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ABSTRACT 

In the manufacturability-driven design (MDD) perspective, manufacturability of the product or 

system is the most important of the design requirements. In addition to being able to ensure that 

complex designs (e.g., topology optimization) are manufacturable with a given process or process 

family, MDD also helps mechanical designers to take advantage of unique process-material effects 

generated during manufacturing. One of the most recognizable examples of this comes from the 

scanning-type family of additive manufacturing (AM) processes; the most notable and familiar 

member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) 

process. This process works by selectively depositing uniform, approximately isotropic beads or 

elements of molten thermoplastic material (typically structural engineering plastics) in a series of 

pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D 

mechanical design problems that can be explored by designing the layout of these elements. The 

resulting structured, hierarchical material (which is both manufacturable and customized layer-by-

layer within the limits of the process and material) can be defined as a manufacturing process-

driven structured material (MPDSM). This dissertation explores several practical methods for 

designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing 

ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where 

a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, 

and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, 

including a mapping method for the FDM manufacturability constraints, three major literature 

reviews, the collection, organization, and analysis of several large (qualitative and quantitative) 

multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental 

equipment, and the refinement of a fast and simple g-code generator based on commercially-

available software, were developed and refined to support the design of MPDSMs under fracture 

conditions. The refined design method and rules were experimentally validated using a series of 

case studies (involving both design and physical testing of the designs) at the end of the dissertation. 

Finally, a simple design guide for practicing engineers who are not experts in advanced solid 

mechanics nor process-tailored materials was developed from the results of this project. 

 

 



iii 

 

ACKNOWLEDGMENTS 

  

I would like to express my gratitude first to my doctoral advisor, Dr. James T. Allison, for giving 

me the opportunity to pursue my Ph.D. at the University of Illinois, for being a great mentor by 

providing helpful guidance while also encouraging me to explore my interests wherever they may 

lead, and for being willing to learn new areas/fields with me as I conceptualized, explored, refined, 

and completed the research described in this dissertation. I would like to thank Dr. Iwona Jasiuk, 

my co-director of research, for her constant guidance, help, and mentorship and for always making 

time to help or talk to me (sometimes on very short notice) when I needed guidance on some 

technical aspects of my research. I would like to thank my other committee members Dr. Pingfeng 

Wang and Dr. Girish Krishnan for their help, guidance, and feedback throughout my dissertation 

research and writing process. I would like to thank my primary peer research partner and friend 

Charul Chadha for always being willing to explore new ideas, design/build new experimental 

equipment, work on tedious months-long literature reviews with me, and for giving me 

encouragement during stressful times and disappointments in my work.  

I would like the Department of Industrial and Enterprise Systems Engineering at the 

University of Illinois at Urbana-Champaign for providing me a home base from where to complete 

my research, for several years of funding support that allowed me the freedom to explore my project 

fully, and for actively promoting my work. Of the other faculty in the ISE department and the 

Grainger College of Engineering in general, I would especially like to thank Dr. Bob Norris for his 

years of mentorship and guidance and for helping me learn how to write grant proposals and patent 

documents and Dr. Molly Goldstein for mentoring and supervising my teaching work and helping 

me grow and improve greatly as a teacher. I would also like to thank Dr. Henrique Reis, Dr. 

Harrison Kim, Dr. Yuhang Hu, Dr. John Lambros, Dr. Kai James, and Dr. Randy Ewoldt for their 

personal advice and helpful teaching which contributed to ideas and approaches for my dissertation 

research. I would like to thank current and former ISE department administrators Holly Kizer, 

Shawna Graddy, Aleta Lynch, Tracey Rich, Michael Adams, William Gillespie, Elise Lee, Julie 

Murphy, Lucas Osborn, and most especially Lauren Redman, for all their help, guidance, and 

patience helping me navigate the day-to-day paperwork, expectations, and questions that came up 

during my Ph.D. studies. I would like to thank Dr. Abigail Wooldridge and Dr. Rasoul Etesami 

specifically for their help and guidance on preparing my documents and application packages for 



iv 

 

faculty job applications in the last year of my doctoral studies. I would also like to thank all those 

involved in my Mavis Future Faculty Fellowship award and my several College of Engineering 

conference travel awards.         

I would like to thank my lab mates and the many excellent other graduate students I met 

while pursuing my Ph.D., especially those who I worked with or had frequent personal interactions 

with, including (in alphabetical order by last name): Rashid Anzoom, Madhav Arora, Saeid Bayat, 

Tonghui Cui, Tianshi Fu, Tinghao Guo, Bayan Hamdan, Dan Herber, Yong Hoon Lee, Rodra 

Hascaryo, Danny Lohan, Reza Maragheh, Hossein Matin, Tim Murray, Sreekalyan Patiballa, Satya 

Peddada, Akash Singh, Reza Soleymanifar, Dedy Suryadi, Vedant, and Simon Zhang. I would like 

to thank my undergraduate and MS student assistants who have worked with me in various 

capacities over the years at the University of Illinois at Urbana-Champaign, especially Kinga 

Wrobel, Nick Eikelberner, Lucas Semitka, Adam McCarthy, Bozun Wang, and Yang Yuan.  

Finally, at the University of Illinois, I would like to thank the Department of Mechanical 

Science and Engineering and the Department of Materials Science and Engineering for making me 

feel welcome as I was pursuing my research, for giving me keys and building access, and for 

inviting me to seminars and to freely participate in department activities relevant to my research.   

 I would like to thank my many important professional mentors and supervisors from 

outside the University of Illinois for their significant professional and personal contributions to my 

success and/or my decision to pursue this Ph.D., especially Dr. Sherri Messimer, Dr. Christina 

Carmen, Dr. Phillip Farrington, Dr. Alanna Frost, Dr. Kip Kendrick, Dr. Keith Hollingsworth, Dr. 

Brad Hembree, Dr. Don Wallace, Dr. Paul Collopy, Dr. Sam Gholston, Harley Hollingsworth, Seth 

Thompson, Troy Skinner, Steve Collins, James Glenn, David LaChance, Jeff Sexton, Meredith 

Bain, and Elizabeth Peterson. I would like to thank some additional professionals who all provided 

some significant direct comments or advice on my work but whom I only interacted with a few 

times, including: Dr. Bill Bernstein, Dr. Katherine Matlack, Dr. Krishnan Suresh, and Dr. Niao He.   

I would like to thank my personal friends who are also practicing engineers and other 

professionals and who provided me advice, expertise, encouragement, and support during this 

Ph.D. and/or the process leading me to do it, especially: Tais Rocha Pereira, Ben and Kaila 

Browning, Nasiha Muna, Taylor Bono, John Kendrick, Robby and Lauren Renz, Matt 

Mazurkavich, Matt Ray, James Lawler, Kayla Jarratt Henslee, Chad Jones, Phillip Reed, and Raghu 

Katragadda. I would also like to thank some personal friends and other people who had a positive 

impact on me during my PhD studies and who contributed to my success through encouragement, 



v 

 

kindness, and help unrelated to academics or work, especially (first names only, in alphabetical 

order): Alexis, Amber, Callie, Chris, Coralee, Eric, Gregory, Haley, Havan, Jacinthe, Jonathan, 

James, Kathy, Kimberly, Kyle, Matthew, Mattison, Michael, Molly, Nathan, Nicole, Paul, Sadie, 

Sandra, Scott, Sheldon, Taylor, Thomas, Vincent, and everyone else not named here who has 

contributed something positive to my life the past several years.    

I would like to thank my family (core, extended, and by marriage) for their support, both 

morale and financial, through the years I worked on this Ph.D. Thanks particularly to my amazing 

mom who has been there for me throughout the good and bad days of the past few years and was 

always there to encourage me in spite of having her own problems and worries to deal with at the 

time. I would also especially like to thank my aunt and uncle Anna and Joe Stallings for their 

essential support and constant encouragement. I would like to thank my uncle Dr. John Fair for his 

advice and encouragement related to becoming a professor, academic writing, and pursuing an 

academic job. Finally, I would most especially like to thank my maternal grandfather Joseph Abel 

for inspiring me to be an engineer and to pursue all these years of school and work. Without his 

example and encouragement throughout my life, I likely would not have attempted this career path.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

 

 

 

 

 

 

 

 

Dedicated to Joseph Abel 

 My brilliant grandfather whose success, encouragement, and example helped inspire me 

to dedicate my life to the practice and profession of engineering 

 

 

 

 

 

 

 

 

 

 



vii 

 

TABLE OF CONTENTS 

Word Cloud.................................................................................................................................................... x 

Nomenclature and Acronyms ...................................................................................................................... xi 

1. INTRODUCTION ..................................................................................................................................... 1 

1.1. Background and Motivations ..................................................................................................... 1 

1.2. Primary Research Objective Statement ...................................................................................... 4 

1.3. Major Contributions ................................................................................................................... 5 

1.4. Research Approach .................................................................................................................... 6 

1.5. Chapter Outlines and Major Research Questions ....................................................................... 9 

Chapter 1 Bibliography ................................................................................................................... 14 

2. MANUFACTURABILITY CONSTRAINTS FOR MECHANICAL DESIGN ................................. 17 

2.1. Introduction  ............................................................................................................................. 17 

2.2. Literature Review ..................................................................................................................... 20 

2.3. MR-DFM Concept Development ............................................................................................. 41 

2.4. General Design Problem Formulation ...................................................................................... 43 

2.5. Constraint Restrictiveness and Dominance .............................................................................. 51 

2.6. General MR-DFM Framework ................................................................................................. 53 

2.7. Case Studies ............................................................................................................................. 56 

2.8. Remarks on Inputs and Practical Implementation .................................................................... 69 

2.9. Closing Remarks ...................................................................................................................... 73 

Chapter 2 Bibliography ................................................................................................................... 79  

3. FDM MECHANICS AND MANUFACTURABILITY CONSTRAINTS .......................................... 98 

3.1. Introduction .............................................................................................................................. 98 

3.2. FDM Manufacturability Constraints: Concepts ..................................................................... 102 

3.3. FDM Material Selection ......................................................................................................... 126 

3.4. FDM Manufacturability Constraints: Determination  ............................................................ 128 



viii 

 

3.5. Case Studies ........................................................................................................................... 139 

3.6. Closing Remarks .................................................................................................................... 144 

Chapter 3 Bibliography ................................................................................................................. 146 

4. FDM-DRIVEN STRUCTURED MATERIALS ................................................................................. 157 

4.1. Introduction ............................................................................................................................ 157 

4.2. Manufacturability-Driven Design .......................................................................................... 161 

4.3. Mechanics of FDM as Scanning-Type AM Process .............................................................. 165 

4.4. Meso-Scale FDM-Driven MPDSMs ...................................................................................... 166 

4.5. Case Studies ........................................................................................................................... 177 

4.6. Closing Remarks .................................................................................................................... 184 

Chapter 4 Bibliography ................................................................................................................. 186 

5. FRACTURE MECHANICS AND DESIGN KNOWLEDGE ........................................................... 193 

5.1. Introduction ............................................................................................................................ 193 

5.2. Review: Fracture Methods, Materials, and Standards for FDM Materials ............................. 196 

5.3. Design Information Gathering from Fracture Studies ............................................................ 207 

5.4. Practical Implementation in Design ....................................................................................... 213 

5.5. Closing Remarks .................................................................................................................... 216 

Chapter 5 Bibliography ................................................................................................................. 218 

6. FDM FRACTURE MECHANICS – PHYSICAL EXPERIMENTS................................................. 226 

6.1. Introduction ............................................................................................................................ 226 

6.2. Hardware, Equipment, and Software Used ............................................................................ 229 

6.3. Test Series I: Basic Characterization ...................................................................................... 234 

6.4. Test Series II: FDM-Processed Fibers .................................................................................... 238 

6.5. Test Series III: FDM-Processed Films ................................................................................... 245 

6.6. Test Series IV: ASTM D5045 CT Sample Size Sensitivity ................................................... 251 

6.7. Test Series V: ASTM D5045 CT Notch Sensitivity ............................................................... 261 

6.8. Test Series VI: Fracture Behavior vs Element Layout ........................................................... 267 



ix 

 

6.9. Test Series VII: IZOD Impact Testing ................................................................................... 272 

6.10. Closing Remarks .................................................................................................................. 283 

Chapter 6 Bibliography ................................................................................................................. 285 

7. DESIGN RULE DEVLELOPMENT FOR FRACTURE-DRIVEN FDM MPDSMS ..................... 288 

7.1. Introduction ............................................................................................................................ 288 

7.2. Design Rules under MDD ...................................................................................................... 289 

7.3. Fracture Driven FDM MPDSM Design Objectives ............................................................... 290 

7.4. Design Knowledge Drivers .................................................................................................... 292 

7.5. Design Rules .......................................................................................................................... 297 

7.6. Closing Remarks .................................................................................................................... 304 

Chapter 7 Bibliography ................................................................................................................. 306 

8. DESIGN STUDIES ................................................................................................................................ 308 

8.1. Introduction ............................................................................................................................ 308 

8.2. Design Study 1: ASTM D5045 CT Layout using Cube Plot Optimization ............................ 310 

8.3. Design Study 2: Plane Stress Field Trace ............................................................................... 314 

8.4. Design Study 3: 2-D Eccentric Beam Re-Design ................................................................... 316 

8.5. Design Study 4: 3-D Beam Design under Bending and Torsion Load ................................... 321 

Chapter 8 Bibliography ................................................................................................................. 325 

9. CONCLUSIONS AND FUTURE WORK ........................................................................................... 326 

APPENDIX A: Preliminary Design Guide ................................................................................................ 328 

APPENDIX B: Cura-Based G-Code Generator Tutorial ........................................................................... 337 

APPENDIX C: Converting G-Code Back to STL with Voxel Mesh ......................................................... 352 

APPENDIX D: Calculation Process for 𝐾𝑄 and 𝐾1𝑐 for Chapter 6 ............................................................ 355 

APPENDIX E: Experimental Data Sharing and Availability .................................................................... 358 

APPENDIX F: Interesting Experimental Figures ...................................................................................... 359 

APPENDIX G: Detailed Review Approaches for Chapter 2 and Chapter 5 .............................................. 366 

APPENDIX H: Copyright Permissions for Previously Published Material ............................................... 381 



x 

 

WORD CLOUD 

 

 

Created using wordclouds.com 

 



xi 

 

NOMENCLATURE AND ACRONYMS 

 
ABS ..................................................................................... Acrylonitrile butadiene styrene 

AD ........................................................................... Anderson-Darling test (statistical tool) 

AM ................................................................................................. Additive manufacturing 

ANOVA ..................................................................... Analysis of variance (statistical tool) 

ASTM ............................................................. American Society for Testing and Materials 

BJ ................................................................................................................... Binder jetting 

CAD ................................................................................................ Computer-aided design 

Classic DFM ...................DFM according to basic principles without adaptions or updates 

CNC ........................................................................................ Computer-numerical control 

CT ..................................................................... Compact tension (experimental specimen) 

CTOD ................................................................................. Crack tip opening displacement 

DFAM ............................................................................ Design for additive manufacturing 

DFM ......................................... Design-for-manufacturing or design-for-manufacturability 

DoF ....................................................................................................... Degrees of freedom 

DLP ................................................................................................. Digital light processing 

EBM ................................................................................................. Electron beam melting 

ED ....................................... Externally dominated (by a non-manufacturability constraint) 

FDM .......................................................................................... Fused deposition modeling 

FEA .................................................................................................. Finite element analysis 

FFF ..............................................................................................Fused filament fabrication 

FM ................................................................................................ Formative manufacturing 

FoS .............................................................................................................. Factor of safety 

INCOSE ...................................................... International Council on Systems Engineering 

ID ...................................... Internally dominated (by another manufacturability constraint) 



xii 

 

ISO .............................................................. International Organization for Standardization 

ISRC ................................. Identify-specify-rank-combine process for design requirements 

𝐾1𝑐 ............................................................................ LEFM plane strain fracture toughness 

𝐾𝑞  ........................................................................................ Conditional fracture toughness 

KW ............................................................................ Kruskal-Wallace test (statistical tool) 

LBF ............................................................................................... Laser powder bed fusion 

LED ..................................................................................................... Light-emitting diode 

LEFM ............................................................................... Linear elastic fracture mechanics 

MDD ................................................................................. Manufacturability-driven design 

MfG or Mfg ................................................................................................... Manufacturing 

MM-SC ........................... Multi-material or structural composites (material configuration) 

MPDSM ................................................. Manufacturing process-driven structured material 

MR ................................................................................. Minimally-restrictive (constraints) 

MR-DFM ............................................. Minimally-restrictive design-for-manufacturability 

NASA ....................................................... National Aeronautics and Space Administration 

PA ................................................................... Polyamide (another term to describe nylon) 

PC ................................................................................................................... Polycarbonate 

PLA ............................................................................................................... Polylactic acid 

PM .......................................................................................................... Powder metallurgy 

R45 ....................................................................................... Standard raster printed at ±45° 

R90 ...................................................................................... Standard raster printed at 0/90° 

SENB ............................................. Single-edge notched bending (experimental specimen) 

SLA ...................................................................................... Laser-based stereolithography 

SLM ................................................................................................. Selective laser melting 

SLS ................................................................................................. Selective laser sintering 

𝜎𝑦 .................................................................................. Measured yield stress of a material 



xiii 

 

SM .............................................................................................. Subtractive manufacturing  

SMT ....................................................................................................... Structured material 

ST-AM .................................................................. Scanning-type AM (process mechanics) 

TO .................................................................................................... Topology optimization 

V&V ........................................................................................... Verification and validation 

VV&C ................................................................. Verification, validation, and certification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1

INTRODUCTION

1.1 Background and Motivations

One of the most important issues currently in both mechanical design and manufacturing

science is the (sometimes severe) mismatch between modern advanced design methods (e.g.,

topology optimization, optimal design, and generative design) and the existing and devel-

oping manufacturing processes [1–6]. Design and manufacturing methods for most common

products were roughly equivalent in terms of refinement in the 1980s and 1990s after decades

of development and refinement in design-for-manufacturability (DFM) principles [5–9]. Be-

ginning in the late 1990s (and especially after about 2010) there has been an “arms race”

of sorts to develop and refine new design methods based on new design knowledge develop-

ment, the birth and spread of additive manufacturing (AM), better and cheaper computers

and optimization tools, and other such real or perceived advances [10–21]. A major result

of this is that the available manufacturing methods, including AM, cannot fabricate a large

portion of modern designs.

There was a lot of hope and optimism that the advancement of AM would (eventually)

help mitigate these issues and provide an advanced manufacturing paradigm worthy of the

new world of advanced design methods [15–17, 22–24]. Sadly, this has not come to pass

for a wide variety of reasons; it is becoming clear that AM is not only not the silver

bullet for many difficult manufacturing problems but that in some ways it can be more

limited and restrictive than traditional subtractive and formative processes. In realistic

application, AM is another family of processes (many of them directly derivative from
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traditional processes) which can offer an expanded range of manufacturing options and cover

some areas previously not possible. It is very unlikely to replace much of the traditional

manufacturing process catalog but will simply be a useful supplement to it. This is not to

discount the impact and importance of AM; the advancement of AM has been a tremendous

leap forward for engineering and technology. However the fact remains (even if it was more

widely useful) that AM and other processes have not thus far been able to keep up with the

rapidly advancing world of design methods. Therefore, the mis-match remains and must be

accounted for. Figure 1.1 shows some examples of extremely complex designs which may

or may not be manufacturable depending on the applied constraints and limitations.

Orme, Sun2020

Figure 1.1: Examples of advanced designs which may or may not be manufacturing using the much more
limited modern manufacturing technologies. Figures from [25, 26] and reproduced here under the terms of
their original CC-BY open access license.

The major question on the table is how to account for the design-manufacturing mis-

match and ensure manufacturability without erasing the advantages of modern design meth-
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ods or promising unrealistic solutions from the manufacturing side. In general, classic design

for manufacturability (DFM) methods strongly prioritize design simplification, liberal tol-

erances, the use of non-specialized materials, and similar goals [6–8,11,20,27,28]. In many

cases, these goals are directly opposed to the goals and capability of many advanced design

processes and so are not useful or desirable for this purpose. One promising method of

dealing with this is to impose direct process-driven constraints in the design problem itself

implicitly or explicitly in the problem formulation; this has been quite effective in some

areas, particularly in topology optimization [1, 29–34].

This suggests the need for a new design perspective in which manufacturability is

the prime or co-prime design requirement; in this dissertation, this concept is defined as

manufacturability-driven design (MDD). The concept is simple: instead of generating a

candidate design or set of candidates and then selecting from among the manufacturable

ones, this simply restricts the initial design space to only manufacturable designs. Therefore,

any candidate design produced (subject to the quality of the modeling and design space

definition, of course) is manufacturable. Therefore, the designers can focus on generating or

selecting the best design freely since manufacturability has already been accounted for. It is

true that the set of design candidates after the design space restrictions will be smaller than

one without the constraints; however, the final set of designs which are both desirable (as

judged by the project requirements) and manufacturable should be approximately the same

size using either approach in the end. However, the candidates which were not subject to

any kind of manufacturability constraints early in the life cycle may have to be individually

tested or evaluated for it. This can waste a significant amount of time and resources during

the design life cycle, especially in one of those common cases where this evaluation can only

happen at the prototyping stage or later.

It may seen at first glance that MDD could be extremely restrictive and counteract

the advantages of modern design methods as much or more than DFM. However, in practice

the opposite is true. Not only does allow much more design complexity than classic DFM

(by leaving open the entire manufacturable design space), but it allows process-material

interactions to be observed clearly. Looking at scanning-type AM (ST-AM) processes (those

which trace out layers as a collection of lines, versus processes which project entire layers at

3



once or sections like an inkjet printer), this benefit is especially clear. The process (which

could be fused deposition modeling (FDM), laser powder bed processes (SLS, SLM, and

similar), laser-based stereolithography (SLA), or a number of others) builds up the geometry

using a series of material elements, each of which is approximately isotropic or transversely

isotropic. These elements generally have a uniform cross section throughout a part and

when laid out in a desired 2-D pattern, form a layer of the part which are then all collected

into the whole part. The resulting 3-D structure at the macro-scale is highly anisotropic and

can be thought of something like a collection of layers, each of which is a sort of dense truss

made up of the fundamental elements. Thinking in terms of bottom-up design, if each of the

elements are manufacturable, then then layers made up of them are also manufacturable. If

the layers are manufacturable, the entire 3-D structure is manufacturable. Understanding

these ST-AM processes from the MDD perspective allows a new design approach to be

developed and refined here.

This dissertation explores this concept in depth and applies it to the design of meso-

scale structured materials under MDD for which the mechanical load is fracture. They may

be designed to stop or prevent cracks, accelerate cracks, or control the pattern of a crack

as it forms. The design approach developed is valid for both 2-D and 3-D structures, as

demonstrated in the case studies at the end. The manufacturing process used is fused de-

position modeling (FDM) and the materials used are acrylonitrile butadiene styrene (ABS),

polylactic acid (PLA), and polycarbonate (PC). ABS and PC are common engineering plas-

tics derived from petroleum-based hydrocarbons, while PLA is a biomaterial sourced from

renewable sources which as corn and sugar cane. All are thermoplastics and can be easily

processed using FDM.

1.2 Primary Research Objective Statement

The primary research objective of this dissertation is to develop a bottom-up design method

based on MDD to build and fabricate manufacturable meso-scale thermoplastic structured

materials under fracture conditions which will be fabricated via FDM. This is mostly new

work (previous work will be discussed in each chapter) and is built from the ground up based
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Figure 1.2: Relationship between design methods, manufacturing science, and experimental mechanics

on knowledge and observations from mechanical design principles and manufacturing pro-

cess behavior. No similar design processes currently exist for reference, so the development

from fundamental knowledge is necessary. This problem lies at the heart of the intersection

between mechanical design, manufacturing science, and mechanics (Figure 1.2); knowledge

and intuition toward its definition and refinement come from all three domains. Its solu-

tion will also benefit all three, helping to further illuminate and develop connections and

synergies between them.

1.3 Major Contributions

This dissertation had seven major intellectual contributions, in addition to a variety of

secondary ones addressed in each chapter. These major novel contributions are:

1. The completion of four major literature reviews on design under manufacturability

constraints, the fracture testing of FDM materials, the mechanics and constraints

related to FDM, and the basic principles and history of structured materials. This

involved the review and synthesis of more than 500 unique papers. Three of the

reviews were extensive and useful enough to be published on their own as articles in

peer-reviewed academic journals.
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2. The development of a general method for capturing and mapping manufacturability

constraints for mechanical design problems, verified experimentally through several

design studies.

3. The application of the mapping and manufacturability constraints method to the

complete mapping of a new manufacturing process (FDM). This included developing

and validating the full set of manufacturability constraints (which can now be used

automatically).

4. The development and validation of a bottom-up design method for manufacturing

process-driven structured materials (MPDSMs) for general structural problems. De-

sign studies for this method used expert intuition, topology optimization, and other

methods successfully.

5. The completion of a large course of fracture mechanics experiments, focusing on seven

different major areas, and interpretation of the results relative to design.

6. The development and experimental validation of a set of rigorous design rules for the

design of MPDSMs under fracture problems using several different objective functions

and design approaches.

7. Most importantly, every new model, concept, tool, or design approach presented in

the dissertation were experimentally validated, even if the demonstrated ideas were

originally derived from experimental data.

In addition to the major academic contributions, several new conclusions related to

fracture testing of FDM materials, some new experimental and design equipment, and a

g-code generator based on Utltimaker® Cura® and Autodesk® Inventor® were developed.

1.4 Research Approach

In this dissertation, each of the major chapters contain their own research questions, objec-

tives, intellectual contributions, and literature reviews (as appropriate), so these will not be
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Figure 1.3: Organization and relationship of various topics and chapters in this dissertation
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described in detail here. This section presents a general summary to demonstrate the ap-

proach taken and the ordered relationship of the topics covered. Two major requirements,

unrelated to the dissertation directly but helping to guide its approach, were established in

order to make the work useful for practicing engineers and designers who are not experts

in the individual topics. There were:

1. Only commercially-available software tools available to practicing engineers and de-

signers should be used if at all possible.

2. Simulations should be avoided and everything possible should be experimentally val-

idated, from the full set of proposed design rules to the development of small tools to

support the experiments.

