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ABSTRACT

This thesis presents work evaluating the performance of components of a

novel high-specific-power permanent magnet synchronous machine (PMSM)

for electric aircraft propulsion. An important thrust in current aerospace re-

search is aircraft electrification, including propulsion system electrification.

For an electrified propulsion system to provide net benefit over conventional

propulsion, the electrical systems must meet high specific power, power den-

sity, and efficiency standards.

This thesis presents experimental validation of components of a megawatt

scale permanent magnet synchronous motor targeting power density of 13

kW/kg and 96% efficiency. This experimental validation demonstrates that

it is possible to build a stator appropriate for this application. The results

closely match the FEA analysis and increase confidence that the final motor

will be capable of meeting the design requirements. The results also highlight

the importance of tight manufacturing tolerances to minimize circulating

currents and associated losses.

In addition, this thesis describes work on testbed development. Specif-

ically, the thesis discusses how to determine effective winding and resistor

combinations to allow for testing the machine as a generator across a wide

range of operating conditions with limited components.
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CHAPTER 1

INTRODUCTION

In recent years there has been increasing interest in aircraft electrification,

including propulsion system electrification [1]. For electrified propulsion to

be practical, high specific power and efficiency targets must be met [2]. To

this end, a high-speed, high-frequency, air-core, permanent magnet machine

with an outer rotor has previously been proposed [3], and Fig. 1.1 shows

a cutaway diagram of that design. Various components of that motor have

been built and tested, and results are reported in other publications [4, 5, 6,

7, 8, 9, 10, 11]. The stator of that motor has since been fully assembled and

tested, the results of which are presented here.

When operating as a generator, a PMSM works by rotating permanent

magnets near coils on the stator. The changing magnetic field induces voltage

on those coils, known as back-EMF. That back-EMF induces current to flow

through the coils when the circuit is completed. For a three-phase machine,

such as the one being studied here, the stator has a multiple of three windings

which are spaced such that the back-EMFs form a balanced three-phase set.

Chapter 2 discusses back-EMF measurements using two different rotors on

the same stator.

Figure 1.1: Labeled cutaway diagram of the full motor as designed.
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In a machine that has more than one set of windings, how to connect the

windings is an important design decision. For this machine, the design plan

was to connect pairs of windings in parallel. Such a parallel connection means

there is the possibility for circulating currents between the parallel windings.

Measurements of these circulating currents are discussed in chapter 3.

Finally, work on selecting appropriate components for a motor testbed is

discussed in chapter 4. Important tradeoffs between flexibility and complex-

ity are discussed.
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CHAPTER 2

BACK-EMF MEASUREMENTS

2.1 Stator Design

The two primary goals in designing this stator were to minimize weight and

losses while delivering 1 MW of power. To reduce weight, stator teeth were

eliminated and only a thin back iron was used. The elimination of stator teeth

poses several manufacturing challenges. In slotted motors, it is common

to wind the coils directly onto the teeth. Without slots, the coils must

be form-wound separately and then mounted to the surface. The winding

and placement on the surface both present opportunities for deviations from

nominal dimensions and positions.

In the literature, there is increasing interest in slotless motor designs, often

motivated by low weight. Analytical approaches to modeling these machines

are presented and validated in [12, 13]. Another potential advantage of slot-

less stators is low cogging torque, due to nearly constant flux linkage at all

rotor positions [14].

Some prototype motors with requirements similar to those of this project

are described in the literature. In particular, there is a series of papers about

a 640 kW machine designed for 10,000 rpm operation using Halbach array

permanent magnet rotor and a slotless stator [15, 16, 17]. In [17] the authors

acknowledge the risk of circulating currents described in chapter 3 of this

thesis. They also describe problems with incorrect magnet orientations in

the Halbach array, similar to issues described later in this chapter. In these

papers, the manufacturing of the slotless stator is not described in detail.

