Figure 5.24: Perturbed Simulations Compared Against Nominal Case for Scenario 3.  

 

Figure 5.25: Zoomed-In Image of Fig 5.24. 

Fig. 5.25 demonstrates how close the influence each of these parameters have on the output 

amplitude is. It is hard to tell from looking at the plot, but the yellow line for 𝐶4 has a marginally 

smaller amplitude when compared to the orange line for 𝐶3. This can be seen best when comparing 
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the troughs of the waveforms. Since both these parameters are in the top four and have similar 

influences on the system, this suggests that the top several parameters should be selected for 

optimization efforts. Only optimizing the top parameter will not have as large of an effect as 

optimizing the top few parameters. The goal of the sensitivity analysis is to identify the top several 

parameters which the outputs are similarly sensitive to, and thus reduce computational time needed 

for optimization by discarding the parameters which the system is insensitive to. This means that 

the exact ranking of the top 4-5 parameters is not ultimately important since the purpose of the 

sensitivity analysis is simply to identify those parameters which are the best candidates for 

optimization. However, in this case, the sensitivity analysis and numerical verification agree on 

the ranking of the top four parameters. Fig. 5.26 demonstrates the importance of optimizing more 

than one parameter at a time – notice how perturbing both 𝐶3 and 𝐶4 results in a smaller output 

signal amplitude than either of the two parameters could achieve alone. 

 

Figure 5.26: Perturbed Simulation Where 𝑪𝟑 and 𝑪𝟒 are Both Perturbed. 

5.5 All Inputs as Sinusoidal Waves  

This final section discusses Scenario 4, where all of the input signals are sinusoidal. The 

frequencies of Inputs 1-5 are 1 rad/s, 1 rad/s, 0.5 rad/s, 0.1 rad/s, and 1.5 rad/s, respectively. Notice 

that the frequencies for the first three inputs are the same as they were in Scenarios 1 and 2. The 
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system transfer functions for each of the inputs in Fig. 5.27 show the gains for the output over 

input amplitudes at each of the frequencies of interest. 

 

Figure 5.27: Transfer Function Gains for Scenario 4. 

These transfer function gains can be converted from dB and multiplied by the input 

amplitude to yield the output amplitude contribution from each input-specific transfer function. 

Then all the output signal contributions can be added together in the final column of Table 5.4, 

estimating the total amplitude expected for the output signal in Scenario 4. The expected output 

signal will range from 12.8 °C to -12.8 °C. 

 Source  Heat Load 1  Heat Load 2 Heat Load 3  Heat Load 4  Total 

Value at freq of 

interest (dB) 

-4.65 -23.5 -17.2 -10.9 -24.9  

Convert to gain 0.5855 0.0668 0.1380 0.2851 0.0569  

Amplitude 20 1 1 2 5  

Max Value *gain +11.71 +0.0668 +0.1380 +0.5702 +0.2844 +12.8 

Min Value *gain -11.71 -0.0668 -0.1380 -0.5702 -0.2844 -12.8 

Table 5.4: Breakdown of Contributions to Output Amplitude from Input Signals. 
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Figure 5.28 shows the numerical verification of the output amplitude, which oscillates 

between 12.5 °C and -12.2 °C. This matches the expected amplitude well and builds confidence in 

the system transfer functions, which will be needed for the next step of the sensitivity analysis. 

 

Figure 5.28: Numerical Verification of Output Amplitude for Scenario 4. 

The next step is to take the partial derivatives of the system transfer functions shown in 

Fig. 5.27 with respect to each of the capacitance parameters. These sensitivity bode plots are shown 

in Fig. 5.29. 

 

Figure 5.29: Sensitivity Bode Plots for Scenario 4. 
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In Fig. 5.29, notice that only three parameters show data for the transfer function relating 

the output temperature to Heat Load 3. This is because that transfer function equation only consists 

of the parameters 𝐶5, 𝐶6, and 𝐶9, which are the fluid and wall capacitances of Cold Plate 3 and the 

fluid capacitance of the junction. As shown in the system schematic in Fig. 5.1, once the fluid 

passes through Cold Plate 3, it heads straight to the junction and then immediately exits the system. 

Similarly, the fluid in Cold Plate 4, located in the opposite branch from Cold Plate 3, passes straight 

to the junction before exiting the system. Therefore, the transfer function for Cold Plate 4 only has 

the Cold Plate 4 fluid and wall capacitances as well as the junction fluid capacitance in its system 

transfer function equation. When the partial derivatives of that transfer function equation are 

calculated, only the parameters 𝐶7, 𝐶8, and 𝐶9 will have non-zero values. For both of these 

sensitivity bode plots, the output sensitivities to the wall capacitance parameters are highest. This 

makes sense since the heat load is applied directly to the wall, giving the wall capacitance the most 

ability to filter the sinusoidal heat load. 

 Combining all the sensitivity bode plots together, following the method outlined in Fig. 

5.7, results in the sensitivity plot in Figure 5.30. This shows that although there are 4 different heat 

loads, whose transfer functions are more sensitive to their respective cold plate walls, the fluid 

capacitances are still the most influential to the system. This is likely the case for two reasons. 

First, although the wall capacitances are the most influential for their specific transfer function, 

they do not have much of an effect on the other input-specific transfer functions. Meanwhile, all 

the transfer functions are moderately sensitive to the fluid capacitances along the route of the 

transfer function. So, the fluid capacitances have a larger combined effect since they are influential 

to multiple transfer functions, instead of being very influential to only one transfer function. The 

second reason is that the source temperature has the highest magnitude of all the other input 

signals. This magnitude multiplies the partial derivative of the output gain to yield the partial 

derivative of the output signal with respect to the parameters before being added to the other inputs, 

which are multiplied by their sensitivity bode plots. This amplifies the sensitivities of the source 

temperature transfer function, which is most sensitive to the fluid capacitances. Therefore, this 

supports why the output temperature is most sensitive to the fluid capacitance parameters, as 

shown in Fig. 5.30. 
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Figure 5.30: Sensitivity Plot of Scenario 4. 

5.5.1 Numerical Verification 

Fig 5.31 shows the numerical verification of Scenario 4. In the cases closest to the nominal 

parameter values, it is clear that the fluid capacitance parameters have the steepest slopes. The 

plots for the wall capacitances are close to horizontal and suggests that the wall capacitances do 

not have much of an effect on the output signal amplitude, as was predicted in Fig. 5.30. 

 

Figure 5.31: Numerical Verification of Scenario 4. 
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Fig. 5.32 below shows a time trace of the temperature of the fluid leaving the system for 

the nominal case, as well as when a wall capacitance, 𝐶4, and a fluid capacitance, 𝐶3, are perturbed. 

When 𝐶4 is perturbed, it hardly deviates from the nominal case, indicating that the output 

temperature is insensitive to parameter 𝐶4. However, when 𝐶3 is perturbed, it noticeably filters 

some of the higher frequencies out of the output temperature amplitude, indicating that the 

amplitude of the output temperature is sensitive to parameter 𝐶3 given the set of input amplitudes 

and frequencies in Scenario 4. 

 

Figure 5.32: Perturbed Simulations Compared Against the Nominal Case for Scenario 4. 

Figure 5.33 shows a zoomed-in version of the time trace. This simply makes the 

sensitivities discussed above easier to view. 

 

Figure 5.33: Zoomed-In Image of Fig 5.32. 



 115  

This concludes the results and discussion section of the sensitivity analysis. The next 

chapter will apply closed loop controllers to Example System 2. These controllers will work to 

minimize the effect of an added heat load by increasing the mass flow rate into the system and 

maintain a temperature differential between the two branches by managing the valve percentage 

of flow to the top branch. A sensitivity analysis will be applied to discover which parameters would 

have the greatest effect in changing the output temperature, which is the subject of Controller 1, 

and thus which parameters should be optimized to minimize the control effort most efficiently. 

The setup in Scenario 3, where Heat Loads 1 and 2 are sinusoidal signals of amplitudes 1 kW and 

frequencies of 1 rad/s and 0.5 rad/s, respectively has been chosen as the setup for the co-design 

case study coming up in Chapter 6. 
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Chapter 6     

Plant and Controller Co-design  

 

6.1 Plant and Controller Setup  

This section starts with the sensitivity analysis done for Example 2, the schematic of which 

is shown in Fig. 6.1, and the input signal configuration of Scenario 3 from Chapter 5. This scenario 

involves having two non-constant inputs, Heat Load 1 and Heat Load 2, both with amplitudes of 

1 kW and at frequencies of 1 rad/s and 0.5 rad/s, respectively.  

 

Figure 6.1: Schematic of Example 2. 

The only difference in the system which will be analyzed in this chapter from the system 

of Scenario 3 in the previous chapter is the fourth input: Heat Load 3. Rather than Heat Load 3 

being a constant heat load of 2 kW, it is now a series of step inputs. Heat Load 3 now rises to 15 

kW for 200 seconds, 2000 seconds into the simulation, and then rises to 5 kW for 1500 seconds, 

8000 seconds into the simulation. The mission profile for Heat Load 3 is shown in Fig. 6.2. 
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Figure 6.2: Heat Load 3 Profile. 

6.1.1 Controller Goals 

This system has two independent controllers acting on it. The schematic of the system with 

the controllers is shown in Fig. 6.3. 

 

Figure 6.3: Schematic of Example 2 with Controllers 1 and 2. 
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The goal of Controller 1 is to keep the temperature of fluid exiting the system close to a 

reference temperature of 20.5 °C. A proportional (P) controller was chosen for the co-design 

analysis in this chapter, with a proportional gain of 3 as the nominal case. A proportional-integral 

(PI) controller does a better job of minimizing error; however, it makes the effect of perturbing 

different parameters less apparent. Therefore, since the purpose of this thesis is to discuss how 

sensitivity analysis techniques can be used in co-design efforts, a simple P controller was selected 

instead. 

The goal of Controller 2 is to keep the offset, or difference, between the top branch and 

bottom branch temperatures at a reference value of 3 °C. A P controller was also chosen for 

Controller 2 for the same reasons as Controller 1. The nominal P gain for Controller 2 is set to 3 

as well. 

6.1.2 Nominal Case 

The nominal case with the nominal controller gains is shown in Fig. 6.4. 

 

Figure 6.4: Nominal Plant and Controller Performance. 
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This can be contrasted from the performance of the system with Heat Load 3 acting on it, 

but without either controller to manage the temperatures, shown in Fig. 6.5. 

 

Figure 6.5: Nominal Plant without Controllers. 

Notice how the addition of the controllers lowered the peak of the output temperature in 

the upper right plot from over 26 °C to just under 22 °C at 2000 seconds. This is also communicated 

in how the magnitude of the peak error between the output temperature and the reference decreased 

from 5.5 °C, to just over 1 °C. Similarly, Controller 2 worked to decrease the offset between the 

two branch temperatures drastically, from 9 °C over the reference offset to less than 0.14 °C at 

around 2000 seconds. The impact of Controller 2 adjusting the flow percentage between the two 

branches can be seen in how the lower branch increased in temperature when the mass flow rate 

through it decreased to direct more flow to the upper branch. This resulted in a cooling effect on 

the upper branch and a heating effect on the lower branch when compared to the nominal case 

without controllers. 

6.2 Sensitivity Analysis of Nominal Case 

Now that the nominal plant and controllers have been defined, the most influential 

parameters on those control inputs can be determined. The goal is to minimize the control effort 
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without sacrificing performance. Since the controllers are proportional controllers, the amplitudes 

of the control inputs will scale with the error values. And the amplitudes of the errors scale with 

the output temperature signals, since the error terms are composed of constant reference values 

subtracted by sinusoidal output temperature signals. Therefore, the parameters which affect the 

output temperature amplitudes the most will also be the parameters which affect the amplitude of 

the control input the most. The sensitivity analysis discussed in Chapters 4 and 5 can be utilized 

in finding the most influential parameters on the control input, since it is designed to determine 

the parameters the output temperature amplitude is most sensitive to. 

Control Input 1 and the error for Controller 1 should scale with the output temperature: the 

fluid temperature of the junction, 𝑇𝑓,9, as shown in Fig. 6.6. Control Input 2 and the error for 

Controller 2 depend on the temperature at the ends of the upper and lower branches instead. These 

are the fluid temperatures of Cold Plate 3 and Cold Plate 4, written as 𝑇𝑓,5 and 𝑇𝑓,7 respectively. 

Therefore, the sensitivity analysis will need to be carried out with respect to three output signals: 

𝑇𝑓,5, 𝑇𝑓,7, and 𝑇𝑓,9. 

 

Figure 6.6: Block Diagram of Example 2. 

The procedure to calculate the sensitivities of the output temperature signals has been 

covered in detail in Chapters 4 and 5 and can be performed again for this case study. The only 
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difference between the sensitivity analysis of 𝑇𝑓,9 under the Scenario 3 input signals done in 

Chapter 5 and in this chapter is the Heat Load 3 step function. Heat Load 3 maintains constant 

values for a vast majority of the simulation and is only transient when it instantaneously steps 

between different heat loads four times. Therefore, Heat Load 3 can be assumed to be at a constant 

value, just like it is in Scenario 3 from Chapter 5, and the sensitivity analysis of Scenario 3 can be 

assumed to be the same as the sensitivity of 𝑇𝑓,9 in this example as well. 

6.2.1 Sensitivity Analysis for Each Output Temperature of Interest 

6.2.1.1 Temperature of Fluid Exiting the System, 𝑻𝒇,𝟗 

The equations representing the output temperature, 𝑇𝑓,9, in terms of all the input signals are 

shown in Eq. (6.1) – (6.6). Each of the input-specific transfer functions represented in Eq. (6.2) – 

(6.6) is plotted as a bode plot in Fig. 6.7 below. 

𝑃𝑠,1 ∗
𝑇𝑓,9

𝑃𝑠,1
+ 𝑃𝑠,2 ∗

𝑇𝑓,9

𝑃𝑠,2
+ 𝑃𝑠,3 ∗

𝑇𝑓,9

𝑃𝑠,3
+ 𝑃𝑠,4 ∗

𝑇𝑓,9

𝑃𝑠,4
+ 𝑃𝑠,5 ∗

𝑇𝑓,9

𝑃𝑠,5
= 𝑇𝑓,9 (6.1) 

where 

𝑇𝑓,9 
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∗

𝐸𝑓,5

𝑇𝑓,3
∗

1

𝐶5
∗
𝐸𝑓,9

𝑇𝑓,5
+
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1
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Figure 6.7: Input-Specific Transfer Functions for 𝑻𝒇,𝟗. 

The partial derivatives for each of the input-specific transfer functions in Fig. 6.7 with 

respect to the capacitance parameters are shown in Fig. 6.8. 

 

Figure 6.8: Sensitivity Bode Plots for 𝑻𝒇,𝟗. 

When the sensitivity bode plots are each multiplied by the amplitudes of their respective 

input signals and added together, they yield the sensitivity plot in Fig. 6.9. 
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Figure 6.9: Sensitivity Plot for 𝑻𝒇,𝟗. 

The sensitivity plot in Fig. 6.9 conveys that parameter 𝐶4, the wall mass of Cold Plate 1, is 

the most influential parameter to the temperature of the fluid exiting the system, 𝑇𝑓,9. Since 

Controller 1 controls the mass flow rate into the system to drive 𝑇𝑓,9 to a reference value, the 

parameters which affect 𝑇𝑓,9 are strongly correlated to the error between 𝑇𝑓,9 and the reference 

value, as well as the control input necessary to minimize that error.  

6.2.1.2 Temperature of Fluid Exiting the Top Branch, 𝑻𝒇,𝟓 

The goal of the second controller is to maintain the difference between temperatures of the 

fluids exiting the two branches, 𝑇𝑓,5 and 𝑇𝑓,7, at a reference offset. This ensures that one branch 

will not get extremely cold to compensate for the other branch overheating when trying to keep 

the output temperature down. The goal is to keep both branches at mild temperatures and 

controlling the offset between the two branches helps achieve this. Thus, the temperatures in the 

two branches have a huge effect on the error between their temperature difference and the specified 

offset, as well as on the control input for Controller 2. The equations which represent the 

temperature of the fluid as it exits the top branch, 𝑇𝑓,5, can be derived from the schematic in Fig. 

6.6 and are shown in Eq. (6.7) – (6.12). 

𝑃𝑠,1 ∗
𝑇𝑓,5

𝑃𝑠,1
+ 𝑃𝑠,2 ∗

𝑇𝑓,5

𝑃𝑠,2
+ 𝑃𝑠,3 ∗

𝑇𝑓,5

𝑃𝑠,3
+ 𝑃𝑠,4 ∗

𝑇𝑓,5

𝑃𝑠,4
+ 𝑃𝑠,5 ∗

𝑇𝑓,5

𝑃𝑠,5
= 𝑇𝑓,5 (6.7) 
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where 
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∗

1
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𝑇𝑓,5 

𝑃𝑠,4
=

𝐸𝑓,5

𝑃𝑠,4
∗

1

𝐶5

(6.11) 

𝑇𝑓,9 

𝑃𝑠,5
= 0 (6.12) 

The graphical representations of each of the individual transfer functions in Eq. (6.8) – 

(6.12) are shown in Fig. 6.10 below. Notice that the transfer function which relates the output 

amplitude of the top branch temperature to the fifth input, Heat Load 4, does not exist. This is 

because Heat Load 4 is applied to the Cold Plate 4 component, which has no effect on the top 

branch temperature, since they are in parallel branches and do not meet up until the junction 

component, which is after the exit temperature of branch one is recorded. 