The bottom-up development of the design approach described in the primary research

objective was done in several major steps, as shown in Figure 1.3. Beginning with a very

deep literature review on the topic of manufacturability constraints, the first effort develops

a method for capturing and mapping this vital information. This is then applied to the FDM

process, producing a very clear and well-defined set of manufacturability constraints for this

process. Using the manufacturability constraint set and principles from classic structured

materials, the idea of an MDD-driven structured material is introduced and developed. The

various components, requirements, and implementation strategies are discussed for this new

class of structured materials, known as manufacturing process-driven structured materials

(MPDSMs). Up to this point, the concepts behind manufacturable FDM-driven structured

materials had been described and refined. Next, a deep exploration of the literature on

experimental fracture mechanics of FDM-processed materials was done and used to drive

a large set of physical experiments to observe (both qualitatively and quantitatively) how

these materials may behave under fracture conditions. The material and principles from

all of the previous chapters were then used to develop a set of design rules for making

and fabricating FDM MPDSMs under fracture conditions. These rules were then used to

drive five major case studies on designing such structured materials, showing that they are

manufacturable, and that the objectives of the design have been met in each case. Finally, a

practical design guide and some helpful tutorials are presented in the appendices to ensure
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that the developed method is useful for practicing engineers and designers who are not

experts in fracture mechanics, AM, or structured materials.

1.5 Chapter Outlines and Major Research Questions

This dissertation can be divided into three major sections, as shown in Figure 1.4. The

purpose of the first is to establish and refine the concept of structured materials which

are subject to well-defined manufacturability constraints, the second explored fracture-

driven design, and the third combined the manufacturable structured materials with a

mechanical load driven by fracture and developed design rules and layout strategies for

these cases. Summaries of the individual chapters are given below, including their major

research questions.

• Chapter 2 is focused on establishing the need for a general manufacturability con-

straint mapping method and proposing such a method. An extensive literature review

is presented, covering the question from a variety of design perspectives and design

scales. The information from this review is then used to assist in developing a general

mapping method from basic manufacturing knowledge. The main contribution from

this chapter to the other chapters was a refined method for finding and imposing the

constraints necessary for manufacturable structured materials. Several design case

studies were completed to demonstrate and validate the method. The major research

questions were:

1. How have manufacturability problems for complex modern designs been addressed

in the past and how successful have those approaches been? This question was

answered through a literature review and implicitly in the design studies.

2. Have the techniques used to ensure manufacturability severely restricted the de-

sign space or solution methods available to designers? This question was an-

swered through the literature review.

3. Given that the literature shows overwhelming evidence that manufacturability

constraints can be applied without major limitations on the designs themselves,
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Figure 1.4: Basic sections and the chapters in each.

how might these constraints be collected, defined, and mapped for more general

cases? This question was answered by development of the minimally-restrictive

DFM (MR-DFM) technique.

4. How effective is the mapping and constraint imposition method for real-world

problems? This question was answered through three large design studies, one

using a single process, one using two processes in the same family, and one using

two unrelated processes in a sequential hybrid configuration. In all cases, the

designs were shown to fail without the manufacturability constraints and to be
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successful on the first try with them imposed. The small trade-offs involved are

also discussed.

• Chapter 3 extends Chapter 2, but for a single process (fused deposition modeling

(FDM)). Chapter 3 is focused on the careful application of the Chapter 2 principles

to a specific process, collecting all the relevant manufacturing process knowledge and

mapping this directly into a set of 54 well-defined and material-independent FDM

manufacturability constraints. The constraints are further refined and subject to a

sensitivity analysis once a set of materials (ABS, polycarbonate, and PLA) are selected

for it. The constraints and approach are experimentally validated in a series of three

major design studies which depend on the constraints for success. Since this chapter

focused on application, there were no new specific research questions beyond those

explored in Chapter 2.

• Chapter 4 explores the concepts behind applying the MDD approach to the design

of structured materials (SMs), especially those based on controllable process-material

effects (such as those see in most AM processes). The chapter includes a review of

structured materials and SM design, helping to develop a simple but effective design

framework for creating a new class of structured materials known as manufacturing

process-driven structured materials (MPDSMs). After the framework is defined and

methods established for imposing the FDM manufacturability constraints, a series of

three major design studies are presented to demonstrate and validate the approach.

The major research questions were:

1. How are structured materials defined? This question was answered with a short

literature review.

2. What does it mean for a structured material to be manufacturable and what design

freedom trade-offs are necessary to accomplish this? This was answered both by

a literature review and conceptual development from basic technical definitions.

3. How can the manufacturability constraints from Chapter 2 and Chapter 3 be

effectively applied and enforced? This question was answered by developing an

MDD-based bottom-up design framework.
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4. Given that the best design approach for MPDSMs is bottom-up, how can the basic

material elements be described and defined in a way that is consistent with the

current literature and SM design principles? This question was answered via

MDD-based model development and basic knowledge about the mechanics of

FDM.

5. What types of mechanical loads can be used on these MPDSMs? This question

was not explored for every possible load, but the three most common failure

modes (buckling, yielding, and fracture) were discussed within the development

framework and used in the design studies.

• Chapter 5 kicks off the fracture mechanics portion of the dissertation and was in-

tended to be mainly a conceptual chapter to show why studying mechanical design

from a fracture mechanics perspective is valuable. The chapter is mainly based on

the review and deep analysis of a set of published fracture mechanics studies using

FDM-processed materials. The main research questions were:

1. What are the fracture tests and standards that have been used to analyze FDM-

processed materials and what materials have been tested? This question was

answered through a detailed literature review.

2. What types of design knowledge can be extracted from fracture studies, both qual-

itative and quantitative? This was answered through a combination of literature

review and conceptual analysis.

3. What approaches to testing might produce the most valuable design knowledge?

This was answered partially through the literature review and partially through

deep analysis of the collected data.

4. How can fracture testing and its related tools and assumptions be improved to pro-

vide even more valuable design knowledge? This was answered via deep analysis

and critical appraisal of the collected studies.

• Chapter 6 continues the discussion from Chapter 5 about the role (both actual

and potential) of fracture mechanics data in design. In Chapter 6, a series of major
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experimental studies are undertaken to collect realistic data and make conclusions

about the behavior of the FDM-printed materials.

1. Series I examined the basic mechanical properties of the macro-scale printed

materials in order to collect baseline properties for each.

2. Series II looked at the behavior of FDM-processed fibers (i.e., the essential build-

ing blocks of MPDSMs) from the perspectives of extruded individual fibers, de-

posited individual fibers, and series-printed fibers.

3. Series III explored the behavior of films, meant to represent individual layers

built from a series of fibers. Both notched and un-notched films were used.

4. Series IV helped determine the impact of the sample size on the results, showing

that the sample size (within the tested range) had no statistically significant

impact on the fracture toughness of the materials.

5. Series V looked at the sensitivity of the samples to notching and pre-cracking

method used to prepare them.

6. Series VI provided a qualitative and quantitative analysis of crack behavior rel-

ative to a series of pre-determined element layouts.

7. Series VII examined the impact of element layout on the fracture properties

under impact using a standard IZOD test.

• Chapter 7 compiled the results and conclusions from the previous chapters and

presented a series of designed rules and guidance for producing MPDSMs.

• Chapter 8 completed the research work for the dissertation by exploring four detailed

design studies which used the derived design rules and other tools developed in the

previous chapters.

• Chapter 9 wraps up the dissertation with some concluding remarks and suggestions

for future research directions.
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Chapter 2

MANUFACTURABILITY CONSTRAINTS FOR

MECHANICAL DESIGN
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2.1 Introduction

Recent years have seen much advancement in the sophistication of mechanical design meth-

ods, both for the design of individual parts and integrated assemblies/systems. Many of

these new techniques for design genesis focus on design automation, in which large areas
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of a given design space can be explored in a quick and efficient way and a large number

of candidate designs can be compared quickly. Some good examples are the development

of generative design [1, 2], topology optimization [3, 4], candidate architecture analysis for

mechanical systems [5, 6], and machine learning for analyzing and selecting potential de-

signs [7, 8]. Such methods are steadily increasing in their level of maturity, but problems

remain which restrict their usefulness in final product design. A particular concern that has

not yet been fully addressed is the manufacturability of the final designs. While these and

other advanced design methods can produce very sophisticated and nearly-ideal parts in

terms of performance and other metrics, the designs are often extremely complex and not

easily manufacturable using conventional fabrication methods, including with additive man-

ufacturing techniques [9–12]. This is the case for both macro-level user products and design

problems at smaller scales (e.g., structured material design, micro-scale design features, and

similar areas of interest).

Realization of the final design is one of the most important considerations of a product

lifecycle but it is often overlooked or deprioritized by designers, especially at the earlier

stages and in requirements definition [13, 14]. When the manufacturing process can be

selected after the completion of the design, this can speed up the design process and reduce

the number of design requirements; however, this presents the risk of mis-match between

the final product and any available fabrication processes [9,13,15,16]. When this mis-match

is encountered, the final design may need to be sent back for additional iterations. This

generally increases the cost and schedule risk significantly and may, in extreme cases, require

revising the requirements from scratch [17,18].

The mis-match risk may be low if the product is simple (e.g., an injection molded

plastic cup) or is a member of an established product family that was shown to work

well in the past (e.g., a set of socket wrenches). However, when the design is relatively

complex, the risk can be high that the product is completely un-manufacturable with any

available process [9, 10, 16]. Traditionally, this problem was addressed using design-for-

manufacturability (DFM) principles; these principles were developed as a set of guidelines

or heuristics to simplify the manufacturing requirements to the point where several processes

could be feasible and the risk of mis-match is low [16, 19–21]. However, these rules can be
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very vague and simplistic and often require expert judgement (and experience) to apply

effectively to particular design problems. Therefore, traditional DFM rules often clash with

design automation objectives. According to Bralla [16] and Boothroyd [18], traditional

DFM can be summarized in five basic rules:

1. Prioritize geometric simplicity whenever possible

2. Select the most common, cost-effective, and easily-processed materials available which

will function acceptably

3. Avoid designing new parts for a system and use as many existing parts (e.g., fasteners

or gears) as possible

4. Make the tolerances for the parts as loose as possible while ensuring acceptable per-

formance and reliability when used in an assembly or other system

5. Make sure that the experiences and opinions of manufacturing personnel are consid-

ered when making design decisions

In principle, DFM rules are process- and material-independent, and are designed to be

generally-applicable to most design-production problems [16, 19, 22]. The classic DFM ap-

proach has proven very effective when creating simple, mass-produced products, but tends

to be far too restrictive for complex or specialized products, prioritizing simplicity over

optimal configuration or performance [16,23,24].

In the past couple of decades, partially aided by emerging advanced design and produc-

tion methods and a renewed focus on user-centered design, the traditional mass-production

focus has been shifting to a mass-customization environment [25–27]. In such an environ-

ment with small-batch, high-value part production, it is vital for designers to have access to

as much of the product design space as possible in order to produce useful designs for com-

plex problems such as those encountered in the medical and aerospace industries [28–31].

Therefore, it is necessary for a DFM technique to be developed and used which guarantees

(or at least better ensures) manufacturability while restricting the design space as little

as possible; this will allow more rigorous problem formulations and will prevent missing

potentially feasible regions of the design space. In this context, the design space is the set
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of feasible solutions for a given design problem which satisfy the constraints and objectives

of the problem.

To accomplish this, traditional DFM must be refined or replaced with well-defined,

manufacturing-process-driven design constraints which can be customized for each design

problem or even each design feature. This would involve explicitly imposing the man-

ufacturability constraints in the problem formulation or requirements definition, instead

of simply checking manufacturability post-design or simplifying the design the point of

low-risk manufacturing. This concept can be referred to as minimally-restrictive design-

for-manufacturability or MR-DFM and is the subject of this chapter. Significant work has

been invested into developing MR-DFM approaches for some very specific problems, but

any kind of general process- and solver-independent method for defining, mapping, and

enforcing these constraints does not yet exist. Section 2.2 presents an extensive literature

review on this question. Taking lessons learned from the literature review and fundamental

knowledge of the design life cycle process, Section 2.3 explores MR-DFM from a conceptual

perspective. From here, Section 2.4 outlines a general problem formulation approach for

capturing and mapping the manufacturability constraints. Section 2.5 examines the re-

strictiveness and dominance of different kinds of constraints and attempts to classify them

for convenience during mapping. A general framework for applying MR-DFM is presented

in Section 2.6, followed by three extensive case studies to demonstrate the process in Sec-

tion 2.7. Finally, some remarks on inputs and practical implementation of MR-DFM and

future work needed are given in Sections 2.8 and 2.9, respectively.

2.2 Literature Review

This section presents an extensive literature review on manufacturability constraints and

MR-DFM concepts (as defined in Section 2.1). This review had four main objectives: (1)

Collect definitions for relevant technologies and concepts, (2) find the state-of-the-art related

to manufacturability constraints, their formulation, and their enforcement, (3) ensure that

the MR-DFM concept for general mechanical design was feasible and novel, and (4) identify

holes and gaps in the current literature related to this problem. More details related to the

review approach and performance are given in Appendix G.
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2.2.1 Basic Definitions

Any manufacturing process can be said to be subject to a set of natural manufacturing

constraints which affect its use domain and which must be considered in the design process.

In addition, it is necessary to consider manufacturability constraints, which are on the de-

sign or product itself and are in response to the manufacturing constraints. For example, a

machined aluminum part design (Figure 2.1) would be constrained by the tool size, speed,

and feed of the mill [32], the level of position error/vibration, and the heat dissipation

rate of the selected material (manufacturing constraints). Driven by these constraints, a

minimum feature size is necessary to ensure that the part could dissipate the heat and

force of machining without warping [33,34] (manufacturability constraint); in addition, the

minimum size of corner radii is also determined by tool choice. The design “ownership”

in each domain (which determine the most appropriate decision makers) is different, with

production engineers best understanding the manufacturing constraints. This requires ex-

cellent communication between the production team and the designers, a task that is not

always performed effectively [10,14,16,19,20].

Depth of cut Speed

Feed

Tool size

Feature radius

Position uncertainty and vibration

Feature thickness

Constraint Type Upper limit Lower limit

Tool size Fixed value or discrete Tool set Tool set

Depth of cut Continuous function Max depth of cut Min depth of cut

Feed Continuous function Max feed Min feed

Speed Continuous function Max feed Min feed

Position 

error/vibration

Fixed or random 

variable
Max acceptable 𝜀 = 0

Heat dissipation 

rate

Fixed or random 

variable

Determined by 

material choice

Determined by 

material choice

Feature thickness Boundary constraint No upper limit Min thickness

Feature radius Boundary constraint No upper limit Tool size

Heat dissipation rate

Figure 2.1: Example of manufacturing and manufacturability constraints for a machined aluminum com-
ponent, with constraint type and source of limits demonstrated.
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Table 2.1: Common subtractive, additive, and formative manufacturing processes and some of the common
manufacturing constraints discussed in the manufacturing literature. Blank cells indicate that the constraint
generally does not apply to a specific process. In the case of AM processes, the tool/work feed refers to the
raw material deposition method. Figure 2.1 gives an example of how these constraints appear in practice
for a milling process.
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Turning/Facing [35,36]

Milling [37,38]

Drilling/reaming [39,40]

Planing [41,42]

Broaching [43,44]

Grinding/polishing [45,46]

Sawing [47,48]

Hobbing [49,50]

Punching/blanking [51,52]
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Powder bed fusion [53,54]

Material extrusion [55,56]

Photopolymerization [57,58]

Material jetting [59,60]

Binder jetting [61,62]

DED/LENS [63,64]

Sheet lamination [65,66]
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Forging [67,68]

Sand casting [69,70]

Injection molding [71,72]

Investment casting [73,74]

Metal forming [75,76]

Blow molding [77,78]

Die casting [79,80]

Powder metallurgy [81,82]

2.2.2 Manufacturing Processes and Constraints

Most standard (non-hybrid) manufacturing processes fall into one of three major families,

namely subtractive, additive, and formative [32]. Table 2.1 shows some of the most com-

monly used processes in each family and an example subset of manufacturing constraints

for each one. These were taken from the manufacturing literature and are not a complete

set of the possible constraints that can be encountered during design and process selection.
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Therefore, it is vital for the designers to understand the processes very well when using

these; generally, this takes the form of expert intuition but it could also come from rigorous

process models, digital twins, and design catalogs for specific processes.

2.2.2.1 Overview of Processes and Families

Subtractive manufacturing (SM) processes form geometry by cutting material away from

a block or billet which is larger than the desired final shape [32, 83–85]. SM requires little

custom tooling besides fixtures and jigs [86], but the design geometry is restricted to that

which can be reached by standardized cutting tools; the features must also be large enough

to resist the machining force and allow sufficient heat transfer since the tools produce friction

heat [33, 34, 87]. For appropriate designs, SM is a very cheap, repeatable, and efficient

manufacturing approach; it can be very wasteful, however, due to the large amount of

material cut off in processing [88] in many cases. On the other hand, additive manufacturing

(AM) builds up the desired geometry in layers, allowing great design freedom and highly

complex parts [89]. The raw material can take many forms, as long as it can be layered

and fused onto a surface in some fashion [90, 91]. Ideally, the process generates very little

waste but most designs require a fixed build surface and support material [92]. AM requires

almost no custom tooling and is generally complexity-agnostic in terms of material and

production cost. However, it can be extremely slow and expensive in some cases [89,93,94].

Finally, formative manufacturing (FM) has the largest diversity of processes, as the only

requirement to be a formative process is that material needs to be shaped or formed into

the final part, usually keeping the same volume as the starting material (or producing easily

reusable waste). The raw material may be a cold billet, molten metal, powder, resin, or one

of many other options. As with AM, FM produces little to no waste; however, it requires

a large amount of custom tooling to produce parts, and the geometry is restricted to the

shape and quality of the molds and other tooling [32,85,95–98].

2.2.2.2 Manufacturing Constraints: Process-Limited Design Complexity

In general, SM processes tend to have the most restriction on the types of part features

that can be created due to the essential requirement that cutting tools be able to reach
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all of the part surfaces from some force point (commonly a rotating spindle) [99–101].

AM, by definition, does not have tooling-related complexity restrictions, but there are some

restrictions due to support material removal [102,103], natural material anisotropy [104,105],

and process mechanics [89,90]; however, the possible design complexity is very high for most

of the AM processes [89,90,106]. Conversely, FM is almost entirely dependent on the tooling

used and is limited to the tooling complexity. In the most common case, the tooling (molds,

forging tools, and similar) must be made using some SM process, which limits its complexity

to that which can be cut or machined [32,95–98]. However, some FM processes can use free-

form or shell molds (for example, investment casting) which strongly enhances the possible

part complexity [85,107–109].

2.2.2.3 Manufacturing Constraints: Material Selection

Of the three major domains, AM has the widest range of available materials when all of the

major families are considered; the various AM processes can use almost any material which

can somehow be applied in a layer and fused with a previous layer [89,90,110]. AM materials

are most commonly in the form of filament, resin, or powder, but may be as diverse as water

(ice prototyping [111]) or rolled metal sheets (ultrasonic consolidation [112]). In general,

SM materials are limited to those which can easily be cut with a tool and can tolerate the

associated heat load, usually ductile metals and hard polymers [32,85]. On the other hand,

FM materials are limited to those that can be stably melted or cold-formed to conform

with some tooling [32,95,97]. This is less restrictive than SM, being able to process various

bulk and molten materials, resins, and metal powders, but less free than AM because of the

dependence on tooling.

2.2.2.4 Manufacturing Constraints: Production System Considerations

Due to the need only for standard clamps and fixtures [32,85,86] for single parts, SM tends

to be able to produce one-off parts relatively cheaply compared to AM and FM. However,

it can be more expensive to mass-produce parts using SM because of the need for jigs and

higher quality cutting tools than needed for one-off parts [32, 85]. The cost for one-off AM

parts is high due to the expensive nature of the processing equipment and materials, as well
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as the generally slow processing speed; unlike SM, AM can be relatively cheaper to perform

mass production for some (not all) complex designs since the manufacturing time and cost

is mostly dependent on total part volume and not complexity [90,113]. The supply chain for

AM, within the available set of processes and materials, is also often more efficient and less

prone to blockages [89, 90]. Finally, FM is very expensive for single parts and very cheap

for mass production, making it ideal for many products. The reason for the high up-front

cost is the tooling initial cost, but this goes down quickly as the tool is used more [32, 85];

the raw materials for FM are generally much cheaper than those for SM and AM (since

they will be formed or melted during processing, high quality finish and precision in the

materials is usually not necessary), the supply chain is very efficient, and one good set of

tooling may last for hundreds of thousands of parts [32,97,98].

2.2.3 Manufacturability Constraints: Design Perspectives

In the preceding section, the three major classes of manufacturing processes and their

common constraints were explored. Careful consideration of these constraints and their

potential impact on design allows the development of customized design/manufacturing ap-

proaches for specific problems; this, in turn, allows the designer to restrict the available

design space just enough to ensure manufacturability. This section examines the various

specific DFM methodologies developed within three essential design perspectives or view-

points in which DFM or MR-DFM has been applied effectively. These are (1) the system

design (top-down) perspective, (2) the product design (bottom-up) perspective, and (3) the

case where a specific manufacturing process is required.

2.2.3.1 System Design (Top-Down) Perspective

In the system (top-down) design perspective, the goal is to consider the construction of a

system or subsystem (including interfaces) and is less concerned with the optimal design of

individual parts; while optimization of each part is important, it is more important in top-

down design for each part of the system to be optimal relative to overall system utility [13,

17, 114, 115]. In terms of practical manufacturability constraints, the focus is generally to

make the manufacturing process selection such that the parts are manufacturable in an
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efficient way, and such that the materials and tolerances are compatible. The business case

for considering a DFM or other constraint technique is easy to make, as it prevents re-

design and resulting delays, as well as ensuring that the potential design space is as large as

possible [116–119]. The most obvious application within this domain is the improvement of

any general lifecycle design technique, such as those proposed by NASA [15], INCOSE [114],

Pahl et al. [17], and Blanchard and Fabrycky [13]. Within such a design engine, more

general DFM approaches usually work the best. This allows easier application of classic

DFM principles during the design process with a low risk of mis-match with the set of

available manufacturing processes [16, 20]. While the general engine does not necessarily

need customized DFM methods (especially if the design is very simple), when the lifecycle

design approach is applied to a particular domain, the use of minimal-DFM can be very

valuable.

NASA, 2020

Phases, reviews, and technology management 

areas affected by manufacturability constraints

Figure 2.2: Example NASA systems engineering engine [15], demonstrating milestones, design reviews,
and technical development and management phases. Highlighted areas mainly affected by manufacturability
considerations. (Image from a US government document and not subject to copyright in the United States.)
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Figure 2.2 shows a version of the NASA systems engineering engine [15], where the

main phases affected by manufacturing decisions are highlighted. It can be assumed that

little manufacturing knowledge is certainly needed in the conceptual design phase (Pre-

Phase A) but it will be needed (in any design scenerio) in the final design and fabrication

(Phase C). When DFM is used (especially when defining and imposing manufacturability

constraints), Phase A (technology development) and Phase B (preliminary design) will also

be heavily affected. In fact, if a proper DFM process is followed in Phase A and Phase B,

the risk to Phase C could be greatly reduced [15–17,114]. This systems engineering model

could be used for relatively simple systems and assemblies and has been used successfully

for large NASA programs.

This value can be especially apparent in previous work done on aircraft design. Gen-

erally, aircraft parts have very tight tolerances, need to be very lightweight, and need to be

highly consistent, which dramatically limits the available manufacturing processes for these

parts [116, 117, 120]. The set-based concurrent design technique proposed by Vallhagen et

al. [120] uses a type of custom DFM technique to eliminate clearly infeasible manufacturing

processes early in the design and allows the accommodation of process constraints at several

points in the lifecycle. A similar approach focused on ensuring that all of the parts have

compatible tolerances and that the various system interfaces are producible was developed

by Barbosa and Carvalho [117]. Electronics and mechatronics design is an important ap-

plication of DFM at the system level. The 2003 study by Bajaj et al. [121] explored this

in detail, developing a rule-based system for finding and imposing the relevant constraints

(of several options available from the system to the designer) to accomplish a good quality

design. Several studies by W.H. Wood [122, 123], Shetty et al. [124], Berselli et al. [125],

and Lee et al. [126] discussed some of the major issues when designing mechatronic systems

and presented a framework for considering formal (mathematical) and heuristic manufac-

turability constraints related to both the mechanical and electronics sides of the design.

2.2.3.2 General Product Design (Bottom-Up) Perspective

The design perspective with the most direct benefit from the use of minimally-restrictive

DFM is design of individual parts. When the design focus is bottom-up (i.e., the system
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is built from several products individually developed) and each part must be optimized

individually, the largest possible expansion of the design space is needed. It is assumed

in this case that a specific manufacturing process has not been required by the customer

and the designer is free to select the one that provides the least restrictive manufacturing

profile and design space. Manufacturability constraints in this case are generally geometric

in nature, driven by both the needs of the design, the capabilities of the manufacturing

process selected, and the limits and nature of the material.

In most of the DFM studies found on part design, a specific manufacturing process

was defined in the problem statement and so it was not true bottom-up design (where it

is assumed that performance is the primary goal and several production processes may be

possible) [127,128]; these cases will be discussed in the proceeding section. The work found

in this area was primarily in the domain of decision analysis, where the manufacturability

requirements or guidelines are discovered and fed back into the design process as it de-

veloped. Works by Barnawal et al. [22] and Budinoff et al. [129] analyzed this in detail,

showing that effective communication of the constraints and manufacturing expectations

was the key to ensuring product manufacturability; this was shown to be true for both

heuristic, experienced-based constraints and formal mathematical manufacturability con-

straints. Mirzendehdel et al. [130] showed that sometimes this required delaying the actual

optimization or design of a part as long as possible while exploring constraint trade-offs.

While this is a valid approach for many different types of constraints, ensuring manufac-

turability (relative to other constraints) is one of the main applications.

A large and detailed case study on the mathematical definition and enforcement of

manufacturability constraints was completed by Iyengar and Bar-Cohen [131] in which

a side-inlet-side-exit (SISE) parallel plate heat exchanger was developed using constraint

sets for eight different processes (extrusion, two types of die casting, bonding, folding,

forging, skiving, and machining); it was found that feasible solutions for the design existed

under each process constraint set, but the constraints were clearly active and provided very

different optimal solutions based on the process selected.
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(a)

(b)

(c)

Figure 2.3: Some significant successful examples of bottom-up design methods with integrated manufac-
turability constraints, including (a) shape optimization [9] and (b) small-scale [132] and (c) large-scale [133]
topology optimization. (Panels (a) and (b) © Elsevier Ltd. and reproduced with permission. Panel (c)
published under CC-BY 4.0 license.)
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Several studies by Vatanabe et al. [9] (Figure 2.3a), Guest and Zhu [134], Li et al. [132]

(Figure 2.3b), Mantovani et al. [133] (Figure 2.3c), Zuo et al. [135], and Reddy et al. [136]

have examined the impact of manufacturability constraints on shape and topology opti-

mization (TO) solutions. Several of these studies compared the results for several different

manufacturing processes simultaneously, with outcomes similar to the heat exchanger prob-

lem described above. Since TO is an algorithm-based design process, the manufacturability

constraints are usually enforced inside of the algorithm. For example, the study by Vatan-

abe et al. (Figure 2.3a) applied manufacturability constraints for six different processes

(casting, milling, turning, extrusion, rolling, and forging), producing a variety of different

topologies under these constraints. The constraints were enforced in the form of topology

constraints, such as minimum feature sizes, symmetry, and avoiding undercuts, within the

formulation of the problem.