Another completed prototype machine with a slotless radial flux stator is

presented in [14], though few manufacturing and testing details are provided.

In [18] the design of a limited rotation slotless machine is presented. Many

other slotless machines in the literature are based on axial flux paths, often
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featuring rotors on each side of the stator [19, 20, 21]. Design and manu-

facturing for that type of machine is very different from that for radial-flux

slotless machines.

For the machine described here, the coils were form-wound by hand with

dimensional tolerances of ±0.005 inches. A summary of important parame-

ters is in Table 2.1. A more complete description of the stator can be found

in [3, 9, 10]. Fig. 2.1 shows a photo of the final stator.

Table 2.1: Stator Description

Parameter Quantity Unit

Coil Active Length

9.5 (phase A)

inches10.25 (phase B)
11 (phase C)

Pole Pairs 10 -

Phases 3 -

Design weight 36.6 kg

Actual weight 37.6 kg

Rated phase current 93 Arms

Rated total current 930 Arms

Rated line voltage 650 Vrms

2.2 Rotor Design

The rotor design features 10 magnetic pole pairs with magnets oriented in a

Halbach array. This design has previously been mechanically validated up to

20% overspeed in [5]. As mentioned above, the machine was designed with an

outer rotor. This allows a magnet containment ring without increasing the

air gap. The manufacturing and installation of the magnets was significantly

delayed and so we built an alternate, derated rotor in-house to allow for stator

validation. Results of those tests are described in section 2.3. A comparison

of that derated rotor and the final rotor is in Table 2.2. Once the final rotor

was completed, we found that the magnets were installed incorrectly and

conducted additional tests, as described in section 2.4.

4



Figure 2.1: Final constructed stator.

Table 2.2: Rotor Description

Parameter Final Rotor Derated Rotor Unit

Mechanical Air Gap 1.7 2 mm

Magnetic Air Gap 1.7 12.8 mm

Magnet Material N45UH N42 -

Magnet Thickness 0.485 0.25 in

Magnetization Direction Halbach Array Radial -

Magnet Active Length 9.5 9 in

Pole Paris 10 10 -

Weight 41.5 kg

Back Iron Thickness 0 0.125 in
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(a) Partially built with magnets
attached but no back iron

(b) Fully built and mounted on test
stand.

Figure 2.2: Alternate rotor construction and test stand.

2.3 Derated Rotor Results

2.3.1 Derated Rotor Build

Since magnet installation on the full rotor was delayed, we decided to make a

significantly derated rotor to allow for initial validation of stator performance

at reduced power. This rotor was made primarily of Bakelite and built in-

house. We designed this rotor to allow for quick and relatively low-cost

manufacturing. Fig. 2.2 shows a photo of the rotor with the magnets in

place but without the back iron attached, and the completed rotor on the

test stand.

Each difference between the full-size rotor and alternate rotor results in the

alternate rotor generating weaker magnetic fields on the windings and there-

fore smaller back-EMF generated by the windings. In addition, this rotor

was not carefully balanced, so imbalance induced vibration made it unsafe

to spin above a few hundred rpm. We built a two-dimensional finite element

model to predict the expected performance of the stator when exposed to

these magnetic fields.

2.3.2 Derated Rotor Back-EMF

First, we measured the back-EMF generated on each winding at 300 rpm.

The phase-to-phase back-EMF waveform is shown in Fig. 2.3 with the FEA
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Figure 2.3: Back-EMF generated by one three-phase winding set at 300
rpm with derated rotor.

predicted waveform also shown. The measured line-line back-EMF waveform

is nearly identical to the FEA prediction, both having less than 1% THD.

The measured rms value is between 2.3% and 4.4% higher than predicted,

distributed as shown in Fig. 2.4. The two-dimensional FEA assumes that

the magnets and windings are of the same axial length; however the actual

windings are axially longer than the magnets which contributes to higher

back-EMF than predicted. Notably, the phase with longest active lengths

(phase B-C line-line) has the highest back-EMF while the set with shortest

active lengths (phase A-B line-line) has the lowest back-EMF.

