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Abstract

Topology is defined here to relate the geometric properties and spatial relations unaf-
fected by the continuous change of shape or size of physical engineering artifacts. Re-
searchers have used topology optimization methods to design next-generation struc-
tural components for a wide variety of applications (e.g., automotive, aerospace,
industrial machines, etc.). This has enabled improved part performance, reduced
component volume, and the elimination or reduction of subsystem assembly steps
through the use of a free-form structural design representation for commercial prod-
ucts. The free-form capability of topology optimization methods has enabled re-
alization of novel parts otherwise difficult to obtain through the optimization of
parametric models.
In this dissertation, topology optimization methods are applied to design heat

spreading structures for next-generation power electronic systems. Wide band-gap
semiconductor devices provide an opportunity to operate next-generation power elec-
tronics at higher temperature. The resulting increase in temperature capability is not
shared by all components within a power electronic circuit, and careful consideration
must be taken when routing heat throughout the system. Topology optimization
methods provide a flexible and powerful solution to address challenges associated
with these next generation electronic systems.
First, a framework to classify general topology optimization problems is presented.

This framework draws upon research from multiple application domains and defines
a unifying language. Then, some practical heat conduction formulations for topology
optimization are reviewed. This includes an analysis of common objective functions,
in addition to some practical formulations for power electronics. Next, topology op-
timization methods are applied to design a heat spreader for a next-generation power

ii



inverter. The topologically-optimized design is fabricated and benchmarked against
a baseline heat sink design. These studies motivated an investigation of reduced-
order convection models for topology optimization, where experimental evaluation
was used to assess heat spreader performance. The topology of the best-performing
structure motivated a critical look at the structural representations used in topology
optimization. For heat spreader design, it is common to use maximum approximation
functions within a topology optimization. Several maximum approximation functions
are analyzed in detail for use as optimization objectives and constraints. Advancing
these topology optimization methods extends the envelope of design capabilities and
therein lies the future of next generation power systems.
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Chapter 1

Introduction

1.1 Topology Optimization

In mathematics, topology is defined as:

“the study of geometric properties and spatial relations unaffected by the

continuous change of shape or size of figures”.

In some cases, the topology of an entity may be represented as a graph. If this

is the case, topology involves the connection of a set of nodes by edges. This

is demonstrated in Fig. 1.1.

A

B

C

D

E

F

Topology A

A B C

D E F

A set of nodes

A

B

C

D

E

F

Topology B

Figure 1.1: Topologies generated from a set nodes (left), Topology A
(center), Topology B (right).

Given a set of nodes S := {A,B,C,D,E, F}, there are a combinatorial number

of unique topologies that can be produced. Two topologies have been presented

in the figure as examples. Non-topological changes that can be applied to a
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topology may be defined by two categories, changes in shape and changes in

size, as shown in Fig. 1.2.
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Changing Node Size
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D

E
F

Changing Shape

Changing Edge Size

Figure 1.2: Graph operations with constant topology.

Size modifications are easily understood as a scaling of nodes, edges or a

combination of both. These can be done separately, such as only node sizing

or only edge sizing, or may be done together. Shape or geometry operations

require spatial information for a graph and are defined by translating the

nodes of the graph. Understanding these key differences allows for a powerful

categorization of topology optimization problems.

1.1.1 Structural Representations

Over the past three decades, there have been a variety of new design represen-

tations developed based on the use of finite element analysis with a fixed anal-

ysis mesh [1–4]. Using gradient-based optimization with these fixed analysis
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mesh methods, structural topology optimization problems with millions of de-

sign elements have been solved [5]. Consider the seminal paper by Bendsoe [6],

where the density of individual finite elements are allowed to vary between solid

and void as the design variables. Mathematically, a size optimization problem

is being solved, however, at a macro-scale new topologies visually emerge. A

popular adaptation to this method involves using a level-set function to rep-

resent the design and mapping this level-set function to the density field [2].

Optimizing the level-set function is mathematically equivalent to shape opti-

mization, though at a macro-scale new topologies may visually emerge. More

recently, differentiable projections for explicit geometric elements have been

developed and coupled with these fixed-mesh strategies [3, 4]. Using these

methods is certainly shape optimization, though new topologies may emerge

visually. The general design representations can be mapped with additional

abstractions to perform targeted searches of the solution space [7, 8], however,

these are limited in flexibility. In this dissertation, several structural design

representations/abstractions are used for heat spreader design.

1.2 Dissertation Overview

This chapter has introduced the concept of a topology and has presented sev-

eral ways to construct or represent a topology for use in structural optimiza-

tion. First, a unifying framework is presented to encapsulate a wide class of

topology optimization problems, Ch. 2. This classification is used to identify

a subclass of topology optimization methods suitable for structural optimiza-

tion. Then, an investigation into conduction dominated power electronics

relevant problem formulations is presented, Ch. 3. This is followed by two

studies using reduced-order convection models for convective heat transfer de-
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sign in Chapters 4 and 5. Findings are used to motivate an assessment of

different structural design representation and enhancements are proposed in

Chapters 6 and 7. This is followed by a study of maximum approximation

functions, Ch. 8, and the dissertation is concluded in Ch. 9.

• Chapter 2 defines a general framework for classifying topology optimiza-

tion problems using mathematic definitions. This framework is devel-

oped in an effort to bridge the gap between related, but isolated, re-

search communities. Aspects of topology optimization design problem

formulations are decomposed and mathematically expressed to allow for

direct comparison between research communities.

• Chapter 3 focuses on the adaptation of the Solid Isotropic Microstructure

Penalization topology optimization formulations using conductive heat

transfer for power electronics applications. This study stems from the

common (incorrect) use of pseudo-objectives in literature. Differences

in optimized structure for a variety of objective functions are presented

and power electronics relevant problem formulations are presented and

solved.

• Chapter 4 presents an application of reduced-order topology optimiza-

tion for a novel folded flying capacitor multi-level inverter architecture.

This includes design, fabrication, and experimental validation for a

benchmark heat spreader and optimization adapted heat spreader de-

sign.

• Chapter 5 extends previous findings to perform an exploratory search

for reduced order methods for convective heat sink design. This includes

varying problem formulation aspects such as the design representation,
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objective function, physics, and boundary conditions. A selection of

optimized designs is experimentally benchmarked to a simple heat sink

design.

• Chapter 6 compares three fidelities of design representation as they apply

to the heat conduction optimization problem. This includes the voxel-

based representation of Solid Isotrpic Microstructure with Penalization

method, an explicit geometric representation as used in the Geometric

Projection Method, and a generative abstraction through the use of the

Space Colonization Algorithm.

• Chapter 7 outlines challenges in using projections of explicit geometric

components for heat conduction structural optimization. These chal-

lenges are similar to those present when using the Solid Isotropic with

Penalization method and several enhancements are suggested to produce

feasible structures.

• Chapter 8 presents an analysis of maximum approximation functions in

the context of requirements for topology optimization. Suitable functions

are identified and suggestions for improving optimization stability are

discussed.

• Chapter 9 concludes with research summary of key findings and sugges-

tions for future areas of work.
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Chapter 2

A classification of topology optimization
problems.

Collaborative Acknowledgement: This chapter is a culmination of several

years discussion between myself, Professor Daniel Herber and Professor James

Allison. The formalized definitions, interpretations, and classifications are a

collaborative effort between myself and Daniel Herber. Dr. Daniel Herber

contributed with his expertise in graph theory, enumeration, and heteroge-

neous system design. My own contributions focused on relaxation methods,

design abstractions, and evolutionary approaches. Together we have been able

to create standardized definitions applicable to a wide variety of topology op-

timization domains and bring to light key aspects that have otherwise been

overlooked. Note that in this chapter the word “architecture” is chosen to de-

scribe topology, or configuration, as it is more widely used in design literature.

2.1 Introduction

Determining the preferred system architecture is a challenging endeavor for

many engineering systems, such as material structures [5, 7, 9–12], electric cir-

cuits [13–20], hybrid powertrains [21–26], fluid networks [27, 28], vehicle sus-

pensions [29–31], mechanisms [32, 33], synthetic biology [4, 34], and more [35–

42]. These domains have their specific challenges, but there are insights and

shared features between them because they are fundamentally architecture

6



design problems. While the system architecture decisions of what should com-

prise the system and how it is interconnected has been left frequently to human

designers, many recent advances in computational methods have enabled the

realization of novel and high-performance solutions via design automation.

The field of systematic architecture design, however, is still developing, and

there is room for improvement. There is a need for universally-accepted rep-

resentation and language that facilitates the exchange of research approaches

and insights, and the development of appropriate and effective generation,

search, and evaluation methods [43].

In this chapter, we only consider architecture design problems with a discrete

space of potential architectures of finite size. These discrete architectures are

represented by labeled graphs to result in a problem form that is similar to

the connecting pattern of system architecting decisions [44]. Furthermore,

this work focuses on describing architecture problems that feature complex

structure and evaluation to assess performance, such as a complete engineering

design optimization problem. With this broad definition for the architecture

problem class of interest, it can be challenging to understand the solution

space and develop effective solution strategies for identifying the preferred

architectures.

There are many review papers, such as Refs. [10, 21, 43, 45–47], covering

a variety of architecture design domains and methodologies, but here we fo-

cus on formalizing the mathematical descriptions of the considered class of

architecture design problems. The contributions of this work are: 1) the pre-

sentation of a unifying mathematical representation that covers a wide range

of seemingly divergent existing architecture design problems; 2) showing the

commonalities and differences between domains and methods; and 3) analyz-

ing how a limited number of diverse existing studies fit within the proposed
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representation. First, some important concepts and definitions are presented.

Next, a generalized problem formulation is presented encompassing the class

of architecture design problems. The following sections discuss the four solu-

tion strategy modules (generator, modeler, evaluator, and searcher). With the

universal representation defined, a few select architecture design studies are

analyzed. Finally, a discussion of some important observations and suggestions

for future work are in the conclusion section.

2.2 Foundational Concepts and Definitions

First, some relevant fundamental concepts and definitions are given. Here we

will be discussing how to solve a particular class of combinatorial optimization

problems.

Definition 1 (Combinatorial Optimization). A combinatorial opti-

mization problem has the following form:

min
a

Θ(a) (2.1a)

subject to: a ∈ A (2.1b)

where a is the discrete object that must be chosen, Θ is the objective func-

tion, and A is the set of feasible solutions.

There are many classical combinatorial optimization problems, such as the

traveling salesman, knapsack, assignment, or vertex coloring problems [48].

Methods designed for these combinatorial problems are challenging, and in

most cases impossible to apply to our problems of interest. Although our

architectures are defined by graph-theoretic concepts, their performance eval-
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uation as a complex engineering systems is not.

A potentially straightforward approach to determine the solution to a

combinatorial optimization is to evaluate Θ(a) for all discrete elements in

A.
Definition 2 (Enumeration). An enumeration is an ordered listing of

all the elements of a set. An enumerative method is a technique for generat-

ing an enumeration (and not just counting how many elements are present

in the complete set). An enumeration-based method for solving Prob. (2.1)

evaluates all candidates from the enumeration of A and selects the one with

minimum value.

Both generating an enumeration and evaluating Θ can be prohibitively expen-

sive, motivating the development of alternative approaches.

The objects of interest can be represented by labeled graphs [49]. However,

all references to labeled graphs here imply vertex-labeled graphs for simplicity.

Definition 3 (Labeled Graph). A vertex-labeled graph G is a triplet

(V,E, L) of sets satisfying E ⊂ [V ]2 where V are the vertices, the elements

of E are the edges, and L = {Vi}ki=1 is a partition of the vertices into label

sets (Vi ∩ Vj = Θ, i 6= j, and (∪ki=1Vi) = V ). For convenience, we define

the function ` that maps every vertex to a label.

In some cases, an enumerative method may produce duplicate graphs. Iden-

tifying unique graphs can be performed through isomorphism checks [49].

Definition 4 (Labeled Graph Isomorphism). G = (V,E, L) is iso-

morphic to G′ = (V ′, E ′, L′) if and only if there exists an objective function

ρ : V → V ′ such that:
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1. For all vi, vj ∈ V , (vi, vj) ∈ E ⇔ (ρ(vi), ρ(vj)) ∈ E ′

2. For all v ∈ V , `(v) = `(ρ(v))
For the class of design problems considered in this work, the discrete objects

are termed architectures.

Definition 5 (Architecture). An architecture is a discrete object that

represents the system’s function and can be represented by a labeled graph.

Alternative terms are often used to describe the same concept including

topology, configuration, and network.

Finally, understanding the problem structure and dependencies will be crit-

ical to developing effective solution strategies.

Definition 6 (Dependence). A mathematical object O is said to depend

on another object d if any property of O changes when d changes. This

dependence relation is denoted Od.

2.3 Architecture Design Problem Formulations

In this section, we define a number of problem formulation elements and fea-

tures that might be present when investigating graph-based architecture de-

sign problems. While this is not a complete list, the features will be useful for

discussing feasible regions, optimality, potential solution strategies, and more.
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2.3.1 Problem Elements

First, an architecture object is denoted with the symbol a. We will want the

architectures to be in some finite feasible space, denoted as:

a ∈ A (2.2)

and this feasible space can be described in a variety of ways depending on the

specific architecture class considered.

Many problem elements may depend on the considered architecture, and

this relation is shown with the superscript a. We will also utilize the notation

of a model ma which is broadly defined as some artifact that is needed during

the evaluation of a design problem. Additional parameterizations with design

variables da may also be required for evaluating a given architecture problem.

Now, given some candidate architecture a and candidate design variables da,

the performance metric can be represented by:

Θa(da,ma) (2.3)

However, not all values for da may be considered feasible, so we can also define

the feasible set of the design variables G:

da ∈ Ga(ma) (2.4)

which may depend on the model ma and architecture a. The optimal perfor-

mance for a given architecture can be determined by solving an optimization

problem with respect to da, considering the performance defined in Eqn. (2.3),

and the feasible region in Eqn. (2.4):

Θ′(a) = inf
da
{Θ(da,ma) : da ∈ Ga(ma)} (2.5)
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Determining the value in Eqn. (2.5) for a given architecture is termed the

inner-loop problem (ILP). The use of infimum is important as there may not

be any da that is feasible.

2.3.2 Nested vs. Simultaneous Optimization Form

The first problem formulation feature is the distinction between the nested

and simultaneous forms of the combined architecture and parameterization

problem. In a nested form, an ILP represented by Eqn. (2.5) is defined which

depends on the architecture. The determination of the optimal performance

for a given architecture is used as the objective in the outer loop which seeks

to minimize this performance value subject to a feasible set of candidate ar-

chitectures. The nested form then is represented as:

min
a

φ′(a) (2.6a)

subject to: a ∈ A (2.6b)

which is quite similar to the form of general combinatorial optimization prob-

lems in Prob. (2.1) [48].

In contrast with the nested form, a simultaneous form does not determine

φ′ for every candidate architecture, but rather explores different values of da

while simultaneously searching the set of architectures. The simultaneous form

is represented as:

min
a,da

φa(da,ma) (2.7a)

subject to: a ∈ A (2.7b)

da ∈ Ga(ma) (2.7c)
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(a) Simultaneous form.

Outer-loop
optimization
problem

Inner-loop
optimization
problem

d

(b) Nested form.

Figure 2.1: Two problem forms.

Figure 2.1 illustrations conceptually the nested and simultaneous problem

forms.

2.3.3 Object vs. Assembly Architecture Form

Object form directly seeks to identify the best architecture object by search-

ing over candidate architecture objects. Both Eqn. (2.6) and Eqn. (2.7) are

presented in object form. A commonly used alternative is to assemble architec-

tures from architecture assembly variables z ∈ Z, where Z is a set of feasible

assembly variables. The assembly method maps z to a and architectures as-

sembled in this manner are denote az.

The key notion differentiating these forms is the use of assembly variables.

In the object form, candidate architectures are evaluated holistically as an

object. In the assembly form, there are independently adjustable variables

that define an architecture; assembly variables are used in the optimization

process.
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2.3.4 Architecture-Independent Problem Elements

All currently presented problem elements have included dependence on the

architecture if a dependence relationship could potentially exist. However,

when discussing the structure of architecture design problems, it is essential

to understand which problem elements depend on the architecture and which

do not. Problem elements may be partitioned into parts that do depend on

the architecture and those which do not. For example, for the feasible set of

the design variables, we might have the following forms: Ga, G, or G ∪ Ga.

In Ref. [46], the three variations da, d, and no design variables are discussed.

Another important dependence to consider is the model and whether or not it

is “architecture independent”, i.e., does a new model need to be constructed

for each architecture? This will be discussed more in Sec. 2.6.1.

2.3.5 Relaxed Forms

Another common strategy is to relax the original set of feasible architectures

A using some suitable relaxation denoted with the subscript r:

a ∈ Ar with Ar ∈ A (2.8)

In the case of the assembly form, we can potentially relax two problem ele-

ments:

z ∈ Zr and az ∈ Ar with A ∈ Ar and Z ∈ Zr (2.9)

where we may relax either the set of feasible architectures and/or the architec-

ture assembly variables that construct them. A continuous relaxation of some

discrete variables is a common relaxation strategy [10].
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A key feature of using relaxed forms is a defined mapping D : Ar 7→ A used

to return back to the original space of architectures. Without this mapping,

we are not solving the originally-specified architecture synthesis task. The use

of a relaxed form can enable effective solution methods, but fundamentally

changes the search space.

2.3.6 Single vs. Multiple Objectives

Another important feature of an architecture design problem is the number of

objective functions. Due to the nature of many system architecture studies,

we seek to understand tradeoffs between different metrics, leading to multiob-

jective problem formulations [50] and subsequent tradespace analysis [44, 51].

The simultaneous object form with multiple objectives is:

min
a

(φ′1(a), φ′2(a), . . . , φ′k(a)) (2.10a)

subject to: a ∈ A (2.10b)

where we have k different objectives, and solving Prob. (2.10) requires finding

the set of nondominated solutions. Determining this Pareto or fuzzy Pareto

set can require special methods [44, 52].

2.4 Solution Strategy Modules

In the previous section, we focused only on the design problem formulation

and not on any specific solution strategy for determining the optimal architec-

ture(s). Independent of the specific solution strategy, we describe four generic

modules, adapted from the general frameworks in Refs. [44, 45, 47] for finding

“preferred” architectures given an architecture design problem formulation.
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These modules and their interconnections are shown in Fig. 2.2.

Generator

Searcher

"Preferred" Architectures

Decisions and options

Objectives and 

Constraints

Modeler

Evaluator

d

Network Structure

Constraints

Nested Simultaneous

Figure 2.2: Generic modules and their interconnections for architecture
design problem solution strategies.

There are four main modules in this framework: a generator, modeler, eval-

uator, and searcher. Each of these modules performs a particular function

towards the goal of identifying the preferred architectures. Decisions and op-

tions are used by the generator to create architectures, and network structure

constraints may be included to limit what the generator outputs. The out-

put of the generator may be one or many architecture objects. The modeler

creates the model artifact ma given a. Next, the objective(s) and constraints

are used in the evaluator, and the evaluator’s role is dependent on whether
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a nested or simultaneous optimization form is used, as discussed in Sec. 2.7.

Finally, the searcher takes in performance metrics and all other architecture

information (potentially assembly and design variables, optimal or not, as well

as the architecture object) and determines suitable search directions defined

by s. These search directions are then passed to the generator which uses this

information to generate new architectures. The procedure continues in this

manner until a stopping criteria is met.

The following four sections will describe each of these modules in more detail

and provide some concepts that can be considered for both existing and new

architecture design problems.

2.5 Generator

The generator is responsible for producing sets of candidate architectures. In

this section, we will discuss some important properties related to the generator

and review some of the more common structures that can be used to define

the feasible set A.

2.5.1 Set of Realizable Architectures

To begin the discussion on the properties of the generator, consider again some

ideal bounded feasible space A that we consider to be the set of feasible archi-

tectures. Understanding the magnitude of this number is both conceptually

and practically important to developing effective solution methods.

As shown in Sec. 2.3.3, we may consider an assembly form which defines a
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set of all realizable architectures:

R = {az : z ∈ Z} (2.11)

We can develop some insights into the chosen assembly form by considering

the following three relationships between the sets A and R:

1. If R = A, then the generator can produce all feasible architectures ex-

actly

2. If R ⊂ A, then there may be better performing architectures that are

not realized by the chosen generator (unless all architectures not in R

are worse than the best architecture in R)

3. If R\A 6= ∅, then we must avoid certain combinations of z as they would

not produce feasible architectures

These relationships are briefly discussed in Ref. [47]. Similar relationships

can be discussed if we are considering the relaxed form substituting A with

Ar.

2.5.2 Network Structure Constraints

Network structure constraints (NSCs) is a general term for restrictions placed

on certain arrangements of the labels and connections in an architecture; NSC

violation renders an architecture topologically infeasible [53]. By definition

then, all architectures in A satisfy all NSCs. Generally, NSCs vary from

problem to problem and can be based on fundamental restrictions or gen-

eral knowledge/intuition surrounding the system of interest. References [39,

53, 54] discuss general NSCs and methods for checking/satisfying them.
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Here we define the NSC feasibility checking function f(·) as equal to one

when all NSCs are satisfied, and zero otherwise. This function can be applied

to a set of architectures to obtain all feasible architectures:

RF = F (R) := {a : a ∈ R and f(a) = 1} ⊆ A (2.12)

2.5.3 Isomorphic Architectures

In Sec. 2.2, the concept of isomorphic (labeled) graphs was presented. Ide-

ally, for the nested form, we do not want to consider two architectures that

are isomorphic with respect to their labeled graph representations because 1)

computational cost is increased without producing any additional information,

and 2) the searcher may be biased toward frequently occurring architectures

rather than only architecture performance.

This condition is slightly different for the simultaneous form where two ar-

chitecture instances are isomorphic if both the labeled graph representations

and current values of the design variables are isomorphic (i.e., we would still

want to consider isomorphic architectures in the simultaneous form, but not

isomorphic architecture instances). Determining the set of nonisomorphic ar-

chitectures from a given list can be computationally expensive [49, 54, 55].

Therefore, checking for isomorphic architectures may only be practical when

this cost is sufficiently small, but the two previous issues would remain.

Here we define a set isomorphism checking function, I(·), where all archi-

tectures that are nonisomorphic in a given set are determined.
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2.5.4 Relative Generator Coverage

While discussing the entirety of the feasible and realizable sets is useful, the

practicalities of using some specific generator are also unavoidable. Therefore,

we can define the coverage of a selected generator for some fixed computational

cost budget that may be used to generate candidate architectures. We define

the generator coverage ratio as:

rg = Ng

Nf

(2.13)

where Ng is the number of feasible/evaluable architectures that the generator

can produce in the given computational budget, and Nf is the number of

feasible architectures that are realizable using the generator. This ratio can

be used to identify three cases of particular interest:

1. rg = 1: The generator can produce all feasible architectures

2. 0� rg < 1: The generator can not produce all feasible architectures but

some reasonable portion

3. rg = ε where ε > 0 is a small number: The generator can only produce

a near zero percentage of the total feasible architectures

Different generators for the same feasible set A could have widely varying

values for rg. Seeking a larger value for rg does not guarantee the existence

of the best or good architecture(s) in A, as such it is important to considered

a targeted generation procedure. For example, we may consider using one

generator to analyze the space, A, then select another, more useful generator,

to produce an available subset of architectures. We also note that there may

be a nonlinear relationship between rg and the computational budget. In some

cases, it may be more challenging to find unique, feasible architectures as more
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architectures are generated.