 

Figure 6.10: Input-Specific Transfer Functions for 𝑻𝒇,𝟓. 
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The partial derivatives of the transfer functions in Fig. 6.10 are shown in Fig. 6.11. These 

sensitivity bode plots outline how the capacitance parameters effect each of the input-specific 

transfer functions when perturbed. 

 

Figure 6.11: Sensitivity Bode Plots for 𝑻𝒇,𝟓. 

The sensitivity bode plots are then multiplied by the amplitudes of their input signals and 

added together to yield the sensitivity plot in Fig. 6.12. The plot below demonstrates how the top 

branch exit temperature, 𝑇𝑓,5, is most sensitive to parameter 𝐶4, the capacitance of the wall in Cold 

Plate 2. The second-most influential parameters are 𝐶3 and 𝐶5, the fluid capacitances in Cold Plate 

2 and 3, followed by 𝐶2, the capacitance of the wall in Cold Plate 1. 
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Figure 6.12: Sensitivity Plot for 𝑻𝒇,𝟓. 

6.2.1.3 Temperature of Fluid Exiting the Bottom Branch, 𝑻𝒇,𝟕 

The control input of Controller 2, which regulates the offset between the exit temperatures 

of the top and bottom branch, is also coupled to the temperature of the bottom branch, 𝑇𝑓,7. The 

transfer functions which represent 𝑇𝑓,7 in terms of each of the input signals are shown in Eq. (6.14) 

– (6.18) and combine to yield Eq. (6.13). 

𝑃𝑠,1 ∗
𝑇𝑓,7

𝑃𝑠,1
+ 𝑃𝑠,2 ∗

𝑇𝑓,7

𝑃𝑠,2
+ 𝑃𝑠,3 ∗

𝑇𝑓,7

𝑃𝑠,3
+ 𝑃𝑠,4 ∗

𝑇𝑓,7

𝑃𝑠,4
+ 𝑃𝑠,5 ∗
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𝑃𝑠,5
= 𝑇𝑓,7 (6.13) 
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𝑇𝑓,7 

𝑃𝑠,3
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𝑃𝑠,4
= 0 (6.17) 

𝑇𝑓,7 

𝑃𝑠,5
=

𝐸𝑓,7

𝑃𝑠,5
∗

1

𝐶7
 (6.18) 
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The transfer functions in Eq. (6.14) – (6.18) are shown as bode plots in Fig. 6.13, with one 

plot for how the bottom branch temperature is affected by each system input. Notice how the 

transfer functions for Inputs 3 and 4, the heat loads applied to Cold Plate 2 and 3, are non-existent. 

This is because Cold Plates 2 and 3 are in the top branch and have no effect on the exit fluid 

temperature of the bottom branch. 

 

Figure 6.13: Input-Specific Transfer Functions for 𝑻𝒇,𝟕. 

The partial derivatives of the transfer functions shown in Fig. 6.13 with respect to the 

capacitance parameters are shown in Fig. 6.14. 

 

Figure 6.14: Sensitivity Bode Plot for 𝑻𝒇,𝟕. 
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Each of the sensitivity bode plots in Fig. 6.14 can be multiplied by their respective input 

signal amplitudes and summed to yield the sensitivity plot in Fig. 6.15, which ranks the cumulative 

effect each capacitance parameter has on the bottom branch exit temperature, 𝑇𝑓,7. 

 

Figure 6.15: Sensitivity Plot for 𝑻𝒇,𝟕. 

Fig. 6.15, shows the strongest influence on 𝑇𝑓,7 is parameter 𝐶2, the capacitance of the wall in Cold 

Plate 1. Comparitively, 𝐶2 is the fourth most influential parameter for the amplitude of 𝑇𝑓,5. The 

top three parameters which 𝑇𝑓,5 is most sensitive to are 𝐶4, 𝐶3, and 𝐶5, none of which even appear 

in the sensitivity plot for 𝑇𝑓,7. This is because these parameters represent components in the top 

branch and 𝑇𝑓,7 is the exit temperature for the bottom branch.  

To identify which parameters are most influential on the error and control input for 

Controller 2, the sensitivity plots for 𝑇𝑓,5 and 𝑇𝑓,7 need to be assessed together. The magnitudes of 

the effects that parameters 𝐶4, 𝐶3, and 𝐶5 have on the top branch temperature are greater than any 

of the parameters’ effects on the bottom branch temperature. Therefore, when identifying the top 

four parameters’ combined effect on the branch exit temperatures, more weight is given to 𝐶4, 𝐶3, 

and 𝐶5. Comparing across Fig. 6.12 and Fig. 6.15, the most influential parameters on Controller 2 

are 𝐶4, 𝐶3 and 𝐶5, and 𝐶2, in that order. These are the same top parameters which Controller 1’s 

control input and error are most sensitive to. Therefore, it is safe to say these four parameters 
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should be the ones optimized to have the greatest effect in lowering the control input for both 

controllers. 

6.2.2 Numerical Verification of Parameter Influence on Controlled Plant 

This next section walks through the numerical verification of the sensitivity analyses when 

applied to the controlled system. Note that because the controllers are now applied to the system, 

they will change the mass flow rates into the system and the percentage split, depending on the 

applied heat loads at any moment. For example, previously parameters pertaining to Cold Plates 2 

and 3, located in the top branch, had no effect on the temperature in the bottom branch. Now, since 

Controller 2 is working to keep the temperatures in both branches close together, when the heat 

loads are applied to Cold Plates 2 and 3, the flow is diverted from the bottom branch to the top 

branch to lower the temperature. So when 𝐶4, the capacitance of Cold Plate 3, is increased, the rate 

of heat transfer to the top branch temperature is lessened, allowing more fluid to stay in the bottom 

branch, thus not causing the bottom branch temperature to rise as much. This demonstrates how 

the bottom branch temperature is dependent to parameters in the top branch when the controllers 

are applied, even though that correlation did not show up in the sensitivity analysis.  

6.2.2.1 Temperature Signal Amplitudes 

The following three figures illustrate how each of the temperatures in the system are most 

sensitive to parameters 𝐶2, 𝐶3, 𝐶4, and 𝐶5. 
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Figure 6.16: Amplitude of 𝑻𝒇,𝟓 when Each Parameter is Perturbed Individually. 

Figure 6.16 demonstrates a clear sensitivity of the top branch temperature amplitude to 

parameter 𝐶4, followed by sensitivities to parameters 𝐶2, 𝐶3, and 𝐶5 as predicted in Fig. 6.12. 

 

Figure 6.17: Amplitude of 𝑻𝒇,𝟕 when Each Parameter is Perturbed Individually. 
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Although Fig. 6.17 does not directly mirror the sensitivity plot for 𝑇𝑓,7 in Fig. 6.15, due to 

the presence of Controller 2, it matches the assumption made that Controller 2 and the related 

temperatures would be most sensitive to parameter 𝐶4, followed by parameters 𝐶2, 𝐶3, and 𝐶5. 

 

Figure 6.18: Amplitude of 𝑻𝒇,𝟗 when Each Parameter is Perturbed Individually. 

Fig. 6.18 matches the prediction made in the sensitivity plot for 𝑇𝑓,9 in Fig. 6.9 for the top 

four parameters, namely 𝐶4, 𝐶2, 𝐶3, and 𝐶5. Parameter 𝐶7 also appears to increase in influence on 

the output temperature between perturbation values of 1 and 2. However, it is the smaller 

perturbations, closer to the nominal values where the model was linearized about, that are more 

reliable. Additionally, parameters 𝐶4, 𝐶2, 𝐶3, and 𝐶5 produce the desired effect of minimizing the 

steady state amplitude, whereas 𝐶7 has the opposite effect. 

6.2.2.2 Control Error Amplitudes 

The goal of this co-design exercise is to optimize the plant and adjust the controller gains 

to minimize the control input. However, since the controller gains directly affect the control input, 

it might appear as though setting very small controller gains is the optimal solution simply because 

it will lead to lower control inputs. But just because the control input is artificially lower, does not 

mean the controller is more successful in minimizing the control error. Therefore, it is also 

important to consider the parameter influence on the control error, or the difference between the 
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reference temperature and the actual temperature. Fig. 6.19 and 6.20 show the amplitude of the 

error terms for Controllers 1 and 2, respectively.  

 

Figure 6.19: Amplitude of Control Error 1 with Parameter Perturbations. 

The pattern of the most influential parameters being 𝐶4, 𝐶2, 𝐶3, and 𝐶5 holds, as is expected 

since the control error amplitude scales with the temperature signal amplitudes. Control Error 1 is 

calculated by subtracting the reference temperature for the fluid exiting the system by the actual 

fluid temperature. Therefore, since Control Error 1 equals a constant subtracted by a sinusoidal 

term, the control error amplitude will exactly equal the amplitude of the temperature. This is shown 

by Fig. 6.18 and Fig. 6.19 being identical. 
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Figure 6.20: Amplitude of Control Error 2 with Parameter Perturbations. 

Control Error 2 is calculated by subtracting the reference offset by the actual offset. The 

offset between the two branches is defined as the difference between their temperature signals. 

These two branch temperatures have different amplitudes, but both are shown to be dependent on 

the same top four parameters in Fig. 6.16 and Fig. 6.17. Therefore, the amplitude of their difference 

will also be dependent on those same four parameters. This is seen in Fig. 6.20, where the top four 

parameters which result in a lower control error, are parameters 𝐶4, 𝐶2, 𝐶3, and 𝐶5. 

6.2.2.3 Control Input Amplitudes 

Since the main goal of the co-design methodology is to adjust parameters to achieve the 

lowest control input amplitudes while not sacrificing the controller performance, the sensitivities 

of the control input amplitudes to the parameters are very important. These are plotted in Fig. 6.21 

and Fig 6.22. 



 134  

 

Figure 6.21: Amplitude of Control Input 1 with Parameter Perturbations. 

Fig. 6.21 shows how the Control Input 1 amplitude varies with the parameter perturbations. 

Since the controller used in this study is a proportional controller, the control input scales directly 

from the control error. For this reason, Fig. 6.21 shares the same shape as Fig. 6.19; it has simply 

been multiplied by the controller gain. Although these plots convey the same information for a 

constant controller gain, once the controller gains are adjusted in the tuning process, it will be 

important to save both sets of information. This will allow the controller gain and parameter 

perturbation combinations to be compared more easily by searching for the combinations which 

have the lowest control error and lowest control inputs.  

Controller 1 adjusts the mass flow rate into the system, allowing more flow to come 

through when the output temperature is higher than the reference, having a cooling effect. 

Similarly, less flow will be let into the system if the output temperature is lower than the reference, 

allowing the heat loads to be more effective in raising the fluid temperature. A saturation block 

keeps the mass flow rate going into the system from ever being negative since the model requires 

positive mass flow rates to function properly. The control input for Controller 1 relates to pumping 

power. By minimizing the amplitude of the required control input, energy can be saved that 

otherwise would have been necessary to ramp the pump up and down to higher speeds. 
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Figure 6.22: Amplitude of Control Input 2 with Parameter Perturbations. 

Fig. 6.22 shows how the Control Input 2 amplitude varies with parameter perturbations. 

Notice how the Control Input 2 scales directly by a factor of three, the nominal controller gain, 

from the control error plot in Fig. 6.20. Controller 2 adjusts the valve percentage of flow which is 

directed to the top branch. A saturation block is used for this signal as well to ensure the valve 

percentage is always within the bounds of zero and one, where zero means 0% of the flow entering 

the valve will go to the top branch and one means 100% of the flow will be directed to the top 

branch. It is a good idea to saturate this control input signal so that it never equals zero or one, 

which would send all the flow to a single branch. The temperature in the other branch would then 

increase rapidly as a result since it would have no flow coming through in the presence of constant 

heat loads. The control input for Controller 2 is the valve adjustment. Since this requires 

significantly less work to physically adjust when compared to Controller 1, Control Input 1 will 

be the focus instead of Control Input 2 moving forward. The incentive to lower the control input 

for Controller 1 from an energy standpoint is much higher, which is why it will be the focus of this 

co-design case-study in Section 6.3. 
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6.3 Plant and Controller Co-design 

6.3.1 Controller Gain and Plant Parameter Sweep 

This final section walks through a parameter and controller gain sweep to find the optimal 

combinations of controller gains and parameter values. Since both the parameter values and 

controller gains affect the controller errors and control inputs, there is value in optimizing these 

simultaneously. The top four parameters to be optimized were selected in Section 6.2, namely 𝐶2, 

𝐶3, 𝐶4, and 𝐶5. These will be referred to as Parameters 1, 2, 3, and 4, respectively. For each run of 

the simulation, either one of these parameter capacitances will be perturbed by a value of one, with 

all other parameters remaining at their nominal values. Or, one of the parameters will be perturbed 

by one and another parameter will be perturbed by 0.5, with all other parameters remaining at their 

nominal values. These configuration combinations are illustrated in Fig. 6.23 below for the 

nominal controller gains of 3. Notice how the rows signify the larger parameter perturbation of 1 

and the columns signify the smaller parameter perturbation of 0.5.  

 

Figure 6.23: Nominal Controller Gains Parameter Sweep. 
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For the nominal case, the dark blue square indicates that a large perturbation of Parameter 

3, 𝐶4, and a small perturbation of Parameter 1, 𝐶2, result in the lowest control error for Controller 

1. Physcially, this means that when the heat loads on Cold Plates 1 and 2 are sinusoidal, the best 

way to filter the resulting sinusoidal signal of the fluid temperature is to increase the masses of the 

walls in Cold Plates 1 and 2. This will minimize the error between the fluid temperature and a 

constant reference value, resulting in a lower control input requirement to minimize the fluid 

temperature signal’s amplitude. Fig. 6.23 also indicates that the control error is significantly more 

sensitive to Parameter 3 than any other parameter. The row where Parameter 3 has the large 

perturbation contains the lowest control error values of the entire plot, highlighted by containing 

the most blue and green shades. The column where Parameter 3 has the small perturbation also 

has the lowest control error values out of all the other columns, as evidenced by the entire column 

being a teal color. The sensitivity plot in Fig. 6.9 successfully predicted this behavior. It determined 

that 𝐶4, followed by 𝐶2, was the most influential on the fluid temperature as it exits the system, 

which is directly related to the control error of Controller 1. 

Fig. 6.24 demonstrates the parameter sweep outlined in Fig. 6.23 for combinations of 

controller gains ranging from 2.5 to 4.5 as the proportional gain terms of Controller 1 and 

Controller 2. The Kp gains for Controller 1 are marked by the columns, with the simulations in the 

first 4 columns, or first block column, having a proportional gain of 2.5 for Controller 1, and the 

final block column, or columns 17-20, having a proportional gain of 4.5. Similarly, the Kp gains 

for Controller 2 are marked by the rows, with the gain increasing by 0.5 for each new block row, 

or set of 4 square rows.  

The large parameter perturbations are demarcated by bold numbers along the left side of 

the plot, and the small perturbations are demarcated by the non-bolded text along the base of the 

plot. The location of any square reveals the parameters which were perturbed for that simulation. 

For example, every square in the upper left corner of the 4x4 controller gain blocks represents a 

large change in parameter four and a small change in parameter one. The row will be labelled as a 

bold four at the far left of the plot and the column it is in will be labelled by a non-bold 1 at the 

base of the plot. 
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Figure 6.24: Controller Gain and Parameter Sweep for Control Error 1. 

Notice how as the Kp gains for Controller 1 increase, moving from the left columns to the 

right columns, the control error decreases. This makes intuitive sense: when the controller gains 

are higher, the controller has more ability to close the gap between the reference temperature and 

the actual temperature by increasing the mass flow rate into the system at a higher rate. This trend 

is highlighted with an arrow in Fig. 6.25. 
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Figure 6.25: Control Error 1 as Kp1 Increases Trend. 

Fig. 6.26 shows how Control Error 2 changes with the adjustments in controller gains and 

parameter values. Notice that this time, instead of the control error decreasing as the Kp1 gain 

increases, the control error decreases as the Kp2 gain increases. Again, this makes sense since the 

control error plotted is the error between the reference offset for the branch temperatures and the 

actual offset between branch temperatures, which Controller 2 manages. Thus, when Controller 2 

has higher gains, it can adjust the valve percentage more quickly, thereby lowering the control 

error for Controller 2. This trend of a higher Kp2 gain resulting in a lower control error for 

Controller 2 is highlighted with an arrow in Fig. 6.27. 
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Figure 6.26: Controller Gain and Parameter Sweep for Control Error 2. 

 

Figure 6.27: Control Error 2 as Kp2 Increases Trend. 
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When the normalized control error amplitudes are summed together, they yield Fig. 6.28 

below. Individually, the control errors decreased as their respective controller gains increased. 

Therefore, it is not surprising that the configuration with the least control error occurs when both 

controller gains are at their maximum values of 4.5. 

 

Figure 6.28: Controller Gain and Parameter Sweep for Control Errors 1 and 2. 

The absolute lowest control error is at the intersection of having the highest controller gains 

and having set the parameters where Parameter 3 has the larger perturbation and Parameter 1 has 

the smaller perturbation. This lines up well with the sensitivity analysis performed in Chapters 4 

and 5 as well as intuition about how higher controller gains affect the error term. This optimal 

configuration for lowering the control error is highlighted by a bright yellow square in Fig. 6.29. 