Besides variation in back-EMF between the phases we observed variation

between different winding sets of each phase. The ten winding sets are phys-

ically distributed around the circumference of the stator, with winding set

10 arbitrarily assigned to the top as shown in Fig. 2.5. A static eccentricity,

where the center of the rotor and stator are not perfectly aligned, results

in the magnets being closer to the windings on one side of the motor than

the other side, driving different magnitudes of back-EMF. In fact, we observe

that the back-EMF magnitude varies as a function of rotor position as shown

in Fig. 2.5. We modified our finite-element model to include static eccentric-

ity and found that the observed 1.5% variation in back-EMF magnitude is

consistent with the axes of the rotor and stator being separated by 1.1 mm.

Part of this static eccentricity is likely caused by manufacturing inaccuracies
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(a) Back-EMF magnitude error. (b) Back-EMF phase offset error.

Figure 2.4: Distribution of back-EMF errors generated by the 10 winding
sets with derated rotor. Results are separated by line-line combination.
Magnitude is normalized by the FEA predicted back-EMF.

of the derated rotor and the modified bearing arrangement used to mount it.

In addition to variation in the back-EMF magnitude, we observed slight

phase offsets between windings of the same phase. In a perfect set of three-

phase windings, there should be exactly 120 electrical degrees offset between

the windings. Since our stator lacks winding slots, there is the possibility

that windings were not perfectly spaced circumferentially causing some phase

error. In fact, we found that within each three-phase set, no two voltages

were more than ±0.5 electrical degrees from the designed phase offset as

summarized in Fig. 2.4. The largest phase errors were between phase A and

phase C, which were the first and last ones to be attached to the stator. There

is no correlation between this phase error and the circumference position on

the stator.

On an ideal stator, there should be no time offset between windings of

the same phase. In fact, our measurements show phase deviation of ±1.75

electrical degrees between windings of the same phase. As shown in Fig 2.5,

the circumferential position of these back-EMF phase variations follows a

pattern similar to what we observed for the magnitude. Our finite-element

model shows that this level of phase deviation is consistent with a static

eccentricity of 4.5 mm, which is greater than the mechanical airgap implying

that some other mechanism is at play.

It is well documented that static eccentricity can generate uneven mag-

netic pull, noise, and torque ripple and can be used for diagnostics [22],
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(a) Back-EMF magnitude vs
mechanical position

(b) Back-EMF magnitude table

(c) Back-EMF phase vs mechanical
position

(d) Back-EMF phase table

Figure 2.5: Back-EMF magnitude and phase from derated rotor.
Magnitude is normalized by FEA simulation.
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[23]; however the phase offset between windings has not previously been well

documented.

2.4 Full-Size Rotor Tests

2.4.1 Magnet Characterization

After magnet installation in the full-size rotor was completed, we measured

the resulting magnetic field profile and determined that it does not match

what is expected from a Halbach array as shown in Fig. 2.6. Two problems

with the pattern became clear. First, the generated field is not sinusoidally

varying, with most poles showing a consistent pattern. Second, some poles

are different from the rest. Specifically, one of the 10 south poles is stronger

than the rest in two of the three axial segments. Also, one north pole is

stronger than the rest in one of the three axial segments. Using a finite

element model we determined that a field with this profile can be created by

horizontally reversing some of the magnets in the Halbach array as shown in

Fig. 2.7.

2.4.2 Back-EMF Measurements

Although it is clearly far from ideal to have this distorted field profile since

the magnitude of the projected field is reduced, the finite element model

shows that if all 10 pole pairs are identical, the back-EMF generated has

very low harmonic distortion and no harmonic contribution below the 9th

harmonic. However, the one pole per revolution which is different than the

rest does cause a periodic deviation in back-EMF. This conclusion is verified

by the experimental waveforms shown in Fig. 2.8.