2.2.3.3 Manufacturing Process Perspective

This section continues the discussion from the previous section on product design, with

a manufacturing process specified in the design requirements. In this case, one or more

specific processes must be selected in advance, requiring special consideration of the rel-

evant constraints. In general, machining requires a careful tool-path planning to ensure

that all of the geometry can be cut with the tools [137]; this is true for both manual and

computer-controlled machines. For example, Monge et al. [138] proposed a three-step pro-

cess for designing turbine blades by generating an optimal shape based on a combined set

of constraints from a computational fluid dynamics (CFD) model and an optimal tool-

path generator; the solution found produced both an improved design and one that was

manufacturable using a machining process.

More general solutions were developed by Kang et al. [139], Deja and Siemiatkowski [140],

and Gupta and Nau [141], which are based on feature clustering and checking the optimality

of a series of cutting path plans which open the design space as much as possible. Conversely,

Mirzendehdel et al. [142] defined an “off-limits” region to represent the areas which would

not be reachable with a cutting tool; this method was also shown to converge more easily

than many other TO-based methods with machining constraints. In addition to path plan-
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ning for conventionally-designed parts, machining constraints have been developed for use

in TO-generated designs as well. Projection-based TO can be very effectively constrained

for machining, as it is based on continuous geometric constraints and interfaces well with

a toolpath, as shown by Guest and Zhu [134]. Specific machining and milling-related con-

straints have also been developed for a few cases within the level-set TO approach [143–145],

as well as heavyside projection, gradient, and hybrid methods [135, 146]. Some examples

solutions from the study by Liu et al. are shown in Figure 2.4a.

Liu et al., 2016

Adam & Zimmer, 2014

Allison et al., 2019

(a)

(b) (c)

Sossou et al., 2018

Figure 2.4: Successful examples of process-driven design under manufacturability constraints. (a) topology
optimization under machining radii constraints [144], design feature catalog for AM parts [147], and (c) design
of a mechanical assembly under AM manufacturability constraints [148]. (Panels (a) and (b) © Elsevier
Ltd. and reproduced with permission. Panel (c) published under CC-BY 4.0 license.)

Most of the work done so far in establishing and enforcing manufacturability con-

straints for AM processes has been for the development of design rules, some for general

AM and some for specific processes. The focus of extensive studies by Jee and With-

erell [149], Adam and Zimmer [147, 150] (Figure 2.4b), Bin Maidin et al. [151], and Kranz

et al. [152] was on the development of standardized feature databases in which the AM

manufacturing constraints could be applied to standard common part features to ensure

manufacturability. The designer could then select the features from the database that are

best for the design at hand while ensuring manufacturability. In a more focused effort, Tang

et al. [153] presented a method for developing a unit structure-performance database to al-
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low discrete optimization of light-weight housings via selective laser melting; this technique

for arranging small standard features to optimize a design is useful and complementary with

the feature catalogs developed in the previously-mentioned works.

Using the results from an extensive literature survey, Pradel et al. [154] proposed

a framework for mapping of AM process knowledge for product design. They describe

the need for more “practical” application of AM in design and suggest several methods

for achieving this for general processes. Some work has been performed to establish AM

constraints in TO [155, 156], similar to those discussed in the previous section, but this is

still an immature area and needs additional attention. Thompson et al. [103] point out

that many of the process limitations in AM come from the modeling and software used to

drive the processes, but that this is an area where progress is being made. The design of

mechanical assemblies under AM manufacturability constraints was explored by Sossou et

al. [148]. Some of the results from this study are shown in Figure 2.4c.

In addition to more general AM constraints (minimal feature size [157], overhangs [102],

surface roughness, avoidance of stress concentrations [105], material anisotropy [104], sup-

port material removal [158], among other things), some processes have more specific con-

straints which must be considered. While many of these are not well characterized, much

work has been done for some of the very common processes. For example, Utley et al. [159],

Thomas [160], and Kranz and Herzog [152] proposed a series of manufacturability con-

straints for the selective laser melting (SLM) process directly driven by the process charac-

teristics. These SLM constraints are things such as delamination, laser heat deformation,

potential oxidation between the material layers, and scan pattern constraints specific to laser

scanning processes such as SLM. Similar work has been done for selective laser sintering

(SLS) [161,162] (such as shown in Figure 2.5a) and electron beam melting (EBM) [163–165],

which have similar manufacturing constraints, with EBM generally being less restrictive

than SLS/SLM due to the use of a heated chamber.

Other specific processes for which process-specific design rules have been developed

include fused deposition modeling (FDM) [166–169], stereolithography (SLA) [170–172],

material jetting [173], and binder jetting [174]. The general design limitations cited from

FDM are in the area of minimal feature size (more strict than standard AM constraints),
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support material design, and surface accuracy and finish. FDM, material jetting, and

SLA have similar manufacturability constraints, with the exception that SLA and material

jetting have less strict minimal feature size restrictions. Binder jetting, which uses powder

as the raw material, has constraints similar to those of the powder bed processes (SLM,

SLS, EBM) mentioned above except for those related to heat warping.

Allison et al., 2019

(a)

Singh & Madan, 2013

(b)

Figure 2.5: Successful examples of process-driven design cases for (a) design of a structure under additive
manufacturing [162] and (b) parting line design for die cast parts [175]. (Figures © Elsevier Ltd. and
reproduced with permission.)

An area of significant interest in MR-DFM has been in the use of casting processes to

fabricate complex geometry generated by topology optimization (TO) algorithms. In the

major studies reviewed, this is done by mapping the major casting/FM constraints [176]

into the design within level-set [177,178], gradient [179], and projection [9,134,180] methods

to generate a topology that is cast-able. Casting constraints are well-suited for TO, since

they are much less strict than those for machining processes, and can be defined simply in

terms of thickness and a requirement that the geometry be continuous; these constraints

ensure that the liquefied material can flow into the mold and reach all features, can dissipate

the heat, and that a parting line can be established. While relatively simple to design, in

practice even simple casting constraints need careful assessment. For example, correctly

predicting the amount of time available to fill the cavity before the molten metal solidifies

is extremely important both for the production of good products but also for the life of

the tooling. Consideration of directional solidification is another important factor for the

effective DFM of most FM methods, especially for sand casting [16,32].

Some work has also been completed on the TO-based design of parts to be fabricated
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using an extrusion or drawing process. The manufacturability constraints for extrusion are

much more simple than those for casting. When using a projection-based TO method, as

done by Vatanabe et al. [9], the constraints are simply applied to a “slice” of the part;

the domain is automatically continuous in an extrusion process, so the manufacturability

constraints consist mainly of avoiding features that are too delicate to survive being pushed

or drawn through a die. Li et al. [132] and Sutradhar et al. [10] showed that this can also

be done using a type of internal projection within a level-set TO method.

In addition to DFM-based TO solutions in casting and extrusion, some work has gone

into finding conventional (non-TO) design rules for closed-tooling processes, particularly

injection molding, die casting, and powder metallurgy. Injection molding is typically limited

to plastics (e.g., ABS or silicone), die casting to ductile metals (e.g., zinc or aluminum), and

powder metallurgy to metal powder (sometimes mixed with a binder); manufacturability

analysis within the appropriate tooling is focused primarily on being able to quickly and

efficiently fill the mold with material and eject it safely. The manufacturability constraints

then are in the form of feature restrictions (they must fit into and be easily removable

from the tool), usually with a two-part tool, and the location of the tool parting line [175,

181–183] (Figure 2.5b shows one of the design results from Singh and Madan [175]). From

a simple design perspective, powder metallurgy is often the least restrictive [32, 184], as

it can sometimes use a multi-part tool instead of the standard two-part used in injection

molding and die casting. However, it is possible to include cores with injection molding/die

casting, which is generally not possible with PM. It is also possible to have multi-part tools

for injection molding and die casting in some applications. These practical advances in

tooling technology allow more complex geometries to be fabricated; this, however, comes

at a high design cost due to complex constraints involved, as well as the special tooling.

Extensive work has gone into simulation of these processes in order to better understand

how the material can flow into the tool and solidify in the way intended by the designer [185–

189]; these simulations can be used to guide designs but generally are used just to check

manufacturability and plan the process after the completion of the design.
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2.2.4 Manufacturability Constraints: View of Design Scales and Levels

The design of features and part details can be completed at different design levels, each of

which requires different kinds of manufacturability constraints. The main difference, from

a design perspective, of each of the levels is the scale of feature sizes created within each

domain. The macro-level is defined as containing features at least a millimeter in size,

while meso-level features may range from a few hundred micrometers to one millimeter, the

micro-level may range from one to a few hundred micrometers, and sub-micro-scale is less

than one micrometer in size. A visual comparison for each can be seen in Figure 2.6.

Length scale: 1 𝜇𝑚 − 100 𝜇𝑚

Length scale: < 1 𝜇𝑚

Length scale: 100 𝜇𝑚 − 1 𝑚𝑚

Length scale: > 1 𝑚𝑚Macro

Meso

Micro

Sub-Micro

Figure 2.6: Design-related process characteristics for SM, AM, and FM, shown with examples of common
processes and common manufacturing constraints for processes within each domain.

2.2.4.1 Macro-Level Design

One of the major tasks when designing at this level is the generation and refinement of

macro-level structures and aggregates such as lattices, overhangs, mounting bosses, and

similar features. Design at this level is generally straight-forward, and is usually done using

design rules and feature catalogs which provide manufacturable features [147, 150, 190].

Definition of these rules for most traditional manufacturing processes (such as machining

and injection molding) is based on simple DFM principles [16, 18]. Figure 2.7a shows an

injection-molding caliper case, which is an example of a standard product with macro-scale

features.

Fabrication of macro-scale features for AM processes is more complex due to the lay-

ered nature of the resulting material and the presence of natural voids, stress concentrations,

and residual stresses [105, 193]. While it is important to use feature catalogs and feature

families, the manufacturability constraints will be more strict than they would for more

simple processes. Research has been performed specifically for AM processes; for example,
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Figure 2.7: Examples of design features at various levels. (a) macro-scale injection-molded caliper case,
(b) meso-scale 3-D printed thin-walled structures, (c) micro-scale electrodes [191], and (d) sub-micro-scale
LED pits [192]. (Panels (c) and (d) reproduced under CC-BY 4.0 license.)

the studies by Adam and Zimmer [147, 150] and Bin Maidin et al. [151] developed a list

of macro-level standard design features and their transitions. The rules presented are de-

veloped for several specific AM processes and incorporate process knowledge directly from

these processes into the design of edges, wall thicknesses, gap heights, and other design

features. Some AM processes (such as SLM) require the ability of the material to transfer

heat rapidly during processing and small features need to be adjusted for this, including

controlling the porosity [194]. Maximum length scale constraints for structural and fluid

topology optimization is another important application; it can limit the size flow channels

and structural members as needed, as shown by Guest [195] and Lazerov and Wang [196].

2.2.4.2 Meso-Level Design

The primary applications found for meso-level design were in the design of meso-scale fea-

tures which act as a controllably-anisotropic material. Since, in most cases, the material for

parts made using SM and FM process is approximately isotropic, this design level has been

applied mainly to additively-fabricated parts. The use of AM to design and build meso-level

materials structures was the topic of several studies; Chu et al. [197], Yu at al. [198], Garcia

et al. [199] and Florea et al. [200] developed different theoretical frameworks for single-

and multi-material problems, while Sivapuram et al. [201], Gopsill et al. [202], and Gar-

dan et al. [203] explored the practical implications and requirements for using AM to build

meso-scale tailored materials. Examples of some AM-generated mesostructured materials

are shown in Figure 2.7b.
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2.2.4.3 Micro-Level Design

Manufacturing constraints derived for micro-scale features and parts (Figure 2.7c) could

be more restrictive than larger-scale designs due to the small length scales involved. Most

conventional manufacturing processes, including casting, forging, machining, and additive

manufacturing, do not have the capacity to fabricate extremely small geometry; therefore,

it is vital that a production process be selected and considered at the design stage to ensure

that the final product is manufacturable.

The small number of manufacturing processes that can reliably fabricate at the the

micro-scale are well-understood, so it is relatively straight-forward to find and enforce the

manufacturability constraints in most cases. For example, Ashman and Kandlikar [204]

examined several types of manufacturing processes for fabricating heat exchangers with

hydraulic diameter of less than 200 micrometers. Etsion [205] presented a comprehensive

review on micro-level laser surface texturing (LST) in connection with hydrodynamic lu-

brication and wear reduction as well as surface texturing in general. Romig et al. [206]

discussed issues in association with micro-electro-mechanical systems (MEMS) design and

fabrication, including materials, manufacturability, performance, and reliability. AM-based

fabrication has been discussed by Frazier et al. [207] and Dede et al. [4]; while AM offers

great potential for micro-scale fabrication, there are clear problems with the processes that

need to be addressed before they can be effectively used for micro-scale fabrication. Current

challenges include material defects, anisotropic properties (which affect the fabrication more

for smaller geometries), inconsistent cooling, residual stresses, complex material behavior,

and other related concerns.

In addition to feature size restrictions, design topologies and shapes also should have

specific constraints when fabricated at this scale. As an example, considering a micro-

milling process with a ball end mill, Lee et al. [208] applied a spline-interpolated smooth free

surface with a maximum slope angle as a manufacturability constraint in the surface texture

design-for-lubrication problem. Even though the target design size is larger than micro-level,

features in the design may still be smaller than those which can be fabricated at this level

by certain processes. Specifically, keeping the feature size larger than the manufacturing

resolution should not be overlooked in topology and shape optimization. Sigmund [209,
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210] showed examples of manufacturing failure due to feature size, and introduced robust

topology optimization frameworks that can filter out infeasibly small features.

2.2.4.4 Sub-Micro-Level Design

An example of a feature at this scale is a nano-scale LED pit, as shown in Figure 2.7d. This

is an extremely important design scale and many important applications require designed

features at this scale. Some of these applications include friction and wear reduction [211,

212], nano-electro-mechanical systems (NEMS) [213], and superhydrophobic surfaces [214].

Sub-micro-level surface treatment using micro- and nano-texturing and surface modification

strategies are similar to those discussed for other scales, except that the tolerances are

much tighter and the manufacturability constraints are very restrictive. Sub-micro-scale

surface texturing and treatment methods for corrosion and wear resistance often involve

combinations of thermal, electrochemical, and mechanical processes, which alter surface

electrochemical and molecular properties, mechanical shapes and patterns, or sometimes

material itself [215]. Often, sub-micro-level features and parts are manufactured using

the same or similar techniques that are applied to fabricated nano-scale structures; these

fabrication techniques can be typically classified into two categories: top-down and bottom-

up approaches.

Top-down fabrication approaches mostly utilize nanolithography, deposition, and etch-

ing processes. This approach is commonly used in the semiconductor industries, but the

usage is expanding to more intricate applications, including NEMS, sensors and actuators,

optoelectronics, as it is capable of fabricating structures down to nanometer resolution [213].

Due to the layered nature of fabrication processes, the top-down approach is mainly limited

to 2D or 2.5D structures in manufacturing. Structures can be fabricated by repeated mate-

rial deposition and removal processes, supporting very accurate manufacturing, but present

manufacturability problems when the length scale is less than a few nanometers [216,217].

The bottom-up approach places material at the desired locations, similar to 3-D printing

processes. Currently, a direct-write nano-deposition (specifically, two-photon polymeriza-

tion, 2PP) method is available to fabricate structures smaller than the micrometer level

easily, and at its limits down to a length scale of approximately 50 nm [218,219]. This ap-
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proach has similar characteristics and constraints to what is commonly seen in 3D printing;

however, even with the wide freedom in shape and topologies that AM enables, postpro-

cessing of structures fabricated using nanoscale AM via 2PP is still challenging. The main

challenge is the removal of support structure and any extra raw material, as this is very

difficult or impossible when dealing with extremely small parts [220].

2.2.4.5 Literature Review Conclusions and Closing Remarks

The purpose of this survey was to explore the generation and imposition of process-driven

manufacturability constraints for product design problems. The four main take-aways from

the review are:

• The information collected in this survey and discussion demonstrated a wide variety of

design problems involving (explicit and implicit) manufacturability constraints. These

problems, formulations, and solutions can provide a basis for solving new problems

related to manufacturability and design.

• This survey looked at a number of design perspectives and levels, making it more

useful as a guide for specific problems.

• This survey exposed the need for a general formulation method which is design-

method-independent and which works with very complex problems, as well as methods

for several areas of little to no coverage in the existing literature.

• It is clear from the existing literature that manufacturability considerations (explicit

or implicit) are required for most design problems.

In addition to the larger take-aways, some important observations and conclusions were

made after reviewing the collected literature on the topic:

• Significant progress has been made in the effort to include relevant manufacturability

constraints (both explicit and implicit) in specific domains and design scales. The

representation of different methods is very uneven, with topology optimization of

metal AM and FM parts being the most over-represented. On the other hand, there

are considerable gaps in the literature; some of the affected areas were observed to
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be sheet metal forming, forging and rolling, traditional casting and plastic injection

molding (where classic FDM is typically used), and most subtractive processes beyond

simple milling and turning.

• Specific comparison with classic DFM was very rarely found during the survey. In fu-

ture studies, this practice should be adopted to better justify using specific constraints

instead of classic DFM ones.

• Throughout all of the design perspectives and levels, clear dependencies exist between

the choice of process and the manufacturability limitations for specific designs.

• The impact of trade-offs between the manufacturability and the performance of the

final design was not addressed in most of the found studies.

• The processes for finding and enforcing manufacturability constraints depends heavily

on which domain (SM, AM, FM) the process in question belongs to. For most SM

and FM studies found, the essential constraints were tool access and minimum feature

size.

• The established manufacturability constraints for SM processes tend to be related

to surface topography, while AM constraints generally relate to part cross-section

and material behavior, and FM constraints seem to be driven primarily by material

behavior when interacting with and being removed from the tooling. This is an

important consideration during early design efforts when the ideal manufacturing

method may not be selected.

• If it can be shown that all the manufacturability constraints are inactive, it is very

likely that the design is manufacturable without the constraints. This is the ideal case

for many problems, as a smaller number of design constraints will usually result in

less expensive decision making processes and a larger design space.

• The smaller the design scale, the more restrictive the manufacturability constraints

become and the fewer process types are capable of fabrication.
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• Research involving different design scales is dominated by specific types of manufac-

turing processes. This appears to be largely the choice of researchers (e.g., studies

at micro- or sub-micro scales tend to rely more on AM processes) based on what is

most practical for a specific problem. In the future, this will need to be expanded to

include a wider variety of processes.

• Parts conventionally-designed (i.e., not designed using an algorithm) under several

common FM and SM processes do not appear to have formally-defined methods for

ensuring manufacturability of the parts beyond visual observation and rules-of-thumb.

Especially noted were investment casting, blanking/coining/stamping, turning/facing

processes, rolling, and forging processes.

• The design of conventional sand and shell casting parts seem to be completed using

mainly rule-based design and traditional DFM principles (i.e., ”make it simple”).

• In top-down (system-level) design, the manufacturability constraints need to consider

global as well as local manufacturability problems.

• In bottom-up (component) design, the same product can have vastly different final

designs from the same starting point when active manufacturability constraints for

different processes are considered.

Further work on developing a general DFM or MR-DFM method, especially that in the

following sections of this chapter, should aim to address each of these issues.

2.3 MR-DFM Concept Development

A general framework for applying rigorous (i.e., repeatable, as complex or simple as needed,

and with low uncertainty) manufacturability constraints in design practice requires devel-

opment in three domains, namely (1) process and material behavior modeling, (2) mapping

and problem formulation, and (3) practical implementation, including verification and val-

idation strategies. Figure 2.8 shows some of the major technical knowledge areas within

each domain. The first, the process and material modeling domain, is mostly concerned
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with mechanics and materials science and includes rigorous process and material modeling

and definition. The second domain is concerned with collecting and mapping design knowl-

edge and formulating useful and rigorous problem formulations. The third is the practical

implementation, consisting mainly of design method (to solve the problems formulated in

Domain 2), automation, and verification, validation, certification, and standards develop-

ment for the design problem or problem family under consideration. Much previous work

has been completed in the first and third domains, but very little in the second domain.

Hence, there is a clear and specific need for a MR-DFM concept which is general and can

serve as the connection from the process/material modeling and practical design application.

Process and material modeling

❑ Material system modeling

❑ Structured material modeling

❑ Expert intuition development

❑ Mathematical process modeling

❑ Digital twin development

Practical Implementation

❑ Design automation

❑ Design method selection

❑ Constraint automation

❑ Verification and validation

❑ Certification and standards

Mapping and Formulation

❑ Manufacturing knowledge

❑ Manufacturing constraint generation

❑ Manufacturability constraint imposition

❑ Problem formulation

❑ Error and constraint uncertainty

Domain 1 Domain 2 Domain 3

Figure 2.8: Domains of technical and design knowledge required for effective design under manufacturability
constraints. The present study focused on Domain 2: Mapping and Formulation.

As with classic DFM, this framework is agnostic to the design solution, manufactur-

ing process or processes, and materials selected. This method is based on a simple, direct

mapping of the “practical” knowledge from the selected manufacturing processes (and by

extension the materials) into a set of mathematical manufacturability constraints which

can be imposed in the design problem formulation or requirements, or only selected fea-

tures. Whether these constraints actually restrict the design space more than the other

design constraints in the problem may be established during the mapping process or af-

ter a preliminary solution is found (depending mainly on the complexity and form of the

constraints). In an ideal situation, all of the non-constant constraints are linear or at least

monotonic and there is only one for each design variable over the entire space. Realistic

problems are unlikely to be so simple, but effort should be made to impose the smallest pos-

sible number of these constraints and ensure that they are as minimally-restrictive (hence

MR-DFM) as possible while ensuring a significant increase of manufacturability under the

conditions established by the stakeholders/designers. The ”minimally-restrictive” nature
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of the constraints generated refers only to their restrictiveness on the domains of the de-

sign variables, not to minimization (optimality) in the mathematical sense, and does not

establish a “tolerance” on the design variables (the concept of tolerance allocation has been

extensively explored elsewhere [221–224]). It should be further noted that the constraints

may be approximate, depending on the conditions of the problem and the quality of the

problem inputs (from Domain 1 - Figure 2.8).

2.4 General Design Problem Formulation

In the standard formulation of a design problem, the decision objective or objectives must

be specified, as well as any needed or desired constraints on any of the variables in the

problem. Whether this takes the form of a set of practical, experience-based general design

rules or a formal optimization problem, it is vital that the designers specify the design

objectives and constraints in a way that is clear and easily understood by all the stakeholders

and easily communicated within an interdisciplinary design team. One way to express this

mathematically, assuming that the design decisions can be represented using real continuous

variables, is:

f : Rn → R over S ⊂ Rn (2.1)

where f(·) denotes some objective function (usually formulated such that the minimum

value is the desired solution) and S denotes the set of feasible solutions to this function. In

formal design optimization terminology:

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . , n

hi(x) = 0, i = 1, . . . ,m

(2.2)

where gi(·) are the inequality constraints on x, hi(·) are the equality constraints, and x ∈ Rn

is the vector of decision variables which represent the design. The constraints bound the

design space to feasible regions [225]. In the context of this study, the feasible domain only

includes manufacturable designs that also satisfy failure modes, packaging, and other design

constraints.

43



2.4.1 Mapping the Manufacturability Constraints

Three related levels of analysis can be defined to map the practical knowledge from pro-

cess mechanics into enforceable manufacturability constraints. These are the manufacturing

considerations (basic mechanical knowledge about the processes and materials), manufac-

turing constraints (constraints on the process), and manufacturability constraints (design

constraints imposed by the choice of manufacturing process). The levels of analysis, the

design ownership (i.e., primary decision makers or technical experts for stakeholders), and

the relative sizes of the domains are shown in Figure 2.9.

2.4.1.1 Manufacturing Considerations

Three things can be gained at this level: (1) process advantages (which expand the design

space), (2) process limitations (which restrict the design complexity), and best-practices

or guidelines for proper use of the process. This is the broadest level of analysis and the

applicability may be to an entire industry or family of manufacturing processes. Technical

ownership at this level belongs to technicians and process engineers who have the most

practical knowledge about manufacturing processes. The use of DFM generally implies

that a specific process has been selected early in the design lifecycle; if the process is

not yet specified, the manufacturing considerations level would be the most appropriate

place to compare processes to aid in the selection process. An example of manufacturing

considerations (for a machining process) is the requirement that all features in the design

be (1) reachable by the cutting tools and (2) able to dissipate the friction heat and stress

from the cutting without damaging the product.

2.4.1.2 Manufacturing Constraints

Mapped from the design considerations, these are natural constraints on the use of the pro-

cess in question and are typically not changeable within a particular process. In most cases,

incompatible manufacturing constraints necessitate the selection of a different manufactur-

ing process to fabricate the design in question. The level of analysis is moderate in scope,

being restricted to a single manufacturing process or several very similar processes within
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Manufacturing Considerations

Scale: Industry or process family

Ownership: Technicians/process engineers

Manufacturing Constraints

Scale: Specific manufacturing process

Ownership: Mechanical design engineers

Manufacturability Constraints

Scale: Specific product design

Ownership: Designers/systems engineers

Level I
(Broad)

Level III
(Focused)

Level II
(Median)

Relative Domain Sizes

Figure 2.9: Basic mapping domains with scales and design ownership (i.e., primary decision makers) for
each.

the same family. It should be noted that manufacturing constraints, by their nature, are

more likely to be equality constraints and may take the form of discrete or combinatorial

functions (such as a list of available machining tools for milling). The constraints generated

here can be redundant or inactive, so it is important to consider some kind of refinement

at this level in order to facilitate the formal constraint definition once mapped to the de-

sign itself. Following the example manufacturing considerations from the previous step, the

equivalent manufacturing constraints would be (1) the quantification of the cutting tool

range and (2) the limitation of machining to features strong and thick enough to withstand

the associated heat and stress.