This figure also accentuates the pattern of larger controller gains leading to lower control errors. 
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Figure 6.29: Control Error Terms as Both Gains Increase Trend. 

Now that the optimal configuration for lowering the control error has been discovered, the 

control input must also be compared. The amplitudes of the control inputs for Controller 1 are 

shown in Fig. 6.30. Fig. 6.30 demonstrates a pattern where lower gains for Controller 1 yield lower 

control inputs. This makes intuitive sense, because the control input is simply the control error 

multiplied by the proportional gain. Thus, just because the control input is lower, does not indicate 

a better configuration. This necessitates the control error be plotted as well. From Fig. 6.29 and 

Fig. 6.30 it is clear there is a trade-off between minimizing control error and minimizing control 

input, when tuning the controller gain. This is left to the engineer to decide how stringent the error 

tolerances are for the temperature amplitude, or how necessary it is to conserve power and keep 

the control input amplitude as low as possible. Regardless of this trade-off, the optimal parameter 

combination is to focus efforts on increasing the capacitance of Cold Plate 2, followed by Cold 

Plate 1, before any other improvement to the physical plant. This is assuming there is an equal cost 

to increase any of the parameter capacitances. 
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Figure 6.30: Controller Gain and Parameter Sweep for Control Input 1. 

6.3.2 Time Trace Visualization of the System Performance 

This next subsection presents the time domain simulations for three different 

configurations. The first is the nominal case, where the controller gains for both controllers are 3 

and there are no parameter perturbations. The parameter values are at their nominal values. The 

second configuration is the one with the lowest error, highlighted with a yellow box in Fig. 6.29. 

This configuration has controller gains of 4.5 for both controllers and Parameter 3 has the larger 

perturbation while Parameter 1 has the smaller perturbation. The final configuration which will be 

compared against the previous two is the other square with a yellow box around it in Fig. 6.30. It 

is the case with the lowest control input for Controller 1. Again, the control input for Controller 1 

is the one being minimized because it requires work to pump varying levels of fluid into the system, 

whereas the control input for Controller 2 involves adjusting a valve, which is not as costly. This 

final configuration sees a Kp1 gain of 2.5 and a Kp2 gain of 3.5. The parameter perturbations are 
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the same as the lowest control error case, with a large Parameter 3 perturbation and a small 

Parameter 1 perturbation. 

Fig. 6.31 shows the Control Error 1 signals for each of the configurations. Visually, the 

lowest control error configuration is the lowest in both amplitude and magnitude. The amplitude, 

or the distance from the peak to the trough divided by two, is less than the lowest control input 

configuration and both are less than the nominal case. The magnitude of the lowest error is also 

closest to zero, demonstrating how the lowest error configuration can bring the output temperature 

of the system closest to the reference temperature. The next lowest magnitude belongs to the 

nominal case, which makes sense because the nominal case has a Kp1 gain of 3, whereas the lowest 

control input configuration has a Kp1 gain of 2.5. The plot in Fig. 6.24 depicts that the lowest 

control error configuration has a smaller control error amplitude when compared to the lowest 

control input configuration by having a darker shade of blue. 

 

Figure 6.31: Time Trace of Controller 1 Error Signals. 

The next figure presents the time trace of the error between the reference offset and the 

actual offset between the top and bottom branch temperatures. This is also called the error for 

Controller 2, and it is plotted for the three configurations in Fig. 6.32. It is easy to see that both the 

amplitude and magnitude of the lowest control error configuration are the smallest out of the three. 

The lowest control input configuration has the next lowest amplitude and magnitude, followed by 

the nominal case. The magnitude of the control error signals follow logically from how the lowest 

error configuration has a Kp2 gain of 4.5, the lowest control input configuration has a Kp2 gain of 
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3.5, and the nominal case has a Kp2 gain of 3. The ranking of the difference in amplitude follows 

mostly from the parameter perturbations and the sensitivity of the Control Error 2 signal to 

Parameter 3 followed by Parameter 2, as shown in Fig. 6.12 and 6.15. The effect that the 

combination of the parameters and controller gains has on the Control Error 2 amplitude is 

demonstrated in Fig. 6.26, where the lowest control error configuration clearly has a darker blue 

shade than the lowest control input configuration. 

 

Figure 6.32: Time Trace of Controller 2 Error Signals. 

The final figure below demonstrates that although the lowest error configuration had a 

lower error for both Controller 1 and 2, the lowest control input configuration has a lower control 

input. Fig 6.33 below shows the lowest control input configuration clearly has the smallest 

amplitude in addition to being closer to 0, signifying a lower magnitude as well. Logically, since 

the lowest control input configuration has lower Kp1 and Kp2 gains than the lowest error 

configuration, it makes sense that the control input would also be lower. The nominal case falls 

somewhere in the middle, having smaller gains than the lowest control error case, and a higher 

Kp1 gain, which is more relevant to the control input for Controller 1, than the lowest control input 

configuration. Although the lowest control error configuration has a larger control input value, it 

still has a smaller signal amplitude than the nominal case, since the parameters most effective in 

filtering the control input signal amplitude have been perturbed. The ranking of the Control Input 

1 amplitudes is also shown in Fig. 6.30, where the lowest control input configuration has a darker 

blue, representing a smaller amplitude, than the lowest error configuration. 
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Figure 6.33: Time Trace of Control Input 1 Signals. 

This study demonstrated that the sensitivity analysis can be used to accurately predict 

which parameters would have the greatest effect on filtering the control input or error term 

sinusoidal signals. These parameters can then be adjusted to have the desired effect on both the 

control input and the error. However, this co-design section showed that the controller gains also 

have an impact on the signal amplitudes, as evidenced by Fig. 6.33. Although the lowest control 

input and lowest control error configurations have identical perturbations, the amplitude for the 

lowest control input configuration is smaller than the lowest error case. This is also seen in the 

colorful gain and parameter sweep plots in Fig. 6.24 – 6.30. Although the same parameter 

perturbation pattern exists in each 4x4 block, the blocks still change colors, representing changing 

signal amplitudes, as the controller gains are also adjusted. There is a trade-off evident from 

comparing the control error and control input gain and parameter sweep plots. The squares which 

have the lowest control input will not necessarily have the lowest control error. Similarly, the 

square which was selected as having the lowest control error, had a higher control input than many 

of the similarly configured cases with lower controller gains. This study also demonstrated that 

the magnitude of the control error or control input signal is directly related to the controller gains, 

which can be tuned to either sacrifice the accuracy of having lower control errors or the associated 

power required for higher control inputs. Overall, the sensitivity analysis tools developed in 

Chapters 4 and 5 can be used to narrow down the most influential parameters, which will save 

both time and computational costs when the co-design optimization is performed. 
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Chapter 7     

Conclusions and Future Work  

 

7.1 Conclusions  

In this study, a sensitivity analysis was applied to a graph-based model to inform which 

plant parameters were most influential to the modeled system. The list of parameters was narrowed 

down to the top four and these were optimized together with two controller gains. This reduction 

in the space of parameters greatly simplified the optimization problem and saved time and 

computational effort for the co-design process. Then the combination of gains and parameter 

values which lowered the control gain amplitude the most were selected. Thus, the plant and 

controller were designed simultaneously to minimize the control input of the controller, while 

achieving the best performance, defined as having the lowest control error.  

One of the biggest benefits of the transfer function sensitivity analysis method is the ability 

to piece together subsystems in the frequency domain and easily build up an equation which 

represents the dynamics of the entire model. Having a single equation to represent the model output 

allows the partial derivatives to be calculated in one step, easily solving the sensitivity of the 

system to each of the parameters. The ability to represent the system as a block diagram in the 

frequency domain also allows the signal which is considered as the output to be calculated easily 

through simple block diagram manipulation rules. Additionally, the methods of building up system 

equations from each of the subsystems allows the sensitivity analysis of graph-based models to be 

equally scalable to the models themselves. Therefore, it would be simple to apply these sensitivity 

analysis tools and allow for the co-design of a graph-based model of any size in the future. 

However, a drawback of this method is that the sensitivity can only be calculated for one 

output at a time. To find the sensitivity of several outputs simultaneously, they would have to be 

calculated individually and added together with a weighting scheme to select the most influential 
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parameters. However, this would require further analysis to decide on appropriate weighting 

values. Another drawback of this method is the dependence on having a linearized model. Since 

the mass flow rates in most thermal management systems are not constant, the models will be 

nonlinear and the sensitivity analysis is only accurate around the operating point used for 

linearization.  

7.2 Future Work 

In Section 5.2.1 of Chapter 5, Fig. 7.1 below was included to begin a discussion of how the 

capacitance parameters affected the transient dynamics. 

 

Figure 7.1: Perturbations of C3 and C4 Compared to the Nominal Case. 

In this example, parameter 𝐶4 slows down the dynamics more than parameter 𝐶3 does. The 

system’s output temperature is also more sensitive to parameter 𝐶4, according to the sensitivity 

analysis. This is demonstrated by how the output temperature amplitude changes more when 𝐶4 is 

perturbed than 𝐶3, even though they are perturbed by the same amount. Recall that the sensitivity 

analysis determines the ratio of the sensitivity output signal amplitude over input signal amplitude 

when the output reaches steady state for different input signal frequencies. However, there appears 

to be a correlation between the sensitivity analysis and the transient dynamics of the system. This 

leads us to examine whether the sensitivity analysis can be useful in determining the sensitivity of 

the system at other frequencies and not just at steady state. 
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Fig. 7.2 shows a series of step inputs acting on the graph-based model pictured in Fig. 7.3. 

The first step input occurring at 50 s is Input 1, or the source temperature signal. It rises from a 

value of 20 °C to 21 °C, while all the other inputs signals are zero. At 100 s, the second input, or 

Heat Load 1, rises from 0 kW to 1 kW. Next, Heat Load 2, or the third input signal, also increases 

from 0 kW to 1 kW, this one at 150 s. Then Heat Load 3, the fourth input signal, increases from 0 

kW to 2 kW at 200s. Finally, at 250 s, the final input signal, Heat Load 4, increases from 0 kW to 

5 kW.  

 

Figure 7.2: Series of Step Inputs on Example 2. 

 

Figure 7.3: Graph-Based Model of Example 2. 
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The most influential parameters are the ones which result in the dynamics that are furthest 

from the nominal case. Since the nominal case has the quickest dynamics, the parameters which 

slow down the system response the most are the most influential for that input signal. For the first 

step, when the source temperature instantly steps to 21 °C, the parameters seem to be similarly 

influential. However, for the heat load input signals, the most influential parameter is the 

associated wall capacitance. For example, the temperature of the fluid when Heat Load 1 is a step 

input is most sensitive to parameter 𝐶2, which is the wall capacitance of Cold Plate 1, the cold 

plate which Heat Load 1 is applied to. This matches up with the sensitivity analysis shown again 

in Fig. 7.4. Notice how the most influential parameter for the largest frequency range of the heat 

load input sensitivity bode plots is the cold plate wall which the heat load is applied to. For the 

equation of the output with respect to Heat Load 1, the wall capacitance of Cold Plate 1 is the most 

influential. Simiarly, the equations of the outputs with respect to Heat Load 2, Heat Load 3, and 

Heat Load 4 are most sensitive to the wall capacitance of Cold Plate 2, Cold Plate 3, and Cold 

Plate 4, respecitvely. 

 

Figure 7.4: Sensitivity Bode Plots of Example 2. 

The individual step responses of the system to each of the isolated inputs are plotted in Fig. 

7.5 for better comparison. This makes it easier to see that the most influential parameter for Input 
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Signals 2-5 is the wall capacitance for that heat load. It is also easier to see that the next most 

influential parameters match the sensitivity bode plot rankings from Fig. 7.4, especially apparent 

for Input Signals 3-5. 

 

Figure 7.5: Parameter Effects on Step Responses for Each Input Signal. 

A step function in the time domain can be represented by the entire spectrum of frequencies 

in the frequency domain. Therefore, a step response is useful in revealing how a system would 

respond to a range of frequencies. Fig. 7.6 shows the Heat Load 4 step response from Fig. 7.5 

zoomed in to the first 4 seconds.  
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Figure 7.6: Heat Load 4 Step Response. 

Notice how in the first 2 seconds, parameter 𝐶9 is the most influential, followed by 𝐶7 and 

then by 𝐶8. This matches the sensitivity bode plot for Heat Load 4 in Fig. 7.4 at frequencies greater 

than 4 rads/s, which shows parameter 𝐶9 as the most influential, followed by 𝐶7 and then by 𝐶8. 

Then at around 3 rad/s on the sensitivity bode plot, and 3 seconds on the step response, the ranking 

in both plots show that 𝐶8 is the most influential, followed by 𝐶7 and then 𝐶9 for the remaining 

frequencies or time. There is clearly some correlation between the higher frequencies on a bode 

plot and the first few seconds of a step response.  

The transfer function sensitivity analysis method allows for more than one input signal to 

be applied to the system at once. Due to the superposition principle, the sensitivities of a few 

equations which relate the output to several inputs can be combined to determine to total sensitivity 

to any parameter. The sensitivities at specific input signal frequencies can be identified and 

multiplied by the input signal amplitude. Note that this analysis is only valid for a linear system or 

a system that has been linearized about an operating point. If looking at a linearized system, the 

analysis is only valid around that operating point. 

Fig. 7.7 shows the step response of the system in Example 2 to simultaneous step inputs 

for Heat Load 1 and Heat Load 2, both from 0 kW to 1 kW.  
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Figure 7.7: Simultaneous Heat Load 1 and Heat Load 2 Step Responses. 

The ranking of the parameters matches the sensitivity plot from Scenario 3 in Chapter 5, 

where Heat Load 1 and 2 had amplitudes of 1 kW at frequencies of 1 and 0.5 rad/s, respectively. 

This sensitivity plot is included again as Fig. 7.8. Recall that to generate the sensitivity plot, the 

sensitivities of the output temperature over the input temperature with respect to the parameters 

were recorded at the specific frequency of the input signal and then multiplied by the input signal 

amplitude. Then the contributions to the output temperature amplitude from both input signals at 

different frequencies were added together.  

 

Figure 7.8: Sensitivity Plot of Scenario 3 from Chapter 5. 
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However, the input signals shown in Fig. 7.7 are not at different frequencies and go through 

the frequency spectrum at the same time. Since the amplitudes of both input signals are equal and 

the step functions for both inputs occur at the same moment, perhaps their sensitivities can be 

summed. Fig. 7.9 below shows the sum of the sensitivity bode plots for both Heat Load 1 and Heat 

Load 2 from Fig. 7.4 on the same plot. Notice in Fig. 7.4, 𝐶2 was the most influential parameter 

for the Heat Load 1 transfer function and 𝐶4 was the most influential parameter for the Heat Load 

2 transfer function, with very comparable peak values of -77.2 dB and -76.8 dB, respectively. 

When the two sensitivity bode plots are added together, the highest point of 𝐶4 climbs to -76.4 dB 

since 𝐶4 appears in both transfer functions, and 𝐶2 maintains its peak at -77.2 dB. This is 

demonstrated in Fig. 7.9, which also shows at all other frequencies, the added sensitivities of the 

transfer functions relating the output temperature to the two heat loads. Notice how the parameter 

influence ranking at the higher frequencies seems to match the numerical simulation in Fig. 7.7 

for the first 3 seconds after the step functions. Then the step responses when each of the parameters 

are perturbed from seconds 5-25 seem to match the frequencies lower than 2 rad/s on the sensitivity 

bode plot in Fig. 7.9. 

 

Figure 7.9: Summed Sensitivity Bode Plots for Inputs Heat Load 1 and 2. 

There appears to be a correlation between the partial derivative of the system equation with 

respect to a parameter, or the sensitivity bode plot, and the step response of the system when that 



 155  

parameter is perturbed. This would be a very interesting area to explore and perhaps derive a way 

to map the transient response in the time domain to portions of the sensitivity bode plot, which 

describes the ranking of influence each parameter has for a given input frequency. The connection 

between time constants and cutoff frequencies might be a good starting point for this future work. 

If this connection could be further understood and applied to signals which are neither sinusoidal 

nor periodic, then these sensitivity analysis and co-design methods could be applied to a wider 

variety of systems. 

The following two figures are also included as a further example. Suppose the step input 

for Heat Load 1 has a value of 2 kW and Heat Load 2 remains at 1 kW. Then 𝐶2, which was more 

influential to the transfer function relating the output temperature to Heat Load 1, is now 

proportionally more influential to the system now that the value of Heat Load 1 has increased in 

proportion. The numerical simulation showing the step response of the system when each of the 

parameters are perturbed is shown in Fig. 7.10. 

 

Figure 7.10: Step Responses of Output Temperature when Heat Load 1 is Doubled. 

For Fig. 7.9, the sensitivity bode plots for the transfer functions pertaining to the inputs 

Heat Load 1 and Heat Load 2 were added directly since the inputs shared the same value. Now, 

the sensitivity bode plot for Heat Load 1 should be doubled before summing with the sensitivity 

bode plot for Heat Load 2, as shown in Fig. 7.11. Notice how the output temperature is now most 

sensitive to parameter 𝐶2 instead of to 𝐶4, as it was in the scenario shown in Fig. 7.9. 
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Figure 7.11: Summed Sensitivity Bode Plots when Input Heat Load 1 is Doubled. 