2.5.5 Action-Based Generators

The choice of architecture generator will influence the size and composition

of A. The most naive “generator” is a list where candidate architectures are

simply directly available, and is only appropriate for object form. Where

this list comes from can vary; two interesting examples are suspension graphs

found using linear matrix inequalities [31] and a list of best low-pass filter

graphs determined from an enumeration-based study [56].

Frequently, an appropriate list is not readily available, and there is a need

for an effective means of generating architecture candidates. Many generators

use some particular representation and assembly method to define architecture

candidates. This assembly process for a single architecture is represented as:

a = a
(τ1,τ2,...,τk)
0 (2.14)

where the architecture a is assembled from the starting architecture a0 and

k actions are performed in sequence as τ1, τ2, . . . , τk. These actions are graph

modifications used to construct/modify an architecture. Understanding the

space of all realizable architectures is equivalent to understanding all possi-

ble permutations of the action sequence. This space of permutations can be

analyzed through tree diagrams where the root of the tree is the initial archi-

tecture, each level in the tree represents a specific action that was taken, and

the branches represent all potential actions that could be taken. For some gen-

erators, the number of actions required to define an architecture depends on

the chosen assembly method, while for other generators it can be a user-defined

parameter.

21



Best

Better

Naive

A
c
ti
o
n
s

# of Graphs

�

(a)

Best

Leveled

Delayed

A
c
ti
o
n
s �

(b)

Best

A
c
ti
o
n
s

Targeted
Best

Targeted
Imperfect

�

(c)

Figure 2.3: Illustrations of action-based generator structure.

To illustrate the process and structure of the applied actions, Fig. 2.3 is

provided. In order to compare the result of the generation process to A, both

I(·) and F (·) are applied to the resulting R to obtain the set of unique feasible

architectures. In Fig. 2.3a, all three cases match A in this illustration, with

the only difference being the number of generated graphs needed to enumerate

A. In the naive case, many additional infeasible and/or isomorphic architec-

tures are generated. In the best case, only unique feasible architectures are

generated. This behavior is illustrated for two particular methods in Ref [37].

Figure 2.3b illustrates a different concept of intermediary reductions in the

set of intermediary graphs. The mechanism for the reductions can vary; for

example, in a delayed case, the number of graphs grows until a point is reached

where many candidate graphs have no feasible potential action. For the leveled

case, feasibility or isomorphism checks could be applied to the current set of
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graphs to reduce the number of graphs considered at the next action. Finally,

Fig. 2.3c illustrates the concept of a targeted realizable space that does not

match with the original A. Some targeted methods may only generate noni-

somorphic feasible graphs but others might require the application of F and I

to obtain the desired R.

Here we will discuss three different generator types beyond the basic list,

namely, adjacency matrix interconnections (AMI) [34, 44, 57], perfect match-

ings (PM) [54], and rules [7, 39, 43, 45, 46]. For the adjacency matrix inter-

connections, the number of actions is equivalent to the number of potential

connections between vertices [34, 44, 57]. It is important to note that a spe-

cific relaxation approach is commonly used for this generator, namely replacing

z ∈ {0, 1} with the continuous relaxation z ∈ [0, 1] [9–11]. In this case, the tree

diagram representation does not make sense, as the realizable set is continuous

rather than finite, resulting in a drastic change in the search space.

For the PM approach, an even number of connections is assumed and all ver-

tices are associated with exactly one edge (a perfect matching) [54]. Therefore,

each action adds a single edge and the number of actions is half the number

of connections. The AMI (naive) and PM (better) generators are visualized in

Fig. 2.3a as neither produce A directly, but the number of graphs generated

using PM is much smaller than with AMI [54]. Algorithmic improvements

discussed in Ref. [58] feature both the delayed and leveled characteristics of

Fig. 2.3b.

The final generator discussed here is a rule-based approach such as a gram-

mar method [7, 43, 45, 46]. These rules can be any arbitrary graph modifica-

tion procedure and can encode general knowledge, targeting the search space

as shown in Fig. 2.3c. One basic assumption we make here for our analysis is

that every rule procedure should terminate [59]. If every rule can be applied

23



at every point in the action sequence, then there would be (nr)k graphs in an

enumeration where nr is the number of rules, but not all graphs may be unique

or feasible (and this is discussed briefly in Ref. [60]). For more information on

identifying and applying the appropriate rules, please refer to Refs. [39, 43,

45].

2.6 Modeler

The modeler can come in many forms depending on the domain that the sys-

tem architecture represents. While models can be constructed manually for

each candidate architecture, this approach may prove to be time-consuming

and limit the number of architectures that may be evaluated. For classes

of architectures, graph and model libraries could be constructed once and

reused when new, but similar, architecture problems are posed. Typically,

automatically-constructed models are desired in many architecture problems

where only the architecture object is needed. In some cases, custom interfaces

can be constructed that automate human-performed tasks, such as placing

submodels and connecting them [56, 61]. Some of the more common mod-

eler frameworks that support some level of architecture-specified models are

general block-diagram models [62], bond graph models [26, 61, 63], modified

nodal analysis (MNA) method for electric circuits [64], fluid-based thermal

networks [65], and other nonphysics-based frameworks [44].

2.6.1 Model Reusability

One of the primary concerns with a modeler used in architecture design is

whether or not the architecture model can be reused. Model creation can be
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costly, and universally applicable models may have forms that can be leveraged

in the manifestation of a solution strategy. For this discussion, we will consider

models that can be represented in the form:

ma : 0 = Πa (a,da) (2.15)

The most nonreusable case is when Πa must be recreated for every architec-

ture instance (i.e., any change to either a or da). Improving upon this scenario,

we often can construct Πa such that it does not need to be recreated for every

instance of da. An example of this case is generating the analytic transfer

function equations for a given circuit architecture using MNA [56, 64], which

can predict performance for arbitrary values of the circuit sizing parameters

(da), but must be reconstructed when the architecture changes.

In some special cases, the model can be shared between architectures such

as:

ma : 0 = β(a)Π (a,da) (2.16)

where β(a) is a known efficient mapping between Π and the desired model ma.

In this case, a major element of the model does not have to be reconstructed for

each candidate architecture. An example of this case is presented in Refs. [4,

65], where β is the incidence matrix for the system which can be multiplied by

a single-state dynamic equation to describe the behavior of an architecture.

This special case is sometimes further simplified to the forms 0 = β(a)Π(d)

or 0 = β(a)Π, where the latter is commonly found in structural architecture

problems when there are no design variables, but only assembly variables [10,

46]. In either of these cases, the model structure is more understood than the

arbitrary structure of the models in Eqn. (2.15).
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2.7 Evaluator

The role of the evaluator is to determine the performance metric(s). With

the nested formulation, the evaluator will solve an ILP to provide the optimal

performance of an architecture, Θ′(a). When using a simultaneous formu-

lation, the performance of an architecture instance, Θ(a,da), is determined.

The computational expense in either case will depend on several factors, such

as whether models are architecture dependent, or whether high-fidelity simu-

lations are required. Several evaluator topics relating to the model, relative

evaluation cost, and reducing computational expense follow.

2.7.1 Relative Evaluation Cost

Given a fixed computational budget, it is important to understand the implica-

tions of the evaluation cost. Consider again the number of unique architectures

generated, Ng, as discussed in Sec. 2.5.4. We will assume that all of the candi-

date architectures have a similar evaluation cost to define a relative measure

of expense, re:

re = Ne

Ng

. (2.17)

where Ne is the number of architectures that can be evaluated. This formula

facilities the description of three general cases:

1. If re = 1, then all of the architectures may be evaluated. In this case,

the evaluation has low relative cost.

2. If 0 � re < 1, then some portion of the architectures can be evaluated.

In this case, the evaluation has medium relative cost.
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3. If re = ε where ε > 0 is a small number, then only a very small portion

of the architectures can be evaluated. In this case, the evaluation has

high relative cost.

For problems with a relatively high evaluation cost, re = ε, advanced tech-

niques may be implemented to reduce overall computational expense and in-

crease design space coverage.

2.7.2 Reducing Evaluation Cost

If the modeler and ILP under consideration has medium or high relative cost,

then there are some general strategies for reducing the computational cost

associated with the evaluator. One elementary strategy is to use utilize models

and ILPs that have lower computational cost, but still have sufficient efficacy

in determining an architecture’s performance relative to the other candidates.

To understand this potential tradeoff, consider the intention of the evaluator:

to provide absolute or relative performance metrics. If the identification of

the best architecture(s) is the primary goal, then maintaining the rankings

between different models or formulations will suffice. Metrics can be used to

quantify the agreement between problems of differing expense, such as the

root-mean-square error or the Kendall tau rank distance [66], which counts

the number of pairwise disagreements between two ranking lists as is done in

Ref. [14].

There are other general strategies that seek to build performance approxi-

mations in a systematic manner. The use of an approximation function, Θ̃(·),

whose evaluation cost should be less that the original Θ, may manifest itself

in different forms:

1. Θ̃a(a, da) ≈ Θa(a, da): Individual approximations for each architecture
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2. Θ̃(a, da) ≈ Θa(a, da): Shared approximation for all architectures

3. Θ̃(a) ≈ Θ′(a): Shared approximation for all architectures based only the

architecture object (no direct determination of the design variables)

The first case constructing Θ̃a(a, da) is aligned with traditional surrogate mod-

eling [67] or multi-fidelity frameworks [68]. The second case constructing

Θ̃(a, da) has been investigated in the evolutionary computing literature [69],

where a relatively large number of fitness evaluations are usually required to

achieve convergence. The third case predicting the ILP performance using only

the architecture has been investigated using machine learning techniques [20].

In all cases, developing effective computational expense reduction strategies is

open.

The final approach discussed here is applicable to the nested form. Un-

derstanding and leveraging the structure of the ILP can greatly decrease the

computational time required to obtain Θ′(a) and therefore increase re. For

example, obtaining analytic sensitivities can improve gradient-based optimiza-

tion procedures [5, 70]. However, effectively leveraging the ILP structure can

be challenging if there are many problem elements that depend on the archi-

tecture; the form of the problem elements could differ radically for candidate

architectures. Furthermore, even if many of the problem elements are consis-

tent, architecture dependencies could result in convex or nonconvex ILPs, as

is shown in Ref. [30] for a vehicle suspension architecture study. All model

complexities would need to be managed effectively if the evaluator is fully

automated.

28



2.8 Searcher

The role of the searcher is to use the results from the evaluator to define search

directions which encode new candidate architectures (and design variables).

The choice of problem formulation, generator, and modeler all have an impact

on determining search directions.

2.8.1 Search Methods

In this section, we generally present potential search methods as their ap-

plicability and effectiveness tends to be problem dependent. Comparing the

applicability and effectiveness of different searchers has been discussed for some

specific engineering domains, including material structure design [10, 71] and

electric circuits [56].

As defined in Sec. 2.2, the most natural (but not necessarily effective) search

method is an enumeration-based strategy where search directions are simply

the next architecture in an ordered list of all feasible architectures. If evaluat-

ing or generating all architectures is not possible, then a stochastic approach

could be utilized with an action-based generator through randomly-chosen ac-

tions, feature-directed search with internal parameter tuning [46], or Monte

Carlo tree search [72]. Many popular searchers for architecture design are

population-based and use metaheuristics to select search directions. For ex-

ample, nature-inspired algorithms such as a genetic algorithms [73, 74], particle

swarm [74, 75], simulated annealing [76], and tabu search [77] have been used

to solve architecture design problems. Gradient-based methods have also be

used to define search directions when using a relaxed form, such as the relax-

ation mentioned in Sec. 2.5.5 [5, 11]. A condition of using these methods is
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the ability of the evaluator to handle architectures in the relaxed set Ar.

2.8.2 Exploration vs. Exploitation

The need for exploitation is dependent on ε-relative metrics defined previously

for generator coverage and evaluation cost. An enumeration-based method

performs only complete exploration and no exploitation. On the other end

of the spectrum, gradient-based methods (that have been applied to relaxed

forms [9, 10]) are criticized for their large focus on exploitation and often

lead to local minima [9]. Therefore, many searcher strategies that have been

used for architecture design have sought to balance exploration and exploita-

tion [45–47, 73–75, 77]. Multi-start methods are one such example [78]. A

more prevalent approach is to use metaheuristic-based methods [73–77]. How-

ever, careful application is needed as these methods can struggle to converge

for large-scale problems [79]. Understanding and developing methods with a

successful balance between exploration and exploitation is an important re-

search area.

2.8.3 Searcher and the Nested vs. Simultaneous Forms

Many frequently-used searchers use a population (small set of architectures)

and positive reinforcement (relatively good performances are preferred and

exploited) to select directions [44, 73]. From a normative perspective, we can

consider four cases of relative performance a candidate architecture might fall

under compared to the current population, shown in Table 2.1. For both

formulations, if both have the same relative performance (either good or poor)

compared to the current population, then a searcher would perform the same
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Nested Simultaneous
Θ′(a) compared to Searcher Should a Searcher Θa(a,da) compared to
current population exploits a be exploited? exploits a current population

Good (+) Yes Yes Yes Good (+)
Good (+) Yes Yes No Poor (−)
Poor (−) No No Yes Good (+)
Poor (−) No Maybe No Poor (−)

Table 2.1: Qualitative assessment of the positive reinforcement searcher
behavior using both the nested and simultaneous forms.

action. The interesting cases are when the relative performance assessments

differ. If a particular instance of a with some da has poor relative performance

but good relative potential performance using Θ′(a), then a searcher should

want to exploit such an architecture. However, it may not when using a

simultaneous form, which may bias the search away from architectures with

the best potential performance if the current instance of the design variables

happen to produce poor performance. A similar statement can be made for

the converse case, and the conclusion is that the nested approach is more

aligned with this view of the conditions such that the searcher should exploit

the current architecture if the potential performance is good.

Such insights have been exposed by some in the electric circuit synthesis

community stating that the ILP should be solved for each candidate circuit

topology to provide a proper assessment of the value of the candidate archi-

tecture [18]. The building block hypothesis is one explanation of how genetic

algorithms are successful, so employing a representation that can be success-

fully used in identifying and exploiting building blocks should be a key con-

sideration [73]. Coupling a and da, as the simultaneous form does, using a

genetic algorithm should be a carefully considered decision.

One final comment is related to the architectures with poor performance

in both forms. Many traditional positive reinforcement methods do not keep
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this information to inform future searcher actions away from known poor ar-

chitectures. One strategy to fully exploit this information is to use a learning

algorithm [80].

2.9 Application to Existing Case Studies

In Table 2.2, the proposed formulation and solution strategy considerations

are analyzed for a select number of engineering architecture design case stud-

ies. While this selection is not comprehensive, it does highlight the diversity

of solution methodologies across various application domains. Within the di-

versity of examples, there are common themes that become apparent based on

problem formulation; such as the typical enumeration of list-type generators.

This table can be seen as a starting reference for how others have formulated

and solved their specific problems. Since the focus of this article was to be

descriptive, a normative discussion of method utility is left as a topic of future

work.
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2.10 Discussion

In this article, a unifying mathematical representation that encompasses a

class of architecture design optimization problems characterized by a discrete

space of potential architectures of finite size and feature complex structure

and evaluation to assess performance is presented. This includes definitions

of the modules of general solution strategies for architecture design problems,

examples of current module strategies, and quantifiable descriptors to capture

module-specific considerations. In Table 2.2, this unified problem representa-

tion (and associated qualitative and quantitative descriptors) was applied to

a limited selection of existing engineering architecture case studies and may

serve as a starting reference for systematic investigation of the current methods

and challenges over a wide range of applications.

It is hoped that this work provides a new perspective in the area of system

architecture design problems and motivates the investigation of alternative

problem and appropriate formulations. The “preferred” method for struc-

tural optimization alternated through the decades between evolutionary [12]

and gradient-based [5] forms depending on the state of method development

and the advancement of computational resources (and generating the adja-

cency matrix interactions will always be impractical [11]). Enumeration-based

methods have been effective in a number areas such as hybrid powertrains de-

sign [23, 24] due to the specific complexity of their graph representations and

inner-loop problems. Comparisons between widely different methods can also

be useful, as is shown in Ref. [56] for an electric circuit architecture problem

where an enumeration-based method confirmed that a metaheuristic-based

approach [19] identified one of ten equivalent Pareto-optimal architectures.

Adopting a common representation for evaluating the performance of ar-
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chitectures enables a fairer discussion relating to problem formulation and

solution strategies. Some of the foundational work could include: 1) quanti-

fying the scalability and coverage of specific generators, and ways to improve

the generation process; 2) effectively navigating the fidelity trade-offs in the

various modules, especially in the context of complex inner-loop problems; 3)

investigating the validity and effectiveness of the searcher and search direc-

tions; and 4) tailored solution strategies (i.e., appropriate methods for each

module) applicable to certain subclasses of the considered architecture design

problem class.

2.11 Summary

Architecture, or topology, optimization problems have been investigated in

several research communities highlighting domain-specific challenges. In this

chapter, a unifying language is presented to facilitate a discussion between re-

search communities. There are some new key points introduced in this chapter

that are not typically given emphasis in topology optimization problems.

• The distinction between an architecture, a, and associated design vari-

ables, da.

• Formalizing generator coverage as a function of the realizable set of ar-

chitectures and illustrating action-based generation sequences.

• Emphasizing the role of the Modeler Fig. 2.2. The modeler is a key bot-

tleneck when considering architecture design with heterogeneous com-

ponents, it is also the key enabler when shared as in SIMP structural

topology optimization.
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• Defining a relative expense metric for the evaluator and differentiating

styles for problem approximation

• Clarifying the use of design data when using nested vs simultaneous

forms in a searcher.

• Applying a these definitions across multiple application domains to draw

similarities between research methods.

The next chapters in the thesis focus on relaxed topology optimization with

a shared model and a simultaneous searcher.
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Chapter 3

Practical Objectives and Constraints for Heat
Conduction Topology Optimization

3.1 Introduction

Heat conduction is a dominant mode of heat transfer in many engineering

systems. This physics phenomenon can be used purposefully to heat and cool

matter through the designed use of a heat spreading structure. The research

presented in this chapter focuses on the design of heat spreading structures us-

ing topology optimization methodologies, Bendsoe and Kikuchi [6]. Topology

optimization has been used successfully to design heat spreaders for various ap-

plications. One similarity between the design of these heat spreaders is the use

of a structural mechanics analog objective: thermal compliance. This objective

is favorable from a numerical optimization solution performance perspective,

but may not represent the true goal of a heat spreader. The investigations

presented here will focus on reformulating the topology optimization problem

for various different heat spreader design tasks.

Researchers in topology optimization have investigated several problem for-

mulations for heat spreader design. Gersborg-Hansen et al. [81] presented a

well-known example where a thermal compliance based heat conduction prob-

lem was solved using the finite volume method. Burger et al. [82] solved a 3D

thermal compliance problem to evaluate the performance of optimized struc-

tures for a variety of finite fixed temperature boundary conditions. Asym-
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metric optimal structures were obtained when dividing and segregating the

Dirichlet boundary. In a recent study, Yan et al. [83] investigated the op-

timality of dendritic structures for compliance and maximum temperature

minimization problems. It was concluded that lamellar needle-like topologies

outperform the typically reported dendritic structures. Given the local nature

of gradient-based optimization, careful consideration should be given to the

initial design vector value to support convergence towards better-performing

optimized structures. One strategy for selecting a good initial design vector

is to perform optimization using a reduced-dimension design representation,

such as a generative algorithm [8]. This strategy was shown to improve de-

sign performance consistently when compared to topology optimization with

a homogeneous initial material distribution.

More complex formulations that involve elements beyond a simple compli-

ance objective and volume constraints have been investigated. For example,

Mark et al. [84] investigated the tradeoff between mean temperature and tem-

perature variance to formulate a more realistic design problem. The authors

used the method of weighted sums to produce a Pareto front by calculating

both combined objectives and derivatives. The optimized topological struc-

tures have clear differences when comparing mean temperature solutions to

variance-optimized solutions. In another example, Dirker and Meyer [85] in-

vestigated several objectives in a problem formulation with design-dependent

volumetric heat generation. Their objectives included the maximum domain

temperature, the average domain temperature, and a summation of the tem-

perature across volumetric heat generating elements. The authors observed

dendritic patterns in the optimized structures for all objective functions. Uti-

lizing more realistic objectives may improve the practical applicability of topol-

ogy optimization, however, the functional role of a heat spreader may depend
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on additional practical constraints. For example, Zhuang and Xiong [86] solved

a minimum compliance design problem incorporating point and local area tem-

perature constraints. The fundamental structure of the optimized topology

changed when considering the area temperature constraints.

As a logical extension to heat conduction problems that are commonly

solved, design-dependent loading has been investigated in applications with

convection. Two strategies for parameterizing convection in a conduction

framework have been proposed by Bruns [87] and Iga et al. [88]. These ap-

proaches have been extended recently to 3D problems. Consider the work of

Zhou et al. [89], where a static conduction-based convection topology optimiza-

tion was performed and compared to a benchmark heat spreader design. The

authors observed a 20◦C decrease in temperature when comparing the opti-

mized design to the reference design using thermo-fluidic simulations. Another

example is in the work of Dede et al. [90], where conduction-based convection

optimization was performed to design a heat spreader for a circular air jet. The

authors fabricated the optimized topology and experimentally compared per-

formance to standard heat spreader topologies. The optimized heat spreader

showed comparable performance to conventionally designed heat spreaders.

Fully coupled thermo-fluidic analysis has also been solved for in many cool-

ing design applications. For forced air convection, a 3D to 2D model reduction

was used to design fin topology, Haertel and Nellis [91], using COMSOL Mul-

tiphysics. The lower-order model results agreed with 3D simulation, and a

decrease in thermal resistance of 13% was achieved through optimization. A

full 3D thermo-fluid topology optimization including buoyancy effects was per-

formed by Alexandersen et al. [92]. It was shown that complex geometries can

improve cooling performance when compared to straight fin heat spreaders. In

a recent paper, Dbouk [93] asserted that topology optimization methodologies
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are not yet robust enough to be used in industrial applications. Though this

is true for some formulations, there are many applications where industry-

relevant problems can be solved well using topology optimization methods.

Take for example this heat conduction dominant system where topology op-

timization has been practically used to achieve a large reduction in domain

temperature, Dede et al. [94]. In the research presented here, we investigate a

similar application: power electronic systems.

In electronic systems spreading structures are often selected based on

commercially-available products. Recent work has demonstrated the inter-

esting opportunity of employing heat spreaders tailored using optimization

to further improve performance for specific applications. Consider the work

of Christen et al. [95] where a thermal resistor network was used to model

heat spreaders for natural convection. Using optimization, the authors re-

duced the heat spreader size by 50% and experimentally verified performance.