Fig. 2.9 shows the magnitude and phase offset error of the back-EMF gen-

erated by the full-size rotor. On average, the back-EMF magnitude is 12%

higher than predicted in FEA, a larger increase than seen in the derated

rotor. The larger deviation for this full-size rotor than for the derated rotor

can be explained by the fact that the magnetic airgap is much smaller and

the magnets are much thicker so the end-windings play a larger role. Unfor-

tunately, the phase offset error is also larger for this rotor than the derated

10



(a) Segment closest to heatsink inlet (b) Middle segment

(c) Segment closest to fan

Figure 2.6: Magnetic field strength around the circumference of the rotor
measured at the axial center of each of the three magnet segments. Note
that not all poles are the same shape.

(a) Magnet orientations of one pole
pair as designed for Halbach array.

(b) Magnet orientations of one pole
pair as modeled for FEA to match
delivered rotor. Arrows shown in red
are those that differ from the design

(c) Magnetic field strength as a
function of position for one
representative pole pair showing
designed, measured, and FEA.

Figure 2.7: Designed and manufactured magnet orientations.
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Figure 2.8: Back-EMF of one three-phase set for one complete mechanical
rotation at 300 rpm of full-size rotor.

rotor.

Fig. 2.10 shows the back-EMF magnitude and phase variation as a function

of winding position on the stator. For the full-size rotor there is about half

the variation in back-EMF magnitude as for the derated rotor implying a

smaller static eccentricity. However, the phase deviation is larger for this

rotor than the derated rotor.

2.4.3 Loss Power Measurements

Loss modeling is a significant challenge in motor design. Since the perfor-

mance of this motor is thermally limited, loss model errors can have sig-

nificant impacts on achievable power densities. We sought to validate our

loss models by spinning the motor in an open-circuit configuration. Fig. 2.11

shows the loss power as a function of speed. These losses include windage, fan

pumping, hysteresis and eddy current iron, and ac copper losses. These re-

sults are consistent with prior loss models and preliminary results of ongoing

experiments. Thorough loss measurements and analysis will be conducted

on the final rotor once it is rebuilt with correct magnet orientations and will

be reported in a future publication.
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(a) Back-EMF magnitude error. (b) Back-EMF phase offset error.

Figure 2.9: Distribution of back-EMF errors generated by the 10 winding
sets with full-size rotor at 302 rpm. Results are separated by line-line
combination. Magnitude is normalized by the FEA predicted back-EMF.
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(a) Back-EMF magnitude vs
mechanical position

(b) Back-EMF magnitude table

(c) Back-EMF phase vs mechanical
position

(d) Back-EMF phase table

Figure 2.10: Back-EMF magnitude and phase from full-size rotor.
Magnitude is normalized by FEA simulation.
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Figure 2.11: Open-circuit loss power as function of rotor speed.
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CHAPTER 3

CIRCULATING CURRENT
MEASUREMENTS

The stator is built with 10 sets of three-phase windings physically separated

around the circumference. The original design intent is that five three-phase

inverters will each drive a pair of these windings connected in parallel. With

parallel windings, any impedance or back-EMF imbalance could drive circu-

lating currents in the parallel windings and as well as voltages between the

neutral points if they are left floating.

3.1 Derated Rotor

When testing the derated rotor, we left the neutral points floating and con-

nected five pairs of windings in parallel as intended for the final drive system;

see the circuit diagram in Fig. 3.1. We then measured the voltages between

the neutral points of paralleled windings. The largest harmonic component

of these voltages was the same frequency and in phase with the phase A

back-EMF. There were also significant third harmonics. The rms magnitude

of the neutral-point voltages was between 0.35% and 0.71% of the line-line

rms back-EMF. On the final machine, this percent of line-line voltage scales

to 4.6 V at full speed.