Looking forward, perhaps input signals in the time domain could be converted to the 

frequency domain via a Fourier Transform. Then for the duration of time at which the frequencies 

of the input signal are known, the total sensitivity of the output to each of the parameters can be 

calculated based on the percentage the input signal was at each frequency. For example, if the 

input signal was known to be at a frequency of 1 rad/s for 70% of the time and at a frequency of 

0.5 rad/s for the remaining 30% of the time, then the sensitivities of the output to each of the 

parameters at 1 rad/s can be multiplied by 0.7 and added to the sensitivities at 0.5 rad/s multiplied 

by 0.3. Note that this is merely a suggestion of what could be attempted next and is in no way 

guaranteed to yield viable results. 

In conclusion, there seems to be a strong correlation between step responses and the 

sensitivity bode plots introduced in this work. It would be worthwhile to explore this idea further 

and perhaps map parts of the step response to specific frequencies on the sensitivity bode plots. A 

potential future goal for this work is to identify the overall top parameters the chosen output is 

most sensitive to for a non-periodic input signal. These parameters would be optimized alongside 

the controller to design the optimal plant and controller pair quickly and for low computational 

costs. 
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Appendix A: Code     

 

A.1 Overview 

Once you have built your Simulink model out of DAEMOT components, you can run the 

script “Batch_Assign_Params.” This renames all the component parameters to the correct variable 

names. Next run “Setup_Component_Params” to assign values to each of these component 

parameters in the workspace. Now you can run the Simulink Model. 

To build a graph-based model you first need to set it up in “Setup_Graph_Therm.” Do not 

run it yet, because you also need to set up “Gen_Graph_Therm” which actually generates the graph 

and is the last line of “Setup_Graph_Therm.” Now run the “Setup_Graph_Therm” script. Now in 

Simulink you will need to build a function which reads in the mass flow rates, source power flows, 

sink states, vertex states from the previous iteration, and tank heights if you have tanks and are 

using the new heights to update tank capacitances in real time. However, updating capacitances 

does not work for the existing sensitivity analysis. If you want to use a tank, consider it to be 

flooded and a cold plate can represent the same interactions with the wall and heat loads from 

ambient. You can get these models from a current student, or you can find an example in my folder 

in a Simulink model called “SimpleCh2Example.” The corresponding scripts for this model are 

called “Setup_Graph_Therm_Sense8”, “Gen_Graph_Therm_Sense_7”, 

“Setup_Component_Params_Sensitivity7”, and “Sys2_Therm1_Mindy.” 

I’ve included a few scripts below which were used to generate the results in this thesis. 

First, I will include the script to complete the sensitivity analysis for Example System 1 

(ExampleSys1SensAnalysis), followed by Example System 2 (ExampleSys2SensAnalysis). Then 

I will include the numerical verificiation script which runs through the different parameter 

perturbations (Numerical_Verification). I will note that these will only work on my DAEMOT 

models, since I have made added a “coeff” term to the mask of the components. This term acts like 

an input to the system and multiplies the fluid capacitance by a coefficient. You can edit the mask 
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to add this variable as well so that the numerical verification script will actually increment 

something in the model instead of just in the workspace. Then I will add the numerical verification 

script which generates the colorful grids in Chapter 6 for the co-design 

(Numerical_Verification_CoDesign). Finally, I’ve included two plotting scripts. Once for plotting 

the control inputs of different cases (Plot_ControlInput) and another for the colorful grids 

(Plot_CoDesign). 

A.2 ExampleSys1SensAnalysis 

%%Setup Model Equations 
%%This is Hard Coded for the Example System 2 

  
%Create symbolic variables for each of the governing equation matrices for 
%the components 
syms s a1 a2 a3 a4 b1 b2 
%Create symbolic variables for each of the parameters so we can take the 
%partial derivatives of them 
syms C1 C2 C3 C4 E1 E2 E3 

  
%Read in Input Values from model 
temp_in = out.source1.data(); %Input 1 (Source Temp, degree C)  
heatLoad1 = out.hl1.data(); %Input 2 (Heat Load 1, kW) 
heatLoad2 = out.hl2.data(); %Input 3 (Heat Load 2, kW) 

  
%Gather Capacitance Data from Model for Cold Plate 1 
Cp = 1000*Fuel_Cp; 
U1 = cp1.HTC; 
A1 = pi*cp1.D*cp1.L; 
Cw1 = 1000*cp1.M_wall*cp1.Cp_wall; %Wall Capacitance 
Cf1 = cp1.Ac*cp1.L*Fuel_Rho*Cp; %Fluid Capacitance 

  
%Gather Capacitance Data from Model for Cold Plate 2 
U2 = cp2.HTC; 
A2 = pi*cp2.D*cp2.L; 
Cw2 = 1000*cp2.M_wall*cp2.Cp_wall; %Wall Capacitance 
Cf2 = cp2.Ac*cp2.L*Fuel_Rho*Cp; %Fluid Capacitance 

  
%Find mass flow rate steady state value (even if mass flow is sinusoidal) 
tenth=floor(length(out.m.data)*0.95); 
mflow1=mean(out.m.data(tenth:end)) 

  
%number edges and capacitances like the graph numbering for edges and capacitances 
C1_v = Cw1; %cp1 wall cap 
C2_v = Cf1; %cp1 fluid cap 
C3_v = Cw2; %cp2 wall cap 
C4_v = Cf2; %cp2 fluid cap 

  
%Edge coefficients 
E1_v = U1*A1; %convective edge between fluid and wall 
E2_v = mflow1*Cp; %advective edge into cp2 fluid 
E3_v = U2*A2; %convective edge between fluid and wall 
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%defining transfer function for Cold Plate 1 
%Tin --> Eout 
CP11_tf = (b1*s -a4*b1)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
CP12_tf = (a2*b2)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 

  
%separate numerator from denominator 
[N1,D1]=numden(CP11_tf); 
[N2,D2]=numden(CP12_tf); 

  

     
for j=1:2 
    %collect coefficients in front of each s term 
    eval(['Ncoeffs = collect(N',num2str(j),', s);']); 
    eval(['Dcoeffs = collect(D',num2str(j),', s);']); 

  
    %group coefficients into array 
    Nc = coeffs(Ncoeffs, s, 'All'); 
    Dc = coeffs(Dcoeffs, s, 'All'); 

     
    %Replace a1, a2, a3, a4, b1, b2 terms with edge and capacitance values 
    %('v' stands for value) 
    Nc = subs(Nc,[a1,a2,a3,a4,b1,b2],[-E2_v/C2_v-E1_v/C2_v,E1_v/C1_v,E1_v/C2_v,-

E1_v/C1_v ,E2_v,1000]); 
    Dc = subs(Dc,[a1,a2,a3,a4,b1,b2],[-E2_v/C2_v-E1_v/C2_v,E1_v/C1_v,E1_v/C2_v,-

E1_v/C1_v ,E2_v,1000]); 

  
    %Convert to double and record for each transfer function 
    eval(['Nc',num2str(j),' = double(Nc);']); 
    eval(['Dc',num2str(j),' = double(Dc);']); 
end 

     
%Creating transfer function with real values 
CP11_tf_v = tf([Nc1],[Dc1]); 
CP12_tf_v = tf([Nc2],[Dc2]); 

  
%Creating transfer function with symbolic variables  
%this step is needed for symbolic differentiation 
%Replace a1, a2, a3, a4, b1, b2 terms with edge and capacitance symbolic 
%variables 
CP11_tf = subs(CP11_tf,[a1,a2,a3,a4,b1,b2],[-E1/C2-E2/C2,E1/C1,E1/C2,-E1/C1,E2,1000]); 
CP12_tf = subs(CP12_tf,[a1,a2,a3,a4,b1,b2],[-E1/C2-E2/C2,E1/C1,E1/C2,-E1/C1,E2,1000]); 

  
%Plot transfer functions with real values 
figure() 
eval(['bode(CP11_tf_v);']); 
eval(['title("CP11 tf v");']); 

  
figure() 
eval(['bode(CP12_tf_v);']); 
eval(['title("CP12 tf v");']); 

  
%% 
%defining transfer function for Cold Plate 2 
%Tin --> Eout 
CP33_tf = (b1*s -a4*b1)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
CP34_tf = (a2*b2)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 

  
[N1,D1]=numden(CP33_tf); 
[N2,D2]=numden(CP34_tf); 
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for j=1:2 
    eval(['Ncoeffs = collect(N',num2str(j),', s);']); 
    eval(['Dcoeffs = collect(D',num2str(j),', s);']); 

  
    Nc = coeffs(Ncoeffs, s, 'All'); 
    Dc = coeffs(Dcoeffs, s, 'All'); 

  
    Nc = subs(Nc,[a1,a2,a3,a4,b1,b2],[-E2_v/C4_v-E3_v/C4_v,E3_v/C3_v,E3_v/C4_v,-

E3_v/C3_v ,E2_v,1000]); 
    Dc = subs(Dc,[a1,a2,a3,a4,b1,b2],[-E2_v/C4_v-E3_v/C4_v,E3_v/C3_v,E3_v/C4_v,-

E3_v/C3_v ,E2_v,1000]); 

  
    eval(['Nc',num2str(j),' = double(Nc);']); 
    eval(['Dc',num2str(j),' = double(Dc);']); 
end 

     
%Creating transfer function with real values 
CP33_tf_v = tf([Nc1],[Dc1]); 
CP34_tf_v = tf([Nc2],[Dc2]); 

  
%Creating transfer function with symbolic variables  
%this step is needed for symbolic differentiation 
CP33_tf = subs(CP33_tf,[a1,a2,a3,a4,b1,b2],[-E2/C4-E3/C4,E3/C3,E3/C4,-E3/C3,E2,1000]); 
CP34_tf = subs(CP34_tf,[a1,a2,a3,a4,b1,b2],[-E2/C4-E3/C4,E3/C3,E3/C4,-E3/C3,E2,1000]); 

  
%% 
%Sensitivity Analysis 
%%Set up Transfer function equations 

  
%Each of the inputs has their own transfer function equation 
loops = ['src';'hl1';'hl2']; 

  
eval([loops(1,:),' = CP11_tf*(1/C2)*CP33_tf*(1/C4)']); %source to out 
eval([loops(2,:),' = CP12_tf*(1/C2)*CP33_tf*(1/C4)']); %hl1 to out 
eval([loops(3,:),' = CP34_tf*(1/C4)']); %hl2 to out 

  
%Parameters to take the partial derivatives of- you can shorten this to 
%just the capacitances 
param = {'C1';'C2';'C3';'C4';'E1';'E2';'E3'} 

  
for n=1:length(loops) 
    %For input-specific system transfer function separate numerator from 
    %denominator 
    eval(['[N,D]=numden(',loops(n,:),');']); 
    %Collect the s terms (since its in freq domain) 
    Ncoeffs = collect(N, s); 
    Dcoeffs = collect(D, s); 
    %Gather coefficients in correct order to prepare for tf() function 
    Nc = coeffs(Ncoeffs, s, 'All'); 
    Dc = coeffs(Dcoeffs, s, 'All'); 
    %Substitute all parameter symbolic variables for numeric values 
    %Right now we are just plotted the TF equation and don't need them to 
    %be symbolic since we're not taking the partial derivative yet 
    for k=1:length(param) 
        eval(['Nc = subs(Nc,[',param{k},'],[',param{k},'_v]);']); 
        eval(['Dc = subs(Dc,[',param{k},'],[',param{k},'_v]);']); 
    end 
    %Convert to double 
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    Nc = double(Nc); 
    Dc = double(Dc); 
    %Create TF for each input-specific TF equation 
    eval([loops(n,:),'_v = tf([Nc],[Dc]);']); 
end 
%% 
%%Take partial derivatives 

  
%Note parameters to take the partial derivatives of 
edgesofinterest =  param; 
paramofedge = linspace(1,length(param),length(param)); 

  
for i=1:length(loops) 
    for j=1:length(edgesofinterest) 
        edgesofinterest{j} %Print parameter name to track progress 

         
        %create copy so you can substitue values in a loop each time you take a 
        %partial derivative of a different parameter 
        eval([loops(i,:),'2 =',loops(i,:),';']); 

  
        for k=1:paramofedge(j)-1 
            %Substitute parameter values up until parameter you are taking the 
            %partial derivative of 
            eval([loops(i,:),'2 = 

subs(',loops(i,:),'2,[',param{k},'],[',param{k},'_v]);']); 
        end 

  
        for k=paramofedge(j)+1:length(param) 
            %Substitute parameter values for parameters after the one you are taking 

the 
            %partial derivative of 
            eval([loops(i,:),'2 = 

subs(',loops(i,:),'2,[',param{k},'],[',param{k},'_v]);']); 
        end 

         
        %Simplify resulting equation, getting ready to take partial derivative 
        eval([loops(i,:),'2 = simplify(',loops(i,:),'2);']); 

  
        %Take partial derivative of output equation with respect to single parameter 
        eval(['TF_',loops(i,:),'_',edgesofinterest{j},' = 

diff(',loops(i,:),'2,',edgesofinterest{j},');']); 
        %Substitute parameter value back in now that gradient has been calculated 
        eval(['TF_',loops(i,:),'_',edgesofinterest{j},' = 

subs(TF_',loops(i,:),'_',edgesofinterest{j},',[',edgesofinterest{j},'],[',edgesofinter

est{j},'_v]);']); 
        %Simplify this answer 
        eval(['TF_',loops(i,:),'_',edgesofinterest{j},' = 

simplify(TF_',loops(i,:),'_',edgesofinterest{j},');']); 
        %Find numerator and denominator of partial derivative equation 
        eval(['[N,D]=numden(TF_',loops(i,:),'_',edgesofinterest{j},');']); 

  
        %Collect s terms you the partial derivative can be plotted as a transfer 
        %function in a bode plot 
        Ncoeffs = collect(N, s); 
        Dcoeffs = collect(D, s); 

  
        %Put coefficients into an array 
        Nc = coeffs(Ncoeffs, s, 'All'); 
        Dc = coeffs(Dcoeffs, s, 'All'); 
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        %Convert to type double 
        Nc = double(Nc); 
        Dc = double(Dc); 

  
        %Create transfer function which reperesents the partial derivative of one 
        %input-specific transfer function with respect to a single parameter 
        eval(['DiffTF_',loops(i,:),'_',edgesofinterest{j},' = tf([Nc],[Dc]);']); 
    end 
end 

  
%% 
%%Sensitivity Bode Plots 

  
%Plot sensitivity bode plots - partial derivatives of input-specific bode plot 
for ii=1:length(loops) 
    figure() 
    

eval(['bodemag(DiffTF_',loops(ii,:),'_',param{1},',DiffTF_',loops(ii,:),'_',param{2},'

,DiffTF_',loops(ii,:),'_',param{3},',DiffTF_',loops(ii,:),'_',param{4},',"--

",DiffTF_',loops(ii,:),'_',param{5},',DiffTF_',loops(ii,:),'_',param{6},',DiffTF_',loo

ps(ii,:),'_',param{7},')']); 
    legend(param) 
    eval(['title("Sensitivity Bode Plot for ',loops(ii,:),' Loop")']) 
end 

  
title("Sensitivity Bode Plot for Input = Source Temperature") 
title("Sensitivity Bode Plot for Input = Heat Load 1") 
title("Sensitivity Bode Plot for Input = Heat Load 2") 

  
%% Plot sensitivity bode plots comparing parameter 2 (C2) and 4 (C4) 
figure() 
subplot(1,3,1) 
eval(['bodemag(DiffTF_',loops(1,:),'_',param{2},',DiffTF_',loops(1,:),'_',param{4},',"

--r")']); 
title("Sensitivity Bode Plot for Input = Source Temperature") 
legend(param{2},param{4}) 
subplot(1,3,2) 
eval(['bodemag(DiffTF_',loops(2,:),'_',param{2},',DiffTF_',loops(2,:),'_',param{4},',"

--r")']); 
title("Sensitivity Bode Plot for Input = Heat Load 1") 
legend(param{2},param{4}) 
subplot(1,3,3) 
eval(['bodemag(DiffTF_',loops(3,:),'_',param{2},',DiffTF_',loops(3,:),'_',param{4},',"

--r")']); 
title("Sensitivity Bode Plot for Input = Heat Load 2") 
legend(param{2},param{4}) 
%% 
%%Sensitivity Plot 
%Choose parameters to include in Sensitivity Plot 
array ={param{1},param{2},param{3},param{4},param{5},param{6},param{7}}; 
%Note what the frequencies of the different inputs are 
freq_des=[1,1,1]; 
%Note the amplitudes of the inputs 
amp = [20,1,2]; 

  
magnitude = zeros(3,length(array)); 
summ = zeros(1,length(array)); 

  
for jj=1:3 
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    for kk=1:length(array) 
        eval(['[mag,phase,wout] = bode(DiffTF_',loops(jj,:),'_',array{kk},');']); 

  
        if freq_des(jj)==0 
            magnitude(jj,kk) = 0;  
        else 
            magnitude(jj,kk) = interp1(wout(:),mag(:),freq_des(jj),'linear');   
        end 
    end 
end  