As another example, a radial heat spreader was designed for an LED by Yu

et al. [96] solving the Navier-Stokes equation. Different styles of radial heat

spreaders were optimized using evolutionary algorithms to explore the effects

of fundamental design changes. Moving towards a more flexible formulation,

Ramphueiphad and BUreerat [97] optimized both fin cross-section and height

for a 3D heat spreader using a multi-objective evolutionary algorithm. This

study revealed that non-uniform fin cross-sections and fin heights are superior

to pin fin designs with a constant fin height. In our research, we utilize topol-

ogy optimization to provide maximal design freedom, motivated by the positive

correlation between design flexibility and system performance observed in the

literature across these multiple application domains.

The heat conduction topology optimization problems as previously discussed

translate to electronics applications where heat generating devices also must
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satisfy strict temperature constraints. In this work, two different sets of topol-

ogy optimization problems are investigated. First, an investigation of opti-

mization objective functions is presented on a benchmark heat transfer topol-

ogy optimization problem. The findings are applied to several practical prob-

lem formulations for power electronics on a domain with discrete heat sources.

The following sections will describe the topology optimization methodology

and present numerical results for all problem formulations.

3.2 Topology Optimization Methodology

To address the topological design of heat spreaders, a density-based topology

optimization approach is used. The design domain is discretized into finite

elements to match the analysis domain. The analysis problem is solved using

a standard Galerkin finite element procedure with linear shape functions. A

design vector, d, is comprised of parameters, αi, assigned to each finite element

and is used to scale the material densities of the elements. In this study, the

solid isotropic micro-structure with penalization (SIMP) method is used to

bias the elements towards solid (1) or void (0) material properties. In this

implementation the SIMP penalization, γ, is applied on the filtered density

field, ρ̃, to scale the the thermal conductivity, κi, of a finite element, i,

κi = κmin + ρ̃i
γκ0. (3.1)

The penalization parameter, γ, is increased at intervals to improve optimiza-

tion convergence. The elemental thermal conductivity is allowed to vary be-

tween, κmin = 1W/mK, and the sum of κmin and κ0 = 400 W/mK. To enforce
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the minimum length-scale requirements, a linear density filter is used.

ρ̃ =
∑
j

wijαj, (3.2)

where the weighting function, w, is defined based on the centroid distances of

neighboring elements in the neighborhood Ni:

wi,j =


R−d(i,j)∑
(R−d(i,k)) j ∈ Ni

0 j /∈ Ni.
(3.3)

The filter weight, wij, is scaled based on the difference between a prescribed

minimum radius, R, and the distance between element centers d(i, j), and a

summation of neighboring element distances, d(i, k). This simple filter is ef-

fective at biasing the designs to satisfy the minimum radius constraint. There

are many other filtering strategies that can be used to influence design repre-

sentation; refer to Svanberg and Svard [98] for a helpful study of filters. The

method of moving asymptotes (MMA) algorithm [99] is used to optimize the

nonlinear design optimization problem until a convergence tolerance of 0.01

on design variable changes, or a maximum of 100 outer loop MMA iterations

is reached.

A custom finite element analysis code was written in Matlab to analyze

thermal properties on the domain using four node elements with linear shape

functions. A regular mesh of 300 × 300 elements was chosen for both design

and analysis as it produced < 0.1% error in the maximum temperature when

compared to a benchmark COMSOL analysis. A density filter is used where

appropriate to enforce length-scale control on the domain, and the adjoint

method is used to obtain gradient information for the objective and constraint

functions. These definitions are consistent across all presented case studies

unless otherwise noted. The adjoint method is detailed next.
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3.2.1 Adjoint Differentiation

The derivative of the objective function is obtained using the adjoint method.

A discretize-then-optimize approach is used to obtain the gradient of the ob-

jective function. Consider an objective function, Θ, which can be represented

by some function, Π(·):

Θ(d) = Π(U(d),P(d),d), (3.4)

that depends on the thermal load, P, temperature, U, and the design variable

vector, d. The residual of the finite element analysis is multiplied by an adjoint

variable λ and is added to this objective:

Θ(d) = Π(U(d),P(d),d) + λT [K(d)U(d)−P(d)] . (3.5)

Note that K(d) is the stiffness matrix for the finite element analysis. The

gradient of this expression can be obtained using the chain rule:

dΘ(d) = ∂Π
∂U(d)

∂U(d)
∂d

+ ∂Π
∂P(d)

∂P(d)
∂d

+ ∂Π
∂d

(3.6a)

+λT
[
K(d)∂U(d)

∂d
+ ∂K(d)

∂d
U(d)− ∂P(d)

∂d

]
. (3.6b)

These terms can be rearranged to suggest useful choices for the adjoint vector:

dΘ(d) =
(

∂Π
∂U(d) + λTK(d)

)
∂U(d)
∂d

(3.7a)

+
(

∂Π
∂P(d) − λ

T

)
∂P(d)
∂d

(3.7b)

+∂Π
∂d

+ λT ∂K(d)
∂d

U(x). (3.7c)

Based on the problem formulation, the adjoint vector, λ, can be chosen such
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that expensive gradient calculations are avoided. For example, if the problem

does not have design-dependent loading, Eqn. (3.7b) drops out. Simplifications

such as this become apparent when considering the boundary conditions in the

problem formulation.

3.2.2 Boundary Definiteness

Using a filter effectively biases the design towards satisfying the minimum

radius constraint and makes the design solution independent of the analysis

mesh size. However, using a filter also results in a design with an ill-defined

solid/void interface. This interface is defined by elements with partial density.

A strategy to measure the boundary definiteness was proposed by Dirker and

Meyer [85] and is presented in the following equation:

ε = 1− mean(ρ̃2 − ρ̃)
V 2

max − Vmax
, (3.8)

where the boundary definiteness, ε, is measured as the difference between 1

and a function of the partially defined material. This function compares the

fraction of elements which are partially defined to the fraction of elements

which are conductive, Vmax. This measure of boundary definiteness will be

used in the following sections to compare the boundary quality of the heat

spreading structures.

3.3 Objective Function Investigations

This first set of studies involves designing a heat spreading structure using

three sets of boundary conditions for a 1x1 m2 homogeneously-heated domain

(Fig. 3.1). This analysis problem was chosen to showcase the effect of objec-
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tive function selection for a design problem that is commonly solved in the

literature. This design domain can serve as an abstraction for a system with

some distribution of heat on the domain; solving for discrete sources, as are

common in power electronic systems, is a simple extension of this, as will be

demonstrated in the next section.

ΓD

ΓN

Ω

1m

1m

ΓD

ΓN

Ω

1m

1m

0.2m

ΓN

Ω

1m

1m

ΓD

Figure 3.1: Three insulated homogeneously heated domains with fixed
temperature boundaries. A fully-fixed boundary (left), a partially-fixed
boundary (center), and a point-fixed boundary (right) are shown.

The design domain, Ω, is homogeneously heated, the Neumann boundary

(left, right, and top boundaries), ΓN , is adiabatic, and the Dirichlet boundary

(bottom boundary, or point), ΓD, has fixed temperature. These properties can

be expressed as:

∇ · (κ∇T ) + f = 0 on Ω, (3.9)

T = 0 on ΓD, (3.10)

(κ∇T ) · n = 0 on ΓN . (3.11)

In this design problem, a constant power of 1,000 W is applied uniformly

to the design domain, independent of the design parameters. A conductive

heat spreader is optimized to extract heat from this domain through the fixed

temperature boundary. In application, a secondary heat exchanger may be

present to maintain the lower boundary at a fixed temperature. In all of the
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following examples, this boundary temperature is fixed at 0◦C.

To achieve the goal of reducing the temperature on the domain, consider this

commonly used topology optimization design problem formulation presented

in (4.10):

min
d

Θ(d)

s. t. V (d) ≤ Vmax

R(d) ≥ Rmin

0 ≤ d ≤ 1,

(P1)

where some objective, Θ, is minimized subject to a volume constraint. The

volume, V , is constrained by a maximum value, Vmax, and a minimum ra-

dius constraint is imposed where the radius of design features, R, must be

greater than a prescribed value, Rmin. For 2-dimensional examples, the vol-

ume constraint translates to an upper limit on area, constraining the amount

of conductive material used. For this problem formulation, conductive mate-

rial is restricted to 30% of the domain area. The minimum radius constraint

is implicitly satisfied via the density filter described in the previous section;

the filtering radius is set to 0.04 m. This formulation (P1) works particularly

well for structural topology optimization, where a volume constraint may rep-

resent a cost requirement and the minimum feature size of a structure may

be restricted by manufacturing technology, (Patterson et al. [100]). Further-

more, the formulation is straightforward to implement and fairly numerically

stable when using a SIMP topology optimization approach with the MMA

algorithm. It is important to note that the actual numerical optimization

problem the MMA algorithm solves does not include the radius constraint, as

this is implicitly satisfied using the density filter.
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3.3.1 Candidate Objective Functions

The first objective of interest is thermal compliance. This objective is defined

as the product of the heat flux, q and temperature gradient, ∇T :

Θ(d) =
∫

Ω
qTdΩ→ Θ(d) = UTP. (3.12)

The compliance metric may be represented simply by the dot product of the

thermal load, P, and the nodal temperature vector, U. This is a popular

objective function because the adjoint variable can be defined directly using a

known quantity U, eliminating the need to solve an additional linear system

for the adjoint variable.

A mean temperature objective is an alternative to the compliance objective

that may align better with the goal of reducing the domain temperature. The

thermal compliance objective biases the performance of the structure in ar-

eas where there is input heat flux. A mean temperature objective does not

explicitly account for the influence of the loading conditions:

Θ(d) = 1
n

∫
Ω
TdΩ→ Θ(d) = LTU

n
. (3.13)

In discrete form, the mean temperature objective can be represented—in terms

of finite element model quantities—as the product of a vectors of ones, L, and

the nodal temperature vector, U, divided by the number of finite element

nodes n.

Often, the goal of a heat spreader is to help reduce the maximum temper-

ature on the domain. If point-wise hot spots are a primary concern, then

minimizing maximum temperature may be a more appropriate objective than

thermal compliance or mean temperature. The max function, however, is not

differentiable. As an approximation to the max function, a p-norm approxi-
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mation is used here:

Θ(d) = ||T ||p → Θ(d) =
(
LTUp

)1/p
. (3.14)

The p-norm approximates the maximum temperature by applying a root to

the power p on the summation of temperature to the power p. The accuracy

of this approximation increases with the magnitude of p, and as p → ∞ the

norm converges to the max function. The discrete problem can be described

similarly, where the summation is replaced with the product of a ones vector,

L, and the nodal temperature vector, U, raised to the power p. To maintain a

smooth approximation function with well-defined derivatives, p = 10 is chosen.

This will not result in an accurate measure of the maximum temperature on the

entire domain, but the gradient of which should direct the topology towards a

“lower” temperature solution.

While minimizing temperature is an important goal of heat spreader design,

some situations involving electronics may favor temperature uniformity, where

large temperature gradients adversely affect performance. While the max or

mean temperatures provide some useful information about the temperature

distribution on the domain, these single parameters do not capture more global

information. One way to quantify temperature homogeneity across the domain

is to use temperature variance as an objective:

Θ(d) = 1
n

∫
Ω

(T − Tav)2 dΩ (3.15a)

→ Θ(d) = 1
n

(
U− LTU

n

)T (
U− LTU

n

)
, (3.15b)

where the temperature variance is given by the average of the squared differ-

ence of an element temperature, T , and the average temperature, Tav. This

can be represented in discrete form in terms of the ones vector, L, and the
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temperature vector U.

3.3.2 Optimization Results

The optimized designs for the homogeneous heating design problem consid-

ering all optimization objectives and boundary conditions are presented in

Table 3.1.
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Boundary Compliance mean(T) max(T) var(T)

ΓD

ΓN

Ω

1m

1m

compliance 3108 (best) 3120 (<1%) 3616 (+16%) 4107 (+32%)
mean(T) 4.06 (best) 4.06 (best) 4.52 (+10%) 5.00 (+19%)
max(T) 8.51 (+11%) 8.51 (+11%) 7.54 (best) 8.22 (+8%)
var(T) 4.49 (+21%) 4.49 (+21%) 3.84 (+08%) 3.52 (best)
ε 66.85% 76.98% 75.72% 71.78%

ΓD

ΓN

Ω

1m

1m

0.2m

Compliance 4065 (best) 4088 (+1%) 4368 (+7%) 7150 (+76%)
mean(T) 5.075 (best) 5.1274 (+1%) 5.295 (+4%) 8.065 (+59%)
max(T) 9.591 (+16%) 9.733 (+17%) 8.290 (best) 10.81 (+30%)
var(T) 5.8699 (+55%) 6.0431 (+60%) 4.3272 (+15%) 3.776 (best)
ε 74.74 % 74.26% 73.74% 67.68%

ΓN

Ω

1m

1m

ΓD

Compliance 15500 (best) 15824 (+2%) 15526 (<1%) 18884 (+22%)
mean(T) 16.699 (<1%) 17.40 (+5%) 16.64 (best) 19.95 (+18%)
max(T) 24.19 (+13%) 25.01 (+17%) 21.39 (best) 23.67 (+11%)
var(T) 14.31 (+93%) 15.73 (+112%) 9.039 (+22%) 7.431 (best)
ε 65.51% 62.58% 71.51% 69.26%

Table 3.1: Topology optimization solutions for various objective functions. Solutions
share a common color scale for each boundary condition.
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The optimizer converged to the best solution for the given objective. The

computational expense using these objective functions in optimization is com-

parable since they share the same problem formulation and an equal number

of operations are required to numerically obtain the derivatives. All four of

the objective functions reached the maximum iteration limit without reach-

ing any MMA inner-loop iteration limits. When optimizing for a particular

objective, performance improvements in the range of 1-112% were observed

between solutions. The potential performance improvement dwarfs any varia-

tions in computational expense that are experienced from the use of the MMA

algorithm. As such, the use of proxy objective functions in an effort to reduce

computational expense is not recommended.

The compliance and mean temperature optimization routines converged to

nearly identical optimized topologies for all three boundary condition varia-

tions. Investigating the mathematical formulation of these objectives reveals

that they are linearly proportional. The mean temperature objective is a

summation of temperature values divided by a constant. For the homoge-

neously heated domain design problem, compliance is also the summation of

temperature, but multiplied by a constant (thermal load). For this specific de-

sign problem where the load is uniformly distributed, the thermal compliance

derivatives point in the same direction as the mean temperature derivatives

during optimization. For general non-uniformly distributed thermal loading,

the mean temperature objective should provide an alternate topology. Fur-

thermore, it can be concluded that the compliance objective function for this

problem formulation should be used in place of the average temperature ob-

jective for computational efficiency if minimum average temperature is the

preferred objective.

When using an approximate maximum temperature objective function, tem-
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perature reductions of 13 − 30% were observed when compared to topologies

optimized by other objectives. The reduction in domain temperature may

justify the use of this objective, even though the single global approximation

function loses accuracy for large mesh sizes as observed by [101]. Furthermore,

the inaccuracy of the p-norm approximation will propagate to the derivatives.

However, the p-norm function will over-estimate the value maximum temper-

ature and is monotonic for values greater than zero. These characteristics of

the approximation function will point the derivatives towards a “lower” tem-

perature solution, which may not represent the “lowest” temperature design,

directly. An accurate maximum temperature value may be calculated directly

using the maximum function after the optimization solution is obtained.

The optimized structures when using the variance objective tended to be

more dendritic. Conductive material is allocated such that the non-conductive

white space is more evenly distributed on the domain. Furthermore, in all

three cases, the contact surface to the fixed temperature boundary seems to

be smaller than those for solutions obtained when using the other objective

functions. To analyze these effects, a normalized gradient is superimposed

on the compliance and variance optimized topologies for the first boundary

condition in Fig. 3.2.

Notice how the compliance solution (left) has higher gradient concentrations,

denoted by the lighter contours, near the black structure. These are located

at the end points of the conductive structure. The variance optimized solution

does not feature the same magnitude of gradients at the endpoints of the struc-

ture, and its highest gradients are located near the heat sink. This may be due

to the reduced presence of conductive material (i.e., inverse taper) near the

fixed temperature boundary. Though this objective function can be success-

fully used to minimize the variance of the temperature on the domain, it does

52



Topology Temperature

0

0.2

0.4

0.6

0.8

1

Figure 3.2: Temperature gradient comparison between compliance (left)
and variance (right) minimization solutions. Normalized gradients share a
color scale. Variance optimized solution moves largest variance gradients
towards heat sink.

not minimize the average temperature about which the variance is calculated.

In some cases, the temperature rose significantly, 30%, in order to produce

a solution with a minimized variance. To use this objective function more

effectively for electronics, it should be paired with some form of temperature

constraint. An example formulation is presented in the next section.

3.4 Practical Formulations for Power Electronic
Systems

With a practical understanding obtained from analyzing different objective

function results in the previous section, findings are applied to case studies

relevant to power electronics applications. Consider the 10 x 10 cm2 design

domain consisting of 8 discrete 5 mm x 2.5 mm heat sources, illustrated in

Fig. 3.3. The heat sources centers are spaced evenly such that a = 2.5 cm

and b=2 cm. One application that would produce such a domain is an elec-
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tronics circuit board where heat is generated by electronic devices, Dede et

al. [94]. This type of system has additional design considerations, including

devices with distinct properties (different temperature limits, etc.). A variety

of problem formulations to address this design problem class are investigated

in the following sections.

Ω0

ΓD

ΓNΩ1

Ω2

Ω3

Ω4

Ω5

Ω6

Ω7

Ω8

10 cm
10

 c
m

a a

b

b

b

b

Figure 3.3: Simplified 2-D printed circuit board (PCB) domain with 8 heat
generating devices.

The governing equations of this system involve heat generation prescribed

in specific regions, Ω1,...,8. In these regions, the heat generating components

are assumed to be thermally conductive. The design domain, Ω0, does not

generate heat, and thermally conductive material distribution will be designed

via the optimization process to extract heat. The governing equations of this

system follow:
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∇ · (κ∇T ) = 0 on Ω0, (3.16)

∇ · (κ∇T ) + f = 0 on Ω1,...,8, (3.17)

T = 0 on ΓD, (3.18)

(κ∇T ) · n = 0 on ΓN . (3.19)

For these studies an input power, f = 1.25 W, is applied to each of the

eight rectangular devices on the domain, for a total of 10 W of loss within the

domain. The Dirichlet boundary (bottom boundary) remains fixed at 0◦C,

and the Neumann boundary (remaining boundaries) restrict heat flux out of

the domain. Using a fixed temperature boundary, where the device and heat

sink will be connected by a conductive bridge, small temperature variations

between device and sink are expected, and were observed for all case studies.

Though this accurately represents some electronics systems, it is not true for

all electronics systems. For all subsequent studies the Dirichlet boundary is

retained and constraints are modified to account for this boundary condition

for demonstration purposes.

3.4.1 Maximum Temperature Minimization

With the recent advances in wide-band gap devices, the temperature differ-

ence between heat source and sink may vary by 100’s of degrees Celsius during

steady state operation. The accuracy of the p-norm approximation is depen-

dent on the magnitude of the norm value, and for large temperature variations

on the domain numerical issues can be experienced. A similar situation is well

studied in structural mechanics, were stress is an important parameter. In
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many cases, stress is enforced in a normalized constraint to avoid these nu-

merical issues, Le et al. [102]. In this research, we adapt this concept in a

novel way to perform a normalized temperature minimization. One strat-

egy to normalize the temperature measurements is to optimize the maximum

temperature constraint value on the domain while enforcing a temperature

constraint. The problem formulation (P2) is:

min
d

d1

s. t. V (d) ≤ Vmax

R(d) ≥ Rmin(
LT1,...,8

U
d1

p
)1/p

− 1 ≤ 0

0 ≤ d ≤ 1,

(P2)

with the design vector defined as:

d = [Tmax,d]T = [Tmax, α1, ..., αn]T . (3.20)

Here the maximum temperature constraint value, d1 is minimized, subject to

volume (≤ 30%), radius (≥ 0.4 cm), and a single normalized p-norm temper-

ature constraint. To prevent numerical oscillations resulting from the temper-

ature constraint switching between active and inactive, a move limit of 0.01

is applied to the maximum temperature design variable. Device locations are

fixed and the global temperature constraint is only applied to device nodes,

assuming that other materials in the system are less sensitive to temperature.

If instead all points across the domain were constrained to be less than Tmax,

instead of just the devices, this problem would be mathematically equivalent

to the formulation presented in Sec. 3 that minimized an approximated max-
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imum temperature. The topology optimization solution for this problem is

presented in Fig. 3.4.

Topology Temperature

0

0.01

0.02

0.03

Figure 3.4: Max temperature optimization solution results in a ladder-like
structure.

The MMA algorithm found a ‘ladder-like’ topology to reduce the maximum

device temperatures. The maximum temperatures of the devices are symmet-

ric across the central axis and are presented in order by device number: [0.037

0.030 0.022 0.012 0.037 0.030 0.022 0.012] ◦ C. Minimizing maximum device

temperatures may make sense for electronic heat spreader design and similar

problems where device lifetime and temperature are correlated.

In addition to the adaptive normalization benefits, this formulation presents

increased design flexibility. For example, consider the following objective func-

tion:

Θ(d) = Tmax 1(1− dp1) + Tmax 2d
P
1 , (3.21)

where optimization may select an appropriate temperature constraint based

on the heat spreader design task. The value for Tmax 1 is set to 0.02, which
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is beyond the capability of the optimal heat spreading structure, and Tmax 2

is set to 0.04, which is above the maximum temperature of the optimal heat

spreading structure. This objective may serve as an abstraction of a component

selection task while considering heat spreading capability. It was observed that

the optimizer first tried to minimize the maximum temperature on the domain.

As the optimizer could not satisfy the temperature constraint, the constraint

limit was increased. The optimizer successfully pushed d1 to a value of 1 to

select the components with a higher temperature constraint. This resulted in

the same topology as illustrated in Fig. 3.4.

3.4.2 Average Temperature Matching Optimization

In some electronics applications, the circuit performance may be improved

by matching the temperature of specific sensitive devices. Furthermore, the

optimization of electronic layouts may result in asymmetric device layout. To

emulate this, this next case study was formulated where the devices nearest and

furthest from the heat sink were required to have identical temperatures, while

satisfying maximum temperature constraints on all eight devices. Consider

the case where devices 4 and 5 (as labeled in Fig. 3.3) must operate at the

same temperature for ideal performance. This formulation is appropriate for

photonics systems, where device behavior is highly sensitive to temperature

changes, and maintaining similar temperatures on multiple devices is required

for desired performance. One approach to achieve this is to minimize a square

of the difference between the average temperature of nodes corresponding to
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these two devices:

min.
d

(
LT4 U
n
− LT5 U

n

)2

s. t. V (d) ≤ Vmax

R(d) ≥ Rmin(
LT1,...,8

(
U
Tmax

)p)1/p

− 1 ≤ 0

0 ≤ d ≤ 1.