2.4.1.3 Manufacturability constraints

These constraints are mapped from the manufacturing constraints and are constraints on

the design, not on the process. There are different methods of enforcing these, depending

on the nature of the problem, but in most cases they can be described mathematically

and imposed onto the problem via mathematical constraints for typical mechanical design

problems (as shown in Eq.( 2.2)). Carrying on the example from the previous two steps, the

manufacturability constraints on a design to be made using a machining process would be the

(1) maximum complexity allowed considering the type of tool used and (2) the minimum

feature thickness required for the machining loads. Note that the design space could be

expanded through use of higher fidelity constraints, such as feature thickness constraints
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Example Processes MfG constraints
Forging

Shell casting
Injection molding

Investment casting
Metal forming

Die casting
Blow molding

Heat dissipation

Post-processing

Size limitations

Specialized tooling

Low tolerancesPowder metallurgy

Formative Manufacturing (FM)

Example Processes MfG constraints
Powder bed fusion

Material extrusion

Vat polymerization

Material jetting

Binder jetting

Sheet lamination

Direct deposition

Material deposition & 

fusion area

Local and residual stress

Layered material pattern

Support material

Shell/infill type

Additive Manufacturing (AM)

Example Processes MfG constraints
Turing/facing

Milling
Drilling/reaming

Planing
Broaching

Sawing
Grinding/polishing

Hobbing

Cutting speed

Tool size

Depth of cut

Tool feed

Feature access

Part fixture/jog

Heat dissipation

Subtractive Manufacturing (SM)

Figure 2.10: Fundamental manufacturing process families with common processes and their commonly-
encountered manufacturing constraints shown within each. Note that these are housed within Level II in
Figure 2.9 and refer to constraints on the processes.

that depend on neighboring geometry instead of a uniform limit, but this trades off with

the effort required to create and use constraints in the design problem.

2.4.1.4 High-Level Mapping Scheme

Figure 2.11 shows the conceptual mapping process, with each of the levels shown relative

to each other.

1. First (Figure 2.11a), the process advantages, disadvantages, and best-practices are

analyzed and then mapped to manufacturing constraints (Figure 2.11b). The needed

domain-specific knowledge here is a fundamental understanding of the manufacturing

process or processes that may be used.
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2. These constraints are then subject to a refinement process (Figure 2.11b), where they

are identified, specified carefully, ranked in terms of importance, and combined when

possible to reduce the number of them that need to be mapped to the design domain

(Figure 2.11c). Knowledge about the mechanics of manufacturing processes is needed

for this step, but most of the technical data will carry over from the first step.

3. Finally, the manufacturing constraints are mapped onto the design domain, where the

focus shifts from the process mechanics to the details of the design (Figure 2.11c).

Select 

manufacturing 

process or 

process family 

(SM, AM, FM)

Advantage 1

⋮
Advantage n

Limitation 1

⋮
Limitation n

Best practice 1

⋮
Best practice n

Manufacturing ConstraintsManufacturing considerations

Fundamental to process and can 

be discovered by analyzing 

process mechanics

Identify

Rank

SpecifyCombine

(a)

(b)

MR-DFM 

Manufacturability 

Constraints

h1: h(x)

⋮
gn: g(x)

Design Domain

ObjectivesNon-Manufacturability Constraints

Design Problem

(c)

Final Design

Solution 

Method

Figure 2.11: Mapping concept for imposing MR-DFM constraints from practical manufacturing knowledge.

Once these constraints and the other problem constraints imposed by the stakeholders

(material constraints, cost constraints, technology limitations, performance and reliability,

etc.) are applied and enforced, the remaining design space is available for the designers

to explore. This mapping method ensures that all of the important manufacturing process

information is used in the design process, while restricting the design space as little as

possible.
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2.4.2 Constraint Representation and Uncertainty

One of the major concerns remaining with the derived manufacturability constraints is the

quality of representation and level of uncertainty for them. Classic DFM tends to provide

a very flexible design representation, proxy comparison metrics, and a highly simplified

system representation. Therefore, the classic DFM constraints tend to be very general and

simple. On the other hand, MR-DFM gives a much more structured design representation,

a higher-fidelity system representation, and more realistic metrics. Figure 2.12 shows the

design formulation space for classic DFM and MR-DFM [226]. This is heavily dependent

on the inputs from Domain 1 (Figure 2.8) and uncertainties in the location and effect of the

constraints certainly may come from uncertainties in process and problems modeling. This

is especially true in the cases where expert intuition are used to determine the constraints.

Design 

representation

Predictive Model

Comparison 

metrics

H
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h
-f
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y

S
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p
li

fi
ed

Comprehensive/

flexible
Reduced/

structured
Ideal 

formulation

MR-DFM

Classic 

DFM

Figure 2.12: Formulation spaces for classic DFM and MR-DFM.

When defining classic DFM constraints on design problems, it is common to give very

general guidelines such as “simplify as much as possible”. This simply limits general design

complexity, often resulting in a feasible region similar to the one shown in Figure 2.13a. In

the case where MR-DFM is used, more complex but tight constraints can be used, as shown

in Figure 2.13b. These cases are far more simplified than most design problems and only

represent level sets for two variables; however, they illustrate the benefit of using MR-DFM.
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MR-DFM

(a)

(b)

Figure 2.13: Simple level sets demonstrating possible constraint forms for (a) classic DFM and (b) MR-
DFM.

Most product and system design problems have many local optima, so these represent what

could happen around only one of the available solutions.

Note that the MR-DFM constraints in Figure 2.13b are “fuzzy” and less well-defined

than those for classic DFM. This represents the uncertainties that come from simplifications

in process and material modeling and possible errors when using expert intuition to derive

the constraints. However, it should be noted that often the MR-DFM constraints still

provide a significant benefit even if there is some uncertainty about their exact location and

path.

One of the expected outcome from this kind of problem formulation is that a large

set of constraints will be derived, most of which will likely not be active. However, at

the formulation phase of the problem (in the form of Eq. (2.2)) it is difficult to determine

activity [225]. For problems which are convex, have a small number of variables, or have

a clear and obvious solution within the original feasible domain, this is not difficult to

accomplish. For very simple problems with 2-3 variables, visual analysis (such as plots or

level sets) may be effective. However, these kinds of design problems most likely have large

design domains and a number of local optima that need to be examined. In the case of

multi-objective problems, this could become even more complicated and difficult to address.

2.4.3 Relationship to Classic DFM

This proposed method of identifying and using manufacturing knowledge in design is distinct

from (and potentially complementary to) classic DFM in several major ways. Specifically,

• MR-DFM uses the basic DFM principles and modifies them using specific manufactur-
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ing process knowledge and problem formulation techniques from classic and modern

optimal design methods.

• In contract to classic DFM (which generally relies on generic design rules which the

designer or other stakeholders then apply to a problem), MR-DFM provides a clear,

clean, screened/sorted set of constraints which can be directly integrated into a design

problem; this point will be discussed further in later sections of this paper.

• Both classic DFM and MR-DFM focus on constraint generation. However, classic

DFM can also be used to drive objective functions and solutions method selection.

• Using the classic definitions [9, 16, 17, 19], DFM forces a general design simplification

(typically as a heuristic requirement or tool for decision making after the initial design

is completed). This tends to be too strict for many modern design methods, especially

those which can be formulated as a mathematical program, where imposition of the

constraints is a simple task once they are known. As shown in the previous section and

in Figures 2.12 and 2.13, MR-DFM works to create the smallest possible restriction on

the design space for each individual design problem by identifying realistic constraints.

• Due to the restrictiveness and focus on simplicity, classic DFM does not work well

on topology optimization and similar problems. Successful constraining of these de-

signs to the manufacturable domain requires process-specific and carefully-formulated

constraints [9, 131,134,147,150,177,179,227].

• MR-DFM is better suited to complex and computationally expensive design problems

(e.g., many problems in the aerospace, automotive, and medical devices industries),

while classic DFM is best for simple problems and products which are well-established

(e.g., consumer goods and part/product families with relatively simple designs).

• Classic DFM is based mainly on expert intuition and decision-making processes de-

rived from it [13, 16, 18]. MR-DFM may be based on expert intuition or may be

based on explicit or implicit mathematics, depending on the form and needs of the

problems. This makes the MR-DFM method design method independent and able to

handle many different types (and mixes) of input data.
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• As shown in Figure 2.12, the problem formulation space (i.e., the approach for how

design problems should be formulated) for MR-DFM is very different from classic

DFM since it is a distinct method with different goals. Specifically, classic DFM relies

on a very simple predictive model (i.e., as much as possible, everything is primitive

shapes and as simple as can be made), proxy comparison methods (necessary since

DFM is usually very generic unless applied carefully to a specific problem), and a

very flexible application (also since the principles are typically generic). On the other

hand, MR-DFM relies on a higher-fidelity predictive model (i.e., the manufacturing

knowledge), a more structured design representation, and more realistic comparison

methods (since the constraints are directly mapped).

• Once a set of data about a specific process is collected and mapped, this mapping can

generally be used again for other designs with small or no modifications needed. This

helps open the door to easier automation of the process.

While not a definite new contribution in itself, it is easier for practicing engineers

and students to apply this method, as it is far more specific and knowledge-driven than

classic DFM. A final major contribution that can be attributed to this method is that

applying it does not take many years of developed expert intuition to apply like most DFM

methods do. It does require knowledge about a specific process (or family of processes) and

their effects on materials during processing; this is typically a much smaller domain than

intuitively understanding the complexities between design and manufacturing on a general

level. Therefore, the designer does not need as much practical experience or developed

judgement to successfully apply MR-DFM.

2.5 Constraint Restrictiveness and Dominance

Let G be the set of all possible manufacturability constraints (active and inactive) on the

set of all possible design variables X (including those that may be defined as constants).

Assuming that the potentially useful set of constraints ḡ ∈ G on the set of selected design

variables x̄ ∈ X is defined and ordered after mapping (Figure 2.11) and that the non-

manufacturability constraints are known, screening can begin. The exact screening process
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will depend on the nature of the problem, but the general goal is to evaluate each of the

manufacturablity constraints for each design variable and determine if this constraint gi ∈ G

restricts the design space in any way for that variable xi ∈ X. If so, it should be classified

as a “restrictive” constraint and kept in the initial set. After a set of potentially useful

manufacturability constraints is defined, they need to be screened (in a sequence as done in

previous steps) for duplication, redundancy, and dominance. After all the screening steps,

the manufacturability constraints could be classified into five categories:

1. Restrictive: The manufacturability constraint restricts the design space to feasible

designs for a specific process [131]. These constraints are potentially active but their

status will need to be established during the problem solution [225,228–230]. Inactive

constraints can be removed from the model once activity can be tested mathematically.

However, this does not affect the initial formulation and restrictive constraints are

useful in estimating the feasible design space without unnecessarily restricting it. An

example of a useful and restrictive constraint could be the minimum feature thickness

on a manufactured part to be designed for minimum mass.

2. Not Useful/Inactive: The constraint is either non-restrictive in the defined design

space or it is obviously inactive for the problem. An example of a non-useful constraint

would be a maximum feature size constraint when the objective function seeks to

minimize mass or size; in this case, an upper bound on the size is obviously not an

active constraint and can be safely removed. Depending on the needs of the designer,

this determination may be made based on expert intuition or may be easily automated.

In cases of doubt, the designer may decline to reject the constraint and retain it in

the restrictive category.

3. Duplicate: The constraint applied is mathematically or effectively identical to one that

was already imposed and is therefore not needed at all. This is relatively common for

manufacturability problems, as lower or upper bound values for the design may be

identical for several constraint sources (for example, heat dissipation and minimum

thickness-to-height ratio to withstand force of machining may produce identical lower

bounds on wall thickness for a machined part).
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4. Internally dominated (ID): The constraint was restrictive when added to the model

but later found to be less restrictive to another manufacturability constraint (it is

assumed here that the list of constraints will be examined in a sequence) and therefore

is a dominated constraint and no longer necessary.

5. Externally dominated (ED): Identical to ID but dominated by a non-manufacturability

constraint

This process can be easily automated in many cases, with the possible exception of deter-

mining some of the rejected constraints for the “not useful” category since these may need

to be determined by expert opinion. However, if the resources are available to retain ques-

tionable constraints until their activity can be established (to avoid mistakenly rejecting

active constraints and opening up the design to manufacturing process mismatch), automa-

tion of the process can still be done, even if not as efficiently as with a smaller number

of constraints. When possible, defining constraints as bounds or low-order functions will

prevent this problem. In the case where a hybrid manufacturing process is selected or it is

necessary to consider more than one process, it should be noted that constraints may be

different in different stages of the process. Depending on the problem, this could be a sig-

nificantly more difficult problem or may be leveraged to improve the design (for example, if

a sequential hybrid process [11] is used the order of the processes may affect the constraints

significantly).

2.6 General MR-DFM Framework

Combining the discussion from the previous two sections, a general framework for gener-

ating, mapping, and screening the set of MR-DFM constraints can be formulated for use

within a general mechanical design process; this framework is shown in Figure 2.14. The

inputs consist of stakeholder preferences, the selection of a manufacturing process to use,

and any needed non-manufacturability constraints imposed or potentially imposed on the

system. The first step (Block 1) is to collect the manufacturing considerations, which can

then be directly translated to manufacturing constraints. It is assumed that the stakehold-

ers specify a manufacturing process or feasible set of processes in the design requirements,
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but if this is not the case, several processes can be compared at this step to see which are

the least restrictive within the desired domain. It is necessary, however, to select a process

or small set of processes before going any further.

Table 2.2: Input and outputs for MR-DFM mapping and screening framework activity blocks.

Activity Block Input Output

1 Given from stakeholders Raw set of manufacturing considera-
tions

2 Raw set of manufacturing considera-
tions

Ranked, ordered, and specified manu-
facturing constraints

3 Full set of manufacturing constraints Raw set of manufacturability con-
straints

4 Raw set of manufacturability con-
straints

Set of restrictive or possibly restrictive
manufacturability constraints

5 Set of restrictive or possibly restrictive
manufacturability constraints

Screened set of restrictive or possibly re-
strictive constraints with redundant and
dominated constraints removed

Once a preliminary set of manufacturing constraints are defined, they are subjected to

the identify, specify, rank, and combine (I-S-R-C) process (as discussed previously) (Block

2). The output of this process is a set of manufacturing constraints which are well-defined,

clearly-specified, ranked in order of importance, and combined into the smallest practical

number of constraints. This is then mapped onto a set of manufacturability constraints

(Block 3). After the potential set of manufacturability constraints is defined (set C1), the

constraints are then individually screened to determine if they are restrictive or obviously

not restrictive. Uncertain constraints at this point should be retained in the set. The

collection of restrictive or potentially restrictive constraints then make up set C2 ⊆ C1

(Block 5). This this set is then screened as a set for redundant and dominated constraints,

which are rejected from the set. Note that this includes comparison with known non-

manufacturability constraints as well.
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The set Cfinal should consist of the smallest possible number of manufacturability

constraints, which can then be effectively imposed into the design problem, restricting the

design space only just enough to ensure manufacturability (i.e., “minimally-restrictive”)

and leaving as much of it as possible for the designer to explore. Mathematical activity is

not clearly established in this set, as the problem has only been formulated and not yet

solved. After building the set of useful and possibly useful constraints, they can be fed into

a solution method (classic optimization techniques, topology optimization, procedure/rule-

based design, etc.) and the initial solution should give needed information about the activity

of the constraints. At this point, the formulation can be finalized and a set of feasible designs

generated for the stakeholders to examine.

The data that is mapped could take a variety of forms and the mapping may be explicit,

implicit, or manual depending on the needs and formulation of the problem. This may

depend on the processes involved of the form of the design problems. In the most common

case, it is anticipated that the design problem will involve geometric constraints related to

manufacturability; in this case, the mapping could be based on primitive shapes (squares,

circles, triangles, etc), nodes in a mesh, points or lines on a shell model, a toolpath (i.e.,

g-code), or similar. The form of this will be one of the decisions made by the stakeholders

when using MR-DFM very early in the design lifecycle.

2.7 Case Studies

2.7.1 Case 1: Milled Aluminum Heat Exchanger Fin

This case study explores a design problem using a single well-defined manufacturing process

as the basis for the manufacturability constraints. A heat exchanger fin in a natural-

convection environment must be machined from 6061 aluminum (Figure 2.15a). To fit into

its defined space, the fin must be 50 mm wide and 20 mm tall, but the thickness can be

adjusted. The design objective was to minimize the total volume of the fin required to

dissipate Q̇ = 25 W of thermal power (Figure 2.15b) with a maximum fin base temperature

of 70◦C to avoid melting its plastic (polylactic acid) enclosure. The fin base was insulated

and so all heat transfer from the 25W source was dissipated by the fin itself. The fin was also
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a structural member and required to support a static load of 100 N without buckling. The

manufacturability constraint will be the minimum thickness of the fin needed to withstand

a conventional milling process (with cutting fluid) using a 7/16 in TiN-coated steel end mill

running at 1760 RPM with a feed of 200 mm/min and a cut of up to 0.5 mm per tool

pass.

Base (heat source)

Fin

PLA plastic enclosure

(a)

ሶ𝑸 = 𝟐𝟓𝑾

Convection 

heat transfer L

t

(b)

𝑻𝒎𝒂𝒙 = 𝟕𝟎℃

𝑭 = 𝟏𝟎𝟎 𝑵

Figure 2.15: Case Study 1 (a) configuration and (b) applied loads.

First, the minimum thickness for the needed heat dissipation (by natural convection)

was calculated in order to act as the baseline for the buckling load requirement. This is a

performance requirement and not directly related to the manufacturing, but it is necessary

in order to judge the effectiveness and need for manufacturability constraints. The heat

transfer rate in a finite-length fin heat-transferring (i.e., non-insulated tip) fin is

Q̇ =
√
hPkAcTbase

sinh(mL) + h
mk cosh(mL)

cosh(mL) + h
mk sinh(mL)

(2.3)

where all of the variables are known from the problem statement except for the values of

Ac and P , but these are both functions of the fin thickness t. Assuming that h = hair =

100 W/m2, Tbase = 70◦C, kAL = 200 W/mK, and

Ac = 50t mm (2.4)

P = 100 + 2t mm (2.5)

57



m =

√
hP

kAc
(2.6)

the required value of t can be found. Calculating it numerically using Matlab®, the

minimum value of t to satisfy the heat transfer performance requirement was found to be

t = 0.85 mm. As shown in Figure 2.15b, the fin can be modeled as a column with one fixed

end and the maximum allowable compressive force is

F = νπ2EI

L2
(2.7)

where the force F , the length x, the elastic modulus E, and height L of the column are

known. Since the fin is fixed at one end and free at the other, ν = 0.25. The value of I is a

function of t and can be described by

I =
t3x

12
=

50t3

12
(2.8)

where x = 50 mm is the width of the fin. It is clear from inspection of the variable

magnitudes that the required thickness of the fin for buckling under the 100 N load is

much, much smaller than the thickness needed for heat transfer. Therefore, the heat transfer

constraint is restrictive and the fin can be assumed to be able to withstand the load.

Mapping the manufacturability constraints (Table 2.3) for this problem, it is necessary

to consider three aspects of the milling process: (1) heat transfer from the end mill to

the feature, (2) bending force on the fin from during processing, and (3) vibration and

compliance in the machine. Since the mill used in this case study had a large cast iron base

and was in good condition, it was assumed that the effect from (3) was negligible. The

exact cutting force for a standard milling machine is difficult to measure and is dependent

on several factors; a good average peak cutting force value of 200 N was found by Rubeo

and Schmitz [231] after extensive modeling and experimentation for aluminum milling, and

this value was used for the present case study. Treating the fin as a cantilever beam, a

minimum thickness tmach must be used to prevent excessive deflection during machining.

A maximum allowable deflection (and resulting dimensional error) δ of 0.1% of the fin

thickness was specified; this allowable value was chosen based on the milling experience of
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the authors. Therefore, the minimum value of the fin thickness tmach for machining to be

successful under the machining force is 1.17 mm.

The heat-of-machining can also be calculated for specific operations, but for this case

study the mean value of ∆T = 70◦C on each cutting pass found by Denkena et al. [232] was

used. The heat transfer rate from this temperature differential (assuming only steady-state

conductive heat transfer and using the previously-described variables), was

Q̇ =
kAc

L
∆T (2.9)

In this case, the amount of energy which needs to be dissipated during machining was

approximately 40 W . The original fin design (without manufacturability constraints) sized

for 40 W would require a fin 1.27 mm thick. In this case study, it was assumed that, for

safe operation of the milling process and avoiding any heat warping, the fin was not allowed

to reach a temperature higher than its designed operating temperature during processing.

Therefore, the fin thickness constraint of 1.27 mm was the minimally-restrictive constraint

that ensured manufacturability under the selected processing conditions; this implies that

the fin was not manufacturable without the imposition of these constraints, where the heat-

of-machining constraint dominates the deflection constraint. Screening the resulting set of

manufacturability constraints, it is clear that the 1.27 mm constraint is restrictive and that

the 1.17 mm constraint is ID and can be rejected, leaving only the single manufacturability

constraint. Both of the non-manufacturability constraints are also dominated and can be

removed from the problem.

Table 2.3: Manufacturing consideration, manufacturing constraints, manufacturability constraints, and
non-manufacturability constraints for Case Study 1.

Mfg Considerations Mfg Constraints Manufacturability Constraints

Heat of machining Heat of machining Q = 40 W t ≥ 1.17 mm for cutting force

Machining force Cutting force F = 200 N t ≥ 1.27 mm for heat during machining

Compliance/vibration

Non-Manufacturability Constraints t ≥ 0.85 mm for thermal performance

t ≥ negligible (O ≤ µm) for buckling
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Figures 2.16a and 2.16b show the final designs (with and without manufacturability

constraints, respectively), while Figures 2.16c and 2.16d present the final manufactured

designs. It can be clearly observed that the thin (0.85 mm) fin has numerous manufacturing

defects (Figure 2.16e), while the one with the manufacturability constraint was successfully

fabricated. In this unconstrained (thin) fin, three major defects were observed: (1) (Note

[A]) the fin thickness was inconsistent, with the bottom of the fin being the nominal thickness

and the top being 20% thinner, (2) (Note [B]) the top corner was chipped by the end mill

during a cutting pass due to its flexibility under cutting force, and (3) (Note [C]) the top

of the fin displayed a jagged, almost “scalloped” surface finish. It was observed that all of

these defects were cause by the fin deflecting under the load from the end mill, with the top

thinning implying that the deflection was at least 10% of the fin thickness, 100 times the

allowable deflection. While the temperature of the part was not directly measured during

machining, it was also observed that the 0.85 mm fin became hot enough during machining

that the cutting fluid (Viper Venom cutting oil, Grizzly Inc.) began to produce smoke,

suggesting a temperature over 200◦C.

None of the fin surface defects or thinning or extreme heating were observed in the

machining of the 1.27 mm fin under identical manufacturing conditions, showing that the

imposed constraints were restrictive and effective in ensuring manufacturability. Note that

the cost of manufacturability and accuracy was a 33% increase in the mass of the fin.

However, this study showed that this was the least-restrictive constraint under which the

fin can be effectively fabricated using the specified conditions and process assumptions. It

should be noted that this particular case study could have been completed using a variety of

design methods, including classic DFM and MR-DFM (as shown). If classic DFM had been

used, it is likely that the original thickness based on performance would have been calculated

and a factor of safety applied. Using a typical factor of safety of 2.0 for a problem like this,

the fin thickness would have been about 1.7 mm thick - in this case, it would both perform

correctly and be manufacturable, but the design would be inferior (i.e., be heavier) than the

one produced using MR-DFM. Since MR-DFM provided more detailed constraints directly

derived from the manufacturing process, a thinner fin that was both manufacturable and

functional was able to be produced.
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(d)

(

e

)

(c)(a)

t = 0.85mm

(b)

t = 1.27mm

A

B
C

(e)

Figure 2.16: (a) original design, (b) design with manufacturability constraints, (c) (failed) manufactured
original design, (d) (successful) manufactured constrained design, and (e) details of failed unconstrained
design. Note [A]: inconsistent fin thickness, Note [B]: chipped edge from machining, and Note [C]: poor
surface finish on fin tip from vibration.
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2.7.2 Case 2: FDM/SLA TO Cantilever Beam

This case study used a design problem that must consider the constraints from two manufac-

turing processes from the same family, unlike Case Study 1 which used only a single process.

In this problem, a simple symmetric cantilever beam was to be designed via topology opti-

mization (TO) for minimum mass and minimum compliance (i.e., maximum stiffness). The

final design was required to be symmetric along the length and thickness directions. As

shown in Figure 2.17a, the beam was 40 mm long by 20 mm tall by 4 mm thick, fixed at one

end, and subjected to a 20 N load on the free end. The stakeholders required that the part

be made from non-conductive plastic and be both light-weight and stiff, with a final mass

fraction goal of 50% and directions to simply “minimize compliance” while maintaining a

factor of safety above 1.0. Since only a small number of beams were needed, it was not

economical to produce tooling for a molding process, and it was therefore a good candidate

for additive manufacturing. The Pareto® (Sciartsoft Inc.) TO method and software were

used to produce the final geometry and generate the STL files for manufacturing. Since

TO requires geometric constraints to be imposed in the problem formulation, they cannot

be added later as was done in Case Study 1.

(a)

(b)

Shells

Infill

Shell thickness

Minimum 

feature size

(c)

20 N

20 

mm

40 mm

Figure 2.17: (a) Case Study 2 cantilever beam, (b) FDM/scanning SLA material pattern for several
layers [167], and (c) detail showing shell and infilled regions of the material.

Two major AM processes were available for production, fused deposition modeling

(FDM) and stereolithography (SLA). Neither was preferred by the stakeholders in the re-
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quirements; both have different advantages and disadvantages in terms of material proper-

ties and performance, so it was decided to formulate the TO solution so that the stakeholders

could viably use either one to produce the resulting design. In AM-TO problems, the pri-

mary manufacturability constraint is the minimum feature size (i.e., the length scale) that

can be produced using a particular process. Both are scanning-type processes, with FDM

laying down beads of material selectively to form layer cross-sections, while SLA selectively

hardens resin in layers using a laser. In terms of process mechanics, FDM is more restric-

tive since the bead of material is much wider than the laser spot from SLA. Therefore, if

it is possible to manufacture using FDM, it will be possible to fabricate using SLA as well;

however, the inverse is not necessarily true. The basic material arrangement is shown in

Figure 2.17b and 2.17c.

For both FDM and scanning-type SLA, material is built using shells and infill regions

(Figure 2.17c). The minimum resolution for each line is the laser spot width for SLA

and the extrusion nozzle diameter for FDM, but there can be some variability depending

on the material behavior. In the experience of the authors, single-shelled round or sharp

FDM features (such as those produced in 3-D TO solutions) are typically unstable and

riddled with defects (due to rapid, un-dissipated local material shrinkage during cooling),

so a double shell is required for good-quality prints. It is much less of a concern for parts

with thick bead deposition widths or geometries that have mainly straight-line shells, so

the designer should be careful when imposing the manufacturability constraint to choose

the minimum feature size which ensures manufacturability while minimally restricting the

design space. SLA is more forgiving since no material melting is involved, but still requires

a shell and some amount of infill for a stable print. Typical values of the material line

widths are 0.4 mm for FDM and 0.2 mm for SLA, so these values were used.