     
%Add the sensitivities multiplied by the input signal amplitude together 
%This combines all the contributions to the output sensitivity of each of the 

parameters  
%from each input specific TF to yield the total sensitivity of the output to each 

parameter 
for kk=1:length(array) 
        summ(kk)= magnitude(1,kk)*amp(1) + magnitude(2,kk)*amp(2) + 

magnitude(3,kk)*amp(3); 
end 

  
figure() 
xaxis=0:1; 
y=[summ(1),summ(2),summ(3),summ(4),summ(5),summ(6),summ(7)]; 
plot(xaxis,y(1)*ones(size(xaxis)),xaxis,y(2)*ones(size(xaxis)),xaxis,y(3)*ones(size(xa

xis)),xaxis,y(4)*ones(size(xaxis)),"--

b",xaxis,y(5)*ones(size(xaxis)),xaxis,y(6)*ones(size(xaxis)),xaxis,y(7)*ones(size(xaxi

s))); 
%plot(xaxis,y(1)*ones(size(xaxis)),xaxis,y(2)*ones(size(xaxis)),xaxis,y(3)*ones(size(x

axis)),xaxis,y(4)*ones(size(xaxis))); 
legend(array) 
%title("Sensitivity of All Branch TFs at 1, 1, 1 rad/s to Capacitance Parameters") 
title("Sensitivity of All Branch TFs at 1, 1, 1 rad/s to All Parameters") 
ylabel('d Output Signal Amplitude (C) / d parameter') 
%title("Output Amplitude, Given Input Signals at 20,1,2, and 0.5 rad/s") 
%title("Sensitivity of Output Amplitude to C2 and C4, Given Input Signals at 20,1,50, 

and 0.5 rad/s") 

 

A.3 ExampleSys2SensAnalysis 

%%Setup Model Equations 
%%This is Hard Coded for the Example System 2 

  
%Create symbolic variables for each of the governing equation matrices for 
%the components 
syms s a1 a2 a3 a4 b1 b2 
%Create symbolic variables for each of the parameters so we can take the 
%partial derivatives of them 
syms C1 C2 C3 C4 C5 C6 C7 C8 C9 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 

  
%Read in Input Values from model 
temp_in = out.source1.data(); %Input 1 (Source Temp, degree C)  
heatLoad1 = out.hl1.data(); %Input 2 (Heat Load 1, kW) 
ambient = out.amb.data(); %Input 3 (Heat Load 2, kW) 
heatLoad2 = out.hl2.data(); %Input 4 (Heat Load 3, kW) 
heatLoad3 = out.hl3.data(); %Input 5 (Heat Load 4, kW) 
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%Gather Capacitance Data from Model for Cold Plate 1 
Cp = 1000*Fuel_Cp; 
U1 = cp1.HTC; 
A1 = pi*cp1.D*cp1.L; 
Cw1 = 1000*cp1.M_wall*cp1.Cp_wall; %Wall Capacitance 
Cf1 = cp1.Ac*cp1.L*Fuel_Rho*Cp; %Fluid Capacitance 

  
%Gather Capacitance Data from Model for Cold Plate 2 
U2 = cp2.HTC; 
A2 = pi*cp2.D*cp2.L; 
Cw2 = 1000*cp2.M_wall*cp2.Cp_wall; %Wall Capacitance 
Cf2 = cp2.Ac*cp2.L*Fuel_Rho*Cp; %Fluid Capacitance 

  
%Gather Capacitance Data from Model for Cold Plate 3 
U3 = cp3.HTC; 
A3 = pi*cp3.D*cp3.L; 
Cw3 = 1000*cp3.M_wall*cp3.Cp_wall; %Wall Capacitance 
Cf3 = cp3.Ac*cp3.L*Fuel_Rho*Cp; %Fluid Capacitance 

  
%Gather Capacitance Data from Model for Cold Plate 4 
U4 = cp4.HTC; 
A4 = pi*cp4.D*cp4.L; 
Cw4 = 1000*cp4.M_wall*cp4.Cp_wall; %Wall Capacitance 
Cf4 = cp4.Ac*cp4.L*Fuel_Rho*Cp; %Fluid Capacitance 

  
%Gather Capacitance Data from Model for Junction 
Cf5 = pi*j5.D^2*0.25*j5.L*Fuel_Rho*Cp; %Fluid Capacitance 

  
%Find mass flow rate steady state value (even if mass flow is sinusoidal) 
tenth=floor(length(out.m.data)*0.95) 
mflow1=mean(out.m.data(tenth:end)) 

  
tenth=floor(length(out.m5.data)*0.95); 
mflow2=mean(out.m5.data(tenth:end)) 

  
tenth=floor(length(out.m8.data)*0.95) 
mflow3=mean(out.m8.data(tenth:end)) 

  
tenth=floor(length(out.m6.data)*0.95) 
mflow4=mean(out.m6.data(tenth:end)) 

  
tenth=floor(length(out.m7.data)*0.95) 
mflow5=mean(out.m7.data(tenth:end)) 

  
%number edges and capacitances like the graph numbering for edges and capacitances 
C1_v = Cf1; %cp1 fluid cap 
C2_v = Cw1; %cp1 wall cap 
C3_v = Cf2; %cp2 fluid cap 
C4_v = Cw2; %cp2 wall cap 
C5_v = Cf3; %cp3 fluid cap 
C6_v = Cw3; %cp3 wall cap 
C7_v = Cf4; %cp4 fluid cap  
C8_v = Cw4; %cp4 wall cap 
C9_v = Cf5; %junction fluid cap 

  
%Edge coefficients 
E1_v = U1*A1; %convective edge between fluid and wall 
E2_v = mflow1*Cp; %advective edge out of cp1 fluid 
E3_v = mflow2*Cp; %advective edge into cp2 fluid 
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E4_v = U2*A2; %convective edge between fluid and wall 
E5_v = mflow3*Cp; %advective edge into cp3 fluid 
E6_v = U3*A3; %convective edge between fluid and wall 
E7_v = mflow3*Cp; %advective edge into junction fluid 
E8_v = mflow4*Cp; %advective edge into cp4 fluid 
E9_v = U4*A4; %convective edge between fluid and wall 
E10_v = mflow4*Cp; %advective edge into junction fluid 
E11_v = mflow5*Cp; %advective edge out of system 

  
%defining transfer function for Cold Plate 1 
%Tin --> Eout 
CP11_tf = (b1*s -a4*b1)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
CP12_tf = (a2*b2)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
CP21_tf = (a3*b1)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
CP22_tf = (b2*s-a1*b2)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 

  
%separate numerator from denominator 
[N1,D1]=numden(CP11_tf); 
[N2,D2]=numden(CP12_tf); 
[N3,D3]=numden(CP21_tf); 
[N4,D4]=numden(CP22_tf); 

     
for j=1:4 
    %collect coefficients in front of each s term 
    eval(['Ncoeffs = collect(N',num2str(j),', s);']); 
    eval(['Dcoeffs = collect(D',num2str(j),', s);']); 

  
    %group coefficients into array 
    Nc = coeffs(Ncoeffs, s, 'All'); 
    Dc = coeffs(Dcoeffs, s, 'All'); 

   
    %Replace a1, a2, a3, a4, b1, b2 terms with edge and capacitance values 
    %('v' stands for value) 
    Nc = subs(Nc,[a1,a2,a3,a4,b1,b2],[-E1_v/C1_v-E2_v/C1_v,E1_v/C2_v,E1_v/C1_v,-

E1_v/C2_v ,E2_v,1000]); 
    Dc = subs(Dc,[a1,a2,a3,a4,b1,b2],[-E1_v/C1_v-E2_v/C1_v,E1_v/C2_v,E1_v/C1_v,-

E1_v/C2_v ,E2_v,1000]); 

  
    %Convert to double and record for each transfer function 
    eval(['Nc',num2str(j),' = double(Nc);']); 
    eval(['Dc',num2str(j),' = double(Dc);']); 
end 

     
%Creating transfer function with real values 
CP11_tf_v = tf([Nc1],[Dc1]); 
CP12_tf_v = tf([Nc2],[Dc2]); 
CP21_tf_v = tf([Nc3],[Dc3]); 
CP22_tf_v = tf([Nc4],[Dc4]); 

  
%Creating transfer function with symbolic variables  
%this step is needed for symbolic differentiation 
%Replace a1, a2, a3, a4, b1, b2 terms with edge and capacitance symbolic 
%variables 
CP11_tf = subs(CP11_tf,[a1,a2,a3,a4,b1,b2],[-E1/C1-E2/C1,E1/C2,E1/C1,-E1/C2,E2,1000]); 
CP12_tf = subs(CP12_tf,[a1,a2,a3,a4,b1,b2],[-E1/C1-E2/C1,E1/C2,E1/C1,-E1/C2,E2,1000]); 
CP21_tf = subs(CP21_tf,[a1,a2,a3,a4,b1,b2],[-E1/C1-E2/C1,E1/C2,E1/C1,-E1/C2,E2,1000]); 
CP22_tf = subs(CP22_tf,[a1,a2,a3,a4,b1,b2],[-E1/C1-E2/C1,E1/C2,E1/C1,-E1/C2,E2,1000]); 

  
%% 
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%defining transfer function for Cold Plate 2 
%Tin --> Eout 
R11_tf = (b1*s -a4*b1)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
R12_tf = (a2*b2)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
R21_tf = (a3*b1)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
R22_tf = (b2*s-a1*b2)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 

  
[N1,D1]=numden(R11_tf); 
[N2,D2]=numden(R12_tf); 
[N3,D3]=numden(R21_tf); 
[N4,D4]=numden(R22_tf); 

     
for j=1:4 
    eval(['Ncoeffs = collect(N',num2str(j),', s);']); 
    eval(['Dcoeffs = collect(D',num2str(j),', s);']); 

  
    Nc = coeffs(Ncoeffs, s, 'All'); 
    Dc = coeffs(Dcoeffs, s, 'All'); 

  
    %These subs for a1..b2 change for each component type 
    Nc = subs(Nc,[a1,a2,a3,a4,b1,b2],[-E4_v/C3_v-E3_v/C3_v,E4_v/C4_v,E4_v/C3_v,-

E4_v/C4_v ,E3_v,1000]); 
    Dc = subs(Dc,[a1,a2,a3,a4,b1,b2],[-E4_v/C3_v-E3_v/C3_v,E4_v/C4_v,E4_v/C3_v,-

E4_v/C4_v ,E3_v,1000]); 

  
    eval(['Nc',num2str(j),' = double(Nc);']); 
    eval(['Dc',num2str(j),' = double(Dc);']); 
end 

     
%Creating transfer function with real values 
R11_tf_v = tf([Nc1],[Dc1]); 
R12_tf_v = tf([Nc2],[Dc2]); 
R21_tf_v = tf([Nc3],[Dc3]); 
R22_tf_v = tf([Nc4],[Dc4]); 

  
%Creating transfer function with symbolic variables  
%this step is needed for symbolic differentiation 
R11_tf = subs(R11_tf,[a1,a2,a3,a4,b1,b2],[-E4/C3-E3/C3,E4/C4,E4/C3,-E4/C4,E3,1000]); 
R12_tf = subs(R12_tf,[a1,a2,a3,a4,b1,b2],[-E4/C3-E3/C3,E4/C4,E4/C3,-E4/C4,E3,1000]); 
R21_tf = subs(R21_tf,[a1,a2,a3,a4,b1,b2],[-E4/C3-E3/C3,E4/C4,E4/C3,-E4/C4,E3,1000]); 
R22_tf = subs(R22_tf,[a1,a2,a3,a4,b1,b2],[-E4/C3-E3/C3,E4/C4,E4/C3,-E4/C4,E3,1000]); 

  

  
%% 
%defining transfer function for Cold Plate 3 
%Tin --> Eout 
CP33_tf = (b1*s -a4*b1)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
CP34_tf = (a2*b2)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
CP43_tf = (a3*b1)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
CP44_tf = (b2*s-a1*b2)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 

  
[N1,D1]=numden(CP33_tf); 
[N2,D2]=numden(CP34_tf); 
[N3,D3]=numden(CP43_tf); 
[N4,D4]=numden(CP44_tf); 

     
for j=1:4 
    eval(['Ncoeffs = collect(N',num2str(j),', s);']); 
    eval(['Dcoeffs = collect(D',num2str(j),', s);']); 
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    Nc = coeffs(Ncoeffs, s, 'All'); 
    Dc = coeffs(Dcoeffs, s, 'All'); 

  
    Nc = subs(Nc,[a1,a2,a3,a4,b1,b2],[-E6_v/C5_v-E3_v/C5_v,E6_v/C6_v,E6_v/C5_v,-

E6_v/C6_v ,E3_v,1000]); 
    Dc = subs(Dc,[a1,a2,a3,a4,b1,b2],[-E6_v/C5_v-E3_v/C5_v,E6_v/C6_v,E6_v/C5_v,-

E6_v/C6_v ,E3_v,1000]); 

  
    eval(['Nc',num2str(j),' = double(Nc);']); 
    eval(['Dc',num2str(j),' = double(Dc);']); 
end 

     
%Creating transfer function with real values 
CP33_tf_v = tf([Nc1],[Dc1]); 
CP34_tf_v = tf([Nc2],[Dc2]); 
CP43_tf_v = tf([Nc3],[Dc3]); 
CP44_tf_v = tf([Nc4],[Dc4]); 

  
%Creating transfer function with symbolic variables  
%this step is needed for symbolic differentiation 
CP33_tf = subs(CP33_tf,[a1,a2,a3,a4,b1,b2],[-E6/C5-E3/C5,E6/C6,E6/C5,-E6/C6,E3,1000]); 
CP34_tf = subs(CP34_tf,[a1,a2,a3,a4,b1,b2],[-E6/C5-E3/C5,E6/C6,E6/C5,-E6/C6,E3,1000]); 
CP43_tf = subs(CP43_tf,[a1,a2,a3,a4,b1,b2],[-E6/C5-E3/C5,E6/C6,E6/C5,-E6/C6,E3,1000]); 
CP44_tf = subs(CP44_tf,[a1,a2,a3,a4,b1,b2],[-E6/C5-E3/C5,E6/C6,E6/C5,-E6/C6,E3,1000]); 
%% 
%defining transfer function for Cold Plate 4 
%Tin --> Eout 
CP55_tf = (b1*s -a4*b1)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
CP56_tf = (a2*b2)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
CP65_tf = (a3*b1)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 
CP66_tf = (b2*s-a1*b2)/(s^2 -(a1+a4)*s + (a1*a4-a2*a3)); 

  
[N1,D1]=numden(CP55_tf); 
[N2,D2]=numden(CP56_tf); 
[N3,D3]=numden(CP65_tf); 
[N4,D4]=numden(CP66_tf); 

     
for j=1:4 
    eval(['Ncoeffs = collect(N',num2str(j),', s);']); 
    eval(['Dcoeffs = collect(D',num2str(j),', s);']); 

  
    Nc = coeffs(Ncoeffs, s, 'All'); 
    Dc = coeffs(Dcoeffs, s, 'All'); 

  
    Nc = subs(Nc,[a1,a2,a3,a4,b1,b2],[-E9_v/C7_v-(E2_v-

E3_v)/C7_v,E9_v/C8_v,E9_v/C7_v,-E9_v/C8_v,(E2_v-E3_v),1000]); 
    Dc = subs(Dc,[a1,a2,a3,a4,b1,b2],[-E9_v/C7_v-(E2_v-

E3_v)/C7_v,E9_v/C8_v,E9_v/C7_v,-E9_v/C8_v,(E2_v-E3_v),1000]); 

  
    eval(['Nc',num2str(j),' = double(Nc);']); 
    eval(['Dc',num2str(j),' = double(Dc);']); 
end 

     
%Creating transfer function with real values 
CP55_tf_v = tf([Nc1],[Dc1]); 
CP56_tf_v = tf([Nc2],[Dc2]); 
CP65_tf_v = tf([Nc3],[Dc3]); 
CP66_tf_v = tf([Nc4],[Dc4]); 
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%Creating transfer function with symbolic variables  
%this step is needed for symbolic differentiation 
CP55_tf = subs(CP55_tf,[a1,a2,a3,a4,b1,b2],[-E9/C7-(E2-E3)/C7,E9/C8,E9/C7,-E9/C8,(E2-

E3),1000]); 
CP56_tf = subs(CP56_tf,[a1,a2,a3,a4,b1,b2],[-E9/C7-(E2-E3)/C7,E9/C8,E9/C7,-E9/C8,(E2-

E3),1000]); 
CP65_tf = subs(CP65_tf,[a1,a2,a3,a4,b1,b2],[-E9/C7-(E2-E3)/C7,E9/C8,E9/C7,-E9/C8,(E2-

E3),1000]); 
CP66_tf = subs(CP66_tf,[a1,a2,a3,a4,b1,b2],[-E9/C7-(E2-E3)/C7,E9/C8,E9/C7,-E9/C8,(E2-

E3),1000]); 

  
%% 
%defining transfer function for Junction 
%Tin --> Eout 
J11_tf = (b1)/(s -a1); 
J12_tf = (b2)/(s -a1); 

  
[N1,D1]=numden(J11_tf); 
[N2,D2]=numden(J12_tf); 

  
for j=1:2 
    eval(['Ncoeffs = collect(N',num2str(j),', s);']); 
    eval(['Dcoeffs = collect(D',num2str(j),', s);']); 

  
    Nc = coeffs(Ncoeffs, s, 'All'); 
    Dc = coeffs(Dcoeffs, s, 'All'); 