(P3)

The elements of the selection vector Li that correspond to nodes within

device i are 1, and all other elements are zero. In addition to matching the

temperature between devices 4 and 5, a general maximum temperature con-

straint across all eight devices must be satisfied. The maximum temperature

constraint for each device is once again formulated as a p-norm applied to

device node temperatures. Since the previous optimization found a minimum

max temperature of 0.04◦ C, this formulation relaxes the requirement to a

known feasible Tmax = 0.06◦ C to demonstrate the capability of the proce-

dure. This design problem is again subject to a volume constraint, where

Vmax = 0.3, and a constraint on the minimum feature size, Rmin = 0.4 cm.

The design variables are once again solely a function of material density pa-

rameters: d = [α1, ..., αn]T. This topology optimization problem can be solved

to result in the structure presented in Fig. 3.5.

The temperature of the devices are given in order as [0.525 0.474 0.042 0.059

0.510 0.038 0.262 0.157] ◦C. To match the temperature of a device near the

temperature boundary and a device away from the temperature boundary,

the optimizer allowed device 4 to heat up to match the temperature of device

5 (still satisfying the temperature constraint). The result is an asymmetric
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Figure 3.5: Temperature matching optimization solution produces
asymmetric structure to satisfy maximum temperature constraint.

topology where device 5 is connected to the boundary with conductive mate-

rial, and device 4 is minimally connected with thermally conductive material.

3.4.3 Average Temperature Maximization

In this study, we demonstrate a practical use of an average temperature opti-

mization for an energy harvesting application subject to localized temperature

constraints. This may be important for circuits with thermo-electric devices

that can harvest energy [103], or for circuits placed near energy storage devices

that require higher temperatures to operate efficiently. One example of this
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type of design problem can be formulated as:

min
d

− 1
n

(
LT2 U + LT6 U

)
s. t. V (d) ≤ Vmax

R(d) ≥ Rmin(
LT1,...,8

(
U
Tmax

)p)1/p

≤ 1

1
n

(
LT2 U− LT6 U

)2
≤ 0.01

0 ≤ d ≤ 1.

(P4)

The objective now is to minimize the negative sum of the average tempera-

tures on devices 2 and 6. A p-norm temperature constraint is enforced on the

elements of the remaining devices to prevent failure. The temperature con-

straint is further relaxed here to 0.08◦ to demonstrate the variation in topol-

ogy. In addition to these constraints, an additional temperature constraint is

placed on devices 2 and 6 to ensure they operate at the same temperature.

The same constraint values for volume and radius are prescribed: Vmax = 0.3

and Rmin = 0.4 cm, respectively. The results of this topology optimization are

presented in Fig. 3.6.

As expected, the heat spreader design avoids devices 2 and 6 while connect-

ing the heat sink directly to the remaining devices. The maximum temperature

on devices 2 and 6 was 0.15◦C, and the maximum temperature on the remain-

ing devices was 0.8◦C. The optimizer was able to nearly double the maximum

temperature on the domain while maintaining the temperature constraint on

the remaining devices. Due to layout and boundary conditions symmetry, the

fourth constraint is somewhat redundant.
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Figure 3.6: Constrained max temperature optimization solution produces a
heat spreading structure that avoids specific devices.

3.4.4 Temperature Variance Optimization

In section 3, it was observed that the temperature variance objective may

increase the maximum temperature on the domain to minimize the variance

of the temperature on the domain. For this next problem formulation, we

demonstrate a practical use of temperature variance minimization subject to a

localized temperature constraint. Consider the following problem formulation:

min
d

 1
n

(
U− LTU

n

)T (
U− LTU

n

)
1,...,8

s. t. V (d) ≤ Vmax

R(d) ≥ Rmin(
LT1,...,8

(
U
Tmax

)p)1/p

− 1 ≤ 0

0 ≤ d ≤ 1,

(P5)

where the variance in temperature across all devices is minimized, subject
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to a volume, minimum radius, and a single temperature constraint across all

device nodes. The maximum allowable temperature here is relaxed to 0.06 ◦C

to allow room for the optimizer to rearrange material. The same constraint

values for volume and radius are prescribed as Vmax = 0.3 and Rmin = 0.4cm.

The optimized structure is presented in Fig. 3.7.
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Figure 3.7: Variance-optimized solution subject to a global temperature
constraint. Optimized structure maintains 0.1◦C temperature constraint.

The optimization algorithm converged to a solution which connected most

of the devices together to minimize the variance while satisfying the tempera-

ture constraint. The conductive structure formed a partial-density connection

to the components closest to the fixed temperature boundary to maintain the

temperature constraint. This may be achieved practically by selecting a dif-

ferent material, with lower thermal conductivity, to interface the devices.

3.5 Discussion

Though there are some technical limitations for topology optimization as de-

scribed by Dbouk [93], topology optimization may be used creatively to achieve
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many design tasks. Furthermore, these studies motivate a concept of designing

a temperature distribution for electronics applications. This distribution can

be imposed with several objective and/or constraints, instead of optimizing a

single global parameter that describes performance.

In this chapter, several objective functions relevant to power electronics

applications have been investigated. It was shown that thermal compliance

and mean temperature optimized structures are nearly identical for a homo-

geneously heated design domain. This is due to the mathematical similarity

between objective functions. Using a p-norm approximation of the maximum

function can be used to consistently produce “lower-” temperature solutions,

despite the inaccuracies in the gradient calculation. The variation-optimized

solutions produced more dendritic structures with relatively small connections

to the fixed temperature boundary. These solution were observed to raise the

maximum temperature on the domain to enable minimization of the variance

in temperature on the domain. These findings were used to design several

practical formulations for power electronics systems.

The second design problem considered a discrete heating domain, corre-

sponding to systems such as an electronics printed circuit board. For this

design problem, several temperature constraints where introduced to capture

realistic requirements for PCB applications. Formulations including design-

dependent constraints, asymmetric loading, and temperature maximizations

were considered. In utilizing various combinations of objectives and con-

straints, a temperature distribution on the domain was designed. Framing

the optimization problem as designing a specific temperature map instead of

a minimizing temperature may lead to improved system-level performance in

power-dense applications.

One of the key advantages of topology optimization is the ability to rep-
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resent various topologies and solve for their performance on a finite element

mesh without remeshing. The design variables do not have to be restricted to

material density scalars, as was demonstrated in this study (P2), to make fur-

ther use of the advantage. Integrating additional system level characteristics

into this gradient based optimization routine is left as a topic of future work.

3.6 Summary

In this chapter, a variety of problem formulations relevant to power electronics

were investigated. First structural differences resultant from optimizing heat

spreading structures for various objectives were analyzed on a benchmark prob-

lem. It is important to note that minimizing thermal compliance for a heat

spreading structure may result in a large performance penalty in situations

where minimized temperature is desired. Then several problem formulations,

combinations of objectives and constraints, were introduced to capture the

more realistic requirements for power electronics systems and demonstrate the

capability of the topology optimization methods to accommodate the addi-

tional requirements. Furthermore, an alternative, more flexible, temperature

minimization formulation was presented to demonstrate a strategy to nor-

malize temperature measurements during optimization. This formulation also

allowed for the concurrent design of heat spreading structure and the selection

of appropriate electronic components. The observations made in this section

influenced a similar investigation for reduced order convection models in Ch 5.
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Chapter 4

Topology Optimization for Folded Inverter
Concept

4.1 Introduction

The introduction of wide band-gap devices is changing the design of power

electronic systems. Materials such as Gallium Nitride (GaN) and Silicon Car-

bide (SiC) enable high-frequency switching at low electrical loss to provide

higher levels of efficiency at a system level. This leads to potential reductions

in power electronics packaging [104]. In this chapter, a topology optimiza-

tion approach [6] is used to design a heat sink for an automotive electronic

application featuring GaN devices.

In recent years, there have been several practical examples of heat sink

topology optimization which utilized additive manufacturing techniques. For

both forced and natural convection, simplified models such as those proposed

by Bruns [87] and Iga et al. [88] have been improved upon to produce man-

ufacturable heat sink designs. Consider the work of Zhou et al. [89] where a

simplified convection model was applied to optimize a heat sink design. The

optimal solution had a large temperature rise reduction of 15% in simulation

when compared to the baseline design. In another example, a convection model

using a simplified hat function was optimized to generate a heat sink design

for a jet-impingement cooling application [90]. The authors experimentally

verified the performance of their additively manufactured design to be com-
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parable to conventionally manufactured heat sink designs. Using simplified

physics analyses such as these provide a computationally effective method for

early-stage heat sink design.

As an intermediary step between simplified physics and 3D thermo-fluidic

analysis, some authors used model-order reduction to enable design with

thermo-fluidic interactions. This is implemented using multi-physics mod-

els in the design of heat sink cross sections, which are then extruded to full

3D geometry. In the work of Haertel and Nellis [91], the authors designed the

cross section perpendicular to the airflow of a heat exchanger using topology

optimization. They observed as high as 35% improvement in conductance per

unit area when comparing optimized solutions with standard fin structures.

In another example, Zeng et al. [105] designed the cross section parallel to the

airflow for a heat sink design. Their heat sink design was manufactured using

CNC machining and was characterized experimentally to verify performance

predictions. A similar approach was used by Haertel et al. [106] to obtain

airfoil-like fins to minimize the pressure drop of their heat sink designs.

Given the availability of modern computational resources, topology opti-

mization can be used to design heat sinks using high-fidelity computational

tools. For natural convection, a 3D topology optimization was performed to

optimize heat sink considering buoyancy effects by Alexandersen et al. [107].

The heat sinks were fabricated and experimentally validated for LED lamps.

In another example, both thermal and hydraulic performances were opti-

mized to design a multi-pass heat sink for an electronic cooling application

by Dede [108]. The performance of the multi-pass cooler has been validated

for single-phase and two-phase fluid operation.

Heat sink design using topology optimization has been performed for a wide

array of analysis models from simplified convection models to multi-physics
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simulations. Though a brief review of convection topology optimization is

presented here, there are many additional developments in this area. Refer to

the recent review paper by Dbouk for an assessment of these methods as they

relate to industrial applications [93].

In this chapter, we present the application of a reduced-order topology

optimization method for a novel electronics cooling configuration. A novel

packaging scheme for multi-level inverters is presented in Sec. 4.2. Then a

topology optimization method is defined to optimize a heat spreading struc-

ture in Sec. 4.3. Features from the optimized topological structure are used

to define a visually adapted heat sink and performance is benchmarked using

high-fidelity simulation against a baseline design in Sec. 4.4. Both the baseline

and modified designs are fabricated and experimentally validated to compare

their performance in Sec. 4.5. A discussion of findings and topics for future

work are identified (Sec. 4.5.3) before concluding the chapter in Sec. 4.6.3.

4.2 Folded FCML Circuit Concept

The goal of this research endeavor is to design a compact 6.6kW bi-directional

charger for automotive applications. The state-of-the-art inverter technology

has a volumetric power density of 13kW/l at 2kW, and the stretch goal of this

project is to achieve a power density of 20kW/l at 6.6kW of power. To achieve

this high power density, a novel packing configuration is proposed for the fol-

lowing circuit topology presented in Fig. 4.1. The inverter stage of this charger

uses a Flying-Capacitor Multi-Level (FCML) inverter topology to improve cir-

cuit efficiency. The FCML circuit topology was first proposed in Meynard and

Foch [109]. High level count multilevel operation was not practically validated

until recently, at the Google Little Box Challenge in 2015, where a 7-level
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Figure 4.1: Flying-capacitor multi-level bi-directional automotive charger
concept.

FCML prototype system was demonstrated at 2 kW [104]. The FCML topol-

ogy distributes power processing to minimize otherwise large switching losses.

This inherently increases the surface area and as such increases thermal perfor-

mance. With a large surface area, minimizing packing density while satisfying

temperature constraints becomes a challenge.

To increase the packing density of the inverter, a folded PCB configura-

tion is considered here. There are several examples in the literature where

flexible PCBs have been used to reduce the volume of a power electronics

package [110, 111]. Since the FCML topology has been experimentally val-

idated on a flexible PCB substrate [112], it presents a low-risk platform for

development. Furthermore, the FCML circuit topology is amenable to folding

due to the modularization of the switch pairs. For example, a 9-level FCML

inverter would use 8 switch pairs placed into 4 switching cell modules. These

can be naturally folded onto a heat sink with a square cross-section to enable

heat extraction in a centralized approach, Fig. 4.2.

In the figure, the main heat generating devices are shown in red and the heat

sink is shown in light gray. Cooling the FCML stage of the inverter in a planar

form requires a large planar heat sink. To minimize the profile of the heat sink,
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Figure 4.2: Planar PCB configuration (left). Folded PCB configuration
(right).

several blower fans can be used to cool the devices. When folding the PCB in

between switching cells, they can be wrapped around a much smaller heat sink

structure. In this configuration, an axial fan may be used to cool the devices.

The volumetric benefits of folding the PCB are presented in Fig. 4.3.

When comparing the total cooling system volume, heat sink and fan volume,

a 75% reduction is obtained when using a folded circuit configuration. This

large reduction in volume may be considered aggressive and an alternative,

more conservative, measurement is proposed. In practice, it is common to

pack the heat generating devices near the exterior of the package. This allows

for the dual use of the heat sink as a cooling mechanism and as part of the

enclosure to minimize electromagnetic interference (EMI). Assuming that part

of the heat sink is used as the enclosure, the volume of the fins for the planar

configuration will account for its heat sink volume. Under this assumption, a

40% reduction in cooling system volume is still observed when using the folded

configuration.

70



40% Reduction
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Figure 4.3: Volume reduction from folding.

In this work, topology optimization is used to generate an optimized heat

sink design for the folded circuit configuration at a reduced circuit power level

of 2kW. This supports low-cost validation before scaling to the 6.6kW charger

design task.

4.3 Topology Optimization Methodology

At a high-level, analyzing the folded PCB configuration revealed large po-

tential reductions in volume. This is achieved by centralizing an otherwise

distributed set of heat generating devices for efficient cooling. A complemen-

tary strategy to improve the power density of the configuration is to maximize

the cooling performance of the heat sink design. This will allow for additional

power processing at a fixed package size. To maximize the performance of the

heat sink for the folded PCB configuration, a topology optimization method-
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ology is used. Consider the following 1/8 symmetry model of the folded PCB

configuration, illustrated in Fig. 4.4.

Design
Domain Q

ΓN

4 mm

4 mm

Figure 4.4: Eighth symmetry design domain for folded PCB configuration.

A total power loss of 1W is input to the device area for an effective power loss

of 16W (from 16 total devices) input to the heat sink. This is comparable to

the device losses of the 2.2 kW prototype for which this reduced size heat sink

is designed. The device is assumed to interface directly with the heat sink and

a fixed copper plate. The design domain, shown in blue, is discretized into

finite elements, where each element may consist of conductive material (1) or

air (0), to allow for free-form design. To make use of efficient gradient based

algorithms, design vector,

d = [α1, ..., αn] , (4.1)

consist of material toggle parameters, α, which are relaxed to take intermediate

values between 0 and 1 to enable the use of gradient-based algorithms. With

a desire to use additive manufacturing for production, careful consideration

has to be given to lengthscale. Our vendor of choice, Shapeways, offers raw

silver manufacturing with a 0.6 mm minimum wall thickness constraint. To

enforce a minimum wall thickness in the topology optimization procedure, a
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Helmholtz filter is used. Solving the Helmholtz partial differential equation:

∇ · (−c∇ρ̃) + aρ̃ = d (4.2)

∇ =
[
d

dx
,
d

dy

]
, (4.3)

will enforce a minimum feature size on the filtered element density, ρ̃. The

parameter a is set to 1 and the parameter c controls the desired filter radius.

This initial formulation biases the free-form design towards satisfying a mini-

mum feature size. To bias designs towards one of the two material choices a

power penalization is used, such as in the Solid-Isotropic Microstructure with

Penalization (SIMP) method,

ρ = ρmin + (1− ρmin)ρ̃γ, (4.4)

where the density of a finite element, ρ, is a function of the filtered density, ρ̃,

raised to a power γ. To prevent a singularity in the analysis, this function is

scaled such that the density lies between a minimum density, ρmin, and 1. The

thermal conductivity, κ of a finite elements is simply scaled by the element

density,

κ = κ0ρ. (4.5)

Since our application is dominated by convective heat transfer, this physics

needs to be captured in the analysis. Performing topology optimization while

solving the conjugate heat transfer problem is known to be computationally

expensive. To reduce the computational expense of the optimization, a static

approach, described in [88], is adopted. Consider the following governing equa-
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tions for conductive heat transfer:

∇ · (κ(d)∇T ) + h(d)Ae(T − Tamb) = Q on Ω, (4.6)

(κ(d)∇T ) · n = 0 on ΓN , (4.7)

where the conductivity, κ, and the convective heat transfer coefficient, h, are

functions of the design variable on the design domain, Ω. The device power loss

is input as heat generation, Q, and the boundaries of the domain are adiabatic

and restrict heat flux ΓN . Convection is input into the domain based on the

area of a finite element, Ae, and an ambient temperature, Tamb. To perform

a simplified convection topology optimization, the design variable represents

three types of material: (1) thermally conductive, (0) air, and ([ρlow, ρupp])

internal boundary. Internal boundaries are identified as material with partial

density and are prescribed a unit heat flux of the following form:

h(ρ(d)) =



0 if ρ < ρlow − δ

h0
2δ (ρ− (ρlow − δ)) if ρlow + δ < ρ < ρlow + δ

h0 if ρlow + δ < ρ < ρupp − δ

h0
2δ ((ρupp + δ)− ρ) if ρupp − δ < ρ < ρupp + δ

0 if ρ > ρupp + δ.

(4.8)

These intermediate densities are present on all boundaries naturally when

using the SIMP method with a linear filter, and thus can be used to assign

the heat transfer coefficient. To solve the analysis problem, Galerkin finite

element analysis is performed with linear shape functions. The dependency of

the design variables in the context of the load vector, P, temperature vector,
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U, and thermal stiffness matrix, K, are presented in the following equation:

KU = P → [Kcond(d) + Kconv(d)]U = P(d), (4.9)

where the design variables influence both the conductive and convective contri-

butions to the thermal stiffness matrix, as well as the loading vector. The form

of these effects are visualized in terms of the element density and prescribed

heat flux are presented in Fig. 4.5.

Figure 4.5: Design-dependent convective penalty.

In this study, boundary elements are defined by elements with a filtered density

value between ρlow = 0.3 and ρupp = 0.7 with δ = 0.05 to form a ramped hat

function. The density is scaled by the power law as described previously to

bias elements towards a 0–1 distribution using a penalty parameter of γ = 2.
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The optimization problem itself can now be represented in standard form:

min.
d

Θ(d) =
∫

Ω
qTdA (4.10a)

s. t. V (d) ≤ Vmax (4.10b)

R(d) ≥ Rmin (4.10c)

0 ≤ d ≤ 1, (4.10d)

where some objective, Θ(d), is minimized with respect to a volume constraint,

where the volume, V (·), is less than a prescribed value, Vmax, and a minimum

radius constraint where the radius, R, must be greater than a prescribed value,

Rmin(·). The standard compliance objective is minimized and a length–scale

constraint of 0.5 mm radius is enforced. To make a fair comparison between

a baseline and optimized heat sink, the cross-sectional area is restricted to

50% of the design domain. The optimization itself is performed in COMSOL

multiphysics using the eighth symmetry model on a triangular mesh.

4.4 Topology Optimization Results

The topology optimization formulation produced the heat sink presented in

Fig. 4.6. The eighth symmetry model resulted in a structure with 5 sharp fins.

Sharp fins are a common feature when using this convection formulation [88],

and are a positive attribute for fin efficiency. When using this static-convection

model, Eqn. 4.8, the filter fails to enforce minimum length scale. When using

an additive manufacturing approach, the sharp fins may not be realizable and

the eighth symmetry model is manually post-processed by hand using a vector

graphics software1. Analyzing the full cross-section of the heat sink, several
1Inkscape: inkscape.org
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Eighth Symmetry Model Patterned Design

Figure 4.6: Design-dependent convective penalty results.

aspects stand out. Notably, the use of small fins along the boundaries near the

heat source is apparent. In addition to these fins, there is a ring-like structure

in the center of the heat sink.

The post-processed design as presented in Fig. 4.6 is not quite manufac-

turable. A minimum air-gap needs to be enforced in addition to the minimum

material thickness constraint to make the design manufacturable by the com-

bination of additive manufacturing and a wax casting process. This may be

enforced numerically using a multi-phase approach [113], however, is left as a

topic of future work. To satisfy this manufacturing constraint, the design is

further post processed to account for the air gap requirement for 3D printing,

the resultant design is illustrated in Fig. 4.7

The main features of the design were retained when adjusting the model.

Namely, the central ring and small fin structures were included in the design.

The fins were also slightly increased in size to 1 mm to improve manufacturing

success. In addition to this modified optimal design, a baseline heat sink is

created to benchmark the performance of the modified heat sink. This baseline

design presents a straight fin heat sink for a single switching cell pair.
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Heat Sinks

Switching
cells

Capacitors

GaN Devices

Figure 4.7: Manufacturable heat sink designs. Modified design (left).
Baseline design (right).

4.4.1 Performance Prediction

To predict the performance of the heat sink designs more accurately, conjugate

heat transfer simulations were performed in COMSOLMultiphysics. A quarter

symmetry model of each heat sink is created to analyze the performance of

the folded PCB configuration for a single switching cell unit, illustrated in

Fig. 4.8.

GaN DevicesFR4

TIM

Heat Sink

Figure 4.8: Quarter-symmetry COMSOL model for the baseline design.

From the figure, the straight-fin design of the baseline heat sink becomes appar-

ent. Symmetry boundaries conditions were enforced on the internal boundaries
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of the heat sink and air volume, while heat flux is restricted on the exterior

edge of the PCB. Materials were assigned to the model as prescribed and a

heat generation of 1W is assigned to each device for a total of 4W of loss on

a switching cell unit. The goal of these simulations is to measure the pres-

sure drop and temperature performance of each heat sink design. As such, a

coupled thermo-fluid simulation is performed solving both the Navier-Stokes

equation and the Laplace equation. The Navier-Stokes equation follows:

ρ(u · ∇)u = ∇ ·
[
−P I + µd

(
∇u + (∇u)T

)
− 2

3µd(∇ · u)I
]

(4.11)

∇ · (ρu) = 0, (4.12)

where momentum is conserved and continuity is enforced as a function of

density, ρ, pressure, P , velocity, u, and dynamic viscosity, µd. A sample

solution as obtained from COMSOL is presented in Fig. 4.9.

Figure 4.9: Representative quarter-symmetry COMSOL solution.

The fluid inlet is fixed to an ambient temperature of 20◦C. As expected, peak

hot spots are observed at the heat generating devices. The flow rate of the fan

is systematically varied in a parametric sweep to fully characterize both of the

heat sink designs (Fig. 4.10).

The heat sink designs possess nearly identical thermal resistance across the

79



Figure 4.10: Conjugate heat transfer parametric study results.

sweep, and as such provide nearly identical maximum temperatures. The

modified design presents a nearly 50% reduction in pressure drop compared

to the baseline design. This is likely due to the increase in size of the airflow

passages when re-orienting the conductive material. A pressure drop improve-

ment was not explicitly designed for, however, presents a compelling use case

for this heat spreading structure.
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4.5 Experimental Results

To validate the performance of the heat sink designs, an experiment is per-

formed to measure the temperature of the GaN devices in operation. The heat

sinks were fabricated using a lost wax casting process out of silver using the

online AM vendor Shapeways2; the physical heat sinks are shown in Fig. 4.11.