For this case study, a complex 3-D TO solution was expected within a relatively small

geometric space (Figure 2.17a). Therefore, to ensure that all of the generated features were

manufacturable, it is required to use two shells for the FDM parts and one shell for the

SLA parts. This fundamentally translates into the minimum feature size allowed in the

TO algorithm of 2 mm for the FDM parts and 1 mm for the SLA parts. Figures 2.18a

and 2.18b show the resulting geometry for each case. The use of the 1 mm minimum
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length scale allowed the 0.50 mass fraction target to be reached, while the imposition of the

FDM manufacturability constraint was able to reach a minimum mass fraction of 0.53. The

factor of safety constraint was simply set in the software and did not require any special

imposition or monitoring. Screening of the constraints was not needed in this case study,

as the minimum number of constraints possible were used from the beginning.

Table 2.4: Manufacturing consideration, manufacturing constraints, manufacturability constraints, and
non-manufacturability constraints for Case Study 2

Mfg Considerations Mfg Constraints Manufacturability Constraints

Shell/infill print pattern Two shells + infill for FDM Minimum length scale for FDM is 2 mm

FDM = 0.4 mm/line One shells + infill for SLA Minimum length scale for SLA is 1 mm

SLA = 0.2 mm/line

Non-Manufacturability Constraints Mass fraction ≈ 50%

Factor of safety ≥ 1 for TO

Beam design symmetry

The Pareto method was used to generate the topology under the given conditions

and constraints, using a voxel count of 500,000. Figure 2.18c shows an attempt to fabri-

cate the 1 mm length scale solution using FDM (Hatchbox ABS, δ = 0.15 mm, 230◦C,

v = 30 mm/s), resulting in numerous major manufacturing defects and missing features

(highlighted yellow regions) since the features were too small for the process to accurately

create with the 0.4 mm bead size. In contrast, the FDM fabrication was successful for the

2 mm length scale solution (Figure 2.18d). Both geometries were successfully produced by

the SLA process (Formlabs® Form 1+, using Formlabs® FLGPBK04 resin, δ = 0.05 mm),

as shown in Figures 2.18e and 2.18f. The Pareto software did not allow the use of a zero-

thickness minimum feature size constraint, so it was not possible to generate a topology

that was not manufacturable using SLA with this method at the small part size involved.

However, the manufacturability constraints imposed clearly had a major impact on the

part geometry and were clearly restrictive at least for the FDM fabrication. As with Case

Study 1, this implies that the generated designs were not manufacturable under the speci-

fied conditions without the use of the manufacturability constraints. The use of the 2 mm

manufacturability constraint resulted in a 3% mass increase over the 1 mm length scale so-

lution, but the resulting final design met the design requirements and was manufacturable

using both processes.
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(a)

MF = 0.50

LS = 1.0 mm

(b)

MF = 0.53

LS = 2.0 mm

(d)

FDM

(e)

SLA

(f)

SLA

(c)

FDM

Missing and defective geometry

Figure 2.18: (a) TO solution with LS = 1 mm, (b) TO solution with LS = 2 mm, (c) (failed) FDM
fabrication of the LS = 1 mm case, (d) (successful) FDM fabrication of the LS = 2 mm case, (e) (successful)
SLA fabrication of LS = 1 mm case, and (f) (successful) SLA fabrication of LS = 2 mm case. Highlighted
regions of (c) show the severe manufacturing defects such as missing features. Note that the successful FDM
part (d) shows some surface roughness fundamental to FDM, but careful analysis under a microscope showed
that all features were fabricated and no dimensional error larger than the print resolution of 150 µm were
present.

2.7.3 Case 3: Hybrid AM/SM PLA Pulley

The final case study presented is an updated solution approach to the generator pulley

problem presented by Patterson and Allison [11]. In this problem, a belt-drive pulley for

a generator was designed and required to be manufactured from PLA plastic (biodegrad-

able polylactic acid) using a combined additive-subtractive hybrid manufacturing process.

Therefore, this is also a two-process problem but with the processes in different families. As

shown in Figure 2.19, the pulley needs to be driven by twin belts and be able to be stopped

in an emergency by a pneumatic brake without damaging the generator. A radial encoder

for tracking position is affixed to the side of the pulley, which is then mounted in a frame

independent of the generator so that the assembly will not fly apart if the pulley should fail

during braking.

The pulley is assumed to be subjected to a running torque load of 5 Nm during op-

eration. During an emergency braking, it is preferred for the web to break instead of the

generator or belts, so that should be the weakest point in the pulley. The stakeholders de-

cided that the pulley needed to be lighter than the original design (Figure 2.19a and 2.19b),
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(a)
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(b)

(c)

70

8

16

80

R2

R1

τ = 5 Nm

Generator

Pulley

Position encoder
Pneumatic 

emergency brake

(d)

Figure 2.19: (a) original pulley design, (b) original pulley cross-section, (c) free-body diagram, and (d)
problem setup

but that the basic interfaces, external shape, and size were not changeable and needed to

be smooth and flat on the final part. The web of the pulley could be optimized to re-

move material as long as the compliance of the pulley remained less than 10 mm/KN .

The solution method selected was a local topology optimization (TO) (Pareto method)

with the shaft, brake, and belt interfaces fixed and not subjected to optimization. Given

the solution method, it was decided to manufacture the basic web-optimized pulley using

fused deposition modeling (deltabot machine, 3-D Solutech® PLA, 225◦C, bead of 0.6 mm,

δ = 0.25 mm, v = 50 mm/s) and to use a turning process (Grizzly® G0602 lathe with

indexable carbide cutting tools, 300 RPM) in a sequential hybrid AM-SM process [11]. The

basic geometry was created using the AM process, which was then used to face the brake

interface and the external edges of the pulley (areas not covered by belts in Figure 2.19d);

the contact area for the belts was not to be turned down, as it was not necessary and only

increased the manufacturing cost.
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Given that (1) a hybrid process is needed, (2) the material will be anisotropic, and

(3) the substractive process involves turning and facing the part, there will be several

major manufacturing constraints imposed, only some of which will be restrictive when

translated to manufacturability constraints. The minimum feature size should be addressed

by imposing a minimum length scale, while symmetry and build orientation are inherent on

the AM process. The workholding constraint does not impact the manufacturability since

the overall external size of the pulley did not change during the design. After completing

the full screening process, it can be seen that the only definite manufacturability constraints

which must be imposed in the part are the minimum feature size and the shell thickness.

From the experience of the authors, it is necessary to remove at least 1 mm of material

from PLA parts in a turning operation in order to generate chips and obtain a good surface

finish. Considering the required printing parameters, it was determined that a minimum of

five shells were required to be used to ensure both good quality printing and stable lathe

operations. The minimum feature size for FDM was discussed extensively in Case Study 2,

so it was not revisited fully. Since the bead width for this problem is 50% wider, PLA is

less sensitive than ABS to residual stresses, and since pulley web lines are generally straight

and cut-through, the same minimum size of 2 mm was determined to apply to this study

as well.

Table 2.5: Manufacturing consideration, manufacturing constraints, manufacturability constraints, and
non-manufacturability constraints for Case Study 3

Mfg Considerations Mfg Constraints Manufacturability Constraints

Hybrid process Two shells + infill for FDM Minimum length scale for FDM is 2 mm

AM + SM in sequence Print orientation Minimum shell count = 5

FDM + lathe Shell thickness Minimum roof layer count = 5

Anisotropic material Part base/roof thickness Minimum base layer count = 5

Work holding
Maximum size ≤ lathe chuck jaw diam-
eter

Non-Manufacturability Constraints Factor of safety ≥ 1 for TO

Pulley design symmetry

Based on the requirements, a series of TO solutions were found (Pareto TO, three

million voxels), with the solution selected being the minimum-mass solution found before

no more feasible designs were found (Figure 2.20a); the final design (Figure 2.20b) had a
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Figure 2.20: (a-b) selected solution from Pareto curve, (c) as-printed, and (d) successful and (e) failed
pulleys. Note [A]: torn surface, Note [B] melted surface areas, Note [C] delamination.

mass fraction of 0.66 and a compliance of about 5.00 mm/KN , well within the maximum

allowed. Figure 2.20c shows the printed pulley before lathe operations, while Figure 2.20d is

the successful finished pulley. To show that the manufacturability constraints are restrictive,

a second pulley was produced using the same TO solution, but which used only two shells;

the activity of the minimum feature size constraint was established in Case Study 2, so

only the shell constraint was tested here. Figure 2.20e illustrates the results for the 2-shell

pulley, which was clearly a failure. Several areas of surface tearing, layer delamination, and

plastic melting were observed, as highlighted in the figure. Unlike the other two case studies,

the restrictive manufacturability constraints did not increase the mass of the final design,

but they did increase the manufacturing time; shells are typically the slowest features on a

printed part to create, so adding shells can slow down the process. It was observed for this

case study that the 5-shell part required approximately 35 minutes more production time

to fabricate than the 2-shell pulley. Clearly the extra shells were required, so the cost of

the constraint is in manufacturing time and not in performance.
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2.8 Remarks on Inputs and Practical Implementation

The approach presented in this article focused on mapping and formulation of mechanical de-

sign problems under MR-DFM constraints. As discussed in the introduction (Figure 2.8), a

full design process under manufacturability constraints (whether classic DFM or MR-DFM)

requires three major domains of knowledge. This article extensively discussed Domain 2

(mapping and formulation) to better develop the concepts and approach. However, some

important remarks should be made regarding the other two domains in the context of the

discussion thus far. It is necessary to carefully consider the impact of the other two for the

work presented here to be useful in actual design. MR-DFM will not be useful or applicable

to every design problem and may be quite expensive even in some cases where it is useful.

The decision to use it should be made by the stakeholders and justified by its ability to

provide a superior design or set of designs within an acceptable cost point. If the designers

are looking for a “good enough” solution that simply fits within the minimum requirements,

the additional work may not be practical. It is anticipated that this method will be most

useful for high-value complex products and systems (such as aircraft and medical devices)

in which excellent design quality is paramount and the designers need the largest possible

feasible design space.

2.8.1 Process and Material Modeling

One of the most important mantras, reinforced throughout this article, of MR-DFM is that

the quality of the constraints depends heavily on the quality of the inputs. In design, it

is very common to use simplified representations of process and material models in order

to reduce computational cost. While this may be useful in many cases, this could be the

source of significant error in the formulation of MR-DFM constraints and should be avoided

when possible. It is best to use direct experimental results to generate the constraints

whenever possible via a fitted model or random variable generation. In both cases, the

estimated uncertainty and potential errors may be calculated and documented. With these,

the amount of “fuzziness” (Figure 2.13b) can be estimated to ensure that the calculated

constraints are actually useful for the design at hand. An important area of future research
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should be to find how much uncertainty is allowable in these constraints before the method

fails to provide a design superior to one generated using classic DFM.

2.8.2 Constraint Automation and Design Trade-Offs

An obvious consideration with the MR-DFM method is that it can rapidly become un-

manageable for a single designer or decision maker as the problem size increases. The case

studies presented are reasonably complex for academic studies but when dozens of features

are to be considered or system constraints must be considered (i.e., interfaces, tolerances,

and reliability) it can become impossible to implement manually. Therefore, the mapping

and enforcement should be automated as far as possible. This should be relatively easy

to do for most manufacturability problems, as many DFM and MR-DFM constraints can

be reasonably defined as boundaries and simple polynomial constraints, with some binary

and discrete functions on occasion. However, as the method and computational methods

improve in capacity, more accurate models of interactions between geometry and consid-

erations such as temperature, stress, and deformation during manufacturing can be used.

These higher-fidelity constraints can expand the design space even more (in many cases)

but only are worth pursuing where the increase in design quality is worth the investment

of time and resources.

With this in mind, it is clear that the complexity of the used constraints is at least

partially under the control of the designer; if the constraint set is too complex, the stake-

holders may wish to simplify the constraint set or define some design variables as constants.

As long as the simplified MR-DFM constraints provide a larger design space than tradi-

tional DFM (or conversely, are shown to not be necessary at all), then this trade-off could

still provide a superior solution or larger set of feasible designs to select from. Exactly

how the automation should be done is beyond the scope of this paper; however, feature

catalogs, general constraints that may repeat several times (e.g., minimum wall thickness

for machining may be identical for several features in the design), and node-point maps for

defining geometry (in which all geometry constraints can be defined as simple distances) are

potentially helpful tools for this. In the case of more procedure-based design problems, the

manufacturability constraints could be directly tied to the stakeholder requirements. Some
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practical considerations for automating the constraint generation are:

• For explorations and for mapping new processes and process-material combinations,

the mapping will likely involve a significant amount of manual or mathematical work.

However, the mapping should be stable and consistent for each process so the map-

pings can be cataloged.

• These catalogs of mappings and constraints can be used as the starting place for

automating constraints.

• Once a set of mappings are completed (e.g., for the 10 most common manufacturing

processes), design automation studies can begin. Similarities and differences can be

identified and some mappings combined or simplified in the ideal case.

• It is very important at the beginning of the design process to identify or specify the

data type (mathematical functions, points in a mesh, etc.) to be used in the mapping.

Consistent application of this will aid in automating the constraints.

• A future work direction may be to see if a new data type is needed to map these

constraints, but this may not be necessary for general mechanical design problems.

In formulating most mechanical design problems, most of the relevant constraints will

be geometric and will be in the form of distances, thicknesses, norms between points,

and similar.

• A very helpful technology that can support MR-DFM is digital twins of manufacturing

processes. When properly developed and verified, this may be able to replace actual

manufacturing processes and make the identification of manufacturing considerations

much easier.

• From the other perspective, MR-DFM and other constraint/formulation methods may

help drive the development and refinement of these digital twins. It would be especially

useful if digital twin models could be developed and formulated so that they provide

the manufacturing considerations and constraints as default outputs.

Clearly, there will be design trade-offs when using this methods as there are with classic

FDM and other methods. The most important considerations for most problems would be:
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• Cost, both in terms of labor during initial mappings or explorations and in terms of

computational expense once automated.

• Different classes of manufacturing processes will have drastically different costs asso-

ciated with using them in design. For example, simple geometric constraints based on

a die casting tool will be far less expensive than designing a free-form lattice structure

with different location densities.

• As previously discussed, MR-DFM is far more focused and based on technical knowl-

edge instead of expert intuition. For simple problems and those with few or no active

manufacturablity constraints, the flexibility offered by using expert-intuition-driven

DFM could provide better design outcomes.

• Continuing from the last point, not every mechanical design problem will have active

manufacturability constraints and discovering this after using MR-DFM could waste

time and resources. Design problems which are convex in nature are less likely to

require many (or any) manufacturability constraints due to the fact that only a single

global solution is possible.

2.8.3 Expert Intuition

For any DFM or MR-DFM method, some level of expert intuition will be necessary. For

classic DFM, several excellent guides are available but still require interpretation and appli-

cation to the problem at hand. With MR-DFM, the ability to capture process knowledge

(manufacturing considerations) and experience is one of the strengths of the presented

method; this allows more realistic constraints and a wider design space. However, there

will always be some uncertainty in the collected information. To minimize this, the design

team should be careful to collect only the most reliable information and make an effort to

communicate well with the expert, who will often be a technician and not a researcher or

engineer. Respect for the experience of the expert (who will not necessarily have advanced

degrees), inclusion of the expert in design decisions, and real effort at partnership with the

design team will be vital for collecting the best quality design knowledge. When practical,

it would also be very useful for at least some members of the design team to have some

72



degree of practical knowledge and experience with the selected manufacturing process or

processes. Whether this involved hiring designers with hands-on experience (of which there

are very few in most industries), providing additional coursework, or some kind of hands-on

training will depend on the type problem being solved and the desired outcomes.

2.8.4 Design Method Selection

The presented framework is design-method agnostic and can provide useful constraints for

a wide variety of problems. However, the design method may affect the formulation of the

problem and this should be expected for any design method outside of classic optimization

methods. The formulation that comes from using this technique will be in the form of

Eq. (2.2) and may need to be reformulated for a specific solution method. Therefore, care

should be taken that the final model (objective function and constraints) are as mathemat-

ically rigorous and clear as possible to avoid any mistakes or misunderstandings during any

needed reformulation. All variables should be distinct and clearly and consistently defined

in a way that is easily understandable by someone not in the original design team.

2.8.5 Verification, Validation, and Certification

As with all design methods (all three domains in Figure 2.8), the final step and ultimate

success metric is the completion of the verification, validation, and certification (VV&C)

process. While this is largely independent of the specific constraint formulation, it may be

necessary to have the constraints very clearly specified for VV&C. Therefore, it is vital that

everything be well-documented during the entire process and, when possible, a calculation

of the expected uncertainty and error in the placement of the constraints.

2.9 Closing Remarks

In this work, a conceptual framework and approach was developed for generating and impos-

ing minimally-restrictive manufacturability constraints (MR-DFM) for mechanical design

problems. The technique is based on mapping of practical manufacturing knowledge into

enforceable manufacturability constraints; these can be screened and eliminated as needed

to ensure that the imposed constraints restrict the design space only enough to guarantee
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(or at least greatly improve) manufacturability while leaving as much as possible intact for

design exploration.

The method was shown to be straight-forward and useful in three case studies, all

of which were not manufacturable using the specified manufacturing conditions without

the additional constraints. Note that the case studies made some simplifying assumptions,

clearly stated within each problem, which may impact the validity of the case studies if the

conditions were changed. The reader should keep in mind these assumptions when following

the case studies and applying the approach to other (similar) problems. The impact of

using simplifying assumptions for generating manufacturability constraints is the risk of

false positives (the generated constraints are not sufficient to guarantee manufacturability)

and false negatives (the constraints exclude more of the design space than actually required);

care should be taken to avoid this when applying the method.

The case studies presented covered three different types of mechanical design problems

under manufacturability: (1) design under a single process, (2) design under two different

but related processes, and (3) design under a hybrid of two dissimilar processes. In terms

of design problems,

• The design focus of case study 1 was to find the least restrictive constraint on the fin

thickness such that it could both meet its design requirements and be manufacturable.

This involved modeling and testing several aspects of the design (heat transfer, beam

bending, and buckling) using a common design variable; the constraint found was the

least-restrictive one which was applicable to all of the problems encountered containing

the design variable.

• Case study 2 explored the formulation of a algorithmic design problem (topology

optimization) under two possible manufacturing processes, requiring constraints which

were valid for the entire problem. This also captured the potential scenario in which

uncertainty exists in the selection of the process and so the design must allow some

flexibility.

• Finally, case study 3 explored the complexity of a hybrid manufacturing problem,

where a larger number of manufacturability constraints needed to be considered even
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for a just two design variables. This problem also clearly demonstrated the way that

the constraints can be quickly tested and eliminated when not useful.

Thus this proposed technique was shown to be valid for different mechanical design

domains. The method is process-, material-, and solution method-independent, as derived

and as demonstrated in the case studies. As presented, this method makes seven important

assumptions:

1. That the design requirements for the product being designed are well-defined and

relatively fixed at the time of planning

2. That expert intuition is sufficient to judge the impacts of the manufacturing processes

and complete the mappings

3. That the manufacturing process selection happens during or before the conceptual

design phase

4. The problem is small enough so that a relatively limited number of manufacturability

constraints can be tracked and enforced by the designers. A few dozen design variables

is likely to be the practical limit for this method without automation of constraint

selection and enforcement.

5. The designers have enough basic manufacturing knowledge to complete the mappings

or have access to manufacturing experts who are willing to assist

6. That a manufacturing process or set of candidate processes can be selected during

requirements definition

7. In the case where several processes need to be compared during the manufacturing

considerations phase, the decision can be fixed before defining the manufacturing

constraints and not need to be revised later in the design process.

This method is applicable for any mechanical design problems in which the physical

design constraints (part architecture and performance) can be defined and understood in

terms of its manufacturing processes in some way. Future work will focus on refinement

of the method and extension of it to other design domains, such as design of tailored
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materials, on the automation of the process for larger problems, tolerance allocation along

with the constraints, the use of simulations and experiments to establish the limits of

problem complexity, and examining the impact of the expert intuition assumption on the

proposed framework.
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Chapter 3

FDM MECHANICS AND

MANUFACTURABILITY CONSTRAINTS
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3.1 Introduction

One of the most well-developed and mature additive manufacturing (AM) processes designed

for polymer and polymer-composite materials is the fused deposition modeling (FDM) pro-
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cess; this process is also sometimes called fused filament fabrication (FFF) or simply mate-

rials extrusion AM. The process works by extruding a molten bead (sometimes also called a

“road”) of thermoplastic material into elements to selectively trace out the layers of the part.

The fusion between the previous layer and the neighboring elements is accomplishing via a

polymer melt reaction [1–5]. The extruder position and path is driven using g-code (similar

to a CNC milling machine); the process is typically monitored by an open-loop control

system based on stepper motor position encoders, but other control systems exist [3,4,6–8].

The essential hardware components of an FDM machine are the extruder (for melting and

depositing the molten raw material), the frame, and the build plate (Figure 3.1). A number

of configurations are available (some examples shown in Figure 3.2a-3.2d), each with its

own set of advantages and disadvantages; there are others (such as delta robots and robotic

arm printers), but the ones shown are the most common 3-degree-of-freedom configurations.

For the purposes of this chapter, it is assumed that the design process for printed parts is

the same regardless of the hardware configuration.

Extruder/ 

print head Build plate

Frame

Figure 3.1: Typical hardware for the FDM process.

FDM is is a scanning-type AM (ST-AM) process, building each layer as a series of

elements laid out in a pattern, typically bounded by a solid shell of elements printed on

the outside boundary of each layer. The final bulk material contains small voids/inclusions
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Figure 3.2: Common hardware configurations, with the degrees of freedom for the extruder and build plate
shown in each case. These are the most common 3-degree-of-freedom (3DoF) configurations, but others exist
such as those built around delta robots and higher-DoF robotic arms.

and is highly anisotropic [37]; however, the pattern of the laid out elements is designable,

allowing FDM to be used to create structured and tailored materials by controlling or

optimizing the layout of the elements [11, 38–40]. Effective design of the FDM structure

requires knowledge and control of a variety of parameters, the most commonly studied of

which are the nominal density, element layout (typically raster angle), layer thickness, print

orientation, deposition speed, and processing temperature. A sampling of 30 recent papers

related to FDM and discussing manufacturing parameters was collected to determine which

parameters are most often considered; the results are shown in Table 3.1. Material choice

was not considered as a parameter in this table, as the best ranges and limits on parameters

are dependent on material choice. In most FDM studies, the materials under considerations

are treated as separate problems since each material will have different optimal parameters

and constraints. Some FDM materials are amorphous (such as acrylonitrile butadiene

styrene (ABS) and polycarbonate) and some are semi-cystalline (such as polylactic acid

(PLA) and polyamides (nylon)).

This chapter explores the mechanics and manufacturability constraints for the FDM

process, with the purpose of creating a set of assumptions and design constraints that will

be used to drive future chapters. First, the mapping technique (MR-DFM) developed in
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Table 3.1: Example parameter control/optimization studies from a review of 30 recent papers on FDM.

Refs.
Parameters from Sampled Literature

Den-
sity

Infill
pattern

Print
speed

Print
temp

Layer
height

Orien-
tation

Nozzle
size

Shells Variance
compensa-

tion

[9] � � � �

[10] �

[11] � � � � � �

[12] � � � �

[13] �

[14] � � �

[15] � � �

[16] � � �

[17] � � � �

[18] � � � � � �

[19] � � �

[20] � � � �

[21] � � � �

[22] � � � �

[23] � � � � �

[24] � �

[25] � � �

[26] � �

[5] � �

[2] � � � � � �

[27] � � � �

[28] � � � � �

[29] � �

[30] � � �

[31] � � � �

[32] �

[33] � � � � � � �

[34] � � � �

[35] � � � �

[36] � � �

Chapter 2 is used in Section 3.2 to derive the basic set of manufacturability constraints

specifically for the FDM process. Next, a set of materials to be used for the work reported

in this dissertation are selected and discussed (Section 3.3). Given that a set of materials

were selected, Section 3.4 refines the constraint set relative to these materials; this included

experimental determination of some of the constraints and sensitivity analysis on the stated

assumptions. Finally, three case studies are presented in Section 3.5 and some final remarks

are offered in Section 3.6.
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Table 3.2: Example constraints for the general parameters found during the survey presented in Table 3.1.

Parameter Example Simple Constraints

Nominal density Maximum realistic density (< 100%), minimum stable density

Raster angle Minimum and maximum raster angle

Print speed
Minimum and maximum print speed for polymer rheology, mini-
mum and maximum print speed for hardware stability/vibration,
limits on motor performance

Extruder temperature
Minimum and maximum temperature for polymer rheology, min-
imum and maximum temperature for proper hardware function

Layer thickness
Minimum and maximum layer thickness for polymer rheology,
minimum and maximum thickness for print time requirements,
minimum and maximum thickness for surface quality

Printing orientation
Printing orientation limited by the number of degrees of freedom
(DoF) for printing hardware (most printers limited to three DoF)

Nozzle size
Maximum nozzle size ≤ filament size, minimum nozzle size de-
pendent on polymer melt behavior and temperature

Number of shells/contours
Minimum number of shells = minimal stable layer boundary,
maximum number of shells ≤ smallest layer dimension divided
by 2 × nozzle size

Compensation for filament
Minimum = no compensation, maximum extra material that will
not disturb surface finish or create nodules/strings during print-
ing

3.2 FDM Manufacturability Constraints: Concepts

3.2.1 Parameters versus Constraints

The printing parameters, being the main drivers for the final material properties for FDM-

processed materials, can provide design variables and aid in the development of objective

functions [9, 15, 17] during design. However, the constraints on and between these param-

eters is an important area which has received little to no attention in the AM literature

thus far. Simple example constraints for the parameters shown in Table 3.1 are given in

Table 3.2. Others certainly exist (including some complex equality constraints that de-

scribe relationships between the parameters); however, these provide excellent conceptual

examples to demonstrate some kind of relationship between manufacturing parameters and

manufacturability constraints. The realistic constraints that will be explored by this concept

paper will be far more detailed and specific than the examples shown in Table 3.2.
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As discussed in Chapter 2, the proper formulation of any design problem requires at

least one design objective and a design space to explore for answers which satisfy the ob-

jective [41]. In most problem formulations, this involves the identification of decision or

design variables, formulation of an objective function, and definition of the design space

via a set of constraints. Some toy problems and cases with obvious optima do not need

constraints [42, 43], but most practical problems will. While the objective function will

always be a function of the decision variables, the constraints may take two forms: (1) a

function of decision variables or (2) simple bounds on the possible values of each decision

variable. For manufacturing-related problems, the bounds will be more commonly encoun-

tered [40, 44–46]. As previously discussed, the various manufacturing parameters provide

excellent objective functions and design variables, but do not provide rigorous constraints.

In order to avoid manufacturability problems with the final designs [45,47,48] and to avoid

simplifying the design too much (as is often done in traditional design-for-manufacturing

techniques [49–51]), it is vital that accurate and useful constraints be generated.