  
%ignore sink in tank 
    Nc = subs(Nc,[a1,b1,b2],[-E2_v/C9_v,E3_v,E2_v-E3_v]); 
    Dc = subs(Dc,[a1,b1,b2],[-E2_v/C9_v,E3_v,E2_v-E3_v]); 

  
    eval(['Nc',num2str(j),' = double(Nc);']); 
    eval(['Dc',num2str(j),' = double(Dc);']); 
end 

     
%Creating transfer function with real values 
J11_tf_v = tf([Nc1],[Dc1]); 
J12_tf_v = tf([Nc2],[Dc2]); 

  
%Creating transfer function with symbolic variables  
%this step is needed for symbolic differentiation 
J11_tf = subs(J11_tf,[a1,b1,b2],[-(E2)/C9,E3,E2-E3]); 
J12_tf = subs(J12_tf,[a1,b1,b2],[-(E2)/C9,E3,E2-E3]); 

  
%% 
%Sensitivity Analysis 
%%Set up Transfer function equations 

  
%Each of the inputs has their own transfer function equation 
loops = ['sce';'hl1';'hl2';'hl3';'hl4']; 

  
%Finding Transfer Function equations when the top branch temperature (f5) is the 

output 
eval([loops(1,:),' = (CP11_tf*(1/C1)*(R11_tf*(1/C3)*CP33_tf*(1/C5)))']); %source to f5 
eval([loops(2,:),' = (CP12_tf*(1/C1)*R11_tf*(1/C3)*CP33_tf*(1/C5))']); %hl1 to f5 
eval([loops(3,:),' = (R12_tf*(1/C3)*CP33_tf*(1/C5))']); %amb to f5 
eval([loops(4,:),' = (CP34_tf*(1/C5))']); %hl2 to f5 
% eval([loops(5,:),' = nothing']); %hl3 to f5 
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%Finding Transfer Function equations when the bottom branch temperature (f7) is the 

output 
eval([loops(1,:),' = (CP11_tf*(1/C1)*(CP55_tf*(1/C7)))']); %source to f7 
eval([loops(2,:),' = (CP12_tf*(1/C1)*(CP55_tf*(1/C7)))']); %hl1 to f7 
% eval([loops(3,:),' = nothing']); %amb to f7 
% eval([loops(4,:),' = nothing']); %hl2 to f7 
eval([loops(5,:),' = (CP56_tf*(1/C7))']); %hl3 to f7 

  
%Finding Transfer Function equations when the output temperature (f9) is the output 
eval([loops(1,:),' = 

(CP11_tf*(1/C1)*(R11_tf*(1/C3)*CP33_tf*(1/C5)*J11_tf+CP55_tf*(1/C7)*J12_tf))*(1/C9)'])

; %source to out 
eval([loops(2,:),' = 

(CP12_tf*(1/C1)*(R11_tf*(1/C3)*CP33_tf*(1/C5)*J11_tf+CP55_tf*(1/C7)*J12_tf))*(1/C9)'])

; %hl1 to out 
eval([loops(3,:),' = (R12_tf*(1/C3)*CP33_tf*(1/C5)*J11_tf)*(1/C9)']); %amb to out 
eval([loops(4,:),' = (CP34_tf*(1/C5)*J11_tf)*(1/C9)']); %hl2 to out 
eval([loops(5,:),' = (CP56_tf*(1/C7)*J12_tf*(1/C9))']); %hl3 to out 

  
%Parameters to take the partial derivatives of- you can shorten this to 
%just the capacitances 
param = 

{'C1';'C2';'C3';'C4';'C5';'C6';'C7';'C8';'C9';'E1';'E2';'E3';'E4';'E5';'E6';'E7';'E8';

'E9';'E10';'E11'} 

  
for n=1:5 
    %For input-specific system transfer function separate numerator from 
    %denominator 
    eval(['[N,D]=numden(',loops(n,:),');']); 
    %Collect the s terms (since its in freq domain) 
    Ncoeffs = collect(N, s); 
    Dcoeffs = collect(D, s); 
    %Gather coefficients in correct order to prepare for tf() function 
    Nc = coeffs(Ncoeffs, s, 'All'); 
    Dc = coeffs(Dcoeffs, s, 'All'); 
    %Substitute all parameter symbolic variables for numeric values 
    %Right now we are just plotted the TF equation and don't need them to 
    %be symbolic since we're not taking the partial derivative yet 
    for k=1:length(param) 
        eval(['Nc = subs(Nc,[',param{k},'],[',param{k},'_v]);']); 
        eval(['Dc = subs(Dc,[',param{k},'],[',param{k},'_v]);']); 
    end 
    %Convert to double 
    Nc = double(Nc); 
    Dc = double(Dc); 
    %Create TF for each input-specific TF equation 
    eval([loops(n,:),'_v = tf([Nc],[Dc]);']); 
    %Plot numeric value of transfer function ('v' stands for value) 
    %figure() 
    %eval(['bode(',loops(n,:),'_v);']); 
end 
%% 
%%Take partial derivatives 

  
%Note parameters to take the partial derivatives of 
edgesofinterest =  param; 
paramofedge = linspace(1,length(param),length(param)); 

  
for i=1:length(loops) 
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    for j=1:length(edgesofinterest) 
        edgesofinterest{j} %Print parameter name to track progress 

         
        %create copy so you can substitue values in a loop each time you take a 
        %partial derivative of a different parameter 
        eval([loops(i,:),'2 =',loops(i,:),';']);  

         
        for k=1:paramofedge(j)-1 
            %Substitute parameter values up until parameter you are taking the 
            %partial derivative of 
            eval([loops(i,:),'2 = 

subs(',loops(i,:),'2,[',param{k},'],[',param{k},'_v]);']); 
        end 

  
        for k=paramofedge(j)+1:length(param) 
            %Substitute parameter values for parameters after the one you are taking 

the 
            %partial derivative of 
            eval([loops(i,:),'2 = 

subs(',loops(i,:),'2,[',param{k},'],[',param{k},'_v]);']); 
        end 

  
        %Simplify resulting equation, getting ready to take partial derivative 
        eval([loops(i,:),'2 = simplify(',loops(i,:),'2);']); 

  
        %Take partial derivative of output equation with respect to single parameter 
        eval(['TF_',loops(i,:),'_',edgesofinterest{j},' = 

diff(',loops(i,:),'2,',edgesofinterest{j},');']); 
        %Substitute parameter value back in now that gradient has been calculated 
        eval(['TF_',loops(i,:),'_',edgesofinterest{j},' = 

subs(TF_',loops(i,:),'_',edgesofinterest{j},',[',edgesofinterest{j},'],[',edgesofinter

est{j},'_v]);']); 
        %Simplify this answer 
        eval(['TF_',loops(i,:),'_',edgesofinterest{j},' = 

simplify(TF_',loops(i,:),'_',edgesofinterest{j},');']); 
        %Find numerator and denominator of partial derivative equation 
        eval(['[N,D]=numden(TF_',loops(i,:),'_',edgesofinterest{j},');']); 

  
        %Collect s terms you the partial derivative can be plotted as a transfer 
        %function in a bode plot 
        Ncoeffs = collect(N, s); 
        Dcoeffs = collect(D, s); 

  
        %Put coefficients into an array 
        Nc = coeffs(Ncoeffs, s, 'All'); 
        Dc = coeffs(Dcoeffs, s, 'All'); 

  
        %Convert to type double 
        Nc = double(Nc); 
        Dc = double(Dc); 

  
        %Create transfer function which reperesents the partial derivative of one 
        %input-specific transfer function with respect to a single parameter 
        eval(['DiffTF_',loops(i,:),'_',edgesofinterest{j},' = tf([Nc],[Dc]);']); 
    end 
end 

  
%% 
%%Input Specific Transfer Functions 
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%Plot all input-specific bode plots 
for ii=1:5%length(loops) 
    figure() 
    eval(['bode(',loops(ii,:),'_v);']); 
    eval(['title("Transfer Function of System Output to Input ',num2str(ii),'")']) 
end 

  
%Plot input-specific bode plots in subplot 
figure() 
suptitle('Input - Specific System Transfer Functions') 
subplot(2,3,1) 
ii=1; 
eval(['bodemag(',loops(ii,:),'_v);']); 
title('System Output / Source Temperature', 'Interpreter', 'latex') 
title('Top Branch Temperature / Source Temperature', 'Interpreter', 'latex') 
title('Bottom Branch Temperature / Source Temperature', 'Interpreter', 'latex') 
subplot(2,3,2) 
ii=2; 
eval(['bodemag(',loops(ii,:),'_v);']); 
title('System Output / Heat Load 1', 'Interpreter', 'latex') 
title('Top Branch Temperature / Heat Load 1', 'Interpreter', 'latex') 
title('Bottom Branch Temperature / Heat Load 1', 'Interpreter', 'latex') 
subplot(2,3,3) 
ii=3; 
eval(['bodemag(',loops(ii,:),'_v);']); 
%eval(['plot(0,0);']); 
title('System Output / Heat Load 2', 'Interpreter', 'latex') 
title('Top Branch Temperature / Heat Load 2', 'Interpreter', 'latex') 
title('Bottom Branch Temperature / Heat Load 2', 'Interpreter', 'latex') 
subplot(2,3,4) 
ii=4; 
eval(['bodemag(',loops(ii,:),'_v);']); 
%eval(['plot(0,0);']); 
title('System Output / Heat Load 3', 'Interpreter', 'latex') 
title('Top Branch Temperature / Heat Load 3', 'Interpreter', 'latex') 
title('Bottom Branch Temperature / Heat Load 3', 'Interpreter', 'latex') 
subplot(2,3,5) 
ii=5; 
eval(['bodemag(',loops(ii,:),'_v);']); 
%eval(['plot(0,0);']); 
title('System Output / Heat Load 4', 'Interpreter', 'latex') 
title('Top Branch Temperature / Heat Load 4', 'Interpreter', 'latex') 
title('Bottom Branch Temperature / Heat Load 4', 'Interpreter', 'latex') 

  
%% 
%%Sensitivity Bode Plot 
%Plot sensitivity bode plots - partial derivatives of input-specific bode plot 
figure() 
%suptitle('Derivatives of Input - Specific System Transfer Functions: Sensitivity Bode 

Plots') 
subplot(2,3,1) 
ii=1; 
eval(['bodemag(DiffTF_',loops(ii,:),'_',param{1},',DiffTF_',loops(ii,:),'_',param{2},'

,DiffTF_',loops(ii,:),'_',param{3},',DiffTF_',loops(ii,:),'_',param{4},',DiffTF_',loop

s(ii,:),'_',param{5},',"--g",DiffTF_',loops(ii,:),'_',param{6},',"--

c",DiffTF_',loops(ii,:),'_',param{7},',"--m",DiffTF_',loops(ii,:),'_',param{8},',"--

r",DiffTF_',loops(ii,:),'_',param{9},',"--b");']); 
title({'\underline {d ( System Output / Source Temperature )}','d parameter'}, 

'Interpreter', 'latex') 
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title({'\underline {d ( Top Branch Temperature / Source Temperature )}','d 

parameter'}, 'Interpreter', 'latex') 
title({'\underline {d ( Bottom Branch Temperature / Source Temperature )}','d 

parameter'}, 'Interpreter', 'latex') 
legend(param{1},param{2},param{3},param{4},param{5},param{6},param{7},param{8},param{9

}); 
subplot(2,3,2) 
ii=2; 
eval(['bodemag(DiffTF_',loops(ii,:),'_',param{1},',DiffTF_',loops(ii,:),'_',param{2},'

,DiffTF_',loops(ii,:),'_',param{3},',DiffTF_',loops(ii,:),'_',param{4},',DiffTF_',loop

s(ii,:),'_',param{5},',"--g",DiffTF_',loops(ii,:),'_',param{6},',"--

c",DiffTF_',loops(ii,:),'_',param{7},',"--m",DiffTF_',loops(ii,:),'_',param{8},',"--

r",DiffTF_',loops(ii,:),'_',param{9},',"--b");']); 
title({'\underline {d ( Top Branch Temperature / Heat Load 1 )}','d parameter'}, 

'Interpreter', 'latex')  
title({'\underline {d ( Bottom Branch Temperature / Heat Load 1 )}','d parameter'}, 

'Interpreter', 'latex') 
title({'\underline {d ( System Output / Heat Load 1 )}','d parameter'}, 'Interpreter', 

'latex') 
legend(param{1},param{2},param{3},param{4},param{5},param{6},param{7},param{8},param{9

}); 
subplot(2,3,3) 
ii=3; 
eval(['bodemag(DiffTF_',loops(ii,:),'_',param{1},',DiffTF_',loops(ii,:),'_',param{2},'

,DiffTF_',loops(ii,:),'_',param{3},',DiffTF_',loops(ii,:),'_',param{4},',DiffTF_',loop

s(ii,:),'_',param{5},',"--g",DiffTF_',loops(ii,:),'_',param{6},',"--

c",DiffTF_',loops(ii,:),'_',param{7},',"--m",DiffTF_',loops(ii,:),'_',param{8},',"--

r",DiffTF_',loops(ii,:),'_',param{9},',"--b");']); 
title({'\underline {d ( System Output / Heat Load 2 )}','d parameter'}, 'Interpreter', 

'latex') 
title({'\underline {d ( Top Branch Temperature / Heat Load 2 )}','d parameter'}, 

'Interpreter', 'latex') 
title({'\underline {d ( Bottom Branch Temperature / Heat Load 2 )}','d parameter'}, 

'Interpreter', 'latex') 
legend(param{1},param{2},param{3},param{4},param{5},param{6},param{7},param{8},param{9

}); 
subplot(2,3,4) 
ii=4; 
eval(['bodemag(DiffTF_',loops(ii,:),'_',param{1},',DiffTF_',loops(ii,:),'_',param{2},'

,DiffTF_',loops(ii,:),'_',param{3},',DiffTF_',loops(ii,:),'_',param{4},',DiffTF_',loop

s(ii,:),'_',param{5},',"--g",DiffTF_',loops(ii,:),'_',param{6},',"--

c",DiffTF_',loops(ii,:),'_',param{7},',"--m",DiffTF_',loops(ii,:),'_',param{8},',"--

r",DiffTF_',loops(ii,:),'_',param{9},',"--b");']); 
title({'\underline {d ( System Output / Heat Load 3 )}','d parameter'}, 'Interpreter', 

'latex') 
title({'\underline {d ( Top Branch Temperature / Heat Load 3 )}','d parameter'}, 

'Interpreter', 'latex') 
title({'\underline {d ( Bottom Branch Temperature / Heat Load 3 )}','d parameter'}, 

'Interpreter', 'latex') 
legend('C1: CP1 Fluid','C2: CP1 Wall','C3: CP2 Fluid','C4: CP2 Wall','C5: CP3 

Fluid','C6: CP3 Wall','C7: CP4 Fluid','C8: CP4 Wall','C9: J1 Fluid'); 
legend(param{1},param{2},param{3},param{4},param{5},param{6},param{7},param{8},param{9

}); 
subplot(2,3,5) 
ii=5; 
eval(['bodemag(DiffTF_',loops(ii,:),'_',param{1},',DiffTF_',loops(ii,:),'_',param{2},'

,DiffTF_',loops(ii,:),'_',param{3},',DiffTF_',loops(ii,:),'_',param{4},',DiffTF_',loop

s(ii,:),'_',param{5},',"--g",DiffTF_',loops(ii,:),'_',param{6},',"--

c",DiffTF_',loops(ii,:),'_',param{7},',"--m",DiffTF_',loops(ii,:),'_',param{8},',"--

r",DiffTF_',loops(ii,:),'_',param{9},',"--b");']); 
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title({'\underline {d ( System Output / Heat Load 4 )}','d parameter'}, 'Interpreter', 

'latex') 
title({'\underline {d ( Top Branch Temperature / Heat Load 4 )}','d parameter'}, 

'Interpreter', 'latex') 
title({'\underline {d ( Bottom Branch Temperature / Heat Load 4 )}','d parameter'}, 

'Interpreter', 'latex') 
legend('C1: CP1 Fluid','C2: CP1 Wall','C3: CP2 Fluid','C4: CP2 Wall','C5: CP3 

Fluid','C6: CP3 Wall','C7: CP4 Fluid','C8: CP4 Wall','C9: J1 Fluid'); 
%% 
%%Sensitivity Plot 
%Choose parameters to include in Sensitivity Plot 
array 

={param{1},param{2},param{3},param{4},param{5},param{6},param{7},param{8},param{9}}; 
%Note what the frequencies of the different inputs are 
freq_des=[0,1,0.5,0,0]; 
%Note the amplitudes of the inputs 
amp = [20,1,1,2,5]; 

  
magnitude = zeros(5,length(array)); 
summ = zeros(1,length(array)); 

  
for jj=1:5 
    for kk=1:length(array) 
        eval(['[mag,phase,wout] = bode(DiffTF_',loops(jj,:),'_',array{kk},');']); 

  
        if freq_des(jj)==0 
            magnitude(jj,kk) = 0;  
        else 
            magnitude(jj,kk) = interp1(wout(:),mag(:),freq_des(jj),'linear');   
        end 
    end 
end  

     
%Add the sensitivities multiplied by the input signal amplitude together 
%This combines all the contributions to the output sensitivity of each of the 

parameters  
%from each input specific TF to yield the total sensitivity of the output to each 

parameter 
for kk=1:length(array) 
    summ(kk)= magnitude(1,kk)*amp(1) + magnitude(2,kk)*amp(2) + magnitude(3,kk)*amp(3) 