Holes for fan adapter

Through holes for air flow

Figure 4.11: Manufactured heat sink designs. Baseline (left), Modified
(right).

As mentioned earlier, the minimum feature size is increased to 1 mm to improve

manufacturability. The heat sink designs were modified to interface with a

custom-designed fan that ensures all of the fan airflow is directed through the

heat sink.

4.5.1 Experimental Setup

To measure the temperature of the GaN devices and compare the performance

of the heat sink designs, a customized testbench is made. An image of the

testbench is presented in Fig. 4.12.
2www.shapeways.com
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Fan

Adapter
TIM

Heat Sink

Figure 4.12: Experimental setup.

All of the following experiments share the same electronics board to minimize

variations in the experimental procedure. Temperature is measured using

FLIR T420 infrared camera pointed at the PCB, on the opposite side to which

the device is mounted. The PCB is coated with Krylon 1618, which has a

known emissivity to improve the temperature readout of the thermal camera.

The power electronics board is fixed to the heat sink using a single 1 mm

screw in the center of each switching cell. The screw is fastened hand tight

as required for each thermal interface material (TIM) that is tested. The

heat sink is attached to the adapter using 3 mm screws. The fan is mounted

to the adapter using 2 mm screws and electric tape is used to make the fan

connection to the adapter air tight. A Sunon 5 V fan is used to produce a

constant volumetric flow rate of 2 CFM during experimentation.
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4.5.2 Thermal Interface Material Selection

An initial experiment is conducted to measure the performance of several ther-

mal interface material options for the folded PCB configuration. As all of the

devices are interfaced with the same heat sink; only electrically-isolating TIMs

are under investigation. The TIMs considered include a Bergquist Gap Pad,

κ ≈ 2W/mK, Alphacool Eisschicht pad, κ ≈ 17W/mK, and Arctic Alumina

paste, κ ≈ 4W/mK. The TIMs were tested using a fixed volumetric flow rate

of 2 CFM and power is varied incrementally to measure the maximum tem-

perature of the devices. Results using 1 mm thickness TIMs are illustrated in

Fig. 4.13.

Figure 4.13: TIM usage results.

The Eisschicht Pad resulted in the lowest-temperature operation for the folded

heat sink design. It provided a 10 ◦C decrease in temperature at ≈12W power

when compared to the other two TIMs. As such, it will be used to interface

the heat generation devices to the heat sinks in the following experiment.
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4.5.3 Heat Sink Performance Study

This experiment is conducted to confirm the temperature performance of the

two heat sink designs, Fig. 4.11. The power electronic devices were mounted

onto the heat sink using the Eisschicht pad. The fan is held at a fixed flow

rate of 2 CFM while device power is incrementally varied to generate the data

shown in Fig. 4.14.

Figure 4.14: Heat sink performance comparison.

Contrary to expectation, the heat sink designs did not provide comparable

performance. The baseline heat sink design had a reduced maximum tem-

perature of 7◦C at ≈12W when compared to the modified heat sink design.

Though the modified heat sink did not perform comparably to the baseline

heat sink in terms of temperature minimization, the modified heat sink still

presents an interesting opportunity at a system-level with a greatly reduced

pressure drop. Validating the pressure drop of the heat sink is left as a topic

of future study.
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4.6 Discussion

The results obtained from these experiments raise several questions for folded

electronics cooling. A discussion of experimental and numerical optimization

limitations are presented herein.

4.6.1 Experimental Limitations

In electronics cooling applications, thermal interface materials play a large role

in the performance of the overall cooling solution, particularly when the TIM

needs to be electrically isolating. In practice, paste TIM materials usually

outperform pads due to a large reduction in the thickness of the TIM. In our

experiments, we observed that the Arctic Alumina paste performed poorly.

We can attribute this performance to several factors related to our experiment

design. As shown in Fig. 4.15, the experiment setup involves an interface

where local deformation caused by mounting processes can have a significant

effect on heatsink contact. The GaN devices used in this study are particularly

Local DepressionGeneral Bowing

Device Rotation

Ideal Compression Mounting Screw

Figure 4.15: Mechanical mounting concerns.

sensitive to mechanical stress. As such, it is important to securely fasten the

heat sink without stressing the devices. Due to the thin build of the switching

cell, this becomes a particular challenge. Fastening the switching cell with

a single screw caused the PCB to bend slightly when fastened. For the pad
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materials, this did not cause a large issue due to their thickness. For the paste,

this presented a challenge where the device was slightly rotated and did not

make uniform contact with the heat sink. We believe this to be a flaw in the

experiment design and will be addressed for future studies.

4.6.2 Topology Optimization Limitations

The experimental performance of the modified heat sink design also raises

questions relating to the optimization procedure used. The emulation of con-

vection through the use of a design-dependent outward heat flux is an intuitive

way to parameterize the problem for gradient-based optimization. This for-

mulation is very similar to a perimeter maximization problem subject to a

prescribed volume constraint, however, there is a key issue. Consider design-

ing a heat spreading structure by analyzing the convective heat flux:

qin = hAd(Td − Tamb). (4.13)

Assume the input heat flux is managed completely by convection, and the

convective heat transfer coefficient and environment temperature are fixed.

For an electronic device the temperature, Td, may be fixed based on operating

limits, and the device area, Ad, is designed to enforce energy balance. In the

formulation presented by Ref. [88], Td is minimized as the mean temperature

and the area is effectively scaled through use of the hat function. Given that

these two parameters are not completely aligned, the optimizer converges to

a local optima with a high temperature. Energy is conserved, however, the

domain temperature is not well reduced. This effect may be alleviated when

explicitly optimizing for the maximum temperature, or by constraining the

maximum temperature on the domain.
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This reduced-order analysis model does not account for fluid interaction,

which plays a large role at the scale of this work. There are several lower-

order models which can be used to account for this coupling [91, 114], how-

ever, they come at a much greater computational expense than solving the

conduction-only problem. Capturing simplified fluid interaction without solv-

ing the Navier-Stokes equations in a topology optimization would provide a

great computational design tool and is left as a topic of future work.

4.6.3 Summary

In this chapter a novel “folded” packaging configuration was proposed for the

FCML circuit topology. This packaging configuration resulted in a 40% re-

duction in cooling system volume due to the centralization of heat-generating

devices and the use of an efficient axial fan (instead of a conventional cen-

trifugal blower fan). The heat sink for the folded PCB configuration was

topologically optimized using a simplified convection model. The optimized

heat sink did not satisfy all manufacturing constraints and was used to influ-

ence an interpretation of the heat sink into a modified design. When using

high-fidelity simulation, the modified heat sink design offers comparable tem-

perature performance with a 50% reduction in pressure drop when compared

to a baseline design. Both heat sink designs were manufactured and experi-

ments were conducted to identify the best TIM, and to assess the temperature

performance of the heat sink designs. The Eisschicht pad was found to per-

form the best, and the modified heat sink design resulted in a higher maximum

temperatures when compared to the baseline design. This demonstrates the

lack of accuracy in conjugate heat transfer simulation and motivates the use

of experimentation to validate heat sink performance.
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Chapter 5

Topology optimization for chip-scale heat
spreaders using reduced-order convection

models

5.1 Introduction

Advances in high-band gap devices have enabled the design of high tempera-

ture power electronic systems. These systems present new challenges for ther-

mal engineers where devices with both low- and high-temperature sensitivity

are placed within a common package. This heterogeneous mix of electronic

devices motivates heat removal at a device level to prevent the unintentional

failure of nearby devices.

Researchers have developed several methods to address the challenge of heat

removal using a heat spreading structure for using fixed-mesh strategies. These

include voxel representations [81], explicit geometric representations [115],

and generative representations [116]. These have been coupled to a variety

of reduced-order convection models to reduce the computational expense of

heat spreader optimization [87–89]. A general review of topology optimization

methods for heat transfer systems is presented in [93].

Yet there is very limited experimental validation for topology optimization

methods for heat spreader design. When using conduction models, [117] ver-

ified the performance of topologically optimized heat trees in 2D. As another

example, [94] used 3D conduction topology optimization to design a thermal

bridge for an automotive power control unit. Thermo-fluid physics have also
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been used to optimize heat spreaders for gaseous and liquid fluid flow mod-

els using reduced order 2D [105, 118] and full 3D [119] designs. There have

not been many examples of optimization using the simplified convection mod-

els that are still being published today. One example is the work of Dede

et al. [90], where 3D topology optimization was performed with a simplified

convection model to design a heat spreader for a jet impingement flow. The

authors observed comparable performance when compared to commercially

available heat sink designs.

In this chapter, topology optimization using reduced order methods is in-

vestigated for a power electronics application. First the test sample for experi-

mental validation is motivated in Sec. 5.2. Then an initial set of experiments is

conducted to select a heat sink material in Sec. 5.3. A variety of heat spreader

design problems and solved to produce a selection of optimized structures in

Sec. 5.5. Several of the optimized designs are fabricated and their performance

is experimentally quantified in Sec. 5.5. A discussion of findings is presented

in Sec. 5.7 and a summary of the chapter is presented in Sec. 5.8

5.2 Device Level Heat Sink Design

The increased power density of wide-bandgap devices motivates the use of

localized cooling to improve system-level efficiency. Consider the following di-

agram of a bottom-cooled device utilizing thermal vias to extract heat through

the PCB with an individualized heat spreading structure, shown in Fig. 5.1.

A wide-band-gap device, such as a Silcon-Carbide MOSFET, is mounted on

a copper pad using solder. A series of copper coated vias are used to transfer

electrical power between the top and bottom surfaces of the PCB. These vias

also act as a thermal pathway to improve heat transfer through the PCB. A
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Figure 5.1: Bottom-cooled chip-scale heat sink.

heat spreading structure may be attached to the bottom side of the PCB to

improve heat transfer to the environment and decrease the maximum tem-

perature of the device on the top side of the PCB. To minimize the thermal

resistance of the interface between the copper vias and heat spreading struc-

ture, a thermal interface material (TIM) may be used.

This packaging configuration is not yet commonly used and presents a

unique set of challenges. The key features of this configuration are summarized

in Table 5.1.

Key Features Advantage Disadvantage
Individual device · Electrical isolation · Increased assembly complexity
heat spreaders · Simple interface
Thermal via · High conductivity · Poor manufacturing tolerances
heat transfer · Low mechanical stress · Reduced PCB area
Optimized Heat · Higher temperature · Increased manufacturing
Sink capacity complexity

Table 5.1: Key considerations for through-PCB cooling.

The use of individualized heat sinks removes electrical isolation concerns for

using a single heat spreader to cool multiple devices. As such, the interface

between the heat spreader and PCB is also simplified since there is a sin-

gle surface elevation. With these advantages comes an increase in assembly

complexity, time, and cost. Using a bottom-cooled device and thermal vias for
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heat transfer may increase reliability by eliminating the mechanical stress that

is typically present when mounting a heat spreading structure directly to an

electronic device. Mechanical stress is typically introduced to help minimize

thermal resistance between the heat spreading structure and device by reduc-

ing the distance between the two surfaces. This may lead to issues with the

soldered connection point between device and PCB and is a common point of

failure. Combining the thermal vias with individualized heat spreaders allows

for the use of high-conductivity thermal interface materials (typically elec-

trically conductive) which can fill air gaps in the vias. This greatly increases

the effective thermal conductivity through the PCB. The proposed advantages

come at a cost of reduced usable PCB surface area.

The focus of this chapter is the optimization of the heat spreading structures

for the packing configuration shown in Fig. 5.1. This configuration presents a

potential increase in the power capacity for the circuit, which will come at an

expense of manufacturing complexity. Additive manufacturing processes will

be used to alleviate concerns related to manufacturing complexity.

5.3 Initial Heat Spreader Experiments

To realize the through-PCB cooled concept, a custom 76x35 mm PCB was

designed and fabricated, shown in Fig. 5.2. A single SiC device, Infineon

IAUT300N10S5N015ATMA1, is soldered to the top of surface of the PCB.

Power is routed to the device through an interconnect on the top surface of

the PCB. Electrical power enters and exits the PCB through the top surface of

the PCB, represented as the red wiring path in Fig. 5.2a. A total of 255 thermal

vias with a hole diameter of 0.15 mm are placed on the copper mounting pad

as per manufacturer specification for the PG-HSOF-8-1 footprint. The role of
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a) PCB layout schematic

b) PCB CAD rendering b) Manufactured test sample

Figure 5.2: PCB Test Sample.

the copper vias for this circuit is solely for heat transfer, as there is no electrical

connection between the top and bottom surfaces of the PCB. A heat sink is

mounted on the reverse side of the PCB and is secured with 3mm screws, as

shown in Fig. 5.2b. The fabricated PCB is presented in Fig. 5.2c.

To test the performance of the heat sink design on this test sample, an

experimental apparatus is created, Fig. 5.3. The PCB test board is placed

onto a structure with the SiC device facing up. A FLIR T450 thermal camera

is fixed above the device to measure spot temperature at the center of the

device. A Sunon 12V blower fan, Sunon MF60151V1-B00U-A99, is used to

force air through the heat spreading structure on the bottom side of the PCB.

An image of the experimental setup is presented in Fig. 5.3b.

With the intent of testing unconventional heat sink designs, additive man-
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Figure 5.3: Experimental setup.

ufacturing (AM) is investigated as a manufacturing process. The online man-

ufacturing service, ShapeWays.com, offers two candidate materials, Table 5.2.

The first material, silver (κ ≈ 400W/mK), is fabricated through a lost wax

Material Silver Aluminum
Process Lost wax casting Selective laser melting

Thermal conductivity 400 W/mK 130 W/mK
Minimum feature 1mm 1.5mm

Table 5.2: Candidate materials from ShapeWays.com

casting process. This process restricts the minimum feature size to 1 mm and

produces a smooth surface texture. The second material is an aluminum al-

loy (κ ≈ 130W/mK) formed using a selective laser melting (SLM) process.

This restricts the minimum feature size to 1.5 mm and results in a rough sur-

face texture. The silver process has a minimum lead time of 8 days and the

aluminum process has a minimum lead time of 15 days. Prior to numerical

optimization, a heat spreading structure material must be selected for model
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calibration.

A series of experiments are conducted to select a material for future studies

using the following benchmark heat spreading structures, shown in Fig. 5.4.

These include a straight fin design (a1), a pin fin design (a2), and a staggered

a) Benchmark heat spreader designs b) Fabricated heat sinks

(1) (2)

(3) (4)

Figure 5.4: Benchmark heat spreading structures for material selection.

pin fin design (a3, a4) as shown in the figure. The heat sink designs are printed

in both materials at their rated minimum feature size. Several silver heat sinks

are fabricated at 1.5 mm to directly compare performance with the aluminum

designs.

5.3.1 Experimental Procedure

The blower fan is set to a fixed voltage, 12V, to provide a constant rated

airflow of 5.7 CFM during experimentation. The SiC device used as a diode

to generate heat. The input current to the SiC MOSFET is set to a fixed

point and the system is allowed time to reach steady state. Once the system

reaches steady state, the spot temperature at the center of the MOSFET is
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recorded using the FLIR camera. The current passing through the device,

Iin, is recorded by calculating the voltage drop across a shunt resistor, and

the voltage drop across the device, Vdevice, is measured as the average voltage

between the source pins and drain bar. The voltage measurements are taken

using a FLUKE multimeter. The voltage drop and current measurements can

be used to obtain the power loss of the device:

Ploss = IinVdevice. (5.1)

The input current is then increased at uniform intervals to produce a sequence

of power loss and temperature measurements. The experiments are halted

when the device reaches a maximum spot temperature greater than 100 ◦C.

5.3.2 Experimental Results

First, an experiment was conducted to measure the performance variations

between the two manufacturing processes. Namely, to determine whether the

higher thermal conductivity of silver overcomes the improved surface texture of

the aluminum from the melting process. Staggered pin heat sinks of a 1.5 mm

minimum feature size are used for this experiment, and results are presented

for a step input power loss of 10 W in Fig.5.5.

At a minimum feature size of 1.5 mm, the aluminum heat spreader outperforms

the silver by a margin of 6◦C (17%). This suggests the increased surface rough-

ness of the aluminum heat sinks is more influential than the increased thermal

conductivity of the silver heat sink. However, testing the silver staggered pin

fin design with a 1 mm minimum feature size reveals significant improvement

of 6◦C when compared to the aluminum design at 1.5 mm for a total improve-

ment of 26%. Aluminum is a more practical material for engineering systems

95



Figure 5.5: Results from material selection experiment.

due to its low cost. However, SLM manufactured aluminum is quite brittle,

and several heat sink fixtures were destroyed when mounted to the PCB. As

such, the silver material is selected for future experiments. The results in this

thesis using silver heat sinks may be scaled to predict performance when using

an the SLM manufactured aluminum.

In the process of testing different heat sink materials, several thermal inter-

face materials were tested, as shown in Table 5.3.

Material Thermal Type Electrically
Conductivity Isolating?

Bergquist Gap Pad ≈ 2 W/mK Pad Yes
Alpha Cool Eisschicht ≈ 14 W/mK Pad Yes

Arctic Silver ≈ 8.9 W/mK Paste Yes
Solder ≈ 60 W/mK Paste No

Liquid Pro ≈ 82 W/mK Liquid No

Table 5.3: Candidate Thermal Interface Materials.

When using the liquid or paste materials, the heat sinks can be securely tight-

ened to the PCB to minimize the thickness of the TIM and hence thermal

resistance. This resulted in some TIM entering the voids in the vias and ex-

cess TIM being squeezed out from under the heat sink. Testing the same heat
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sink on multiple PCBs revealed large variations in performance (greater than

20◦C, or 20%). This reveals poor manufacturing tolerances for the vias where

they may not be properly coated with copper and/or the vias are filled with

FR4. As such, the remaining experiments in this dissertation are conducted

using the same PCB to ensure a fair performance comparison. Some exper-

imental results, at 10W of power loss, using the different TIM materials are

presented in the Fig. 5.6. The largest performance improvement was observed

Figure 5.6: Results from testing various TIMs.

when changing from single to double-digit thermal conductivity. Using a TIM

with larger thermal conductivity has diminishing effect of reducing the maxi-

mum temperature of the device. Furthermore, the reduced interface thickness

when using Arctic Silver overcomes the higher thermal conductivity of the Al-

phaCool Eisschicht pad. It is important to note that the poor performance of

the solder can be attributed to its application (by hand). Using specialized in-

stallation machinery, performance should be comparable to Arctic Silver and

Liquid Pro. These observations were drawn after testing many of the opti-

mized heat sinks with several TIMs. The most consistent and repeatable data

was obtained when using the Arctic Silver TIM and reusing a single PCB for

all experiments. As such, experimental results utilizing Arctic Silver are pre-
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sented. The maximum temperature of a device using a different TIM may be

predicted by scaling the experimental data according to these findings.

5.4 Design problem formulation

The heat spreader design domain is constrained to the air volume above the

heat generating device, shown in Fig. 5.7.

Air Volume
Airflow

Heating
Device

Figure 5.7: Heat spreader design abstraction.

An input airflow, blue arrow, is considered on one of the faces of the air

volume box and an input heat flux, shaded red square, is applied to a portion

of the bottom surface representing the device. For the subsequent studies, a

2D design domain is considered utilizing the face of the bounding box that is

perpendicular to the airflow (the shaded green face). The design problem is

summarized in the following problem formulation,

min
d

Θ(d) (5.2)

s.t. 0 ≤ d ≤ 1 (5.3)

V (d) ≤ Vmax (5.4)

R(d) ≥ Rmin, (5.5)

where some objective, Θ, is minimized subject to a set of design variables,
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d. The volume of the heat spreading structure, V (d), is restricted to occupy

a maximum volume, Vmax ≤ 50%, and the minimum feature size, R(d), is

restricted to Rmin ≥ 1 mm based on manufacturing constraints of the silver

process. To generate a wide variety of candidate structures the governing

physics, boundary conditions, objective function, and design representations

will be varied.

5.4.1 Physics models

First, consider the use of several reduced-order physics models to generate

optimized topological structures for heat sinking. Four variations of governing

physics and boundary conditions are presented in Fig. 5.8.

ΓN

ΓN

ΓD

Γq

2 cm

1 cm

1 cm

Γ

Γ

Γ

Γ

2 cm

Ω1 Ω1

Ω2 Ω2

A B

C D
q

N

Figure 5.8: Candidate boundary conditions.

Conditions A and B consider thermal conduction governed by the following
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equations:

∇ · (κ∇T ) + f = 0 on Ω1 (5.6)

T = 0 on ΓD (5.7)

(κ∇T ) · n = 0 on ΓN . (5.8)

The heat spreader is designed considering a 10 W of loss in the power elec-

tronic device. This is loss is input to the finite element analysis as a feat flux

term, f . At the interface between the device and heat sink, a fixed tempera-

ture condition of 0◦C is applied on the boundary, ΓD. For Case A, the true

dimensions of the device are considered. For Case B, the fixed temperature

boundary is set to the entire bottom boundary. The remaining boundaries

are adiabatic and restrict heat flux, ΓN . These analysis domains may be used

as an abstraction of the design problem where the heat extraction problem is

running in reverse. Namely, heat is taken from the domain and funneled to

the boundary by designing the thermal conductivity, κ, distribution on the

domain, Ω1.

The second set of boundary conditions, C and D, consider convection and

is governed by the following equations,

∇ · (κ∇T ) + hAe(T − Ta) = 0 on Ω2 (5.9)

(κ∇T ) · n = qd on Γq (5.10)

(κ∇T ) · n = 0 on ΓN . (5.11)

Here the same 10W of power loss is input to the interface boundary between

the heat sink and device, Γq, in the form of an input heat flux, qd. Cases C

and D are similarly differentiated as Cases A and B, namely, by the size of the

boundary. The remaining boundaries, ΓN , are adiabatic. For this problem,
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heat extracted out-of-plane is a function of the convective heat transfer coeffi-

cient, h, and ambient temperature, Ta. The implementation of the convection

term will vary depending upon the physics simplifications utilized in the two

methods:

• A constant convective force applied to the entire domain,

• A constant convective force applied to the interface between solid and

void elements.

For both cases, material density scales both κ and h. In the first case, the

convection is applied uniformly throughout the entire domain. The second

case is an extension of the approach presented in [88], where a smoothed-out

hat function is used to apply the convection term at elements with partially-

defined material boundaries through the scaling of the parameter h.

Solving topology optimization problems with these reduced-order physics

representations results in 3 different types of structure, illustrated in Fig. 5.9.

Figure 5.9: SIMP topology optimization solutions for thermal compliance
objective. Pure conduction (left), conduction with uniform convection
(center), conduction with boundary-dependent convection (right).

The optimized solution for the conduction physics (left topology) presents a

dendritic structure as typically seen in the literature. When including the con-

stant convection term, a straight fin structure is preferred (middle topology).
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When restricting the convection force to the partially defined material at the

solid-void interface, pointed fins are generally developed (right topology).

5.4.2 Objective function

Next, the structural variations that result as a function of changing the objec-

tive function are considered. The following three objective functions presented

in Table 5.4 are investigated.