3.2.2 Mapping Manufacturing Knowledge to Design Constraints

The advantages, limitations, and best practices related to specific manufacturing processes

are vital considerations during product design. This is especially true when using complex

design methods (e.g., those generated using algorithms, such as topology optimization), as

the final design may not actually be manufacturable without the imposition of the manufac-

turability constraints. This requires a rigorous process of mapping the useful manufacturing

knowledge into design-focused manufacturability constraints; the purpose of these is to limit

the design candidates to those which are manufacturable using a particular process or series

of processes [52–57]. This design perspective and approach was the focus of Chapter 2. Dif-

ferent design scales must also be considered during this mapping; the basic scales referred

to in this dissertation are defined in Figure 3.3.

Manufacturing processes can be classified according to type (subtractive, additive,

formative), family (e.g., machining processes), and individual process mechanics [58]. At

each of these classifications, a list of process characteristics can be made; the items on this

list may overlap heavily with other processes of the same type or family or may be unique
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Sub-microstructure

❑ Natural material 

structure on atomic, 

crystal, or molecular 

level

❑ May be influenced by 

processing conditions

❑ Examples: Polymer 

chains, grain structure 

details in metals

Mesostructure

❑ Designed or patterned 

structure, may be generated by 

element layout or designed 

inclusions/defects/voids

❑ Solid, homogeneous materials 

do not have a mesostructure

❑ Examples: Honeycomb 

structure, metamaterial, unit 

cell-based lattice

Design perspective on structured material (SM) levels

Macrostructure

❑ In design, typically the “useful 

level” 

❑ Generally the final component 

or product that is to be made 

from the designed material

❑ For homogeneous solid 

materials, microstructure 

drives macrostructure 

properties (no mesostructure)

Microstructure

❑ Structure observable using 

an optical microscope, 

heavily influential on 

macro-scale properties 

❑ Strongly influenced by 

processing conditions

❑ Examples: Porosity, metal 

grain layout, scan structure 

in 3-D printed materials

Structure and processingNatural material Source of Dominant Properties

Figure 3.3: Design scales for materials and parts/products referred to throughout this dissertation. The
mesostructure level will be the most often used and discussed. This chart shows examples of non-polymer
materials for completeness, but it should be noted that all of the materials covered in this dissertation are
hard polymers.

to a single process. These characteristics can be divided into advantages, disadvantages,

and best practices. The advantages provide some kind of clear cost or schedule benefit

or open up the list of possible designs and design features the process can fabricate. The

disadvantages do the opposite, helping decrease the size of the design space or increasing

cost and schedule issues. Best practices are effectively “soft constraints” which could be

either an advantage or disadvantage in particular cases and must be evaluated. The list of

manufacturing considerations can cover a very large domain, as shown in Figure 3.4.

Once the set of manufacturing considerations is established (at least conceptually),

a set of manufacturing constraints arise naturally. For example, a manufacturing consid-

eration for a machining process is that the cutting tool will generate both force and heat

during operation. This naturally implies two manufacturing constraints: (1) that a ma-

chined feature must be thick enough to withstand the cutting force from the tool and (2)

a feature must be large enough to dissipate heat without damaging the feature or material

microstructure. The manufacturing constraints should be more formal than the manu-

facturing considerations and may require some expert intuition and experience, extensive
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experimental data, or accurate enough simulations (if used) to fully translate in some cases.

The manufacturing constraints are also related to the material choice, but whether they

are depending on the material selection or vice-versa will be depend on the problem at

hand. Since these constraints are based on a specific process and specific set of conditions,

the domain is contained within but significantly smaller than that of the manufacturing

considerations (Figure 3.4).

• Type

• Family 

• Mechanics

• Advantages

• Limitations

• Best practices

• Constraints on process

• Limitations on materials

• Formal constraints

• Constraints on design

• Formal constraints

• Problem decision variables

•Minimally restrictive

Manufacturing considerations Manufacturing constraints Manufacturability constraints

Relative domain sizes

Figure 3.4: Basic mapping and domain sizes for general manufacturing processes.

The term “manufacturing” can have a variety of meanings, but one that is widely used

and relevant to this work is the definition given by DeGarmo’s Materials and Processes in

Manufacturing. Paraphrased, manufacturing is the performance of a series of operations

on a product, raw material, or other item such that the successful completion of each

operation or step increases it utility or monetary value [58]. With this in mind, the steps to

manufacture a product will require a subset of the possible steps a particular process or set

of processes are capable of. Therefore, the domain (Figure 3.4) for the manufacturability

constraints (imposed on the design, not the manufacturing process) will the smallest of the

three; this makes sense when considering that the set of relevant constraints bounds the

design space for a specific design or design family. In summary,

• The manufacturing considerations are observed or collected by designers and/or ex-

perts in manufacturing science. These may be quite conceptual and may be at the

level of process type (SM, AM, FM), process family, or specific process and mate-

rial combination. Manufacturing considerations may provide advantages (e.g., AM

increases possible design complexity over machining), limitations (e.g., in machining,
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features must be reachable by cutting tools), or guidelines/soft constraints (e.g., it is

better to machine metal and mold engineering plastics when possible).

• The manufacturing considerations can (typically) be easily converted into manufac-

turing constraints (i.e., bounds on the applicability of the process).

• The manufacturability constraints on the design itself result directly from the limita-

tions of the manufacturing process and material used.

3.2.3 FDM: Manufacturing Considerations

The four basic levels of analysis (system, extruder, element design, and element extrusion/-

fusion) for the FDM process are shown in Figure 3.5, from which the basic manufacturing

considerations can be collected. Assuming a standard FDM machine design with three

degrees of freedom, eight essential manufacturing considerations apply (Figure 3.6):

1. MCR1 - ST-AM : FDM is a scanning-type AM process, where each layer is built from

a series of elements (typically of uniform cross-section) which do not fully merge into

each other and form an anisotropic material with natural voids and inclusions which

may be designed or optimized (Figures 3.5a, 3.5d,and 3.5e) [5, 13,37–40,46,59,60]

2. MCR2 - Selective Deposition: Deposition of the raw material is accomplished by

extruding a filament through a heated die and selectively depositing it to form the

essential elements (Figures 3.5b, 3.5c, 3.5d, and 3.5e) [13,37,46,60–62]

3. MCR3 - Polymer Melting : The fusion is accomplished via polymer melting (Fig-

ure 3.5b, 3.5c, and 3.5d) [60,63–69]

4. MCR4 - Thermal Cycling : The bulk material is subjected to uneven thermal cycling

during operations (Figure 3.5b) [63–65,67,70,71]

5. MCR5 - Isotropic Elements: Each element is approximately isotropic or transversely

isotropic in terms of mechanical properties (Figure 3.5b, 3.5c, and 3.5d) [37,60,72–77]
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Figure 3.5: Levels of analysis for FDM. (a) System level, (b) extruder level, (c) element geometry level,
and (d) element deposition/fusion level. Panel (e) shows the full process.
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6. MCR6 - G-Code Control : The extruder die is controlled (generally using an open-loop

controller or step counting in the motors) using g-code (Figure 3.5a and 3.5d) [37,

46,60,64,78–81]

7. MCR7 - X/Y Motion: Motion of the extruder in X or Y directions builds each layer

(Figure 3.5a) (definition for standard 3 DoF system)

8. MCR8 - Z Motion: Motion of the extruder in Z adds more layers (Figure 3.5a)

(definition for standard 3 DoF system)

Wider version
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control
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MCL2 MCL3 MCL4 MCL5 MCL6

MCR3 MCR4 MCR5 MCR6 MCR7 MCR8MCR2

Figure 3.6: Mapping from the (a) basic eight manufacturing considerations to the (b) six sets of manufac-
turing constraints at each level of analysis for FDM.

3.2.4 FDM: Manufacturing Constraints

Given the manufacturing considerations from the previous section, the manufacturing con-

straints may be derived. In order to do this in a consistent and useful way, it is important

to recognize that the bulk parts or products fabricated via FDM are structured materials,

whether or not they are designed [13, 37–39, 59, 60]. As such, it is necessary to examine

FDM at several scales, which correspond to specific levels of analysis shown in Figure 3.3.

As demonstrated in Figure 3.6, FDM can be analyzed at the macro-level (e.g., a while part

or large feature), the meso-level (e.g., the “structured” level of the part or product), the

micro-level, and the sub-micro-level. It is assumed in this section that the reader has a

basic understanding of polymer material behavior and the mechanics of the FDM process.

In case of doubt, refer to an earlier section of the paper or one of the references.
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3.2.4.1 Sub-Microstructure Level

At the sub-micro level, the basic material properties of the polymers in use determine

the manufacturing constraints (Figure 3.7). The homogeneity of the local material units

(driven often by the quality of the filament used) and the rheology of the polymer determine

the manufacturing constraints at this level. These things in general must be determined

experimentally for each polymer or polymer composite used and limited choices are currently

available since most FDM materials are thermoplastics. It is difficult to impossible to design

the specific properties at this level, so the designer is typically required to consider these

as fixed parameters (if a material is specified) or criteria for material selection (if not pre-

selected). The rheological parameters (including the polymerization behavior and state)

are mainly determined by the operating temperature for thermoplastics at this level [1,82],

so temperature must be carefully specified or established when taking property data or

observing behavior. At the sub-micro level, the processing conditions have little to no

direct influence, so the experiments used do not have to be directly related to FDM to draw

useful conclusions. As shown in Figure 3.7, seven basic manufacturing constraints directly

from FDM can be mapped from the manufacturing considerations at this level.
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Figure 3.7: Essential manufacturing constraints at the sub-microscale level.

3.2.4.2 Microstructure Level

For the micro level (Figure 3.8), the material properties and processing conditions both

influence the manufacturing constraints. Things such as the quality of the polymer chain

reformulation (i.e., bonding) after extrusion and fusion, the amount of residual stress in
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and between each element, the state of the polymer chain (amorphous or semi-crystalline),

and the amount of shrinkage (which may be related to residual stresses) after cooling drive

the manufacturing constraints at this level. As with the sub-micro level, the values of the

resulting manufacturing constraints must be determined experimentally.
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Figure 3.8: Essential manufacturing constraints at the microscale level.

3.2.4.3 Mesostructure Level

Using the definition for “meso level” given in Figure 3.3, FDM will have two levels of

mesostructure, one at the individual element level (Figure 3.9) and one at the layer level

(Figure 3.10). This is due to its nature as a scanning-type AM (ST-AM) process (Figure 3.5)

and the fact that both the element geometry and the layout of the elements (i.e., the layer)

can be designed in a simple mechanical way. These two sub-levels will have the largest set

of manufacturing constraints of all the levels, but most of these will be simple bounds and

inequality constraints. For these levels, the processing conditions and layout of the elements

has a much larger impact on the final bulk properties of the part or product than the basic

material properties. Of course, the constraints from the sub-micro and micro levels also

impact the problem at the meso level through the properties of each element.

• Single element mesostructure: As seen in Figure 3.5c, the element cross section and

length can be designed in a similar way to a simple beam or truss member. The

major manufacturing constraints at this level (Figure 3.9) are the selected geometry,

height-to-width ratio, minimum length, minimum corner radius, minimum connection
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length with the last layer and neighboring elements, and a number of other constraints

including the various dimensional errors. Given that FDM elements are produced via

extrusion, are selectively laid out, and are approximately isotropic or transversely

isotropic, they can often be seen and treated similar to beams in design problems.

• Single layer mesostructure: Similar to the single element mesostructure, the single

layer element layout can be designed to have controllable (to some degree) mechanical

properties. The most important of the manufacturing constraints for this level are

restrictions on layer geometry, print direction, position accuracy uncertainties, element

packing density, minimum useful layer thickness, the number of shells (“contours” in

some literature), and the ratio of the shell area to the infill area for the layer. There

are a number of others, as shown in Figure 3.10, which may be relevant. Following on

from the discussion concerning the treatment of elements as beams in design problems,

the layers may often be designed similar to 2-D or 2.5D truss problems in practice.
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Figure 3.9: Essential manufacturing constraints at the single element mesoscale level.

3.2.4.4 Macrostructure Level

At the macro (“useful”) level, it is assumed that many layers of printed material are present.

The size of macroscale features can range from an individual feature to the whole final part

or product. In the case of FDM, this level can be further divided into two regions:
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Figure 3.10: Essential manufacturing constraints at the single layer mesoscale level.

• Feature-level macrostructure: Manufacturing constraints at this level include things

like the printing orientation, the minimum layers to be printed, the roof and flood

thickness, and interfaces with support material and other features on the part or

product. Most of the existing feature catalogs and feature-level design for additive

manufacturing guidelines focus on this level; examples include [83–88].
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Figure 3.11: Essential manufacturing constraints at the macroscale (feature) level.

• Part/product-level macrostructure: This level is the one that will be directly observed

or tested by most users and product/part designers and so the manufacturing con-

straints are mainly concerned with final appearance, post-processing, dimensional

accuracy, and interfaces with other parts. General product design and success cri-

teria mainly apply to this level. If the additively manufactured product is to be

post-processed, it will typically be done with the product-level macroscale in mind.
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Figure 3.12: Essential manufacturing constraints at the macroscale (product) level.

3.2.5 FDM: Manufacturability Constraints

Given the large set of derived manufacturing constraints (i.e., limits on the process capa-

bilities) explored in the previous section, a set of manufacturabilty constraints (i.e., on the

design of a product to be fabricated using FDM) can be found. The step of mapping from

the process limits to the design limits is a much more simple task than defining or finding

all of the relevant process limits. Essentially, for each limit or set of limits, an equivalent

design limit must exist to accommodate the parent process limit(s). These design limits

(manufacturability constraints) can be used directly in design problems to guarantee (or at

least better ensure) that that the final product is indeed manufacturable using FDM.

Compiling all of the process constraints discussed in Section 3.2.4 (and combining/re-

fining as needed), the set of design constraints at each level can be found as shown in

Table 3.3. Finding these constraints are fairly straight-forward given the information from

Section 3.2.4 and no special processes are required. In most cases, each of the manufac-

turability constraints will have more than one parent manufacturing constraint; likewise,

a manufacturing constraint may drive more than one manufacturablity constraint. For

thermoplastic FDM, all of the constraints directly drive the design decisions; however, in

practice some of the constraints simply drive the selection of materials, some of them limit

the printing parameters, and some directly impact the design. Notes are given in the table

for each case. Note that exact constraints cannot be derived without selecting a material

and possibly collecting some experimental data, due to the different behavior of each of the

FDM polymers. In addition, the constraints may not be independent of each other.
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The mapped conceptual manufacturability constraints for FDM are shown in Table 3.3.

A total of 54 were identified, but not all of them will apply to all design problems. The

large majority of these fall into two categories when not used as constraints:

1. Build parameters: Designated as “PP-CN” type constraints in Table 3.3, these may

be used as print parameters or constraints, depending on the objectives and needs of

the design. In practice, a mix of constraints and parameters will likely be used.

2. Confounding factors: Confounding factors are those which have some influence on a

model or system but the influence is not necessarily known or understood when these

are not directly controlled. Designated as “CF-CN” type constraints in Table 3.3,

these could be considered to be largely “noise” variables in FDM processes but could

also be controlled or used as constraints in design problems.

The remaining constraints (“CN” in Table 3.3) are simple constraints (generally generated

by the stakeholders as part of the project requirements). The type and form of the con-

straints should be considered separately in order to best formulate and use them effectively

in the design problem at hand. Just as the type of constraint may be simple (CN), pa-

rameter (PP-CN), or confounding factor (CF-CN), the form of the constraints may also be

divided into three major categories (Table 3), depending on its main source.

1. Build parameters (BP): Constraints directly on the build parameters. These will

almost always be simple bounds (e.g., minimum and maximum raster angle) on the

parameter in question.

2. Material selection (MS): Constraints either driven by or driving material selection

(depending on the progress of the design process). These may take the form of bounds,

inequality constraints, and equality constraints, depending on what is considered.

In the experience of the authors, the more complex constraint equations (e.g., the

equality constraints) can be simplified dramatically by setting some variable values to

fixed parameters.

3. Geometric constraints (GS): These constraints may be driven by design rules (e.g., [84,

85]) or by looking at geometric relationships in the design. While any non-bound
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functions are likely to be simple continuous functions, the possibility of having both

inequality and equality constraints often necessesitates simplification, similar to what

is done for material selection.

The realistic determination of the constraints may be done in eight major ways in practice

(Table 3.3), namely:

1. Stakeholder decision (SD): A value or limit decided and enforced by the designers and

other stakeholders. These constraints typically deal with things such as manufacturing

time, cost, safety, aesthetics and ergonomics, and the final verification/validation and

accreditation process for the part or system being designed. These constraints may

have little to no input directly from the process mechanics or material selection.

2. Observation (OB): For parameters and constraints that are difficult to control (or

simply not of interest to control for the present design problem - the ambient air

temperature is a good example), simple observation may provide the needed values.

3. Partial observation (PO): Similar to observation but when only partial or incomplete

information is available to the designer and other stakeholders. Good examples would

be the properties of proprietary filaments with unknown dyes and additives and the

exact parameters for proprietary “plug and play” FDM systems.

4. Formal experiments (FE): The vast majority of the constraint values and relation-

ships for FDM can be found from simple formal experiments or from reviewing the

experimental literature for some common materials.

5. Modeling and simulation (M&S): Some of the boundaries and relationships needed

can be found using modeling and simulation (for example, finding unhelpful stress

concentrations using finite element modeling).

6. Hardware limitations (HL): Hardware limitations can be a major source of constraints

for FDM and these can usually be observed or measured easily.

7. Calculations (CA): Some constraints may be able to calculated directly, such as ratios

and relationships between geometric elements.
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8. Geometry check (GC): Given the numerous excellent sets of design feature catalogs

and experimental testing methods, checking that geometry meets the constraints is

not difficult to accomplish. This may be done automatically during design or the

check may be formulated as a constraint.

Table 3.3: Manufacturability constraints mapped from the manufacturing constraints and manufacturing
consideration for the FDM process. These constraints are subject to three major assumptions: (1) The
system has three degrees of freedom, (2) the extruder has a fixed round extrusion nozzle, and (3) the printer
hardware is properly tuned

Constraint Type Form Parent(s) Method Notes

1. Acceptable mate-

rial purity and qual-

ity

CN MS MCL1-1 SD

Usually need the highest quality mate-

rial possible, but may be traded off for

some other objective such as cost or or-

der time

2. Filament addi-

tives and colors
CF-CN MS

MCL1-1

MCL2-6

MCL2-7

PO1

For most open-source materials, the

presence of additives and dyes is not

a major concern, with the exception of

PLA [89]. Most commercial or propri-

etary filaments contain additives which

may or may not be known the to the

designer.

Flag 1: It is often only possible to ob-

tain partial information regarding this

constraint.

3. Environmental

conditions
PP-CN BP

MCL1-1

MCL2-6

MCL2-7

OB

Standard environmental conditions

such as temperature, humidity, and air

pressure

4. Minimum and

maximum extruder

temperature

PP-CN BP

MCL1-2

MCL1-3

MCL1-4

MCL1-5

MCL1-6

MCL4-3

FE,

M&S, HL

Common printing parameter that can

be used as a constraint. The min-

imum temperature cannot be lower

than the glass transition temperature

or higher than the boiling point of the

polymer material. However, typically

much more narrow range in which the

material flows effectively and can re-

polymerize quickly once deposited.

Continued on next page
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Table 3.3 – Continued from previous page

Constraint Type Form Parent(s) Method Notes

5. Ambient temper-

ature
CF-CN BP

MCL1-2

MCL1-3

MCL1-4

MCL1-5

MCL1-6

MCL4-3

OB

The ambient temperature may be the

temperature around the working envi-

ronment or may be the local surround-

ing temperature only (in the case where

an enclosure is used).

6. Minimum and

maximum print

speed

PP-CN BP

MCL1-2

MCL1-3

MCL1-4

MCL1-5

MCL1-6

MCL3-7

MCL4-3

FE,

M&S, HL

Common printing parameter that can

be used as a constraint. Print speed

is a function of the system dynamics

and the molten polymer rheology. In

general, faster print speed will result in

faster completion but also rougher sur-

face finish, lower dimensional accuracy,

and increased incidences of defects in

the final part. This is a trade-off that

must be found for every material used.

7. Minimum and

maximum build

plate temperature

PP-CN BP

MCL1-2

MCL1-3

MCL1-4

MCL1-5

MCL1-6

MCL4-3

FE,

M&S, HL

Common printing parameter that can

be used as a constraint. For many ma-

terials (particularly amorphous glassy

polymers such as ABS and polycarbon-

ate), the build plate heater helps keep

a large section of the part at a tem-

perature close to (but below) that of

the glass transition temperature of the

material. This helps to naturally dissi-

pate residual stresses (for polymer ma-

terials) and prevent warping and pre-

mature bed detachment. Heating above

glass transition temperature can cause

melting/drooping of features and re-

duce dimensional accuracy.

8. Jerk and acceler-

ation settings
CF-CN BP

MCL1-2

MCL1-3

MCL1-4

MCL1-5

MCL1-6

MCL3-7

MCL4-3

SD, FE,

CA, HL

Jerk and acceleration settings are not

commonly considered by designers but

are the best way to control/mitigate

system vibration without modifying the

basic hardware. Higher settings al-

low faster printing but decrease dimen-

sional accuracy and increase the prob-

ability of print defects.

Continued on next page
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Table 3.3 – Continued from previous page

Constraint Type Form Parent(s) Method Notes

9. Crystallinity af-

ter printing
CF-CN MS/BP2

MCL1-7

MCL4-3
FE, M&S

The final polymer structure of the en-

gineering plastic used has a lot of influ-

ence on the final mechanical properties,

the degree of anisotropy, and the recy-

clability of the material. For many crys-

talline and semi-crystalline polymers,

this can be controlled by controlling the

cooling rate and with additives.

Flag 2: Typically an amorphous or

naturally semi-crystalline material will

be selected for use, but can also be par-

tially controlled when setting the print-

ing parameters, so could be defined in

the form of either material selection or

build parameters.

10. Maximum %

shrinkage allowed on

cooling

CF-CN MS

MCL2-3

MCL2-4

MCL2-5

SD, FE,

M&S, CA
Stakeholder requirement

11. Defect % toler-

ance
CF-CN BP

MCL4-1

MCL6-2

MCL6-3

SD Stakeholder requirement

12. Degree of homo-

geneity in structure
CF-CN BP/MS3

MCL6-1

MCL6-2
FE, M&S

The higher the degree of homogeneity,

the lower the anisotropy in the final

part [90,91].

Flag 3: Usually going to be determined

by the build parameters but material

choice may also have a significant influ-

ence.

13. Realistic mini-

mum and maximum

element packing

density

PP-CN BP/MS4

MCL4-8

MCL2-3

MCL2-4

MCL2-5

MCL2-6

MCL2-7

MCL4-3

MCL6-1

FE, M&S

Flag 4: Typically set using a combi-

nation of density and overlap parame-

ters during printing setup, but can also

be dependent on material choice. For

example, amorphous materials such as

ABS and PC can have regular pack-

ing densities greater than 99% while

the same print settings produce 94-95%

density for PLA [29]

Continued on next page
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14. Support avail-

able when needed?
PP-CN GS

MCL4-5

MCL5-17

MCL6-10

GC Basic requirement

15. Support remov-

able?
PP-CN GS

MCL4-5

MCL5-17

MCL6-10

GC Basic requirement

16. Support does

not interfere with

function?

PP-CN GS

MCL4-5

MCL5-17

MCL6-10

GC Basic requirement

17. Minimum and

maximum extruder

nozzle size

PP-CN BP

MCL1-3

MCL1-4

MCL1-6

MCL2-1

HL, FE,

M&S

Common printing parameter that can

be used as a constraint.

18. Nozzle material CF-CN BP5 MCL2-2 SD, FE

Nozzle material is often a confound-

ing factor that is not considered during

print setup. However, the choice of noz-

zle material (typically brass or stainless

steel, but can include others) can influ-

ence how much heat is retained in the

immediate area of the extrusion, which

can affect the rheological properties of

the melt pool.

Flag 5: Really can only be controlled

as a build parameter.

19. Minimum and

maximum deposited

element width

PP-CN BP
MCL3-2

MCL3-3

HL, FE,

M&S

In most pre-processing software pack-

ages such as Ultimaker® Cura®, the

element width can be varied signifi-

cantly by over- or under-extruding out

of the given nozzle. While calculat-

ing the nozzle diamater and the air

gap/overlap between elements is the

best way (in general) to lay out the ele-

ments, varying the element width here

can be useful for materials which shrink

rapidly (such as PLA with metal pow-

der). This can also be used to improve

the effective packing density (and ho-

mogeneity) in a part.

Continued on next page
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20. Minimum and

maximum layer/ele-

ment height

PP-CN BP
MCL3-2

MCL4-4

HL, FE,

M&S

Common printing parameter that can

be used as a constraint.

21. Variability in

layer height
CF-CN GS6

MCL3-2

MCL4-4

SD, HL,

FE, CA

Generally, the layer height is consis-

tent for a single part or at least within

each layer. However, this is not nec-

essary since some freedom is available

here even when using a standard 3 DoF

system.

Flag 6: It probably is better to con-

sider this a geometric constraint (due

to its influence on the rest of the part)

instead of a printing parameter even

though it can be accomplished with cus-

tom g-code.

22. [Element]

Height to width

ratio

CN GS MCL3-2 FE, M&S

Function of the layer height and nozzle

size in most cases. The ideal ratio de-

pends on the material choice but should

never be larger than H/W = 2/3 in the

experience of the authors. When higher

print speed is not available or too risky

(due to vibration) using larger elements

will decrease manufacturing time; how-

ever, this may require a trade-off with

surface finish and internal void size.

23. [Element] Ele-

ment layout restric-

tions (for non-raster

infill layout)

PP-CN BP/GS7

MCL3-4

MCL3-5

MCL3-6

MCL4-9

MCL4-12

HL, FE,

M&S, GC

When not using a raster-based layout

for the infill, various constraints may

be necessary to ensure that the infill is

stable. Generally, this will include all of

the parameters as a raster-based layout

(gaps/overlaps, max and min element

lengths, element size, etc.) except the

minimum and maximum raster angles.

Flag 7: Depending on the layout and

parameters, this could be considered ei-

ther a printing parameter constraint or

a geometric constraint.

Continued on next page
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24. [Element] Mini-

mum and maximum

raster angle (for

raster layout)

PP-CN BP
MCL4-9

MCL4-12

HL, FE,

M&S, GC

Common printing parameter that can

be used as a constraint. It is almost

always set as part of the build parame-

ters.

25. [Element] Mini-

mum stand-alone el-

ement length

CF-CN GS/BP8 MCL3-1
HL, FE,

M&S

The minimum length of a single element

so that it is stable and does not warp

or curl. It may or may not be attached

to another polymer element.

Flag 8: This may be a geometric con-

straint (i.e., determine the minimum

length scale for the part or feature) or

may be set during the printing param-

eters.