+ magnitude(4,kk)*amp(4) + magnitude(5,kk)*amp(5); 
end 

  
figure() 
xaxis=0:1; 
y=[summ(1),summ(2),summ(3),summ(4),summ(5),summ(6),summ(7),summ(8),summ(9)]; 
plot(xaxis,y(1)*ones(size(xaxis)),xaxis,y(2)*ones(size(xaxis)),xaxis,y(3)*ones(size(xa

xis)),xaxis,y(4)*ones(size(xaxis)),xaxis,y(5)*ones(size(xaxis)),"--

g",xaxis,y(6)*ones(size(xaxis)),"--c",xaxis,y(7)*ones(size(xaxis)),"--

m",xaxis,y(8)*ones(size(xaxis)),"--r",xaxis,y(9)*ones(size(xaxis)),"--b"); 
legend(param{1},param{2},param{3},param{4},param{5},param{6},param{7},param{8},param{9

}) 
title("Sensitivity of Bottom Branch to Parameters with 0,1,0.5,0,0 rad/s Inputs") 
ylabel('d Output Signal Amplitude (C) / d parameter') 
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A.4 Numerical_Verification 

%Specify which parameter should be perturbed 
%For Example 1 
add = 

{'cp1.M_wall','cp1.coeff','cp2.M_wall','cp2.coeff','cp1.HTC','sourcemdot','cp2.HTC'} 
% add = {'cp1.M_wall','cp2.coeff','cp2.M_wall','cp3.coeff'} 

  
%For Example 2 
% add = 

{'cp1.coeff','cp1.M_wall','cp2.coeff','cp2.M_wall','cp3.coeff','cp3.M_wall','cp4.coeff

','cp4.M_wall','j5.coeff'} 

  
%Specify what factors should be added to the capacitance of edge values for 

perturbation 
values = [0,0.02,0.05,0.1,0.5,1,2] 

  
%Specify the name of the Simulink Model 
%simName = 'Ch2Example_NoTank' 
%simName = 'Ch2Example_Single_Controller' 
simName = 'SimpleCh2Example' 

  
%Quick run-through of simulation with nominal values 
set_param(simName,'SimulationCommand','Start') 

  
tic %Start time 

  
%Running the simulation in this way will allow it to finish and send data back before 

beginning the next one 
set_param(simName,'SimulationCommand','Start') %begin simulation 
while(~strcmp( get_param(simName,'SimulationStatus') , 'stopped')) 
    pause(0.01); 
end 

         
toc %End time 

  
%Record Nominal values 
%Calculate maximum and minimum values for the last 10% of simulation (steady state 

amplitude) 
tenth=floor(length(out.systemoutput.data)*0.9) %system output temp 
up=max(out.systemoutput.data(tenth:end)) 
down=min(out.systemoutput.data(tenth:end)) 

  
tenth2=floor(length(out.systemoutput2.data)*0.9) %top branch output temp 
up2=max(out.systemoutput2.data(tenth:end)) 
down2=min(out.systemoutput2.data(tenth:end)) 

  
tenth3=floor(length(out.systemoutput3.data)*0.9) %bottom branch output temp 
up3=max(out.systemoutput3.data(tenth:end)) 
down3=min(out.systemoutput3.data(tenth:end)) 

  
%These are commented out because they only apply to the controller case 
%{ 
nom_cinput_1=sum(abs(out.cinput1.data())); %control input for controller 1 
nom_cinput_2=sum(abs(out.cinput2.data())); %control input for controller 2 
nom_cinput=nom_cinput_1+nom_cinput_2 %sum of control input (although control input 1 

is more relevant) 
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nom_cinput_1_data=out.cinput1.data(); %record the data values, not just the summed 

integral 
nom_cinput_2_data=out.cinput2.data(); %record the data values, not just the summed 

integral 

  
nom_amp=(up - down)/2; %system output temp amplitude 
nom_amp2=(up2 - down2)/2; %top branch output temp amplitude 
nom_amp3=(up3 - down3)/2; %bottom branch output temp amplitude 

  
nom_totalerror1=sum(abs(out.error1.data())); %control error for controller 1 
nom_totalerror2=sum(abs(out.error2.data())); %control error for controller 2 
%} 
%% 
%Begin perturbation simulations 
figure() 

  
for k=1:length(add) %Go through each parameter 

  
    for j = 1:length(values) %Go through each increment 
        run('Setup_Component_Params_Sensitivity7') %Reset parameter values 
        clear out; %clear the output from the previous simulation 

  
        eval([add{k},' = ',add{k},'+',num2str(values(j)),';']); %perturb the parameter 

  
        tic %start time 

  
        set_param(simName,'SimulationCommand','Start') %start simulation 

         
        %Running the simulation in this way will allow it to finish and send data back 

before beginning the next one 
        while(~strcmp( get_param(simName,'SimulationStatus') , 'stopped')) 
            pause(0.01); 
        end 

         
        toc %end time 

  
        %Record data to sift through later if desired 
        eval(['amp_data_',num2str(k),'_',num2str(j),' = out.systemoutput.data();']); 

                 
        %Find max and min values of last 10% of simulation 
        %Find steady state amplitude of output temp 
        tenth=floor(length(out.systemoutput.data)*0.9); 
        up=max(out.systemoutput.data(tenth:end)); 
        down=min(out.systemoutput.data(tenth:end)); 

         
        %Find steady state amplitude of top branch temp 
        tenth2=floor(length(out.systemoutput2.data)*0.9); 
        up2=max(out.systemoutput2.data(tenth:end)); 
        down2=min(out.systemoutput2.data(tenth:end)); 

  
        %Find steady state amplitude of bottom branch temp 
        tenth3=floor(length(out.systemoutput3.data)*0.9); 
        up3=max(out.systemoutput3.data(tenth:end)); 
        down3=min(out.systemoutput3.data(tenth:end)); 

         
        %Calculate steady state amplitude 
        amp=(up - down)/2; %system output temp amplitude 
        amp2=(up2 - down2)/2; %top branch temp amplitude 
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        amp3=(up3 - down3)/2; %bottom branch temp amplitude 
        %Put amplitude in an array for plotting later 
        eval(['amp_array_',num2str(k),'(j) = amp;']); 
        eval(['amp2_array_',num2str(k),'(j) = amp2;']); 
        eval(['amp3_array_',num2str(k),'(j) = amp3;']); 

         
        %These are commented below because they pertain to the controller model 
        %{ 
        cinput_1=sum(abs(out.cinput1.data())); %control input for controller 1 
        cinput_2=sum(abs(out.cinput2.data())); %control input for controller 2 
        cinput=cinput_1+cinput_2; %sum of control input (although control input 1 is 

more relevant) 

  
        totalerror1=sum(abs(out.error1.data())); %sum of error for controller 1 over 

simulation 
        totalerror2=sum(abs(out.error2.data())); %sum of error for controller 2 over 

simulation 

  
        %Find steady state amplitude of control input 1 
        ctenth=floor(length(out.cinput1.data)*0.9); 
        cup=max(out.cinput1.data(ctenth:end)); 
        cdown=min(out.cinput1.data(ctenth:end)); 

  
        %Find steady state amplitude of control input 2 
        ctenth2=floor(length(out.cinput2.data)*0.9); 
        cup2=max(out.cinput2.data(ctenth2:end)); 
        cdown2=min(out.cinput2.data(ctenth2:end)); 

  
        %Find steady state amplitude of control error 1 
        etenth=floor(length(out.error1.data)*0.9); 
        eup=max(out.error1.data(etenth:end)); 
        edown=min(out.error1.data(etenth:end)); 

  
        %Find steady state amplitude of control error 2 
        etenth2=floor(length(out.error2.data)*0.9); 
        eup2=max(out.error2.data(etenth2:end)); 
        edown2=min(out.error2.data(etenth2:end)); 

  
        camp=(cup - cdown)/2; %control input 1 amplitude 
        camp2=(cup2 - cdown2)/2; %control input 2 amplitude 

  
        eamp=(eup - edown)/2; %control error 1 amplitude 
        eamp2=(eup2 - edown2)/2; %control error 2 amplitude 

  
        campboth=camp+camp2; %sum control inputs for both controller 1 and 2 
        eampboth=eamp+eamp2; %sum control errors for both controller 1 and 2 

         
        %Record values in arrays for plotting 
        eval(['cinput_1_array_',num2str(k),'(j) = cinput_1;']); 
        eval(['cinput_2_array_',num2str(k),'(j) = cinput_2;']); 
        eval(['cinput_array_',num2str(k),'(j) = cinput;']); 

  
        eval(['totalerror1_array_',num2str(k),'(j) = totalerror1;']); 
        eval(['totalerror2_array_',num2str(k),'(j) = totalerror2;']); 

  
        eval(['camp_array_',num2str(k),'(j) = camp;']); 
        eval(['camp2_array_',num2str(k),'(j) = camp2;']); 
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        eval(['eamp_array_',num2str(k),'(j) = eamp;']); 
        eval(['eamp2_array_',num2str(k),'(j) = eamp2;']); 
        %} 
    end 
    %Plot how the parameter perturbations affect the steady state amplitude for each 

parameter as you go 
    eval(['plot(values,amp_array_',num2str(k),');']) 

  
    hold on 
end 
hold off 
run('Setup_Component_Params_Sensitivity7') %reset parameter values 
%% 
%Plot numerical verification plot 
figure() 
%Plot steady state amplitudes 
plot(values,amp_array_1,values,amp_array_2,values,amp_array_3,values,amp_array_4,value

s,amp_array_5,"--g",values,amp_array_6,"--c",values,amp_array_7,'--

m',values,amp_array_8,'--r',values,amp_array_9,'--b') 
%plot(values,amp2_array_1,values,amp2_array_2,values,amp2_array_3,values,amp2_array_4,

values,amp2_array_5,"--g",values,amp2_array_6,"--c",values,amp2_array_7,'--

m',values,amp2_array_8,'--r',values,amp2_array_9,'--b') 
%plot(values,amp3_array_1,values,amp3_array_2,values,amp3_array_3,values,amp3_array_4,

values,amp3_array_5,"--g",values,amp3_array_6,"--c",values,amp3_array_7,'--

m',values,amp3_array_8,'--r',values,amp3_array_9,'--b') 

  
%plot(values,camp_array_1,values,camp_array_2,values,camp_array_3,values,camp_array_4,

values,camp_array_5,"--g",values,camp_array_6,"--c",values,camp_array_7,'--

m',values,camp_array_8,'--r',values,camp_array_9,'--b') 
%plot(values,camp2_array_1,values,camp2_array_2,values,camp2_array_3,values,camp2_arra

y_4,values,camp2_array_5,"--g",values,camp2_array_6,"--c",values,camp2_array_7,'--

m',values,camp2_array_8,'--r',values,camp2_array_9,'--b') 
%plot(values,eamp_array_1,values,eamp_array_2,values,eamp_array_3,values,eamp_array_4,

values,eamp_array_5,"--g",values,eamp_array_6,"--c",values,eamp_array_7,'--

m',values,eamp_array_8,'--r',values,eamp_array_9,'--b') 
%plot(values,eamp2_array_1,values,eamp2_array_2,values,eamp2_array_3,values,eamp2_arra

y_4,values,eamp2_array_5,"--g",values,eamp2_array_6,"--c",values,eamp2_array_7,'--

m',values,eamp2_array_8,'--r',values,eamp2_array_9,'--b') 

  
legend('C1: CP1 Fluid','C2: CP1 Wall','C3: CP2 Fluid','C4: CP2 Wall','C5: CP3 

Fluid','C6: CP3 Wall','C7: CP4 Fluid','C8: CP4 Wall','C9: J1 Fluid'); 

  
%legend('Cp1 Wall Mass','Cp1 Fluid Cap','Cp2 Wall Mass','Cp2 Fluid Cap','Cp1 

HTC','Source Mdot In','Cp2 HTC') 

  
title("Steady State Amplitude of Output Signal Temperature With Parameter Perturbation 

with 0,1,0.5,0,0 rad/s Inputs") 
% title("Steady State Amplitude of Top Branch Temperature With Parameter Perturbation 

with 0,1,0.5,0,0 rad/s Inputs") 
% title("Steady State Amplitude of Bottom Branch Temperature With Parameter 

Perturbation with 0,1,0.5,0,0 rad/s Inputs") 

  
xlabel('Factor added to Vertex Capacitances')  

  
ylabel('Steady State Amplitude of Both Branches') 
ylabel('Steady State Amplitude of Top Branch') 
ylabel('Steady State Amplitude of Bottom Branch') 
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A.5 Numerical_Verification_CoDesign 

%Specify which parameters will be perturbed by 1 or by 0.5 
bigadd = {'cp1.M_wall','cp2.coeff','cp2.M_wall','cp3.coeff'} 
smalladd = {'cp1.M_wall','cp2.coeff','cp2.M_wall','cp3.coeff'} 

  
%Nominal control gains 
kp1=3; 
kp2=3; 

  
%Simulink Model Name 
simName = 'Ch2Example_Single_Controller' 

  
tic %begin time 

  
set_param(simName,'SimulationCommand','Start') %begin simulation 

  
%Running the simulation in this way will allow it to finish and send data back before 

beginning the next one 
while(~strcmp( get_param(simName,'SimulationStatus') , 'stopped')) 
    pause(0.01); 
end 

         
toc %end time 

      
%Specify the controller gains to sweep through 
gains = [2.5,3,3.5,4,4.5]; 

  
%Create matrices for plotting later 
errormat=zeros(length(gains)*length(bigadd)); %control error plot 
inputmat=zeros(length(gains)*length(bigadd)); %control input plot 

  
for nn=1:length(gains) %sweep through the gains for controller 1 
    kp1=gains(nn); %set controller 1 gain 
    for mm=1:length(gains) %sweep through the gains for controller 2 
        kp2=gains(mm); %set controller 2 gain 
        for k=1:length(bigadd) %sweep through large parameter perturbations 
            parameters{k} %print to keep track 
            %eval(['finalVal_array_',num2str(k),' = ones(1,length(values));']); 
            for j = 1:length(smalladd) %sweep through small parameter perturbations 

  
                run('Setup_Component_Params_Sensitivity7') %reset parameter values 
                clear out; %clear outputs from previous simulation 
                eval([bigadd{k},' = ',bigadd{k},'+1;']); %increment large pertrub 

parameter by 1 
                eval([smalladd{j},' = ',smalladd{j},'+0.5;']); %increment small 

pertrub parameter by 0.5 

  
                tic %begin time                
                set_param(simName,'SimulationCommand','Start') %start simulation 
                while(~strcmp( get_param(simName,'SimulationStatus') , 'stopped')) 
                    pause(0.01); 
                end 
                toc %end time 

                 
                %Find steady state amplitude of output temp 
                tenth=floor(length(out.systemoutput.data)*0.9); 
                up=max(out.systemoutput.data(tenth:end)); 
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                down=min(out.systemoutput.data(tenth:end)); 

  
                %Find steady state amplitude of top branch temp 
                tenth2=floor(length(out.systemoutput2.data)*0.9); 
                up2=max(out.systemoutput2.data(tenth:end)); 
                down2=min(out.systemoutput2.data(tenth:end)); 

  
                %Find steady state amplitude of bottom branch temp 
                tenth3=floor(length(out.systemoutput3.data)*0.9); 
                up3=max(out.systemoutput3.data(tenth:end)); 
                down3=min(out.systemoutput3.data(tenth:end)); 

  
                cinput_1=sum(abs(out.cinput1.data())); %control input for controller 1 
                cinput_2=sum(abs(out.cinput2.data())); %control input for controller 2 
                cinput=cinput_1+cinput_2; %sum of control input (although control 

input 1 is more relevant) 

  
                %Record control input data so it can be referred to and plotted later 
                

eval(['cinput_1_data_kp1_',num2str(nn),'_kp2_',num2str(mm),'_',num2str(k),'_',num2str(

j),' = out.cinput1.data();']); 
                

eval(['cinput_2_data_kp1_',num2str(nn),'_kp2_',num2str(mm),'_',num2str(k),'_',num2str(

j),' = out.cinput2.data();']); 

  
                amp=(up - down)/2; %system output temp amplitude 
                amp2=(up2 - down2)/2; %top branch temp amplitude 
                amp3=(up3 - down3)/2; %bottom branch temp amplitude 

  
                totalerror1=sum(abs(out.error1.data())); %sum of error for controller 

1 over simulation 
                totalerror2=sum(abs(out.error2.data())); %sum of error for controller 

2 over simulation 

  
                %Find steady state amplitude of control input 1 
                ctenth=floor(length(out.cinput1.data)*0.9); 
                cup=max(out.cinput1.data(ctenth:end)); 
                cdown=min(out.cinput1.data(ctenth:end)); 

  
                %Find steady state amplitude of control input 2 
                ctenth2=floor(length(out.cinput2.data)*0.9); 
                cup2=max(out.cinput2.data(ctenth2:end)); 
                cdown2=min(out.cinput2.data(ctenth2:end)); 

  
                %Find steady state amplitude of control error 1 
                etenth=floor(length(out.error1.data)*0.9); 
                eup=max(out.error1.data(etenth:end)); 
                edown=min(out.error1.data(etenth:end)); 