ΘC(d) = UTP ΘN(d) =
(
LTUp

)1/p
ΘV (d) = 1

n

(
U− LT U

n

)T (
U− LT U

n

)
Table 5.4: Candidate objective function.

This includes the thermal compliance, ΘC , defined by the product of the tem-

perature vector, U, and thermal load vector, P, which is a common objective

function in density based topology optimization. Also, a norm-approximated

maximum temperature, ΘN , as the product of a vector of ones, L, the tem-

perature vector, U, and a norm order, p. Finally, the temperature variance,

ΘV , is also considered as the average of the squared difference of the nodal

and average temperature on the domain. The selection of objective function

causes large changes in the optimized structure. Consider the following solu-

tions obtained by optimizing a conduction problem using the SIMP method,

shown in Fig. 5.10.

When moving from left to right, the optimized structure becomes less bulky

and the interface material to the fixed temperature boundary is reduced. Fur-

thermore, the number of secondary branches increases. This may improve

performance for convective heat transfer where the amount of heat flux ex-

tracted correlates with the surface area of the heat spreader.
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Figure 5.10: Topology optimization solutions for various objective
functions. Thermal compliance (left), maximum temperature (center),
temperature variance (right).

5.4.3 Design Representations

The use of three different design representations are considered here.

5.4.3.1 SIMP Method (SIMP)

The first method uses a voxel-based design representation. This method is

adapted from Ref. [6], and structured for heat transfer applications. The

design vector using this method is given by:

d = [α1, α2, ..., αn], (5.12)

where each finite element (voxel) is assigned a density scalar, αi. The minimum

radius constraint may be enforced implicitly using a density filter [120]. The

volume constraint is calculated as the sum of element individual finite element

densities, and is enforced explicitly using an optimization constraint. This

problem is solved using the Method of Moving Asymptotes (MMA) algorithm.

5.4.3.2 Geometric Projection Method (GPM)

This next method is based on the use of discrete geometric bars to represent

the heat sink design. A differentiable geometric projection is used to map the
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bars onto the finite element mesh, as defined in Ref. [115]. This differentiable

projection enables representation of the heat sink by simple geometry without

the need to remesh the structure. The smooth projection also naturally accom-

modates the simplified convective boundary conditions used in this research.

The composition of the design vector for this method follows:

d = [xi1, yi1, xf2, yf2, α1, ..., xin, yin, xfn, yfn, αn], (5.13)

where each bar has a total of 5 design variables to capture the initial bar

node, [xi1, xi2], final bar node [xf1, xf2], and bar density parameter, α. In

this study, a varied number of bars are projected onto the domain. Each

bar has a minimum thickness to satisfy the minimum radius constraint. The

volume constraint is be satisfied by removing and/or overlapping bars during

the optimization routine. The optimization using this design representation is

also driven by the MMA algorithm.

5.4.3.3 Space Colonization Algorithm (SCA)

This final method used for heat sink design is based on the use of generative

algorithm as an indirect representation of the heat sink design. The generative

algorithm used here is the Space Colonization Algorithm, which is used to

emulate venation. This algorithm has shown promise in previous heat sink

design studies [8], and the readers are referred to this document for details on

the algorithm implementation. The composition of the design vector follows:

d = [ns, ng, lg, ax1ay1, ax2ay2, . . . ., axn, ayn], (5.14)

where the optimizer will decide the number of initial stem nodes, ns, the num-

ber of venation growth stages, ng, the length of the vein growth per iteration,
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lg, and the auxin coordinates [ax1, ay2]. For this study, the number of stems

is varied from 1:10, the number of growth stages is varied from 1 to 3, the

vein growth length is between 5–10% of the domain width, and 40 auxins are

introduced on the domain. The same differential geometric projection as men-

tioned for the geometric projection method is applied to project the topology

here on the finite element mesh with elements of a fixed width. A nested

optimization loop is run for each design candidate to increase the projected

bar widths uniformly until the minimum volume constraint is satisfied using a

bisection algorithm. The outer loop topological design is driven by a genetic

algorithm.

5.5 Optimization Results

Optimization was performed for each of the physics models, boundary condi-

tions, optimization methods, and objective functions to result in several dozen

optimized heat spreader designs.

5.5.1 Selected optimized solutions

To demonstrate the differences in structures produced by each design method,

a selection of optimized designs produced by each algorithm is presented in the

following figures. Consider first some designs produced by the SIMP method,

shown in Fig. 5.11. Based on the selection of objective, physics, and bound-

ary conditions, a variety of structures emerge. These include tree-structures,

straight fin structures, pointed structures, and a variety of structures across

these spectra.

A selection of optimized designs using the GPM are presented in Fig. 5.12.

105



Depending on the number of bars used as design variables, the GPM produces

somewhat simplified versions of the SIMP optimized designs. With a limited

number of bars, simple straight-finned patterns emerge. As the number of bars

increases, designs related to tree-like patterns emerge.

A selection of designs searched using the SCA are presented in Fig. 5.13.

The optimizer here was allowed to choose the number of initial stem nodes and

complexity of the resulting structure. The better performing designs featured

more initial stem nodes and conductive paths that covered a majority of the

design space. Though the algorithm targeted tree-like structure, heuristics

were not included to guarantee the manufacturability of the design. As such,

many designs features narrow regions of void which prevent manufacturing.

Figure 5.11: Selected designs produced by SIMP method.
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Figure 5.12: Selected designs produced by the GPM.

Figure 5.13: Selected designs produced by space colonization algorithm.
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5.5.2 Fabricated Heat Spreading Structures

Of the numerous optimized designs, 12 sufficiently unique designs were se-

lected and fabricated using a lost wax casting approach from the online vendor

ShapeWays0 . The heat sink cross-sections and physical realizations are shown

in Fig. 5.15.

All of heat spreader structures share a uniform baseplate such that they can

be secured to the PCB. The 2D cross-sections of the selected optimized de-

signs were traced in Autodesk Inventor and extruded along the baseplate to

form heat sink designs. Within this selection of heat sink designs, a variety

of tree and straight-fin structures were chosen for experimental testing. The

performance of these optimized designs will be compared to a more conven-

tional heat straight fin sink design that may be found off the shelf, shown

in Fig. 5.14. This heat spreading structure features 1 mm straight fins and

Figure 5.14: Reference heat spreader design.

small fillets near the baseplate to improve print quality. A similar design to

this can be easily obtained using an explicit geometric representation and the

simplified boundary conditions.
2www.shapeways.com
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Figure 5.15: Selected designs produced by space colonization algorithm.

5.6 Experimental Evaluation

Experiments were conducted to measure the heat extraction capability of the

heat spreading structures from 0 to 100◦C. The experimental data was then

used to extrapolate the maximum temperature of the heat sink given a 20 W
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Baseline Design
Optimized Designs

Figure 5.16: Maximum device temperature for each heat sink designs for
15 W of heat loss.

1 2 3 4

Figure 5.17: Best performing heat sinks designs.

heat loss input, as illustrated in Fig. 5.16. The reference ‘conventional’ heat

spreader design outperformed all of the heat sink designs obtained from re-

duced order-optimization. The maximum temperature of the optimized de-

signs ranged from 5-27% larger than the reference design.

Heat spreader performance as a function of problem formulation variation is

presented in Fig. 5.18. There does not appear to be any correlation between ex-

perimental performance and the optimization objective, reduced-order physics,

or boundary style. The solutions obtained using the GPM tended to perform

better on average. This suggests that the best performing design may have

simple geometric features.

The designs with the four lowest maximum temperature are presented in

Fig. 5.17. The best performing design (1) was the straight fin structure. The
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next three designs had nearly identical performance and all feature simple

geometric elements. Design (3) is a simple radial heat sink and Design (4) is

a v-fin heat sink that has been investigated in literature [121]. Design (2) is

more interesting in that it features both straight fins and some curved fins at

a larger fin thickness.
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Baseline Design
Thermal Compliance
Maximum Temperature
Temperature Variance

Baseline Design
Conduction
Simplified Convection

Baseline Design
True Boundary
Simplified Boundary

Baseline Design
SIMP Method
GPM

Figure 5.18: Maximum device temperatures for each heat sink design
differentiated by problem formulation variations.

112



5.7 Discussion

Based on the numerous design studies and experimental validation, several

observations can be made.

• Copper coated vias are a viable mechanism for heat transfer through the

PCB given careful manufacturing. It was found that experimental results

varied as much as 30% when using an alternative PCB. Furthermore, the

packing configuration was able to maintain a temperature near 100◦C for

a 15 W power loss input. Extrapolating to the temperature limit of the

device, the setup should manage 28W of loss. For a device with ≈ 99%

efficiency, a power level of 3 kW can be processed.

• The reduced order physics models were unable to reliably bias designs to-

wards good performing structures. The best heat sink style was achieved

using an explicit geometry representation with simplified boundary con-

ditions. However, increasing the design flexibility of the GPM converged

to similar topologies as SIMP.

• Reliably designing a heat spreading structure will require the solution

of more advanced physics. This is been achieved by several researchers

using conventional designs strategies described in this chapter, however,

is not common with topology optimization methods. Methods utilizing

a fixed analysis mesh require further enhancement before they can be

used effectively for heat spreader design.
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5.8 Summary

Based on the observations in Ch. 5, a more comprehensive study was con-

ducted to identify a good reduced order method for heat spreader topology

optimization. Heat spreader topology optimization was performed to enhance

the performance of a through-PCB cooling circuit configuration. It was ob-

served that using reduced order-models does not reliably produce structures

which perform well experimentally and the topology optimization representa-

tion needs to be enhanced to account for complex boundary interactions.

A variety of design representations, reduced-order physics models, objective

functions, and boundary condition simplifications are tested. A selection of

promising and/or unique designs are selected for experimental validation. It

was observed that simple designs outperformed more complex designs. Fur-

thermore, conventional designs such as straight fin, radial fin, and v-shaped

fin structures performed well. These structures were simply achieved using

an explicit geometric representation, though their optimization convergence

for this application was more coincidence. The best performing design con-

sisted of straight fin structures with fillets. The current design representations

were unable to reproduce these features. An analysis of the trade-offs between

model-representations and suggested strategies to accommodate this best fea-

ture style are discussed in the next chapter.
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Chapter 6

A comparison of structural representations for
heat spreader design

6.1 Introduction

Researchers have developed a variety of problem representations for structural

optimization. These vary from direct voxel representations [6], to indirect

rule-based representations [7]. These methods vary in both the size of the

representation, number of design variables, and access to the design space. In

this chapter, several types of design representations are investigated in more

detail as they relate to heat spreader structural optimization.

A method to optimize a completely free-form design representation on a

finite-element mesh with gradient-based algorithms was first proposed by

Bendsoe and Kikuchi [6], where the authors used direct optimization of ele-

ment density to design optimal material distributions. This methodology was

extended through abstraction to optimize level-set functions within a finite-

element framework [2]. This abstraction restricted portions of the design space,

however, it provided an explicit boundary representation for a given structure.

More recently, researchers have developed differentiable projections to op-

timize discrete geometric elements in both the density field [3] and level-set

framework [122]. These methods allow for the explicit parametric represen-

tation of geometric elements during the optimization routine. The geometric

elements can vary in complexity from simple bars, as in the aforementioned
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papers, to curved bars [4], and supershapes [123]. Furthermore, the geometric

elements can be tuned independently, or linked into pre-defined layouts before

optimization [124].

In the literature, the various styles of structural representation have been

applied to heat spreader design problems. The first paper on heat conduction

SIMP topology optimization utilized the finite volume method [81]. These

definitions were extended to a finite element framework where the effect of

boundary definition was analyzed [85]. A more recent paper challenges the

optimality of dendritic structures and proposes lamellar structures as opti-

mal through several examples [83]. There are also several examples of heat

spreader designs generated from algorithmic abstraction, such as through the

use of cellular automata [125], bionic growth [126], and space colonization

algorithms [127].

In this chapter, three structural optimization methods are analyzed as they

apply to the design of heat spreading structures. The heat spreader design

problem is formulated in Sec. 6.2. First, the SIMP method is analyzed in

Sec. 6.3. Then, the GPM method is used in Sec. 6.4. Finally, an implemen-

tation using the space colonization algorithm is presented in Sec. 6.5. These

results are compiled and discussed in Sec. 6.6.

6.2 Heat Transfer Design Problem Formulation

In this section, the heat spreader design problem is presented. Consider the

rectangular, 2×1 cm,2 design domain presented in Fig. 6.1. There is a 1 cm

fixed temperature boundary, ΓD, on the bottom surface and the remaining

adiabatic surfaces, ΓN , restrict heat flux. The entire domain area, Ω, gener-

ates heat and symmetry is used across the vertical axis to reduce the design
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Figure 6.1: Homogeneously heated design domain.

and analysis problem dimension. This domain is governed by the following

equations describing conductive heat transfer:

∇ · (κ∇T ) + f = 0 on Ω, (6.1)

T = 0 on ΓD, (6.2)

(κ∇T ) · n = 0 on ΓN . (6.3)

A fixed input power of f = 10 kW is applied to the design domain, and the fixed

temperature boundary is set to 0◦C. Material will be allocated on the domain

to adjust the thermal conductivity, κ, of a finite element between maximum

and minimum values. The analysis problem is solved using a custom finite

element code written in Matlab. A finite element mesh of 200×200 elements

is used for all the subsequent examples. The goal of the heat spreader as posed

here is to extract heat from the domain to the fixed temperature boundary and

hence reduce the maximum temperature on the domain. This heat spreader
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design task can be formulated as follows:

min
d

Θ(d) = ||T ||p (6.4)

s.t. 0 ≤ d ≤ 1 (6.5)

ρe ∈ {ρmin, ρmax} (6.6)

V (d) ≤ Vmax (6.7)

R(d) ≥ Rmin, (6.8)

where a maximum temperature minimization is performed using a p-norm

objective, p = 8, with respect to a set of design variables, d. The design

variables differ between design representations, and will be described sepa-

rately for each algorithm. The designs variables are normalized here between

0 and 1. Each finite element must consist of either a low thermal conduc-

tivity material, ρmin = 1 W/mK, or a high thermal conductivity material,

ρmax = 400 W/mK. The amount of high conductivity material used is re-

stricted by a volume constraint where the volume, V (d), must be less than

or equal to a prescribed amount, Vmax = 0.5%. For the 2D design problem

presented here, this constraint restricts the area of the optimized structure.

The final constraint restricts the minimum feature size such that the radius

of high conductivity material, R(d), is greater than a prescribed value, Rmin.

These constraints summarize the requirements for the heat spreader design

task. The enforcement of these constraints will vary between design meth-

ods and the associated optimization problem formulations will be presented

separately for each method.
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6.3 SIMP Method

The first design method under investigation is the Solid-Isotropic Microstruc-

ture with Penalization (SIMP) method [81]. The design representation consid-

ers the density of individual voxels, or pixels in 2D, on a domain. The design

variables are given by scalars parameters, α:

d = [α1, ..., αn] , (6.9)

that tune the existence of material for each finite element. To enforce the

minimum feature size requirement, Eq. (6.8), a linear density filter of the

following form is applied:

ρ̃ =
∑
j

wijαj, (6.10)

where a weighting function, w, is defined based on the centroid distances of

neighboring elements:

wi,j =


R−d(i,j)∑
(R−d(i,k)) j ∈ Ni

0 j /∈ Ni.
(6.11)

The filter weight, wi,j, is scaled based on the difference between a prescribed

minimum radius, R, and the distance between element centers d(i, j), and

a summation of neighboring element distances, d(i, k). The filtered element

densities are then modified by the following expression to produce the density,

ρ, used by the finite element analysis.

ρ = ρmin + (ρ0 − ρmin) ρ̃γi . (6.12)

To prevent singularity in the stiffness matrix, the elemental densities are al-

lowed to vary between ρmin and ρ0. The designs are biased towards a binary
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distribution by using the penalization to the power, γ, which lessens the effect

of partially-defined material.

6.3.1 Standard Implementation

The design optimization problem can be formulated as:

min
d

Θ(d) = max(T ) (6.13a)

s.t. V (d) ≤ Vmax (6.13b)

0 ≤ d ≤ 1, (6.13c)

where a single volume constraint is imposed and the minimum feature size

requirement is overcome using the density filter. The SIMP method, as for-

mulated in Eq. (6.13), can be used to solve the true design problem, Eq. (6.4).

The adjoint method is used to obtain the derivatives for the objective and con-

straint functions, and the method of moving asymptotes (MMA) algorithm is

used to solve the optimization problem. Since the SIMP penalization greatly

decreases the effect of partially defined material, the filter radius was set to

the minimum feature size. This biases the optimized design vector towards a

minimum feature size of nearly half the filter radius. This is demonstrated by

the solution to an optimization routine using a density filter [120], illustrated

in Fig. 6.2.

Three versions of the optimized topology are shown, and finite element anal-

ysis is used to calculate the maximum temperature for each design. The de-

sign vector itself is nearly binary, satisfies the volume constraint, nearly sat-

isfies minimum feature size requirements, and has a maximum temperature
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Design vector Density filtered Penalized
41.22 ◦C 19.58 ◦C 135.00 ◦C

Figure 6.2: Optimized SIMP topology using a density filter. Minimum
radius requirement size shown by red circle.

of 41.22◦C. The density-filtered design satisfies the radius and volume con-

straints, however, does not satisfy the binary distribution requirement. This

partially-defined boundary improves the performance of the heat spreading

structure with a maximum temperature of 19.58◦C. The optimization routine

itself actually optimized the penalized and filtered topology to produce a struc-

ture with a maximum temperature of 135.00◦C. A criticism of this strategy

is the consistent use of a structure with partially defined boundaries to as-

sess the performance of the structure and calculate derivatives. Though the

optimization routine was being guided by the performance of the filtered and

penalized structure, the resultant design vector produced a reasonable design.

The minimum feature size requirement, Eq. (6.8), is satisfied throughout most

of the domain excluding the bottom boundary. This is a product of the filter

application and can be alleviated by decreasing the size of the design domain

such that it is slightly smaller than the analysis mesh. This will enable the

projection of elements densities outside the design domain within the analysis

mesh and retain the minimum feature size.

121



6.3.2 Robust Implementation

The boundary definition can be improved during the optimization by applying

the following trigonometric filter after the density filter:

ρ̃(x) = tanh(β − ν) + tanh(β(ρ− ν))
tanh(βν) + tanh(β(1− ν)) . (6.14)

This function will minimize the transition between 0 and 1 as the parameter β

increases at a transition density anchor point ν. Choosing a ν parameter of 1

results in a heaviside filter [128]. Using the heaviside filter for heat conduction

topology optimization does not guarantee a binary solution. To obtain a near

binary final material density, a robust formulation is adopted as proposed in

Ref. [129]:

min
d

max
(
||T e||p, ||T i||p, ||T d||p

)
(6.15a)

s.t. K(ρe)ue = f (6.15b)

K(ρi)ui = f (6.15c)

K(ρd)ud = f (6.15d)

V (d) ≤ V ∗d (6.15e)

0 ≤ d ≤ 1. (6.15f)

The anchor position, ν, for the eroded, intermediate, and dilated designs is

chosen as 0.25, 0.5, and 0.75, respectively. A filter radius of 0.1 cm is chosen

to result in a minimum feature size of 0.1 cm for the intermediate design. A

beta continuation scheme is used where beta is doubled every 50 iterations for

a total of 400 iterations. The optimized structure using the robust formulation

is presented in Fig. 6.3.
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Eroded Design Intermediate Design Dilated Design
max(T) = 126.53 ◦C max(T) = 81.54 ◦C max(T) = 50.81 ◦C

Figure 6.3: SIMP solution using robust formulation.

The eroded design is nearly binary and satisfies the volume constraint, how-

ever, does not satisfy a minimum feature size. The dilated design does satisfy

the minimum feature size constraint, however, no longer satisfies the volume

constraint. The intermediate design satisfies all constraints to produce a fea-

sible design with a maximum temperature of 81.54◦C. Optimization with an

improved boundary definition for this test problem came at a cost of struc-

tural performance. Though the robust formulation as presented here provides

a feasible solution at the end of the optimization, the intermediate iterations

are still guided by structures with partially defined boundaries. This challenge

may be addressed using a level-set formulation, however, changes in topological

structure are restricted. The density based SIMP method typically produces

improved designs, independent of these observations.

6.4 Geometric Projection Method

The geometric projection method (GPM) is based on parametrically-defined

shapes which are projected onto a finite element mesh using a differentiable

projection. This allows for simple calculation of gradients on a finite element
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mesh and eliminates the need to remesh the updated designs. The framework

presented here is based-off the work of Ref. [115]. The design optimization

formulation for this method is presented by the following equations:

min
d

Θ(d) = max(T ) (6.16a)

s.t. V (d) ≤ Vmax (6.16b)

0 ≤ d ≤ 1. (6.16c)

The design variables used to parametrically define a bar dq have the following

form:

dq = [x0, y0, xf , yf , t, α]q , (6.17)

where the initial node coordinates, x0 and y0, and endpoint node coordinates,

xf and yf , can be varied to adjust the position and length of the bar. A

parameter, t, adjusts the thickness of bar and a parameter, α, can be used to

scale the density of the bar from solid to void, similar to the SIMP method.

As an extension of this work, a SIMP penalization is also applied to the entire

density field after projections to improve the convergence properties of the

algorithm.

The GPM formulation as presented here nearly satisfies the problem formu-

lation in Eq. (6.4). To make the projections differentiable, the boundaries of

the bars are smeared from 0 to 1. In this implementation, 5% of the bar edge

is transitioned from 0 to 1 smoothly. The minimum feature size constraint can

be biased by constraining the minimum width of the bars to the minimum fea-

ture size. This does not guarantee satisfaction in practice. The optimization

problem is solved using the MMA algorithm, and the derivatives are calculated
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using the adjoint method. Refer to Ref. [115] for a detailed derivation.

One advantage of using explicit geometric representations is the ability to

adjust the complexity of the final design [123, 130]. Consider the following

four variations on the geometric design variables for a bar, q:

d1q = [x0, y0, xf , yf ]q (6.18)

d2q = [x0, y0, xf , yf , t]q (6.19)

d3q = [x0, y0, xf , yf , α]q (6.20)

d4q = [x0, y0, xf , yf , t, α]q . (6.21)

In the first two cases, d1q and d2q, the bars are simply moved across the

domain to form a structure. In the second two cases, d3q and d4q, the bar

densities are considered design variables. Representations d1q and d3q use

constant bar widths, and representations d2q and d4q consider the individual

bar widths as design variables. Solutions using all of the design representations

for a 12 bar structure are presented in Fig. 6.1. When using constant density

bars, d1q and d2q, the optimizer struggles to merge bars which are nearly

touching. This can be alleviated using the bar density as a design variable,

d3q and d4q. The optimizer then struggles to obtain a solution with binary

material properties when using the bar density as a design variable. Adding

the ability to scale the width of each individual bar increases the design free-

dom,d1q and d3q. However, in practice the optimizer converges to a worse

performing design. For the remaining design problems, d3q will be used as

the design vector.