26. [Element] Mini-

mum and maximum

element corner/turn

radius

CF-CN GS/BP8 MCL3-4
HL, FE,

M&S

The minimum turn radius of a single

element so that it is stable and does not

warp or curl. It may or may not be

attached to another polymer element.

See #25, Table 3.3 for flag.

27. [Element] Mini-

mum contact length

with shell/contour

CF-CN GS/BP8 MCL3-11
HL, FE,

M&S

Same as #25 except based on single ele-

ment in contact with other printed ma-

terial. See #25, Table 3.3 for flag.

28. [Element] Mini-

mum contact length

with previous layer

(infill)

CF-CN GS/BP8 MCL3-9
HL, FE,

M&S

Same as #25 except based on single ele-

ment in contact with other printed ma-

terial. See #25, Table 3.3 for flag.

29. [Element] Mini-

mum contact length

with previous layer

(shell/contour)

CF-CN GS/BP8 MCL3-10
HL, FE,

M&S

Same as #25 except based on single ele-

ment in contact with other printed ma-

terial. See #25, Table 3.3 for flag.

30. [Element] Lim-

its on overlap or air

gap with neighbor-

ing elements

PP-CN BP MCL3-5
HL, FE,

M&S

Common printing parameter that can

be used as a constraint. Generally, pos-

itive values represent air gaps and neg-

ative values represent overlaps.

31. [Element] Max-

imum bridge dis-

tance

CF-CN GS MCL3-6
HL, FE,

M&S

The maximum distance that a single el-

ement can bridge an unsupported gap

without collapsing.

Continued on next page
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32. Shell thickness PP-CN BP

MCL4-10

MCL5-6

MCL5-7

MCL5-8

SD, HL,

FE, M&S

Common printing parameter that can

be used as a constraint. May be a sin-

gle shell with a fixed width or several

shells with an overlap or air gap be-

tween them. Two times the minimum

shell thickness plus the minimum infill

distance for a design defines the lower

bound on the length scale for a feature.

33. Shell-infill ratio CF-CN GS9 MCL4-11
SD, FE,

M&S

Common printing parameter that can

be used as a constraint. The shell-

infill ratio will determine the directional

strengths in the FDM structure, espe-

cially in cases with large gaps or low-

density infill.

Flag 9: Best considered a geometric

constraint. If control of this is desired

during the design, the ratio between the

two areas will be specified instead of

being automatically generated based on

build parameters.

34. [Layer] Max-

imum bridge dis-

tance

CF-CN GS MCL4-7
HL, FE,

M&S

The maximum unsupported distance

between two edges which can be

bridged by a single layer.

35. [Layer] Max

overhang distance
CF-CN GS MCL4-6

HL, FE,

M&S

The maximum unsupported overhang

distance from a single edge. This

is heavily dependent on the material

properties and rheology of the poly-

mer, as well as the printing parame-

ters [92]. The overhang angle is impor-

tant as well, but usually addressed by

Constraint #40, Table 3.3 and similar.

36. Minimum num-

ber of layers
PP-CN BP MCL5-3

HL, FE,

M&S

Standard build parameter which may

be used as a constraint

Continued on next page
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37. Minimum floor

and roof thickness
PP-CN BP MCL5-4

HL, FE,

M&S

Standard build parameter which may

be used as a constraint. Only rele-

vant if (1) the infill used is not the

same density as the roof and floor or

(2) a different infill pattern is used. If

100% density is used and/or a consis-

tent infill pattern is used throughout

the printed height, the floor and roof

are not needed.

38. Feature geome-

try: Stress concen-

trations

CF-CN GS
MCL5-9

MCL5-14
M&S, GC

Geometric constraints based on mod-

eling, material properties, and design

rules developed for specific AM pro-

cesses. For example, sets of rules which

would govern such a feature can be

found in works by [84–86,93]

39. Feature geome-

try: Bridges
CF-CN GS

MCL5-10

MCL5-14
M&S, GC See #38, Table 3.3.

40. Feature geome-

try: Overhangs
CF-CN GS

MCL5-11

MCL5-14
M&S, GC See #38, Table 3.3.

41. Feature ge-

ometry: Holes and

threads

CF-CN GS

MCL5-12

MCL5-14

MCL6-7

M&S, GC See #38, Table 3.3.

42. Feature geome-

try: Thin walls
CF-CN GS

MCL5-13

MCL5-14
M&S, GC See #38, Table 3.3.

43. Dimensional er-

ror [Element with

shell or contour]

CF-CN BP MCL3-12
HL, FE,

CA

Allowable dimensional error could be

based on the size of the part being

made, the expected tolerances and re-

peatability, and other considerations.

This is an important consideration for

design and one that may drive build pa-

rameters and design decisions directly.

One of the weaknesses of FDM is the

vibration during mechanical motion, as

well as the open-loop position control

system. The exact amount of error

can be calculated using simple exper-

iments for a specific machine and ma-

terial, but may also include effects from

material shrinkage and software/g-code

errors [5, 94–96].

Continued on next page
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44. Dimensional er-

ror [Layer with shell

or contour]

CF-CN BP MCL4-13
HL, FE,

CA
See #43, Table 3.3.

45. Dimensional er-

ror [Element with

previous layer]

CF-CN BP MCL3-13
HL, FE,

CA
See #43, Table 3.3.

46. Dimensional er-

ror [Layer with pre-

vious layer]

CF-CN BP MCL4-14
HL, FE,

CA
See #43, Table 3.3.

47. Dimensional

error [Element

with neighboring

element]

CF-CN BP MCL3-14
HL, FE,

CA
See #43, Table 3.3.

48. Dimensional

error [Layer with

other out-of-layer el-

ements]

CF-CN BP MCL4-15
HL, FE,

CA
See #43, Table 3.3.

49. Dimensional er-

ror [Features]
CF-CN BP MCL5-2

HL, FE,

CA
See #43, Table 3.3.

50. Allowable un-

certainty in essential

material properties

CF-CN MS MCL4-2 SD, FE

Stakeholder decision which may be the

driver of some disparity between mod-

eled and realistic performance for some

parts.

51. Min feature

length scale to dissi-

pate heat/stress sta-

bly

CN GS

MCL5-1

MCL4-3

MCL2-3

MCL2-4

MCL2-5

MCL5-1

FE, GC

For many design problems using FDM,

this is the most important but most

different constraint to figure out. In

most cases it is best to use physical

experiments to determine the smallest

length scale [91, 97, 98]. In general, the

smaller the length scale, the more larger

the possible design space becomes. The

rule of thumb (in the experience of the

authors) is to use two shells around a

feature plus a single shell-width worth

of infill; given a nozzle size of 0.5 mm,

the length scale is then 2.5 mm for

any standard features. In some cases,

particularly when using well-supported

thin walls [99–101], it may be much

smaller and still be stable.

Continued on next page
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52. Surface prep

and repair access
CN GS

MCL5-15

MCL6-5

MCL6-8

M&S, GC Basic requirement

53. Allowable sur-

face roughness
CF-CN BP/MS10

MCL5-15

MCL6-5

MCL6-8

SD, HL,

FE, M&S

Basic requirement.

Flag 10: Typically would be controlled

via the build parameters (and post-

processing, if needed), but could also

be influenced by material selection.

54. Inspection,

VV&A + Certifica-

tion

CF-CN MS/GS11
MCL6-5

MCL6-6

SD, OB,

HL, FE,

M&S,

CA, GC

Basic requirement for any part that will

be used for a practical or real use be-

yond a prototype.

Flag 11: In most cases, with re-

quire consideration of both material

choice and geometric constraints; for

a complete job, both destructive and

non-destructive evaluation methods are

need.

To be useful in design, the constraints must be formulated in terms of the problem

requirements. For mathematical optimization problems, these could be formulated as math-

ematical inequality and equality constraints and included in the problem directly. For other

kinds of design problems, the constraints may be used to develop or refine design rules, guide

requirement definition, and help drive success criteria for the project. Using the generated

constraints in Table 3 as a checklist, an effective approach to formulating and using valuable

FDM manufacturability constraints is:

1. Collection: Note all of the relevant manufacturability constraints, their type, and

their form. Formulate or define them in the same form as the rest of the problem.

2. Refinement : Decide which constraints may be simplified and which require additional

information (such as material properties or machine performance behavior)

3. Completion: For the constraints which require additional information, perform the

tests or collect data from the published literature
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4. Condensation: Remove all the duplicate, redundant, and inactive constraints

5. Application: Apply to the problem at hand

6. Sensitivity analysis: For any simplifications or assumptions, a sensitivity analysis

should done in some form.

3.3 FDM Materials Selection

Before the design process can proceed, it is necessary to identify the constraints in more

detail. In most cases, this involved selecting a material or set of materials and deriving

the constraints for each. For the work presented in this dissertation, three materials will

be used throughout: (a) Acrylonitrile butadiene styrene (ABS), (b) polycarbonate (PC),

and (c) polylactic acid (PLA). The selection process for materials focused on several major

selection criteria. The main needs were:

1. The materials needed to be common enough so that there was some information about

their printing behavior and final properties

2. The materials needed to be able to print smoothly and reliably at the meso-scale

3. The selected materials needed to be pure (as far as possible) and not contain any

major additives or composite materials (such as carbon fibers or metal powder)

4. The materials needed to considered at least somewhat brittle in the AM literature

and experience of the author

5. The materials needed to be able to be printed using the existing equipment with a

basic enclosure (discussed in more depth in the Materials and Methods section of

Chapter 5) limited to an extrusion temperature of 250◦ C.

In addition to the three main materials selected for use, other materials were investigated,

primarily polyamide (nylon), high-impact polystyrene (HIPS), polyethylene terephthalate

glycol (PETG) but were found to be infeasible during the initial investigation. Figure 3.13

126



ABS PC PLA Nylon HIPS PETG

Figure 3.13: Tensile testing samples of the six materials considered for the work presented in this dis-
sertation. ABS, PC, and PLA were selected for use while the others were removed from consideration, as
described in Section 3.3. and Chapter 5.

shows samples of the six materials printed from the same rolls of filament and using the

same printing hardware as the experimental samples shown in Chapter 6.

The environmental conditions in central Illinois during the Fall 2020 and Spring 2021

semesters were not appropriate for processing nylons due to wide and unpredictable vari-

ations in temperature and humidity, even within air conditioned (but old) buildings. The

campus access limitations due to the University’s COVID-19 response during part of this

time also caused some delays. Nylon is known to be extremely sensitive to environmental

conditions [5,29,102–105] and the brand purchased for this work (natural eSun® ePA-175-

N) was very much so. During screening experiments, the material behaved erratically and

unpredictably making it unsuitable for the current design applications. Several different

approaches to mitigate this were tried, including conditioning samples in three different

buildings of various ages (the author’s home, the basement of the Mechanical Engineering

Laboratory, and a top-floor lab in the Transportation Building) and using a dehydrating

chamber to prepare and store the samples. All conditioning was done in an air conditioned

environment with a steady temperature of 23− 24◦ C (with an observed humidity ranging

from 10% to 70% with rapid changes - this is discussed further in Chapter 6). After exten-

sive testing (∼60 samples) and discussion with advisors, it was decided that nylon would

not be a feasible material for the current research effort.

The HIPS was found during some initial tests to be too soft and flexible for the planned
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work. Thinking that there were some similar effects in HIPS as observed with the nylon,

samples were conditioned and dehydrated, but to little effect. In addition, no information

in the AM literature beyond what was already published by the author [5,29,71] was found,

so independently-set expectations of behavior were not possible. Since this material did not

meet the selection criteria, it was rejected early in the planning process.

The other main material that was considered when setting up the work described in

this dissertation was PETG, a glassy thermoplastic which is considered both amorphous

and semi-crystalline depending on the processing conditions. It was considered to be a good

choice; however, at the time when the materials for this research were purchased not enough

of the material was available at reasonable price to complete the planned experiments.

After it became widely available again from a good quality brand, the work with the other

materials was already well underway. Therefore, it was decided to place work based on

PETG into the planned future work and proceed with three good materials.

3.4 FDM Manufacturability Constraints: Determination

3.4.1 General Constraint Set

Now that materials have been selected, Table 3.4 shows the 54 identified constraints and

how they are or can be satisfied using a mixture of assumptions, literature review, and

physical experiments on the materials to be used.

Table 3.4: FDM manufacturability constraint set based on material selection and design approach for
printed parts in this dissertation. Note that the geometric constraints were more easily established since the
printed parts for this work primarily consist of simple standard fracture specimens. Some of the case studies
in Chapter 6 will expand several of these constraints further than what is discussed here.

Constraint Values/How Met

1. Acceptable material pu-

rity and quality

For the work presented in this dissertation, only pure ABS, PC, and PLA sourced

from Hatchbox were used for all the studies. Based on long history of use by the

author, these were considered to be the best quality raw materials available within

the initial budget for the work. Up to four 1-kg rolls of each material were used for

the work presented here and in Chapters 5 and 6; care was taken to use the same

color, same settings, and same storage technique for all the rolls. When possible,

rolls were purchased in groups to reduce possible batch variability.

Continued on next page
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2. Filament additives and

colors

See #1, Table 3.4

3. Environmental condi-

tions

As noted in the FDM Materials Selection section, the environmental conditions

during this research were sometimes hard to control. When possible the limits for

polymer materials from typical ASTM standards (e.g., 22−24◦ C and 40-60% relative

humidity) were followed. Possible violations of this constraint are discussed in for

individual experiments in Chapter 5.

4. Minimum and maxi-

mum extruder temperature

The maximum extruder temperature was one of the material selection criteria for

this work. The highest printing temperature available was 250◦ C. Since extruder

temperature was not a design variable for this work, it was considered a parameter

and set to fixed values. See Chapter 5 for further details.

5. Ambient temperature See #3, Table 3.4. All printing was done inside of an enclosure which was not heated

directly but provided a more consistent environment. See Chapter 5 for more details

on the design of the enclosure.

6. Minimum and maxi-

mum print speed

Similarly to the extrusion temperature, the values were fixed and so constraints were

not necessary.

7. Minimum and maxi-

mum build plate tempera-

ture

Like the extrusion temperature and print speed, the build plate temperature was

defined to be a print parameter and so was not subject to constraints for the present

work.

8. Jerk and acceleration

settings

Jerk and acceleration settings were treated as fixed parameters for all of the mate-

rials.

9. Crystallinity after print-

ing

Of the three materials used to complete the work presented in this dissertation, ABS

and PC are known to be amorphous, while PLA can vary from partially amorphous

to semi-crystalline depending on the printing parameters [106–111]. One of the

themes which will be explored in Chapter 5 will be the difference in mechanical

behavior between the amorphous and semi-crystalline materials. Therefore, it was

important that the PLA be as close to semi-crystalline as possible. To accomplish

this, a headed bed was used for the PLA and it was printed inside of an enclosure

to allow it to cool as slowly as possible during printing.

10. Maximum % shrinkage

allowed on cooling

The manufacturer of the filament used in the presented studies promised an error of

less than 2.86% including cooling-related shrinkage. The true rate of shrinkage will

be explored in terms of dimensional accuracy later in this section and in Chapter 5.

The true rate of shrinkage should be the value given by the manufacturer or less.

11. Defect % tolerance Since all of the main studies in this dissertation involve fully-dense printed parts

that have notches for testing, it was considered to not be an important constraint.

The likelihood that a printing defect will dominate the notch for each case is very

low. In the few cases in Chapters 5 and 6 where defect presence could be a major

issue, this will be discussed for individual cases.

Continued on next page
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12. Degree of homogeneity

in structure

Since all of the explored case (except some case studies in Chapter 4 which is for

illustrative purposes) were printed fully dense. Therefore, the degree of homogeneity

is as much as it can be naturally; ideally, all variations in homogeneity are designed

and contribute to the properties of the architected materials.

13. Realistic minimum and

maximum element packing

density

The packing density should be no less than 95% for the amorphous materials and

90% for semi-crystalline materials (stakeholder choice). This parameter will be ex-

perimentally determined in Chapter 5 during the basic material characterization.

14. Support available when

needed?

Support material will not be used for the work presented in this dissertation.

15. Support removable? See #14, Table 3.4

16. Support does not inter-

fere with function?

See #14, Table 3.4

17. Minimum and maxi-

mum extruder nozzle size

The constraint for this was set by the available nozzle sizes, which ranged from 0.2

mm to 1.0 mm in increments of 0.05 mm. The nozzles selected for use were 0.6 mm

and 0.8 mm, depending on need for each experiment. The choice of nozzle sizes will

be explored in more depth in Chapter 5.

18. Nozzle material This parameter was fixed. Only tool steel nozzles were used. More information

about nozzle selection is provided in Chapter 5.

19. Minimum and max-

imum deposited element

width

In the experience of the author, the element width can be up to 0.05 mm wider

or more narrow than the nozzle size on each side of the element without affecting

printability. In the present work, every effort was made when tuning the FDM

machine to use a realistic deposited element width equal to that of the nozzle.

20. Minimum and maxi-

mum layer (and element)

height

For the materials in use, experience of the author and common best practice directs

that the element height-to-width ratio should not be larger than 2/3. Element width

is determined mainly the nozzle size, so layer height should be selected accordingly.

21. Variability in layer

height

Since the machine for use in this dissertation was essentially new, good quality, and

was carefully tuned, this was not considered a significant factor for printing quality.

22. [Element] Height to

width ratio

See #20, Table 3.4

23. [Element] Element lay-

out restrictions (for non-

raster infill layout)

For the present work with dense printed materials with designed layouts, no specific

layout restrictions were anticipated beyond what will be imposed by other con-

straints.

24. [Element] Minimum

and maximum raster angle

(for raster layout)

Raster angle for the work described in this dissertation was limited to range from

0◦ to 90◦. However the only raster angles used in this work were 0◦ and 45◦. More

information about this decision is provided in Chapter 5.

25. [Element] Minimum

stand-alone element length

Minimum element print distance for stable print on a clean polished glass plate with

no adhesive or contact with other polymer material. Experimentally determined,

see Section 3.4.2

Continued on next page
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26. [Element] Minimum

and maximum element cor-

ner/turn radius

Since the radius will be determined by the mechanics of the process and not the

adhesion to the build plate, this value is assumed to be valid for first-layer print

and printing on top of existing polymer materials. Experimentally determined, see

Section 3.4.2

27. [Element] Minimum

contact length with shell/-

contour

Measured as the minimum printed distance needed to ensure stable printing on top

of existing polymer material. Experimentally determined, see Section 3.4.2

28. [Element] Minimum

contact length with previ-

ous layer (infill)

Since the printing is being done on top of existing material, it is assumed that this

value with be the same as that determined for #27, Table 3.4

29. [Element] Minimum

contact length with previ-

ous layer (shell/contour)

Since the printing is being done on top of existing material, it is assumed that this

value with be the same as that determined for #27, Table 3.4

30. [Element] Limits on

overlap or air gap with

neighboring elements

Since almost all of the printed parts presented in this dissertation are presented

full-density, the maximum air gap will be zero. A small 2% overlap was used for all

printing.

31. [Element] Maximum

bridge distance

Assumed to be the same as the maximum bridge length for a layer or better. See

#34, Table 3.4

32. Shell thickness Unless otherwise stated, all of the prints shown in this dissertation will have only

one shell. This is to minimize the impact of the shell itself and save printing time.

33. Shell-infill ratio See #32, Table 3.4

34. [Layer] Maximum

bridge distance

Experimentally determined, see Section 3.4.2

35. [Layer] Max overhang

distance

It is not expected that any overhangs will be used in any of the geometries presented

in this dissertation. If necessary, it is reasonable to assume that the maximum

unsupported overhangs with the three materials in question is zero; for a supported

overhang, the support material would create a bridge and so not would not longer

be an overhang design problem.

36. Minimum number of

layers

Based on the experience of the author, a minimum of 5 layers should be printed for

structural parts. Soft constraint for most FDM cases.

37. Minimum floor and

roof thickness

With the designed element layouts for most of the work presented in this dissertation,

floor and roof layers will not be used. However when they are it is best to use at

least three layers for each in the experience of the author.

38. Feature geometry:

Stress concentrations

No major stress concentrations exist in the printed parts for this work except those

designed for fracture testing.

39. Feature geometry:

Bridges

See #34, Table 3.4.2

40. Feature geometry:

Overhangs

See #35, Table 3.4.2

Continued on next page
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Constraint Values/How Met

41. Feature geometry:

Holes and threads

Since no toleranced holes and no threads will be used in the present work, this

constraint is not relevant.

42. Feature geometry:

Thin walls

Since no thin walls will be used in the present work, this constraint is not relevant.

43. Dimensional error [Ele-

ment with shell or contour]

It is assumed for this work that the expected dimensional error will be the same

percentage as that which was experimentally determined for macro-scale features.

See #49, Table 3.4

44. Dimensional error

[Layer with shell or con-

tour]

It is assumed for this work that the expected dimensional error will be the same

percentage as that which was experimentally determined for macro-scale features.

See #49, Table 3.4

45. Dimensional error [El-

ement with previous layer]

It is assumed for this work that the expected dimensional error will be the same

percentage as that which was experimentally determined for macro-scale features.

See #49, Table 3.4

46. Dimensional error

[Layer with previous layer]

It is assumed for this work that the expected dimensional error will be the same

percentage as that which was experimentally determined for macro-scale features.

See #49, Table 3.4

47. Dimensional error [El-

ement with neighboring el-

ement]

It is assumed for this work that the expected dimensional error will be the same

percentage as that which was experimentally determined for macro-scale features.

See #49, Table 3.4

48. Dimensional error

[Layer with other out-of-

layer elements]

It is assumed for this work that the expected dimensional error will be the same

percentage as that which was experimentally determined for macro-scale features.

See #49, Table 3.4

49. Dimensional error [Fea-

tures]

Experimentally determined, see Section 3.4.2.

50. Allowable uncertainty

in essential material prop-

erties

See #1, #2, and #3, Table 3.4.

51. Min feature length

scale to dissipate

heat/stress stably

Based on author experience and previous work [5,53,54], the minimum macro-scale

feature scale should be 2.5 times the nozzle diameter for any parts which are taller

than the part length scale. An exception to this is for thin-walled structures which

do not need the same support due to geometry which keeps the part stable during

printing [99] or 2.5D parts with stable features.

52. Surface prep and repair

access

Not relevant to the present work

53. Allowable surface

roughness

Not relevant to the present work

54. Inspection, VV&A +

Certification

Not relevant to the present work
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3.4.2 Detailed Constraint Determination

In this section, the experimental determination of constraints 25, 26, 27, 31, 34, and 35 is

presented. In addition, dimensional error (constraints 10 and 49) analysis on a previously

published dataset [5] is completed to find the values and confidence intervals for the material

used in this work. Note that the equipment used in this section is the same as used to

produce samples tested in Chapter 5 and the case studies presented in Chapters 3, 4, and

6. In all cases, the print bed was heated (80◦ C for ABS and PC and 60◦ C for PLA -

pre-heated for 10 minutes before printing). The extrusion temperatures were 230◦ C for

ABS, 250◦ C for PC, and 210◦ C for PLA).

3.4.2.1 Minimum Element Length on Glass Plate

In order to establish the minimum printed element length needed to securely print on a non-

polymer surface, a series of prints were made on a clean, polished glass plate (Figure 3.14a).

The length of any curled or separated material was measured. The test was repeated four

times for each material, with the results shown in Figure 3.14b. The element width was

0.6 mm and height was 0.2 mm. No adhesive or other aid was used on the bed; the only

treatment was a careful cleaning with isopropyl alcohol between runs. Note the significant

difference in performance between the amorphous and semi-crystalline materials.

Deposited element (PLA)

Ruler - 0.5 mm increments

End with poor 

adhesion

(a)

(b)

Deposition direction

Figure 3.14: (a) Printed element on glass plate (PLA shown) and (b) minimum printed distance needed
for adhesion to glass plate.
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3.4.2.2 Minimum Element Corner Radius

To identify the minimum corner radius possible with the FDM, a 25-mm square film con-

sisting of two printed layers and a single shell printed at 50 mm/s was examined under a

microscope. Each corner of each film was examined, for a total of four observations for

each material. The results are shown in Figure 3.16; it was observed for all cases that the

corner radii were approximately the same size as the nozzle radii; therefore, a reasonable

conclusion is that the lower limit of corner radii is the width of the extrusion nozzle. The

element width was 0.6 mm and height was 0.2 mm.

Deposited element (PLA)

Ruler - 0.5 mm increments

End with poor 

adhesion

(a)

(b)

Deposition direction

(a) (b) (c)1 mm 1 mm 1 mm

Figure 3.15: Example corners for printed samples of (a) ABS, (b) PC, and (c) PLA.

3.4.2.3 Minimum Element Length on Previous Material

A single thin wall 25-mm high and wide was printed to estimate the minimum length of

adhesion between the deposited and previously printed material. In all cases, the adhesion

was excellent and any observed error was much smaller than the nozzle with (Figure 3.16).

The element width was 0.6 mm and height was 0.2 mm.

Deposited element (PLA)

Ruler - 0.5 mm increments

End with poor 

adhesion

(a)

(b)

Deposition direction

(a) (b) (c)1 mm 1 mm 1 mm

(a)

1 mm

Element

size

(c)

1 mm

Element

size

(b)

1 mm

Element

size

Figure 3.16: Edge samples to estimate the gap (if any) at the end of each layer of (a) ABS, (b) PC, and
(c) PLA.
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From the presented cases, it is reasonable to conclude that setting the minimum polymer-

polymer contact length to be the nozzle width would give a conservative constraint. For

the specific materials here, a value 0.10-0.25 times the nozzle width would also likely be a

valid constraint.

10 mm 9 mm 8 mm 7 mm 6 mm 5 mm 4 mm 3 mm 2 mm 1 mm

(a)

(b)

A
B

S

70 mm/s

20 mm/s

(d)

P
L

A

70 mm/s

20 mm/s

P
C

(c)

20 mm/s

70 mm/s

Figure 3.17: Bridge length test setup and results. (a) Sample geometry, (b) results for ABS, (c) results
for PC, and (d) results for PLA.
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Table 3.5: Some reported bridge lengths from the FDM literature compared with results found in this
work. Note that only PLA-based studies were found in the literature, while studies for all three materials
under consideration were completed.

Study Material Stable Bridge Length

[112] PLA 0.5-5.5 mm
[113] PLA 0.5-4.0 mm
[114] PLA 0.5-5.5 mm

Current (70 mm/s) ABS 3.0 mm
Current (70 mm/s) PC 7.0 mm
Current (70 mm/s) PLA 3.0 mm
Current (20 mm/s) ABS 6.0 mm
Current (20 mm/s) PC 8.0 mm
Current (20 mm/s) PLA 4.0 mm

3.4.2.4 Maximum Element Bridge Distance

The maximum element bridge distance was estimated using the geometry shown in Fig-

ure 3.17a, where the gap varied from 1 mm to 10 mm in 1-mm increments. Two different

print speeds were used (10 mm/s and 50 mm/s) for each material. The bridge length has

been examined in several studies, which were reviewed in Table 3.5 in order to compare

with the results found here. Note the very wide variance between materials, even when

controlling for the print speed. As seen in Figure 3.17, the longest stable bridge was taken

as the maximum approximate bridge length for that material/speed combination.