  
                %Find steady state amplitude of control error 2 
                etenth2=floor(length(out.error2.data)*0.9); 
                eup2=max(out.error2.data(etenth2:end)); 
                edown2=min(out.error2.data(etenth2:end)); 

  
                camp=(cup - cdown)/2; %control input 1 amplitude 
                camp2=(cup2 - cdown2)/2; %control input 2 amplitude 

  
                eamp=(eup - edown)/2; %control error 1 amplitude 
                eamp2=(eup2 - edown2)/2; %control error 2 amplitude 
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                campboth=camp+camp2; %sum control inputs for both controller 1 and 2 
                eampboth=eamp+eamp2; %sum control errors for both controller 1 and 2 

  
                xpos= j+4*(nn-1) %note x axis position for simulation location on grid 

plot 
                ypos= length(bigadd)*length(gains)-(k-1+4*(mm-1)) %note y axis 

position for simulation location on grid plot 
                inputmat(ypos,xpos) = campboth; %populate summed control input matrix 
                errormat(ypos,xpos) = eampboth; %populate summed control error matrix 
                inputmat1(ypos,xpos) = camp; %populate control input 1 matrix 
                errormat1(ypos,xpos) = eamp; %populate control error 1 matrix 
                inputmat2(ypos,xpos) = camp2; %populate control input 2 matrix 
                errormat2(ypos,xpos) = eamp2; %populate control error 2 matrix 
            end 
        end 
    end 
end 

  
%reset parameter values 
run('Setup_Component_Params_Sensitivity7') 

  
%% Plot how the control input compares for parameter perturbations of CP Wall Masses 
timeplot = 1:length(Mwall4_6_cinput_1_data_15_2) 

  
figure() 
plot(timeplot,Mwall4_6_cinput_1_data_15_2) 
hold on 
plot(timeplot,Mwall1_6_cinput_1_data_15_2) 
plot(timeplot,Mwall2_6_cinput_1_data_15_2) 
plot(timeplot,nom_cinput_1_data) 
hold off 

A.6 Plot_CoDesign 

figure() 
%imagesc(errormat1(13:16,5:8)); %Plot for Nominal Controller 

  
%Normalize control error 
max1error=max(max(errormat1(:,:))); 
max2error=max(max(errormat2(:,:))); 
errormat1plot(:,:)=errormat1(:,:)/max1error; 
errormat2plot(:,:)=errormat2(:,:)/max2error; 
%Sum of normalized control error 
imagesc(errormat1plot(:,:)+errormat2plot(:,:)); 

  
%Control input plots 
%imagesc(inputmat1(:,:)); 
%imagesc(inputmat2(:,:)); 

  
colormap(jet); 
c=colorbar; 

  
%Set colorbar limits for Nominal Controller Plot 
%caxis([0.031 0.057]); 

  
c.Label.String = 'Sum of Control Error Amplitudes'; 
%c.Label.String = 'Control Input 1 Amplitude'; 
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%c.Label.String = 'Control Input 2 Amplitude'; 

  
title('Sum of Steady State Error Amplitudes','FontSize',12); 
%title('Sum of Steady State Control Input Amplitude','FontSize',12); 
%title('Steady State Control Input 1 Amplitude','FontSize',12); 
%title('Steady State Control Error 2 Amplitude','FontSize',12); 

  
for i=1:length(errormat1) 
    total=mod(i-1,4)+1; 
    reverse=4-(mod(i-1,4)); 
    text(i-0.3,20,num2str(total)); 
     %if reverse==3 %Make text white if block is too dark 
         %text(1-0.3,i,num2str(reverse),'FontSize',12,'FontWeight','bold','Color','w') 
     %else %usually make text black 
         text(1-0.3,i,num2str(reverse),'FontSize',12,'FontWeight','bold') 
     %end 
end 

  
%Text for plot scheme on Nominal Controller Plot 
% text(0.7,4,'Large 1','FontSize',14) 
% text(1.7,4,{'Large 1','Small 2'},'FontSize',14) 
% text(2.7,4,{'Large 1','Small 3'},'FontSize',14) 
% text(3.7,4,{'Large 1','Small 4'},'FontSize',14) 
%  
% text(0.7,3,{'Large 2','Small 1'},'FontSize',14) 
% text(1.7,3,'Large 2','FontSize',14) 
% text(2.7,3,{'Large 2','Small 3'},'FontSize',14) 
% text(3.7,3,{'Large 2','Small 4'},'FontSize',14) 
%  
% text(0.7,2,{'Large 3','Small 1'},'FontSize',14) 
% text(1.7,2,{'Large 3','Small 2'},'FontSize',14) 
% text(2.7,2,'Large 3','FontSize',14) 
% text(3.7,2,{'Large 3','Small 4'},'FontSize',14) 
%  
% text(0.7,1,{'Large 4','Small 1'},'FontSize',14) 
% text(1.7,1,{'Large 4','Small 2'},'FontSize',14) 
% text(2.7,1,{'Large 4','Small 3'},'FontSize',14) 
% text(3.7,1,'Large 4','FontSize',14) 

  
set(gca,'xticklabel',[]) 
set(gca,'yticklabel',[]) 

  
% ylabel('Kp2 gain','FontSize',16); 
% xlabel('Kp1 gain','FontSize',16); 

  
%%Add grid with separate ticks than axis labels 
ax1 = gca; 

  
ax4 = axes('Position',ax1.Position,... 
  'XAxisLocation','bottom',... 
  'YAxisLocation','left',... 
  'Color','none',...  
  'Ylim',ax1.YLim,... 
  'XLim',ax1.XLim,... 
  'TickLength',[0 0],... 
  'YTick', [(ax1.YLim(1))+2:4:(ax1.YLim(2))-2], ... % so text aligns with block 
  'XTick', [(ax1.XLim(1))+2:4:(ax1.XLim(2))-2],  ... % so text aligns with block 
  'YTickLabel', [2.5,3,3.5,4,4.5],  ... %controller 2 gains 
  'XTickLabel', [2.5,3,3.5,4,4.5]  ); %controller 1 gains 
ax4.GridColor = [0.9 0.9 0.9]; 
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%ax4.GridColor = [1 1 1]; 
ax4.GridLineStyle = 'none'; 
ax4.GridAlpha = 1; 

  
ylabel('Kp2 gain','FontSize',12); 
xlabel('Kp1 gain','FontSize',12); 

  
ax1 = gca; 
ax2 = axes('Position',ax1.Position,... 
  'XAxisLocation','bottom',... 
  'YAxisLocation','left',... 
  'Color','none',...  
  'Ylim',ax1.YLim,... 
  'XLim',ax1.XLim,... 
  'TickLength',[0 0],... 
  'YTick', [(ax1.YLim(1)):1:(ax1.YLim(2))], ... 
  'XTick', [(ax1.XLim(1)):1:(ax1.XLim(2))],  ... 
  'YTickLabel', [],  ... 
  'XTickLabel', []  ); 
%ax2.GridColor = [0.9 0.9 0.9]; 
ax2.GridColor = [0 0 0]; 
ax2.GridLineStyle = '--'; 
ax2.GridAlpha = 0.5; 
grid on 

  
ax3 = axes('Position',ax1.Position,... 
  'XAxisLocation','bottom',... 
  'YAxisLocation','left',... 
  'Color','none',...  
  'Ylim',ax1.YLim,... 
  'XLim',ax1.XLim,... 
  'TickLength',[0 0],... 
  'YTick', [(ax1.YLim(1)):4:(ax1.YLim(2))], ... 
  'XTick', [(ax1.XLim(1)):4:(ax1.XLim(2))],  ... 
  'YTickLabel', [],  ... 
  'XTickLabel', []  ); 
%ax3.GridColor = [0.9 0.9 0.9]; 
ax3.GridColor = [0 0 0]; 
ax3.GridLineStyle = '-'; 
ax3.GridAlpha = 1; 
ax3.LineWidth = 2; 
grid on 

  
linkaxes([ax2 ax3], 'xy') 
grid on 
set(gcf,'CurrentAxes',ax1); 

A.7 Plot_Control_Input 

%% Plot Control Input 1 (Need to set nominalset=out, suboptimalset=out etc after 

simulation run to save that data) 
figure() 
plot(nominalset.cinput1.time(),nominalset.cinput1.data()) 
hold on 
plot(suboptimalset.cinput1.time(),suboptimalset.cinput1.data()) 
plot(optimalset.cinput1.time(),optimalset.cinput1.data()) 
%plot(out.cinput1.time(),out.cinput1.data()) 
legend('Nominal Configuration','Lowest Control Input','Lowest Control Error') 
title('Control Input for Controller 1'); 
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ylabel('Control Input 1'); 
xlabel('Time (s)'); 
hold off 
%% Plot Control Error 1 (Need to set nominalset=out, suboptimalset=out etc after 

simulation run to save that data) 
figure() 
plot(nominalset.error1.time(),nominalset.error1.data()) 
hold on 
plot(suboptimalset.error1.time(),suboptimalset.error1.data()) 
plot(optimalset.error1.time(),optimalset.error1.data()) 
legend('Nominal Configuration','Lowest Control Input','Lowest Control Error') 
title('Error for Controller 1'); 
ylabel('Control Error 1'); 
xlabel('Time (s)'); 
hold off 
%% Plot Control Error 2 (Need to set nominalset=out, suboptimalset=out etc after 

simulation run to save that data) 
figure() 
plot(nominalset.error2.time(),nominalset.error2.data()) 
hold on 
plot(suboptimalset.error2.time(),suboptimalset.error2.data()) 
plot(optimalset.error2.time(),optimalset.error2.data()) 
legend('Nominal Configuration','Lowest Control Input','Lowest Control Error') 
title('Error for Controller 2'); 
ylabel('Control Error 2'); 
xlabel('Time (s)'); 
hold off 

  
%% Plot Control Input 1 Subplot (Need to set nominalset=out, suboptimalset=out etc 

after simulation run to save that data) 
figure() 
subplot(1,2,1) 
plot(nominalset.cinput1.time(),nominalset.cinput1.data()) 
hold on 
plot(suboptimalset.cinput1.time(),suboptimalset.cinput1.data()) 
plot(optimalset.cinput1.time(),optimalset.cinput1.data()) 
%plot(out.cinput1.time(),out.cinput1.data()) 
legend('Nominal Configuration','Lowest Control Input','Lowest Control Error') 
title('Control Input for Controller 1'); 
ylabel('Control Input 1'); 
xlabel('Time (s)'); 
hold off 
subplot(1,2,2) 
plot(nominalset.cinput1.time(13800:14000),nominalset.cinput1.data(13800:14000)) 
hold on 
plot(suboptimalset.cinput1.time(13800:14000),suboptimalset.cinput1.data(13800:14000)) 
plot(optimalset.cinput1.time(13800:14000),optimalset.cinput1.data(13800:14000)) 
%plot(out.cinput1.time(),out.cinput1.data()) 
%legend('Nominal Configuration','Lowest Control Input','Lowest Control Error') 
title('Control Input for Controller 1 Zoomed In'); 
ylabel('Control Input 1'); 
xlabel('Time (s)'); 
hold off 
%% Plot Control Error 1 Subplot 
figure() 
subplot(1,2,1) 
plot(nominalset.error1.time(),nominalset.error1.data()) 
hold on 
plot(suboptimalset.error1.time(),suboptimalset.error1.data()) 
plot(optimalset.error1.time(),optimalset.error1.data()) 
legend('Nominal Configuration','Lowest Control Input','Lowest Control Error') 



 187  

title('Error for Controller 1'); 
ylabel('Control Error 1'); 
xlabel('Time (s)'); 
hold off 
subplot(1,2,2) 
plot(nominalset.error1.time(13800:14000),nominalset.error1.data(13800:14000)) 
hold on 
plot(suboptimalset.error1.time(13800:14000),suboptimalset.error1.data(13800:14000)) 
plot(optimalset.error1.time(13800:14000),optimalset.error1.data(13800:14000)) 
%legend('Nominal Configuration','Lowest Control Input','Lowest Control Error') 
title('Error for Controller 1 Zoomed In'); 
ylabel('Control Error 1'); 
xlabel('Time (s)'); 
hold off 
%% Plot Control Error 2 Subplot 
figure() 
subplot(1,2,1) 
plot(nominalset.error2.time(),nominalset.error2.data()) 
hold on 
plot(suboptimalset.error2.time(),suboptimalset.error2.data()) 
plot(optimalset.error2.time(),optimalset.error2.data()) 
legend('Nominal Configuration','Lowest Control Input','Lowest Control Error') 
title('Error for Controller 2'); 
ylabel('Control Error 2'); 
xlabel('Time (s)'); 
hold off 
subplot(1,2,2) 
plot(nominalset.error2.time(13800:14000),nominalset.error2.data(13800:14000)) 
hold on 
plot(suboptimalset.error2.time(13800:14000),suboptimalset.error2.data(13800:14000)) 
plot(optimalset.error2.time(13800:14000),optimalset.error2.data(13800:14000)) 
%legend('Nominal Configuration','Lowest Control Input','Lowest Control Error') 
title('Error for Controller 2 Zoomed In'); 
ylabel('Control Error 2'); 
xlabel('Time (s)'); 
hold off 
%% Plot Control Inputs Subplot 
figure() 
subplot(2,3,1) 
plot(input1step.time(),input1step.data(:,1)) 
hold on 
plot(input1step.time(),input1step.data(:,2)) 
plot(input1step.time(),input1step.data(:,3)) 
plot(input1step.time(),input1step.data(:,4)) 
plot(input1step.time(),input1step.data(:,5),"--g") 
plot(input1step.time(),input1step.data(:,6),"--c") 
plot(input1step.time(),input1step.data(:,7),"--m") 
plot(input1step.time(),input1step.data(:,8),"--r") 
plot(input1step.time(),input1step.data(:,9),"--b") 
hold off 
%title('Heat Load 1 and 2 Step Inputs where Heat Load 1 is Double', 'Interpreter', 

'latex') 
title('Temperature of Fluid Leaving the System', 'Interpreter', 'latex') 
xlabel('Time(s)') 
ylabel('Temperature at Output (C)') 

  
subplot(2,3,2) 
plot(input2step.time(),input2step.data(:,1)) 
hold on 
plot(input2step.time(),input2step.data(:,2)) 
plot(input2step.time(),input2step.data(:,3)) 
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plot(input2step.time(),input2step.data(:,4)) 
plot(input2step.time(),input2step.data(:,5),"--g") 
plot(input2step.time(),input2step.data(:,6),"--c") 
plot(input2step.time(),input2step.data(:,7),"--m") 
plot(input2step.time(),input2step.data(:,8),"--r") 
plot(input2step.time(),input2step.data(:,9),"--b") 
hold off 
title('Heat Load 1 Step Input', 'Interpreter', 'latex') 
xlabel('Time(s)') 
ylabel('Temperature at Output (C)') 

  
subplot(2,3,3) 
plot(input3step.time(),input3step.data(:,1)) 
hold on 
plot(input3step.time(),input3step.data(:,2)) 
plot(input3step.time(),input3step.data(:,3)) 
plot(input3step.time(),input3step.data(:,4)) 
plot(input3step.time(),input3step.data(:,5),"--g") 
plot(input3step.time(),input3step.data(:,6),"--c") 
plot(input3step.time(),input3step.data(:,7),"--m") 
plot(input3step.time(),input3step.data(:,8),"--r") 
plot(input3step.time(),input3step.data(:,9),"--b") 
hold off 
title('Heat Load 2 Step Input', 'Interpreter', 'latex') 
xlabel('Time(s)') 
ylabel('Temperature at Output (C)') 

  
subplot(2,3,4) 
plot(input4step.time(),input4step.data(:,1)) 
hold on 
plot(input4step.time(),input4step.data(:,2)) 
plot(input4step.time(),input4step.data(:,3)) 
plot(input4step.time(),input4step.data(:,4)) 
plot(input4step.time(),input4step.data(:,5),"--g") 
plot(input4step.time(),input4step.data(:,6),"--c") 
plot(input4step.time(),input4step.data(:,7),"--m") 
plot(input4step.time(),input4step.data(:,8),"--r") 
plot(input4step.time(),input4step.data(:,9),"--b") 
hold off 
title('Heat Load 3 Step Input', 'Interpreter', 'latex') 
xlabel('Time(s)') 
ylabel('Temperature at Output (C)') 

  
subplot(2,3,5) 
plot(input5step.time(),input5step.data(:,1)) 
hold on 
plot(input5step.time(),input5step.data(:,2)) 
plot(input5step.time(),input5step.data(:,3)) 
plot(input5step.time(),input5step.data(:,4)) 
plot(input5step.time(),input5step.data(:,5),"--g") 
plot(input5step.time(),input5step.data(:,6),"--c") 
plot(input5step.time(),input5step.data(:,7),"--m") 
plot(input5step.time(),input5step.data(:,8),"--r") 
plot(input5step.time(),input5step.data(:,9),"--b") 
hold off 
title('Heat Load 4 Step Input', 'Interpreter', 'latex') 
xlabel('Time(s)') 
ylabel('Temperature at Output (C)') 
legend('C1: CP1 Fluid','C2: CP1 Wall','C3: CP2 Fluid','C4: CP2 Wall','C5: CP3 

Fluid','C6: CP3 Wall','C7: CP4 Fluid','C8: CP4 Wall','C9: J1 Fluid'); 