3.2 Full-Size Rotor

With the full-size rotor, we connected all 10 winding sets in parallel to test

the worst-case scenario for circulating currents as shown in Fig. 3.2. With the

neutral points left floating relative to ground and each other, the circulating

currents through each phase winding peaked at 12.2 A when operating at

300 rpm. Assuming it scales linearly, this would lead to a peak of 610 A at

full rated speed. Such high current spikes would cause increased dc and ac
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Figure 3.1: Circuit diagram of a pair of parallel winding sets connected in
parallel.

losses in the wire as well as projecting a field into the magnets, generating

eddy current losses.

When we connected all 10 neutral points together, the peak phase current

was 11.4 A and the maximum current through a neutral wire was 4.48 A. The

highest circulating currents on a given channel occur when the magnetic pole

with higher flux passes that pole. That current must then be balanced out

by the other windings resulting in negative currents in most other phases.

Passing the currents through the Fourier transform, we can see the strongest

harmonic component is at the fundamental electrical frequency. The third

harmonic is also present. The third harmonic corresponds to the stronger

pole passing over a different winding elsewhere on the machine.

With the neutral points connected together there are currents from each

winding through the neutral connection. The strongest component for that

current is the third harmonic, again corresponding to the stronger pole pass-

ing over a winding somewhere on the machine. Together, these large cir-

culating currents at low speeds highlight the importance of correct magnet

placement and matched back-EMFs between windings with parallel winding

connections.
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(a) Phase current waveforms when
neutral points are left floating
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(b) Phase current spectrum when
neutral points are left floating

(c) Phase current waveforms when
neutral points are connected
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(d) Phase current spectrum when
neutral points are connected

(e) Current waveforms through the
neutral wires with all 10 connected
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Figure 3.2: Circulating currents with all 10 winding sets connected in
parallel.
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CHAPTER 4

TEST BED DEVELOPMENT

4.1 Winding Configurations

This motor consists of 10 sets of three-phase windings. Both ends of each

winding are brought out of the motor as leads, which means there are 60 total

connections available. Having all the connections available makes this motor

highly reconfigurable, allowing for flexible test configurations. For the initial

phase testing this machine, we want to operate it as a generator driving a

resistive load.

The conceptually simplest approach would be to attach a resistor directly

to each winding as shown in Fig. 4.1. In this configuration, each winding is

entirely independent; however this would require 60 connections, at least 30

resistors, and sensors to detect voltage and current from each winding.

The number of external connections can be cut in half by connecting the

machine windings in three-phase sets as shown in Fig. 4.2, but still requires

the same number of resistors. This connection could be in delta or wye, but

wye configuration was chosen since the mechanical placement of windings

A CB

Machine

Load

x10

Figure 4.1: Circuit diagram for direct connection from each winding to a
resistor.
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Machine

Load

x10

A B C

Figure 4.2: Circuit diagram for windings and resistors in wye configuration.

is better suited to that. With this configuration, net current in each three-

phase set is zero; therefore two current sensors per phase are sufficient to

fully instrument the machine.

To further reduce the number of components required, windings could be

connected in series or parallel, as shown in Fig. 4.3. With series windings,

the back-EMFs of each connected winding are added together resulting in

higher voltages at the load. The currents through each set of series windings

are equal.

With parallel windings, the voltages across each winding are made equal by

the connecting wire. This means that if the back-EMFs generated by each

connected winding are not exactly equal, the voltages across the winding

equivalent impedances will be unequal. In turn, these voltages will generate

unequal currents in each winding resulting in a circulating current loop. This

circulating current does not contribute to torque generation but does add to

losses. Similarly if the back-EMFs generated in each parallel winding are

equal but the impedances differ, circulating currents will also be generated.

Fig. 4.3 shows five pairs of windings connected together. With this motor,

there are many possible series/parallel combinations, including ones where

parallel groups of windings are connected in series or vice versa.

4.2 Resistor Selection

The tests described in chapter 2 took place on a dynamometer on campus.