Another strategy to scale the complexity of the design is simply to vary the

number of bars used in the optimization. Four different bar number initial-

izations and their resultant optimized structures are presented in Fig. 6.2. As
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the number of bars increases, there is a potential improvement in performance.

This can be seen from the optimization results as the maximum temperature

dropped from 54.16◦C using 6 bars to 37.1◦C using 18 bars. However, the

optimized structure using 24 bars has a temperature increase of 2% when

d1 d2
max(T) = 42.94◦C max(T) = 45.08◦C

d3 d5
max(T) = 37.99◦C max(T) = 40.49◦C

Table 6.1: Complexity tuning by increasing number of representation
parameters.
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max(T) = 54.16◦C max(T) = 44.57◦C

max(T) = 37.10◦C max(T) = 37.99◦C

Table 6.2: Complexity tuning by varying bar numbers.

compared to the 18 bar solution. In the limit of introducing more bars into

the design problem, smoother SIMP-like solutions can be obtained. Consider

the optimized structure when using 100 projected bars, shown in Fig. 6.4.

Figure 6.4: GPM solution with 100 design variables.

Here, the optimal structure has a maximum temperature of 29.04◦C, and the

shape of the structure is smoothed out. The optimizer struggled to obtain a
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binary solution and there are still instances where the minimum feature size

requirement is not satisfied. As such, it may be worthwhile to use GPM as an

exploratory tool and rely on SIMP methods for detailing. A similar strategy

using a generative algorithm as an exploratory tool was shown to consistently

improve structural performance after SIMP detailing [8].

When using uniformly distributed bars locations for a smaller number of

bars, such as 24, the initial configuration of the method plays a large role

in the optimized structure obtained. There are many styles of initialization

for geometric projections that have been investigated in literature, whether

straight [115], square [124], or crossed-bars [122]. When uniformly distribut-

ing these bar configurations with 100 elements, the domain is nearly solid and

the optimized solutions resemble each other. Here, four different starting con-

figurations using 24 discrete geometric elements, a common denominator for

all initial conditions, are considered. The initial bar configurations and the

optimized density fields are presented in Table 6.3.

A variety of radial fin structures are obtained from the different starting po-

sitions. The maximum temperature of these structures varies as does the

amount of partially density bars present in the converged solution. As such,

it is unfair to compare their performance directly. However, the structural

variance offers insights into performance as the designs converged to local op-

tima. For example, the cross-bar initialization resulted in an optimized design

with cross bars at the branch extremities. The horizontal bar initialization re-

sulted in an optimized design with horizontal bars at the branch extremities.

The GPM provides a simple reduced-order representation that can be used

to define unique feasible initial starting conditions with tunable representa-

tion complexity. Overcoming the observed challenges would make the GPM a

valuable tool for heat spreader structural optimization.
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max(T) = 37.99◦C max(T) = 35.61◦C

max(T) = 36.53◦C max(T) = 36.31◦C

Table 6.3: Projection solutions based on different starting points.

6.5 Space colonization algorithm

The final method under consideration is based on the use of a low-order de-

sign representation to perform a targeted search of the design domain using

a generative algorithm. Here, we significantly extend the search capability of

the algorithm as presented in Ref. [127] to allow for a diverse search in the

structural space. A sketch of the algorithm is illustrated in Fig. 6.5.

The algorithm is initialized with a set of root nodes, shown in red. Auxins,

open blue circles, are introduced into the domain to influence the growth of the

branches. Each auxin is paired with its nearest branch node and the branch

nodes grow in the average direction of its auxins by a fixed step. The algorithm

iterates through this process until all auxins have been reached by a branch

node. At this point, nodal information is used to create a series of bar segments
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Figure 6.5: Space colonization algorithm.

to represent the structure in 2D. Note that the same differentiable projection

is used here as with the GPM in order to reuse the finite element mesh. A fast

force-directed meshing strategy is proposed as alternative meshing strategy in

Reg. [8]. The design variables using the space colonization algorithm are given

by the following parameters,

di = [ns, ng, lg, ax1, ay1, ..., axn, ayn] , (6.22)

including the number of initial stems, ns, the number of growth stages, ng,

the length of the growth step, lg, and the x and y locations of the auxins,

[axi, ayi]. The inclusion of the numbers of stems, growth stages, and growth

length greatly increases the flexibility of the method and allows the optimizer
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to tune the complexity of the design. In our previous work, [101], we design

the algorithm to target dendritic structures specifically. However, the space

colonization algorithm is much more flexible, and can target a wider variety

of structures. Consider the following variations in design given a fixed set of

auxins as illustrated in Fig. 6.4. Increasing the number of initial stem nodes

1 stage 2 stages

1 stem
1

2

3 4

1
2

3 4

2 stems
1 2

3 4

1 2

3 4

Table 6.4: Algorithm variations.

naturally creates fin-like structures. The same effect can be achieved by in-

troducing the auxins in stages, for example starting with the first two auxins

initially, then introducing the second two after the first growth stage termi-

nates. In the implementation of the algorithm here, both the number of initial

nodes and the growth stages are used as design variables to allow the optimizer

to tune the complexity of the optimized solution. A genetic algorithm can be
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used to solve the following unconstrained numerical optimization problem:

min
d

Θ(d) = max(T ) (6.23a)

s.t. 0 ≤ d ≤ 1. (6.23b)

The minimum radius constraint is inherently satisfied here using discrete geo-

metric projection of bars in a layout form, i.e., endpoints are always connected.

However, the volume constraint may not be satisfied. For initial projections

that do not satisfy the volume constraint, a multiplication penalty factor of 1.5

is applied to the maximum temperature. For initial conditions that are below

the volume constraint, the following single variable optimization problem is

solved to enforce equality:

min
t

V (t)− Vmax (6.24a)

s.t. 0 ≤ t ≤ 1, (6.24b)

where a tunable parameter, t, is adjusted until the volume of the projected

structure is within 1% of the volume constraint value. To solve this optimiza-

tion problem, a simple bisection algorithm is implemented. This inner loop

optimization problem is solved to provide a fair comparison between topolo-

gies. Both the SIMP method and GPM will find optimized structures at the

volume constraint.

Since the outer-loop optimization is driven by a meta-heuristic algorithm, it

is important to understand the implications of the optimization parameters.

A series of studies is conducted by varying the initial population size and

maximum number of generations; the results are summarized in Table 6.5.
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The number of development stages is allowed to vary between 1 and 4. The

size of the growth step is allowed to vary between 4% and 9% of the domain,

the number of stem nodes is allowed to vary between 1 and 4, and a total of

40 auxins are introduced on the domain.

Study GOP GEN max(T) Var(T)
A 10 10 170.59 21.66
A 100 10 97.32 10.31
B 100 100 73.93 7.51
C 1000 10 81.96 6.82

Table 6.5: GA search sensitivity, results presented are the best of 10 trials.

As the total number of evaluations increases, the optimizer begins to have more

consistent convergence. Given a fixed number of evaluations, and varying the

population and generation size, the exploitation characteristics become evident

as better designs are found using more generations. The best obtained designs

from each set of studies are presented in Fig. 6.6.

Each execution of the genetic algorithm was able to produce a sufficiently

unique design. Since the optimization is driven by a genetic algorithm with

a small number of generations, convergence to a local optimum can not be

guaranteed. Many of the optimized structures performed comparably to that

obtained by the robust SIMP formulation, however, not as well as the stan-

dard SIMP formulation. This may be due to the simple constant thickness

projection of bars on the design domain. The better performing designs were

observed to have bulk material located near the heat sink and smaller features

at the edges of the domain. The performance of the SCA implementation may

be improved by including the thickness of individual bars as designs variables,

as similarly implemented in previous research [8].

Using the number of development stages and initial stems as designs vari-
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Study A Study B
max(T) = 170.59 max(T) = 97.32

Study C Study D
max(T) = 73.93 max(T) = 81.61

Figure 6.6: Best designs obtained from various studies.

ables in this implementation enabled tuning the complexity of the designs.

The best performing designs all started with initial stem nodes and featured

2 development stages. Note that the branches did not always propagate from

every stem node. This design variables can be fixed in subsequent optimization

runs to perform a targeted search of likely well-performing designs.

6.6 Discussion

The best topology obtained by each design method is presented in Fig. 6.7. The

best SIMP method optimized topology presents a structure with a maximum

temperature of 41.22◦C (left image). This topology resembles a branching pat-
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SIMP GPM SCA

max(T) = 41.22 max(T) = 29.04 max(T) = 73.93

Figure 6.7: Best topologies.

tern as typically found starting from a homogeneous material distribution [81].

The best GPM optimized topology has thin and long fins extending from the

heat sink (center image). These resemble those obtained in Ref. [83] when

using SIMP with an alternate initial condition. This topology has a maximum

temperature of 29.04◦C, which may be enhanced by the presence of bars with

partially defined material density. The best topology obtained using the space

colonization algorithm (right image) has a maximum temperature of 73.93◦C.

This structure satisfies both minimum radius and volume constraints, however,

suffers from poor performance.

The SIMP optimized topology clearly presents the most refined structure.

The structure naturally varies in width and the connection between branches

has smooth fillets. The GPM topology produces a straight-fin structure, which

is likely the more optimal, but the optimized structure could use some refine-

ment. There are several bars near the ends of the branches which are partially

defined. Additionally, some of the bars appear to be minimally connected,

resembling checkerboard phenomena when using SIMP without a filter. Fur-

thermore, using this explicit representation, it is difficult to reproduce the

smooth fillets that are present when using the SIMP method. The optimized
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topology using the SCA does not suffer from the same checkerboard phenom-

ena since the layout of the topology is implicitly constrained. Obtaining a

more refined topology using this representation can be achieved by decreasing

the step growth size of the algorithm and allowing the thickness of the bars

to change as design variables. Refer to Ref. [8] for an implementation with

circular nodes projected.

When using the two gradient based methods, SIMP and GPM, the actual

topological changes are obtained within the first few optimization iterations.

The remaining iterations are simply improving the boundary representation

and/or performing size optimization to stretch the features. The initial con-

dition for the SIMP method defines what optimized structure will emerge

since the designs are mesh-independent with the filter. The complexity of the

optimized structure can be somewhat tuned using the GPM representation

as bars are increased. After a certain point, designs begin to converge to a

similar structure. The space colonization algorithm produces large variations

between topologies in every generation. This is closer to an actual topology

optimization method. However, some form of size optimization needs to be im-

plemented to produce a fair comparison between topological structures. This

can be achieved as with simple sizing parameters, or by feeding a candidate

topology into either the SIMP method or the GPM for fine tuning.

6.7 Summary

In this chapter, a practical investigation of several structural optimization

representations for heat spreader design was performed. The SIMP-voxel rep-

resentation provided the highest design flexibility, which was reflected in the

smooth structures resultant from optimization. The SIMP method converged
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to the best performing design. The GPM explicit geometric representation

provided a lower dimension design representation and enabled tuning of so-

lution complexity. In this study, it was shown that the GPM requires some

reformulation to produce feasible structures. Using the generative space col-

onization algorithm, the optimizer was able to tune the complexity of the

optimized structure to produce both simple fin and dendritic structures. Due

to the projection of uniform bars, this method was not as successful as in

past implementations [8, 127]. Through these studies, it was noted that the

complexity of the optimized structures varied greatly based on method and

initialization. No single method allowed for the direct tuning of complexity in

the optimized structure to produce well-refined designs. Initial work in mea-

suring and tuning complexity was proposed in Ref [130], however, there are

still open challenges left to address before these methods can be practically

adopted.
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Chapter 7

Explicit Geometric Projection Methods for
Heat Spreader Design

7.1 Introduction

In Chapter 6 it was observed that the geometric projection method (GPM)

did not produce feasible structures for heat spreader design. When the GPM

is used for solid mechanics, the optimized structures tend to produce feasi-

ble designs [115, 124]. In this chapter, the behavior of geometric projection

methods in the context of heat spreader design is analyzed.

The use of explicit geometric elements within a fixed finite element mesh

framework was first proposed in Ref. [3]. A SIMP-like penalization was later

included on the density of each geometric element to enhance this geometric

projection [115]. A second projection strategy was developed in parallel where

explicit geometric elements are projected using a level-set representation [122]

using the extended finite element method to analyze the structure. Both

methods offer the potential to achieve topological changes with the advantage

of having parametrically defined elements.

The simple geometric representations originally used in these methods have

been advanced to include curved bars [4] and supershapes [123] to produce

more natural structures. Another advantage of this class of methods is the

ability to control the complexity of the final solution by changing the number

of geometric elements used in the optimization. This is not achievable using
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SIMP or level-set methods when minimum feature size is required.

However, an explicit feature size requirement is not naturally satisfied when

using discrete geometric elements. Consider the following situation presented

in Fig. 7.1.

Figure 7.1: Bar intersection situation.

A situation may occur when two geometric elements are minimally intersect-

ing, thus creating a topological element with a new thickness. This issue

manifests itself frequently when solving a heat conduction topology optimiza-

tion problem using discrete geometric elements. One strategy to overcome this

challenge is to constrain the layout of the geometric elements such that they

are connected at endpoints, then optimize the shape of the resultant struc-

ture [124]. This guarantees that a topology maintains a minimum feature size

implicitly, however, restricts the design space.

In this chapter an alternative strategy for satisfying the minimum feature

size constraint is proposed to allow more access to the design space. First a

sketch of the geometric projection is provided in Sec. 7.2. The spreader design

problem is defined in Sec. 7.3 and the challenges with the implementations

are outlined. Two strategies to remedy the shortcomings for the algorithm as

presented in Sec. 7.4 and the results are discussed in Sec. 7.5. The chapter is
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then concluded in Sec. 7.6.

7.2 Method

In this section, a sketch of the geometric projection method is provided. The

geometric projection method used here is modeled after the implementation of

Ref. [115] with some modifications. In this section, bars with uniform width, t,

and semi-circular ends are considered. The geometric bars are parameterized

with the coordinates of the endpoints, xq0 and xf0, and the width of the bar,

t. The signed distance, dq, from a point, p, to the edge of a bar, q, is given by

the following equation:

φq(dq(xq0, xqf ,p), t) := dq(xq0,xqf ,p)− t

2 , (7.1)

as the difference between the distance from the central axis of the bar segment,

dq, and half the bar width. The distance between the central axis of the

segment and a point can be calculated using the following conditions:

dq(xqf ,xqf ,p) :=



||b|| if a · a ≥ 0

||g|| if 0 < a · b < a · a

||e|| if a · b ≥ a · a,

(7.2)

depending on whether the candidate point is closer to the endpoints of the

central axis or endpoints of the bar. These conditions can be checked using

140



the following equations:

a := xqf − xq0 (7.3)

b := p− xq0 (7.4)

e := p− xqf (7.5)

g :=
[
I − 1
||a||2

a⊗ a
]
b =: P⊥a b. (7.6)

To enable the reuse of the finite element mesh and allow for the calculation

of smooth derivatives for the projected bars, the edges of the bars are smeared

using the following relationship:

ρ̄q(dq(xqf ,xx0,p), r) =



0 if φq > 0

1
πr2

[
r2arccos

(
φq(dq)
r

)
−φq(dq)

√
r2 − φq(dq)2

]
if − t < φq ≤ t

1 if φq < −r,

(7.7)

At this point the implementation differs from that presented in Ref. [123].

The penalized projected density field of a bar, ρ̂q is given by the following

equation:

ρ̂q = ρmin + ρ̄q(1− ρmin)αγq (7.8)

where the bar projected element density, ρ̄q is multiplied by a design variable,

α, raised to the power γ. To prevent a division by zero in the sensitivity, the

minimum density fraction is added to this quantity. The bar projected element
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densities are then merged using the following norm function:

ρ̂ =
 N∑
q=1
ρ̂q

1/p

, (7.9)

to form a single projected density field, ρ̂, for all bars. For a finite norm value,

the merged density value lies between ρmin and some value > 1. To limit the

maximum material density, a maximum function is used,

ρ = max(ρ̂, 1) (7.10)

This creates some non-smoothness in the derivative, however, in practice

works well. Before solving the finite element problem, another SIMP penalty

is applied to the material density to scale the thermal conductivity, κ, of each

finite element. This simply lessens the effect of the partially-defined edges,

minimizes the void projections, and improves convergence. The projected

density is used to scale thermal conductivity using the following equation:

κ = κmin + (κ0 − κmin)ργ, (7.11)

Since the void elements have near zero value in ρ after powered aggregation,

a minimum value of κmin is added to scale the thermal conductivity. The same

penalization parameter, γ, is used for both the bar penalization and finite

element density penalization. To improve the effect of the penalization, the

bar penalty for the constraint, γv, is set to 1 as suggested by Norato et al. [115].
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7.3 Heat spreader topology optimization.

In this section, the heat spreader design problem is formulated for the GPM

design representation. Consider the following 1×1 m2 design domain, shown

in Fig. 7.2.

0.2 m

1m

1m Ω Γ

ΓD

N

Figure 7.2: Heat conduction design domain.

There is a 0.2 m fixed temperature boundary, ΓD, set to a fixed temperature

of 0◦C as shown in the figure. The remaining boundaries, ΓN , are adiabatic

and restrict heat flux. Symmetry is enforced on the vertical central axis to

reduce computational expense, and the system is governed by the following

equations for steady state conductive heat transfer:

∇ · (κ∇T ) + f = 0 on Ω, (7.12)

T = 0 on ΓD, (7.13)

(κ∇T ) · n = 0 on ΓN . (7.14)

A fixed input power of f = 1 kW is applied to the design domain and the

goal of the heat spreader is to direct this heat towards the fixed temperature

boundary. The thermal conductivity, κ, of a finite element is allowed to vary

between 4 and 400 W/mK.
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The optimization problem formulation is given by the following expression:

min
d

Θ(d) =
∫

Ω
qT (7.15)

s.t. 0 ≤ d ≤ 1 (7.16)

V (d) ≤ Vmax. (7.17)

The objective, Θ(·) is to minimize the thermal compliance of the system,

defined as the sum of the product of heat flux, q, and temperature, T . This is

subject to a volume constraint where the volume of the structure, V (d) must

be less than a prescribed value, Vmax = 50%. It is desirable that the structure

retains a minimum feature size and so the bars are set to a fixed width of t.

Solving the heat conduction problem with a low penalization parameter,

γ = 3, results in designs with partially-defined geometric elements as shown

in Figure 7.3. The partially-defined geometric elements are similar to the

Figure 7.3: Heat spreader optimization with a SIMP penalty of 3. Initial
condition (left). Optimized design (right).

gray-scale boundary observed when using the SIMP method. The gray-scale

boundaries can be alleviated by adopting a continuation strategy for the SIMP

penalization, or by simply choosing a larger penalization value, γ = 6, as

depicted in Fig. 7.4.
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Figure 7.4: Heat spreader optimization with a SIMP penalty of 6. Initial
condition (left). Optimized design (right).

Using a larger penalization successfully eliminated bars with partially-defined

material properties and produced a structure. Though the material density is

now well defined, the minimum structural thickness is no longer bounded by

the thickness of the bar. In several locations, the bars are minimally inter-

faced, resulting in thin thermally conductive paths. This is very similar to the

checker-boarding patterns that result when using the SIMP method without

a filter. These partial connections create a minimum feature size less than the

desired value of t. Two candidate strategies to alleviate this issue are presented

in the following section.

7.4 Layout-Constrained Optimization

Constraining the layout of the bar elements is a strategy to alleviate the

checkerboard patterns that result when using explicit geometric elements for

heat spreader optimization. There are two general types of constraints that

can be applied: implicit and explicit constraints. Constraining the layout

of the geometric elements reduces access to the solution space, however, it
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guarantees feasible optimized designs with respect to the constraints. Opti-

mization results using both types of constraints are presented in the following

subsections.

7.4.1 Implicitly constrained

One strategy to guarantee a minimum feature size is to fix the topology of

the projected bars and simply perform shape optimization. This strategy was

first implemented using bar projection in Ref. [124], where the authors used a

ground structure comprised of squares. Here, a cross-bar ground structure is

used and the design vector is collapsed to only consist of unique nodes, ie., bar

endpoints that lie at the same coordinates share a single, [x,y], design variable.

Consider this following example to create a square structure, Fig. 7.5.

Figure 7.5: Implicitly constrained layout of a square.

The structure can be represented by 8 total design variables given by the x

and y-coordinates of the intersecting nodes. The design optimization problem

formulation is given as such,
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min
du

Θ(du) =
∫

Ω
qT (7.18)

s.t. 0 ≤ du ≤ 1 (7.19)

V (du) ≤ Vmax, (7.20)

where the design variables now consist of only the unique nodal coordinate

pairs, du, to implicitly enforce the layout. The optimized structure using an

implicitly constrained layout is presented in Fig. 7.6.

Figure 7.6: Optimized solution with fixed layout. Initial layout (left),
optimized layout (right).

The optimized structure clearly avoids the checkerboard patterns that were

obtained when not enforcing a layout. In explicitly enforcing the layout, the

performance of the optimized structure decreased significantly to 14,310 WK.

Using this definition, checkerboard patterns might still arise since the bar ex-

istence parameters, α, are used. Feasibility can be guaranteed by removing

the design variables and assigning full density to all bars. Though this op-

timization implementation produced a feasible design, a large performance

degradation was observed. This may be due to the restrictions in design space

resultant from the fixed layout.
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7.4.2 Explicit Optimization Constrained

An alternative strategy is to constrain the intersection of local bars in the

optimization problem. If the center axis of the two bars do not overlap, then

the minimum distance between the two bars can be calculated by checking the

distance between each bar and associated endpoint, Eqn. (7.2). If the center

axes of the two bars overlap, this condition is detected separately. One strategy

to do so is to extend the line segments to infinity and calculate the intersection

of the lines. If this intersection point lies within the bar segment, then the

distance between the line segments is zero. A computer implementation of

this algorithm is adopted from publicly available geometric algorithms0 . This

distance calculation can be used to numerically enforce intersection between

all bars during the optimization. Consider the following constraint function

applied between all bar pairs:

Figure 7.7: Bar snap constraint representation.
2http://geomalgorithms.com/a07-_distance.html
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O(d) =



−1 for dq ≤ t
2

dq for t
4 ≤ dq ≤ 3t

2

−1 for 3t
2 ,

(7.21)

where bars that lie within a minimum distance of 3t
2 are forced to intersect

within a tolerance of t
2 . If two bars are intersecting within a tolerance, the

constraint is inactive with zero derivative. If two bars are outside of the activ-

ity range, the constraint is inactive with zero derivative. Bars that lie within

the two boundaries are biased towards each other. This provides an addi-

tional degree of freedom in the optimization when compared to the implicitly

constrained layout where bars can now slide along each other and still satisfy

constraints. The same square layout can be constructed using this formulation,

shown in Fig. 7.8.

Figure 7.8: Explicitly constrained layout optimization of a square.

Here a total of 16 design variables and 6 intersection constraints are required

to enforce the layout. The design optimization problem formulation using

explicit constraints is given as such:
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min
d

Θ(d) =
∫

Ω
qT (7.22)

s.t. 0 ≤ d ≤ 1 (7.23)

V (d) ≤ Vmax (7.24)

O(d) ≤ 0, (7.25)

where the overlap constraint, O(·), is simply added to the optimization for-

mulation. This constraint implementation works well when starting with a

feasible layout, such as the cross-bar pattern shown in Fig. 7.9. The opti-

Figure 7.9: Explicitly constrained layout optimization. Initial condition
(left), optimized topology (right).

mization algorithm produced a solution with a thermal compliance value of

2,402 WK. The design is completely binary and does not feature any floating

bars. There are small thickness reductions at some of the bar interfaces, how-

ever, these can be alleviated by tightening the intersection constraint bounds.