Since that testing, a new research facility from the POETS center was con-
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A B C

Machine

Load

x5

(a) Parallel connection

Machine

x5

Load

A B C

(b) Series connection

Figure 4.3: Series and parallel winding connections.

structed with a much larger dynamometer. This building has maximum

power capacity of 166 kW and is currently limited to 6000 rpm. This dy-

namometer will allow us to operate the machine as a generator to drive

resistive loads.

Ideally we would like to be able to connect the machine to a resistive load

that can be configured to explore the full range of speeds and torques with the

fewest total resistors necessary. The full power/speed range of the machine

as designed compared to the range achievable at POETS is shown in Fig.

4.4.

The minimum number of resistors required to evenly load the whole ma-

chine is three times the number of winding groups as determined by the

series/parallel connections of the windings. So if there are five sets of two

windings connected in series or parallel, at least 15 resistors are required. Of

course, the resistors themselves can also be connected in series or parallel

combinations allowing for far more flexibility.

High-power resistors are available in a variety of power ratings and resis-

tances. The most common power ratings are 1 kW and 2.5 kW. Available

resistances include 1 Ω, 4.7 Ω, and 10 Ω. A MATLAB script was devel-

oped to select the type of resistor that provided the best coverage of the test

space. As an input the script takes the number of resistors, power rating,
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Figure 4.5: Achievable test cases with 30, 1 kW resistors and no windings
in parallel.

and resistance. It then calculates what series/parallel combinations of both

resistors and windings are feasible. Then using all the possible combinations,

it calculates the output power at each speed.

With 30 resistors rated at 1 kW each and none of the windings in parallel,

the achievable test cases are shown in Fig. 4.5. Without any winding parallel

connections, the 1 Ω resistors are only able to cover a small part of the

range while both 4.7 Ω and 10 Ω resistors provide better coverage. Allowing

windings to be connected in parallel, the achievable cases are shown in Fig.

4.6. As expected, opening up more winding configurations allows for a wider

range of test cases.

If we consider the same total rated power capacity of 75 kW, that could

be achieved with 30, 2.5 kW resistors or with 75, 1 kW resistors. Fig. 4.7

shows the test cases covered in each of these cases. As expected, more total
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Figure 4.6: Achievable test cases with 30, 1 kW resistors with windings in
parallel.

resistors allows for greater flexibility. The disadvantage of using a large

number of lower rated resistors is that building racks to hold them quickly

becomes complicated and expensive. The possible test cases using 30, 2.5

kW resistors and no windings in parallel are shown in Fig. 4.8. In this case,

the 10 Ω resistors provide better coverage of the space without having the

risk of circulating currents.
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(a) 75, 1 kW resistors

(b) 30, 2.5 kW resistors

Figure 4.7: Achievable test cases with fixed combined resistor power rating
of 75 kW.

Figure 4.8: Achievable test cases with 30, 2.5 kW resistors and no windings
connected in parallel.

24



CHAPTER 5

CONCLUSION

We have demonstrated that it is possible to build a slotless stator with litz

wire windings with tight manufacturing tolerances. Through testing with two

different rotors, we have demonstrated that this stator produces back-EMF

on all 10 sets of three-phase windings. The magnitudes and phases of these

back-EMFs are closely correlated to those predicted by FEA. Back-EMF or

impedance mismatches between winding sets have the potential to introduce

significant circulating currents. Careful rotor manufacturing is vital to avoid

defects and inconsistencies in the applied magnetic field. Minimizing static

eccentricity is also important for maintaining consistent back-EMF during

each rotation. These promising test results indicate that this motor may be

an enabling technology for further aircraft propulsion electrification.

The full-sized rotor is currently being rebuilt with corrected magnet align-

ment. Once that rebuild is complete, it will be tested using the testbed with

resistors selected for great flexibility while maintaining a reasonable part

count.
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