One advantage of the explicit constraints is the ability to toggle the con-

straint during optimization. For example, consider allowing the optimizer to

run naturally and toggling the intersection constraint after 15 iterations. The

result of this approach is shown in Fig. 7.10. The optimized structure has a
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Figure 7.10: Explicitly constrained layout optimization with constraint
toggle. Initial condition (left), optimized topology (right).

thermal compliance value of 2,193 WK, which is improved from the previous

implementation. The optimizer was allowed to naturally adjust the position

of the bars towards a local optima. At the 15th iteration, the intersection

constraint was toggled on to enforce a feasible structure. The 15th iteration

was selected since the structure started to settle into a reasonable form and

floating elements were not yet present. It is important that no floating ele-

ments are present as the constraint will repel floating elements past a certain

distance. Defining a more effective intersection penalty is left as a topic of

future work.

7.5 Discussion

Using projected explicit geometric elements for fixed-mesh topology optimiza-

tion presents challenges similar to those present when using the SIMP method.

The optimization results have compiled into the following table to facilitate

visual comparison.

These challenges become evident when performing heat spreader topology
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unconstrained implicit explicit toggle

Table 7.1: Compiled projection results.

optimization. When using design variables to represent the density, or exis-

tence, of geometric elements, partially defined bars are present in the opti-

mized structure. Using a large value to penalize the material density of the

bars alleviates this issue, but presents checkerboard patterns. When using

the SIMP method, filters can be used to prevent this occurrence and produce

mesh independent designs. For the geometric projection method, two alter-

native strategies based on the use of layout constraints are presented. It was

shown that using an implicit constraint produced poorly performing structures

when compared to an explicit constraint approach. The use of the explicit con-

straint was also shown to be more flexible as it can be toggled ON at a later

point in the optimization to produce feasible structures. Furthermore this

design resembles the unconstrained optimization solution. Automating the

toggle detection point and defining a more stable intersection constraint are

left as topic of feature work.

7.6 Summary

In this chapter, an alternative optimization formulation was presented to over-

come some challenges with the explicit geometric projection methods for topol-
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ogy optimization. This investigation was motivated by the comparative study

and sequential fix for the GPM presented in Chapter 6. Using explicit inter-

section constraints allowed the optimizer sufficient freedom to find well per-

forming structures and satisfy minimum feature size requirements. Using these

differentiable projections on a fixed-finite element mesh opens opportunities

for advances in applications with fixed topologies, such as packing and layout

optimization [131].
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Chapter 8

Maximum Approximation Functions

8.1 Introduction

In power electronic applications, assessing the maximum temperature of a

power device is critical to ensure safe operation. Several of the design methods

investigated in this dissertation take advantage of gradient-based algorithms

to quickly converge to optimized solutions. The maximum function itself is not

differentiable, and as such, can not be used with gradient-based algorithms.

There are several smooth approximations for the maximum function that have

been used for topology optimization [83, 132, 133]. Though these functions

have been used to produce optimized structures, the implications of their use

have not been thoroughly studied.

In this chapter an assessment of maximum approximation functions as they

apply to topology optimization is conducted. Four maximum approximation

functions are introduced in Sec. 8.2. Then, the tuning parameters of these

functions and their respective derivatives are analyzed in Sec. 8.3. How the

approximation functions scale with respect to the number of temperature val-

ues and the temperature distribution is investigated in Sec. 8.4. Some topo-

logically optimized temperature distributions are presented and suggestions

for improving maximum approximation accuracy are detailed in Sec. 8.5. A

discussion of findings is presented in Sec. 8.6, and a summary of the chapter
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is presented in Sec. 8.7

8.2 Maximum approximation functions

In this section, four maximum approximation functions are under investigation

as candidate replacements for the maximum function. The first approximation

function used is the p-norm function. It is given by the following equation:

Tnorm = ||T||p =
(

n∑
i=1
|Ti|p

)1/p

. (8.1)

The maximum approximation is taken as the p-root of the sum of nodal tem-

peratures, Ti, raised to a power p. This function approximates the max func-

tion as p → ∞. This approximation function has been used in heat transfer

topology optimization for a similar problem detailed in Ref. [83].

The next approximation function is a smooth maximum function using ex-

ponentials:

Ts,e =
∑n
i=1 Ti exp (υTi)∑n
i=1 exp (υTi)

, (8.2)

where a scalar, υ, can be chosen to scale the smoothness and accuracy of the

approximation. As υ →∞, the maximum function is obtained.

The next approximation function is an alternative smooth maximum ap-

proximation using a power function that is investigated in Ref. [132]:

Ts,p =
∑n
i=1 Tiσ

T
i∑n

i=1 σ
T
i

. (8.3)

Here the parameter, σ, can be tuned to improve accuracy.

The final maximum approximation is based on a logrithmic exponential sum
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(LSE) [133]:

TLSE = 1
N

ln
(

n∑
i=1

exp (NTi)
)
, (8.4)

where the scalar parameter, N , can be used to tune the accuracy of the func-

tion. This approximation function has been used to predict the maximum

stress in stress-constrained topology optimization [130].

To illustrate the behavioral differences between the four approximation func-

tions, consider the following test problem:

Tmax = max (T1 ∈ [0, 2], T2 = 1) , (8.5)

where the maximum approximation function must determine the maximum

value between a temperature, T1 (varied from between 0 and 2), and a second

temperature, T2 (fixed at 1). The predicted maximum temperature approxi-

mations for all four functions are presented in Fig. 8.1. Note that the tuning

parameters were selected to help visualize the behavioral differences.

Figure 8.1: Maximum approximation functions. The blue region is an
overapproximation, the red regions are under approximations.
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From the figure, two classes of approximation functions can be observed.

The norm and LSE maximum functions consistently overestimate the maxi-

mum value within the range of data. The two smooth maximum approxima-

tion functions consistently underestimate the maximum temperature. When

υ = 0 or σ = 1, Eqn. (8.2) and Eqn. (8.3) simply equal the mean temperature.

Increasing the value of these parameters slowly transitions this mean func-

tion to the max function, hence always underestimating the maximum value.

As such, these two functions are not appropriate to be used for constraints.

However, all four of the maximum approximation functions can be used as an

optimization objective.

8.3 Derivatives

In this section, the maximum approximation functions are analyzed in more

detail as a function of their scaling parameters and derivatives. The same test

case as defined in the previous section,

Tmax = max (T1 ∈ [0, 2], T2 = 1) , (8.6)

will be analyzed. To visualize the search direction in 1D, a parameter, S, is

defined as the ratio of the partial derivative of the temperature with respect

to each temperature value as shown below,

S =
∂T
∂T2
∂T
∂T1

. (8.7)

The derivatives are normalized to 1 to allow for simple visual comparison of

trends.
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8.3.1 P-norm

First, consider the p-norm function. The derivative of the p-norm is defined

by the following equation:

dTnorm

dT
= T ◦ |T|p−2

||T||p−1
p

. (8.8)

The predicted maximum values for the 2, 10, and 50 norm are presented in

Fig. 8.2. As the order of the norm increases, the error in the approximation

Figure 8.2: Scaling and derivatives for the norm maximum approximation
function.

function tends towards zero. The derivative of the norm function is sufficiently

smooth and transitions into the shape of the maximum step as p increases.
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The search direction remains positive across the range of values which leads

the optimization towards “lower” temperature solution.

8.3.2 Smooth Max (exponential form)

Next, consider a smooth maximum approximation of the maximum function

using exponentials. The derivative of this function is given by the following

equation:

dTs,e

dT
=
(

n∑
i=1

eυTi

)−1 [
eυT ◦ (1 + υT)

]
. (8.9)

The predicted maximum values for υ = 2, 8, and 20 are presented in Fig. 8.3.

As the temperature scalar parameter, υ, increases the error in approximation

decreases. As mentioned in the previous section, the function always under

predicts the true maximum. For the prescribed υ values, the derivative with

respect to T1 has an asymmetric shape at 1. Despite this non-ideal behavior,

the search direction, S, looks similar to that of the p-norm.
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Figure 8.3: Scaling and derivatives for the exponential smooth maximum
approximation function.

8.3.3 Smooth Max (power form)

The derivative of the smooth max in a power form as derived in Ref. [132] is

presented in the following equation:

dTs,p

dT
= σT ◦

(
n∑
i=1

σTi

)−1

[1 + Tln(σ)]−
( ∑n

i=1 Tiσ
Ti

(∑n
i=1 σ

Ti)2

) [
ln(σ)σT

]
. (8.10)

This particular function is not as sensitive to the scalar parameter, σ, and as

such, large values of 1× 103, 1× 105, and 1× 107 are used for this parameter.

The predicted maximum values for this function are presented in Fig. 8.4. As
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Figure 8.4: Scaling and derivatives for the power smooth maximum
approximation function.

expected, the approximation function increases in accuracy as the parameter

σ → ∞. For this function, the derivatives switch sign in certain situations,

as evident near 0.8 for ∂T
∂T1

and 1.2 for ∂T
∂T2

. This sign change may cause

the optimizer to converge to the incorrect local minimum since the derivative

crosses the zero axis more than once. This is more evident in the plot for the

search direction, S. Given that the approximation function has multiple roots

and the derivative switches sign, it should not be used in optimization.
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8.3.4 Log Sum Exponential Max

The final approximation function is the log-sum-exponential approximation.

The derivative of this function is given by the following equation:

dTLSE

dT
=
(

n∑
i=1

eNTi

)−1 [
eNT

]
. (8.11)

The temperate scalar parameter is set to values of N = 2, 8, and 20, and

the predicted temperature values are presented in Fig. 8.5. As the parameter

Figure 8.5: Scaling and derivatives for the log-sum-exponential maximum
approximation function.

N increases, the error in approximation decreases and the derivatives for this

function transition smoothly from a linear ramp to a step. The derivatives
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remain monotonic and behave similarly to the p-norm with larger values of p.

8.4 Prediction Error

Based on the analysis presented in the last section, the p-norm and log-sum-

exponential maximum approximation functions are the most appropriate for

optimization. To better understand the behavior of these functions, the accu-

racy as a function of mesh size (Sec. 8.4.1) and temperature distribution shape

(Sec. 8.4.2) are presented.

8.4.1 Number of finite elements.

First, consider the effect of increasing the number of finite elements in a mesh.

This will increase the total number of temperature measurements that are

aggregated in the maximum approximation functions. Here the temperature is

bounded between 0 and 1, and with linearly interpolated temperature values of

an increasing discretization size. The accuracy of the norm and LSE functions

for various set sizes is illustrated in Fig. 8.6.

From the plot, it can be deduced that the norm function loses accuracy more

quickly as the total number of aggregated elements increases when compared

to the LSE function when p = N . This can be attributed to the magnitude

of the elements which are being aggregated. As p increases for the norm

function, the temperature values are being scaled towards 0. As N increases,

the temperature values entered to the exponential are greater than 1. In effect,

the norm function for temperature values between 0 and 1 tries to minimize

small temperatures to make the maximum temperature stand out, and the

LSE function tries to increase the magnitude of the largest temperature such
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Figure 8.6: Norm and LSE maximum approximation error as a function of
the total number of nodal temperature values.

that it stands out. For temperature values constrained between 0 and 1, the

LSE is more effective if p = N , however, a norm value can be chosen to

achieve comparable performance for a given N , for example: (p = 12, N = 8).

For these particular values, the norm function is more accurate for a mesh

with less than 2× 105 temperature nodes.

8.4.2 Distribution Shape

Given the fundamental difference between the algorithms for normalized tem-

perature values, the accuracy of these functions will be sensitive to the distri-

bution of temperature values. When optimizing a heat spreading structure,

the ordered temperature distribution across a domain may not be linearly

distributed. Consider scaling the temperature values by the following trigono-
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metric function:

Td = 1
β

tanh−1 (T0 [tanh(βν) + tanh(β(1− ν))]− tanh(β − ν))− ν. (8.12)

The parameter, β, controls the shape of the temperature distribution, and

the parameter, ν, shifts the average value. A vector, T0, of values linearly

interpolated between 0 and 1 is used to create the new temperature distribution

vector, Td. When performing topology optimization with a fixed temperature

boundary, the ordered set of temperature values can fit to this equation. The

effects of changing individual parameters, β and ν, are presented in Fig. 8.7.

Figure 8.7: Effect of trigonometric function.

As the parameter β increases, the temperature values become clustered about

the parameter, ν. For the parameter ν, the temperatures start mostly high

for ν = 1 and become mostly low for ν = 0. The sensitivity of the norm

maximum approximation function with respect to the distribution shape is

presented using a heat map, illustrated in Fig. 8.8.

It is important to note that the function becomes undefined for certain com-

binations of β and ν; these combinations have been identified by the pink

patches on the domain. The norm function more accurately predicts the max-
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Figure 8.8: Approximation function sensitivity to temperature distribution.

imum temperature when there is a single large value in the set, ν → 1 or

β → 30. As the distribution becomes more uniform, the error levels off near

75%.

8.5 Topology optimized temperature distributions

A given heat spreading structure will provide a similar sorted temperature

distribution to these discussed in Sec. 8.4.2. Consider the normalized sorted

temperature distributions for a variety of temperature optimized solutions,

shown in Fig. 8.9. The dashed black line presents a fitted curve with β =

4 and ν = 0.45. This fitted curve can be used to understand the error in

approximation prediction for a problem with a similar temperature profile.

Consider the approximation error as a function of the number of mesh nodes

for the fitted temperature distribution, illustrated in Fig. 8.10.
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Figure 8.9: Approximation function sensitivity to temperature distribution.

Figure 8.10: Approximation function sensitivity to temperature
distribution.

It is preferable to choose the highest norm order to minimize the error in max-
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imum approximation. However, large p values lead to numerical oscillations

in the optimization. If performing temperature-constrained optimization, an

alternative strategy to minimize constraint prediction error is to scale the con-

straint value by the predicted error. This will allow the optimizer to correctly

assess when the constraint is active, while still using a smooth maximum ap-

proximation (low p).

8.6 Discussion

Differentiable maximum approximation functions will continue to be inves-

tigated for gradient-based topology optimization for their ability to predict

parameters of interest (e.g., maximum temperature, maximum stress, etc.),

while preserving differentiability. In this chapter, four approximation func-

tions that have been utilized in the literature for topology optimization are

analyzed in detail. The smooth maximum approximation functions have been

shown to consistently underestimate the maximum value, and as such are not

appropriate for use as a constraint. Furthermore, the derivative of the expo-

nential form of the smooth max changes sign during optimization and may

cause the optimizer to converge to an incorrect local optima. For this reason,

this approximation function should not be used in optimization. The norm

and LSE maximum approximations offer comparable performance. The norm

function is more accurate when the temperature set is small, and the LSE

function is more accurate when using a large set of temperature values. Either

maximum approximation function can be used confidently for optimization as

their derivatives are comparable.

An investigation was also conducted to determine the effect of temperature

distribution on maximum prediction capability for the norm function. For
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topology optimization problems with a fixed temperature boundary, the op-

timized temperature can be fitted by a trigonometric function. This function

can be used to predict the error of the p-norm temperature. For a maximum

temperature constraint, this error can be used to scale the constraint value

such that constraint activity is correct.

8.7 Summary

In this chapter, several maximum approximation functions were analyzed in

the context of topology optimization. Smooth maximum approximation were

observed to under-predict the true maximum value and as such are not suit-

able for a maximum temperature constraint approximation. Furthermore, the

smooth maximum approximation in power form has poorly behaved deriva-

tives, with multiple roots, as derived in Ref. [132] and should not be used

for optimization. The norm function was found to be more accurate than a

log-sum-exponent maximum approximation function for sets with a relatively

small number of temperature values. A method to scale the maximum temper-

ature constraint was proposed to predict constraint activity while maintaining

a sufficiently smooth derivative.
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Chapter 9

Conclusion

9.1 Summary

Topology optimization methods are a key enabling technology in driving for-

ward performance improvements. In this dissertation, several structural topol-

ogy optimization methods were enhanced for heat spreader design.

In Ch. 2, a framework was presented to classify general topology optimiza-

tion problems. This general class of topologies can be represented by ver-

tex labeled graphs and applies to several application domains (e.g., electrical

circuits, hybrid-powertrains, structural components, chemical processes, etc).

The framework unified language across these application domains to draw

comparisons between design methods. Key distinctions here are emphasizing

the role of the modeler, defining relative expense metrics, and clarifying the

use of data in nested and simultaneous forms.

The following chapter, Ch. 3, focused on some practical heat conduction

formulations for heat spreader topology optimization. This chapter included

an investigation into objective functions and constraint combinations that

capture power electronic requirements. Unique to this chapter is the use of

a temperature-constrained minimization objective formulation, presented in

Sec. 3.4.1, which normalizes values during optimization. Furthermore, this

formulation was also able to capture a component selection task within the
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topology optimization framework.

In Ch. 4, a novel packaging scheme was presented for the FCML inverter

topology. This packaging solution resulted in a 40% reduction in cooling sys-

tem volume for the unfolding and inversion stages. A reduced-order convection

model was used to topologically optimize a heat sink for this application. The

optimization solution did not satisfy manufacturing constraints, and aspects of

the optimized solution were used to design a modified heat sink. It was shown

in simulation that the modified heat sink should have comparable performance

to a baseline design. However, experimentation revealed a discrepancy with

the simulation results and the baseline heat sink outperformed the modified

design. This motivated an investigation into reduced-order design methods for

forced-convection heat sink design.

A series of topology optimization studies were performed in Ch. 5 to gener-

ate a wide variety of heat spreader designs. These studies involved changes in

problem formulation aspects such as the physics models, boundary conditions,

objective functions, and design representations used to generate heat spread-

ers. The heat spreader designs were experimentally qualified on a simple test

platform. Simple heat spreader designs were found to maintain the lowest

device temperature during experimentation. The best design consisted of sim-

ple fins with fillets. This feature combination was unlikely, or unachievable,

using the proposed design representations and motivated an investigation into

structural design representations for topology optimization.

In Ch. 6, optimization using the SIMP, GPM, and SCA were analyzed.

It was observed that the SIMP optimization produced the best performing

design when optimizing a structure with partially defined boundaries. The

GPM solution produced optimized topologies with long fin structures, however,

failed to converge to a feasible design. The SCA was able to produce a wide
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variety of non-dendritic structures, however, failed to converge to the simplified

projection of constant thickness bars. Of the three methods, the SCA method

was the only one that actually tested new topologies between iterations. Both

the SIMP method and GPM converged to a topology within a few iterations

and spent the remaining majority of iterations performing size optimization.

The geometric projection method was further investigated in Ch. 7 to ad-

dress challenges emergent for heat spreader topology optimization as discov-

ered in the previous chapter. The GPM struggled to converge to a binary

solution, and this was simply resolved by an increase in the SIMP penaliza-

tion. Addressing this issue revealed the emergence of checkerboard patterns in

the optimized design, which disqualified the manufacturability of the structure.

To address the checkerboard patterns, two layout constraint formulations were

proposed. The first considered an implicit constraint formulation as proposed

by in Ref. [124], and the second considered an explicit constraint formulation

enforced through optimization. It was observed that the explicitly-constrained

layout allowed the optimizer to converge to better performing feasible designs.

In Ch. 8, four maximum approximation functions were analyzed in detail for

use with topology optimization methods. The scaling of these functions with

respect to tuning parameters and mesh size was analyzed. The derivatives

of the smooth maximum approximations revealed strange behavior that is

not suitable for optimization. The norm and LSE approximation functions

behaved well, and their accuracy was evaluated with temperature distributions

obtained using topology optimization. A constraint scaling strategy was then

suggested to properly identify constraint activity while maintaining a smooth

derivative.
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9.2 Key Contributions

1. A framework to classify topology optimization methods was developed.

This classification framework drew upon research from several isolated

research application communities (electronic circuits, hybrid power-

trains, structural design, etc) to identify common themes and unify lan-

guage. This activity is a first step in bridging the gap between these

research communities to identify similarities and the transition potential

of numerical methods.

2. Practical heat conduction topology optimization formulations were pre-

sented for power electronics systems. This included a side-by-side com-

parison of optimized structures obtained using several objective functions

from the literature, In addition to a study of some objective and con-

straint combinations to satisfy common power electronic requirements.

3. Two experimental investigations were presented to assess reduced-order

convection models for topology optimization. These experiments were

performed on test platforms using wide-bandgap power electronic de-

vices. The experiments have shown that the reduced order methods do

not accurately predict performance despite CFD validation. The test-

platform developed is Ch. 5 is simple and allows for an inexpensive and

easy way to reproduce these results.

4. An explicitly-enforced optimization layout constraint was proposed to

address checkerboard patterns with the GPM that arise during structural

design for heat transfer. This explicit constraint was shown to converge

to better solutions when compared to optimizing an implicitly defined

layout.
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5. An in-depth analysis of maximum approximation functions for use in

topology optimization was performed. Reducing or constraining the

maximum temperature of a power electronic component is crucial for safe

operation. This investigation revealed improper use of certain approxi-

mation functions and suggested a scaling technique to improve accuracy

while maintaining smooth derivatives.

9.3 Future Work

• Transitioning relaxation methods to other topology optimiza-

tion applications — Relaxation methods have been used successfully

for structural topology optimization using analytical sensitivity calcula-

tions. Applications areas such as, hybrid powertrain or passive circuit fil-

ter design, favor meta-heuristic approaches to both select a topology and

size system elements. There is potential for a large impact when applying

relaxation methods to other topology optimization design problems.

• Enhancing reduced-order convection models for topology opti-

mization— The reduced order convection model as outlined in Ref. [88]

presents an intuitive parameterization of the design problem, however,

the model simplifications do not capture enough of the physics to pro-

duce well performing structures. Enhancements such as those presented

in Ref. [89] consider the effect of straight and corner segments, but do

not capture additional fluid considerations. Accounting for the effect of

the air gap on the convective heat transfer coefficient may provide suf-

ficient improvement to produce structures that perform well in practice

without solving an expensive simulation.
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• Alleviating checkerboarding tendency of GPM — Using an im-

plicit or explicit layout constrained set of geometric elements was shown

to reliably produce feasible structures. However, the designs were found

to under-perform those produced by other methods. Identifying an al-

ternative adaptive-fix strategy for nearly interfaced elements, similar to

the elliptic joint modification proposed in Ref. [96], may alleviate the

checkerboard patterns without restricting design flexibility.

• Extending topology optimization framework to include system-

level aspects — Topology optimization as a design tool is maturing for

the design of single structural components. There is a lot of promise

for incorporating topology optimization in more holistic optimization

loops. Consider the component selection example presented in Sec. 3.4.1,

the simultaneous layout and heat spreader design example [8], or this

routing and packing optimization example in Ref. [131]. The integration

of topology optimization methods with other design tools is still new and

a world of opportunity remains.
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