3.4.2.5 Dimensional Error

To find the expected dimensional error, a dataset published previously by the author and

colleagues [5, 115] was analyzed (Figure 3.18). Note that this data analysis is new and was

not part of the original studies that reported the dataset. It was based on the measurement

of ASTM-specified IZOD testing samples with the nominal Z, C, and E dimensions coming

from ASTM-D256-10(2018) (Figure 3.18). Note that the printing parameters were slightly

different (most importantly, the element width was 0.4 mm with a height of 0.2 mm) from

what is used elsewhere in this dissertation, but it is assumed that the error between what is

reported in this study and the current conditions is trivial; see the discussion on sensitivity

analysis later in this chapter. For the three materials examined, the observed errors (both

raw and root mean squared (RMS) error) were equal to or smaller than the nozzle size.
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Figure 3.18: True versus nominal dimensions for Z, C, and E as well as the root mean squared error [5,115].

3.4.3 Sensitivity Analysis

In this sensitivity analysis (Table 3.6), the assumptions and simplifications from Table 3.4

and elsewhere in this chapter are formally laid out. In each case, the consequences and

impact of a particular assumption or simplification being incorrect or poor is presented.

Table 3.6: Sensitivity analysis on assumptions for the presented constraint set to be applied to the work in
this dissertation. If a mitigation strategy has been put in place for the work presented in this dissertation,
it will be specified. If not (mitigation not needed or not possible), the entry for that assumption will be
”None”.

Assumption Risk if Wrong Likelihood Mitigation

1. The material used in this work

is of good, consistent quality

Small increase in variability and

error in the final results of any

study

Low to moder-

ate

Select material colors

and brands with good

historical behavior

Continued on next page
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Table 3.6 – Continued from previous page

Assumption Risk if Wrong Likelihood Mitigation

2. Using the same color and brand

of filament for all cases in this dis-

sertation will eliminate or minimize

dye and manufacturing impacts on

the rolls of raw filament

Small increase in uncertainty

about measured properties

Low None

3. Environmental conditions re-

quired for standardized printing

and testing can be accomplished

Increase in uncertainty concern-

ing measured properties and be-

havior

Moderate Careful conditioning

of specimens and

monitoring of envi-

ronmental conditions

4. Jerk and acceleration can be

treated as parameters and con-

trolled during process

Effects on material placement,

increase of dimensional error,

poorer surface finish, more un-

certainty in final material prop-

erties

Low Careful settings and

regular setting checks

during printing

5. Amorphous materials will not

fundamentally change their struc-

ture before and after printing

Material properties can change

and become unpredictable

Very low None

6. Semi-crystalline materials will

not fundamentally change their

structure before and after printing

Material properties can change

and become unpredictable

Moderate to

high

Careful process pa-

rameter selection, as

well as full descrip-

tion of risk to reader

of described results.

7. The expected shrinkage of the

material on cooling is no more than

that reported by the filament man-

ufacturer

Less control over element geom-

etry and repeatabilty and lower

effective bulk density

Low The manufacturer-

given value is likely

conservative, so no

mitigation taken in

this work.

8. There is no statistically signifi-

cant variability in layer height un-

less specifically designed into the fi-

nal g-code

Decreased control of structure

and increased likelihood of

cracks forming between layers

Low Careful machine tun-

ing, with regular lu-

brication and bearing

and belt inspections.

9. The minimum print stable print

length on any existing material is

the same as estimated for a single

element in Section 3.4.2.3

Less control over material struc-

ture and increased chance of un-

planned voids and cracks

Very low None

10. Bridge and overhang distances

are similar for both individual ele-

ments and whole layers

Failed bridges and overhangs Low None

Continued on next page
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Assumption Risk if Wrong Likelihood Mitigation

11. For fracture testing samples,

no significant stress concentrations

exist except those specifically de-

signed into the structure to produce

a controlled fracture

Unpredictable and unstable test-

ing results

Very low All parts and spec-

imens inspected for

obvious defects before

being tested

12. Expected dimensional error (in

terms of %) the same for all parts,

scales, and areas of print

Reduced control of element ge-

ometry and placement

Moderate Print with inter-

nal overlap of 2%,

carefully maintain

hardware, and reduce

print speed and jerk

when possible.

13. Roof and floor thickness should

be at least three layers

Wasted material and print time Low to moder-

ate

None

14. Minimum length scale (for part

or feature) is 2.5 times nozzle di-

ameter (except self-supporting thin

walled structures) to allow for two

shells and some infill

Slightly reduced design freedom,

wasted material, and longer

printing time

Low to moder-

ate

None

3.5 Case Studies

In addition to Case Study 2 and Case Study 3 in Chapter 2, where FDM manufacturability

constraints are used to ensure that the final design can be fabricated, three more case studies

are presented here to demonstrate the constraints and how they can be used explicitly.

3.5.1 Case 1: 2.5D Designs with Stable Features

The first case study explores three simple problems (Figure 3.19) that could be represented

as 2-D or 2.5-D (2-D + thickness) design representations subject to the constraints developed

in this chapter. In the first case, (Designs 1a and 1b), a simple fan cover was designed with

manually laid out features. For Design 1a, a deposition nozzle of w = 0.4 mm was used

with a layer thickness of h = 0.2 mm (h/w = 0.5), with each of the thicker features being

two elements wide for stability and one element wide for the smaller features. For design

1b, a nozzle of w = 1.0 mm (h/w = 0.2) was used, with resulting changes in the design.
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Figure 3.19: Results of Case Study 1.

In the case of Design 2, a hybrid design method was used, with the spring coil being

manually laid out and the infill for the solid area being calculated and laid out in a series

of triangles. The last problem dealt with a truss, where the layout could be calculated in

response to a specific mechanical problem. This case study demonstrated that the imposi-

tion of effective constraints on the parameters heavily influenced the designs. In addition,

it showed that all of the constrained designs, regardless of complexity, were manufacturable

on the first attempt.
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3.5.2 Case 2: Designed Infill Geometry in Defined Space

In this case study, the computational layout of a 20-mm cubic shell with a low-density

designed core was generated using Ultimaker® Cura® from PLA. All of the FDM con-

straints generated in this chapter were applied to ensure manufacturability, even on areas

with bridges and very thin features. In addition to the objectives (lay out the elements

efficiently based on inputs) and constraints, the major design inputs to the software tool

were:

1. The geometry within the shell was only allowed to be a single element thick, so the

designed core only presented one level of designable mesostructure.

2. The deposition nozzle used was 0.5 mm in diameter and the deposition width was

defined as 0.505 mm to account for material shrinkage. This setting was found to be

the best for the transparent PLA used in the study after several trials.

3. The w/h ratio was selected to be 5/2. An overlap setting was not needed, since the

designed area was only allowed to be one element thick.

Four basic layouts were selected, specifically 3D cross, quarter cubic, gyroid, and

standard raster lines. Figure 3.20 shows the layouts for Layer 10, Layer 25, Layer 50,

and Layer 90 for each of the cases. Only the gyroid contained an unsupported bridge, so a

maximum unsupported bridge length was set at 3 mm (see Section 3.4.2.4) before the design

generation. Since it was impractical to use support material for these designs, this was used

to limit the size of the gyroid elements. The layouts were driven by the requirement that

the 3-D cross and quarter cubic cases were to occupy a total of 10% of the open space, the

gyroid was to be close to 15% dense with the bridge requirement (so the density is slightly

higher), and the elements in raster case were to have a diagonal (corner-to-corner) length

of approximately 4 mm. Note that all of the cases could easily have been printed without

the outer shell (or had the shell removed after printing). Including the shell was a design

choice, as the concept could be explored with or without the shell.
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Figure 3.20: Results of Case Study 2.

This case study did not solve a specific design problem and was focused on demon-

strating that that the designed structures (with several different layouts, including those

that varied significantly between layers) could be accurately manufactured since the design

parameters were based on the mechanics of the selected process. As shown in Figure 3.20,
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the manufacturing was successful, with no significant manufacturing defects noted upon

examination under a microscope.

3.5.3 Case 3: Minimal Surfaces with Second Mesostructure

In this case study, the design of two mesostructure levels is explored for two basic minimal

surfaces (gyroid - a triply-periodic surface and a Scherk tower - a singly-periodic structure)

which are given a wall thickness. The internal structure (the lower mesostructure level) for

each case is designed the same way as described in Case Study 2.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.21: Results of Case Study 3.

In these cases, the gyroid (defined within a 125-mm cubic design space) is given a wall

thickness of 5 mm, while the Scherk surface is given a wall thickness of 2 mm and calculated

within a design space with a 50-mm square base and 160-mm height (Figure 3.21). The basic

surface figures, generating functions, and Matlab® code for generating the surfaces came
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from a technical report on generating minimal surface models by Muna & Patterson [116].

There are numerous ways to translate the surface model into a solid STL file, the best

of which is to use the surf2solid tool in Matlab® with the surface generation code

published in Ref [116]. The functions used to generate the minimal surfaces were:

fgyroid = sin(x) cos(y) + sin(y)cos(z) + sin(z) cos(x) [x, y, z ∈ [0, 125] mm] (3.1)

fscherk = sinh(x) sinh(y)− sinh(z) [x, y ∈
[
0, 50] mm, z ∈ [0, 160] mm] (3.2)

Example surfaces are shown in Figures 3.21a-b, while the g-code for the generated

surfaces for this case study can be seen in Figures 3.21c-d. Partial prints (to show the inter-

nal mesostructure) of each can be seen the last two panels of the figure. Both were printed

from PLA using FDM and used the same settings as Case Study 1, with the exceptions that

the Scherk surface was printed at nearly 100% density (so only natural voids determined

meso-scale properties). In this case, the internal mesostructure was a series of concentric

rings. The internal mesostructure for the gyroid (clearly seen in Figure 3.21e), was identical

to that of the raster case in Case Study 2, with the exception that the diagonal dimension

of the resulting squares was 5 mm.

3.6 Closing Remarks

In this chapter, the mechanics and manufacturability constraints for FDM were explored

and established in clear terms. This chapter will provide perspective, assumptions, and the

constraint set for future chapters in this dissertation. These constraints and the mechanical

knowledge here will be essential for the effective derivation of design rules related to manu-

facturing process-driven structured material (MPDSM) design, the beginning of which will

be explored in the next chapter.
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[77] A. Bellini and S. Güçeri, “Mechanical characterization of parts fabricated using fused deposi-

tion modeling,” Rapid Prototyping Journal, vol. 9, pp. 252–264, Oct. 2003.

[78] E. G. Gordeev, A. S. Galushko, and V. P. Ananikov, “Improvement of quality of 3d printed

objects by elimination of microscopic structural defects in fused deposition modeling,” PLOS

ONE, vol. 13, p. e0198370, June 2018.

152



[79] H. H. Nadiyapara and S. Pande, “A review of variable slicing in fused deposition modeling,”

Journal of The Institution of Engineers (India): Series C, vol. 98, pp. 387–393, June 2016.

[80] E. C. Balta, D. M. Tilbury, and K. Barton, “Control-oriented modeling and layer-to-layer

stability for fused deposition modeling: A kernel basis approach,” in 2019 American Control

Conference (ACC), IEEE, July 2019.

[81] D. Aksoy, E. C. Balta, D. M. Tilbury, and K. Barton, “A control-oriented model for bead

cross-sectional geometry in fused deposition modeling,” in 2020 American Control Conference

(ACC), IEEE, July 2020.

[82] R. Prabhu and A. Devaraju, “Recent review of tribology, rheology of biodegradable and FDM

compatible polymers,” Materials Today: Proceedings, Oct. 2020.

[83] P. Pradel, Z. Zhu, R. Bibb, and J. Moultrie, “A framework for mapping design for additive

manufacturing knowledge for industrial and product design,” Journal of Engineering Design,

vol. 29, no. 6, pp. 291–326, 2018.

[84] G. A. Adam and D. Zimmer, “Design for additive manufacturing - element transitions and

aggregated structures,” CIRP Journal of Manufacturing Science and Technology, vol. 7, no. 1,

pp. 20–28, 2014.

[85] G. A. O. Adam and D. Zimmer, “On design for additive manufacturing: evaluating geometrical

limitations,” Rapid Prototyping Journal, vol. 21, no. 6, pp. 662–670, 2015.

[86] S. B. Maidin, I. Campbell, and E. Pei, “Development of a design feature database to support

design for additive manufacturing,” Assembly Automation, vol. 32, no. 3, pp. 235–244, 2012.

[87] M. K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R. I. Campbell, I. Gibson, A. Bernard,

J. Schulz, P. Graf, B. Ahuja, and F. Martina, “Design for additive manufacturing: Trends,

opportunities, considerations, and constraints,” CIRP Annals, vol. 65, no. 2, pp. 737–760,

2016.

[88] S. Liu, Q. Li, W. Chen, L. Tong, and G. Cheng, “An identification method for enclosed voids

restriction in manufacturability design for additive manufacturing structures,” Frontiers of

Mechanical Engineering, vol. 10, no. 2, pp. 126–137, 2015.

[89] B. Wittbrodt and J. M. Pearce, “The effects of PLA color on material properties of 3-d printed

components,” Additive Manufacturing, vol. 8, pp. 110–116, Oct. 2015.

[90] F. Arbeiter, M. Spoerk, J. Wiener, A. Gosch, and G. Pinter, “Fracture mechanical character-

ization and lifetime estimation of near-homogeneous components produced by fused filament

fabrication,” Polymer Testing, vol. 66, pp. 105–113, Apr. 2018.

153



[91] J. Allum, A. Gleadall, and V. V. Silberschmidt, “Fracture of 3D-printed polymers: Crucial

role of filament-scale geometric features,” Engineering Fracture Mechanics, vol. 224, p. 106818,

Feb. 2020.

[92] G. Cicala, D. Giordano, C. Tosto, G. Filippone, A. Recca, and I. Blanco, “Polylactide (PLA)

filaments a biobased solution for additive manufacturing: Correlating rheology and thermo-

mechanical properties with printing quality,” Materials, vol. 11, p. 1191, July 2018.

[93] H. Jee and P. Witherell, “A method for modularity in design rules for additive manufacturing,”

Rapid Prototyping Journal, vol. 23, no. 6, pp. 1107–1118, 2017.

[94] U. Yaman, “Shrinkage compensation of holes via shrinkage of interior structure in FDM pro-

cess,” The International Journal of Advanced Manufacturing Technology, vol. 94, pp. 2187–

2197, Sept. 2017.

[95] A. Manmadhachary, Y. R. Kumar, and L. Krishnanand, “Finding of correction factor and di-

mensional error in bio-AM model by FDM technique,” Journal of The Institution of Engineers

(India): Series C, vol. 99, pp. 293–300, June 2016.

[96] K. Tong, S. Joshi, and E. A. Lehtihet, “Error compensation for fused deposition modeling

(FDM) machine by correcting slice files,” Rapid Prototyping Journal, vol. 14, pp. 4–14, Jan.

2008.

[97] H. Rahman, T. John, M. Sivadasan, and N. Singh, “Investigation on the scale factor applicable

to ABS based FDM additive manufacturing,” Materials Today: Proceedings, vol. 5, no. 1,

pp. 1640–1648, 2018.

[98] J. Liu, Y. Ma, A. J. Qureshi, and R. Ahmad, “Light-weight shape and topology optimization

with hybrid deposition path planning for FDM parts,” The International Journal of Advanced

Manufacturing Technology, vol. 97, pp. 1123–1135, Apr. 2018.

[99] T. Rocha Pereira, A. E. Patterson, and S. L. Messimer, “Buckling strength of 3-d printed

thermoplastic thin shells: Notes on an exploratory study of as-printed and reinforced cases,”

Applied Sciences, vol. 10, p. 5863, Aug. 2020.
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Chapter 4

FDM-DRIVEN STRUCTURED MATERIALS

Collaborator Acknowledgement: The author gratefully acknowledges the contributions,

advice, direction, and feedback from the following people on the work presented in this

chapter: Charul Chadha (help with some initial concept development and early case

studies); Dr. Sreekalyan Patiballa (extensive discussion on concepts and presentation).

4.1 Introduction

A topic of great interest in recent years is the design and fabrication of structured materials

(SMTs), including lattices, functionally graded materials, and metamaterials. These are de-

signed synthetic forms which provide properties, attributes, or behavior distinct from basic

materials [1–3]. While the fundamental material properties (from the base material) have

some influence on the behavior of the structure, the bulk properties are driven partially or

fully by the arrangement of material elements. This effect can range from strong directional

anisotropy (e.g., some solid metal parts made using a laser-based additive manufacturing

(AM) process) to cases where the dominant material properties come from the structure

(in the case of cellular materials and metamaterials). The material structural elements can

vary significantly in scale, ranging from atomic-scale lattices to bridge-sized truss structures.
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SMs are typically studied at four different structural scales, namely the sub-microstructure,

the microstructure, the mesostructure, and the macrostructure (Figure 4.1) [4–9].

Sub-microstructure

❑ Natural material 

structure on atomic, 

crystal, or molecular 

level

❑ May be influenced by 

processing conditions

❑ Examples: Polymer 

chains, grain structure 

details in metals

Mesostructure

❑ Designed or patterned 

structure, may be generated by 

element layout or designed 

inclusions/defects/voids

❑ Solid, homogeneous materials 

do not have a mesostructure

❑ Examples: Honeycomb 

structure, metamaterial, unit 

cell-based lattice

Design perspective on structured material (SM) levels

Macrostructure

❑ In design, typically the “useful 

level” 

❑ Generally the final component 

or product that is to be made 

from the designed material

❑ For homogeneous solid 

materials, microstructure 

drives macrostructure 

properties (no mesostructure)

Microstructure

❑ Structure observable using 

an optical microscope, 

heavily influential on 

macro-scale properties 

❑ Strongly influenced by 

processing conditions

❑ Examples: Porosity, metal 

grain layout, scan structure 

in 3-D printed materials

Structure and processingNatural material Source of Dominant Properties

Figure 4.1: Basic structured material (SMT) hierarchical levels of organization [10]. Each basic level may
have more than one effective level of organization in practice. The source of the dominant material properties
depends on the level, ranging from primarily natural properties to mostly structure-based properties.

While the exact nature of each level (as well as the appropriate length scales for each

case) will vary, the following definitions generally hold true for all SMTs:

1. Sub-microstructure: Atomic, crystal, or molecular level structure, such as polymer

chains, crystalline/amorphous polymer configurations, and grain structures in metals

2. Microstructure: Structure observed in the material on a microscopic level, such as

porosity or grain arrangement, which is driven by the processing conditions of the

material

3. Mesostructure: In an SMT, the level at which the material is “designed”, such as the

case of a unit cell, 3-D printed infill layout, or metamaterial

4. Macrostructure: Depending on the problem, the definition may vary but in general it

is the “useful” scale and represents a final part or product
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The mesostructure is typically the one that is designed to provide the required prop-

erties or performance [2, 11]. In some cases, there may be more than four basic levels of

organization. Most commonly this takes the form of two or more levels of mesostructure; in

these cases, one or more could be held fixed or they could all be designed to provide more

control over the structure to the designer. It should also be noted that in this dissertation,

the term “structured material” indicates a designed material with a structure composed of

only a single base material; it does not include composites or infiltrated materials. One of

the main points of value or utility for SMTs (behind the control and design of specific prop-

erties as in metamaterial design) is the ability to gain a desired property using a standard

or cheap base material. This does not require the design and chemical yield of new ma-

terials with uncertain properties and often unknown environmental and safety effects. For

structured or architected materials, a standard base can be used to create material elements

or units which provide the desired properties within the limits of the base materials.

Classic structured materials were originally developed to deal with electrical, opti-

cal, and acoustic problems [1, 12, 13], as the architectures allow waves and energy to be

guided through the material. These often consist of repeating simple patterns and minimal

surfaces which can be designed intuitively or computationally, depending on the needs of

the problem and the preferences of the stakeholders. A more recent, but no less impor-

tant, area of progress has been the development of SMTs for mechanical applications; these

generally fit into two major categories, namely arranged structural materials (e.g., for light-

weighting aerospace parts) and mechanical metamaterials [1,12]. The second provide a wide

range of unique properties, including negative Poisson ratio, higher shear modulus, negative

thermal expansion, and other behaviors not available from basic materials. These proper-

ties can enhance fracture and impact toughness, allow higher energy absorption, and offer

other desirable synthetic properties. Structures can include large and small-scale 2-D, 3-D,

and 2.5-D cellular materials [14–16] (Figure 4.2a-b), origami structures [17] (Figure 4.2c),

bones [18,19], structurally-graded materials [20,21], single-material 4-D structures [22, 23],

AM-processed materials with patterned voids (Figure 4.2d) [24,25], solid or semi-solid ma-

terials with strong designed anisotropy [26,27], and classic SMTs such as chiral (Figure 4.2e)

and gyroid (Figure 4.2f) structures [1, 28,29].
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(b) Liu, F., Zhang, D.Z., Zhang, P., et al. (2018). Mechanical 
properties of optimized diamond lattice structure for bone scaffolds 
fabricated  via selective laser melting. Materials, 11(3): 374. 

(d) Chen, H., Zhou, X., Fujita, H., et al. (2013). Age-related changes 
in trabecular and cortical bone microstructure. International 
Journal of Endocrinology, 2013: 213234. 

(a) 2.5 D honeycomb

(b) 3-D cellular structure

(c) 3-D origami structure

(f) ST-AM structures (e) Polyurethane foam (d) Bone microstructure

Figure 4.2: Examples of structured materials, including (a) 2.5-D and (b) 3-D [16] cellular materials, (c)
origami structures [17], (d) bone microstructure [30], (e) foam structure, and (f) designed material element
layouts for ST-AM. All figures original or reproduced under CC-BY 4.0 license.

Design methods used to create the SMTs can vary significantly, depending on the

design objectives and requirements. Classic design methods for standard SMTs are beyond

the scope of this dissertation, with the exception of the case (manufacturability-driven

design (MDD)) where manufacturability is the prime or a co-prime requirement. This is a

design perspective that can be used in any area of mechanical design, not just in the area of

structured materials. However, prioritizing manufacturability provides two major benefits

for the design of structured/architected materials:

1. Final designs are manufacturable with a selected process or set of processes (within

the limits of the problem modeling and assumptions)
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2. The unique characteristics and material-processing effects of each process can be cap-

tured during the design process and lead to new and better approaches for design

For the second point specifically, various AM processes provide great opportunities

for exploration in this area. Chapters 2 and 3 addressed this in depth so it will not be

repeated here. While MDD provides both more freedom to explore the design space, offers

more design methods, and improves the manufacturability of the final designs, there is a

definite trade-off. The increased complexity in design can come with a higher design cost

(computational, space exploration, etc.); in addition, the exploration of the design space

is limited to designs which are manufacturable for a specific process of family of processes

(Chapter 2).

This chapter explores the design of structured materials under prime manufacturabil-

ity requirement for fused deposition modeling (FDM) (examined carefully in Chapter 3).

Several steps are required for this exploration, beginning with a discussion and definition of

MDD (Section 4.2). A quick summary of the results found in Chapter 3 are then provided

in the context of MDD in Section 4.3. Section 4.4 defines a new class of architected ma-

terials produced under MDD, known as manufacturing process-driven structured materials

(MPDSMs). Some illustrative case studies and closing remarks are given in Sections 4.5

and 4.6, respectively.

4.2 Manufacturability-Driven Design

4.2.1 General Concepts

In order to ensure that the designed structures can be produced properly, it will be necessary

to identify and impose manufacturability constraints on the design candidates. Constraint

definition and enforcement can be done effectively using a design-for-manufacturability

(DFM) [31, 32] approach when the design requirements are clearly established, and the

constraints simply restrict the design space to manufacturable options. However, it is also

possible for the selected process to drive the design from the conceptualization stage and

determine the available design space before requirements (e.g., aesthetics, performance, re-

liability, and similar) are established. This design space will be a design representation
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that may either implicitly or explicitly account for the manufacturing process mechan-

ics. This approach, using manufacturability as the prime or co-prime requirement, can be

called manufacturability-driven design (MDD). Like most high-level design requirements,

MDD provides tools and information for the development of both objective functions and

constraint sets. A conceptual comparison of MDD and classic DFM is shown in Figure 4.3.

MDD

Other design requirements 

and constraints

1. Manufacturability constraints

Manufacturable designs

Problem formulation

Manufacturable design space

Set of all manufacturable designs

Set of all manufacturable 

designs which also meet 

other design requirements 

and constraints

MDD

DFM

Manufacturability constraints

Design requirements and 

constraints

Manufacturable designs

Problem formulation

Feasible design space

Set of design-feasible initial designs

Set of feasible designs 

which are also 

manufacturable

DFM

(a) (b)

(c) (d)

Figure 4.3: Design problem formulation approach for (a) classic DFM and (b) MDD and design space
representations for (c) classic DFM and (d) MDD.

It should be noted that the mapping concept (MR-DFM) [7,33] for problem formula-

tion developed in Chapter 2 is fully compatible with either MDD or classic DFM. MR-DFM

would supply the manufacturability constraints used in the problem formulation, regardless

of the order and form of the problem statement. The two main benefits of using the MDD

approach with mapped manufacturability constraints are:

1. Any generated candidate designs are guaranteed to be manufacturable (subject to

any uncertainties in the process modeling and stakeholder inputs). The search for

feasible designs will be more targeted and provide less noise for the stakeholders

making design decisions. The practical application range for MDD is smaller than

general design with manufacturability constraints imposed (since the set of nominally

162



feasible candidate designs is smaller). However, those designs which are produced can

be more confidently used since they are unlikely to be un-manufacturable (within the

limits of the process modeling and assumptions mapped to the problem formulation).

2. Any unique process characteristics can potentially be leveraged very early in the design

life cycle in order to better drive the design. Using the mapping process developed in

Chapter 2 will contribute to this, since the process to be used will be well-understood

by the designers prior to making the final design requirements.

4.2.2 MDD Applied to SMTs

Due to the extreme sensitivity of SMTs to geometry and material defects, ensuring that

all the potential solutions are manufacturable before design initiation has several essential

benefits, namely:

• The unique advantages, limitations, and soft constraints (“best practices”) inherent

in each manufacturing process can be used to help determine more realistic design

requirements.

• When the manufacturability domain is established first, this can enable design explo-

ration that is both more guided and more unstructured; while the boundaries may

be stricter, the designer will be freer to explore the design space within these bound-

aries. A (non-exhaustive) list of examples of where this has been done successfully

for manufacturing problems can be seen in the studies by Vatanabe et al. [34] and Li

et al. [35] (topology optimization), Ferrer et al. [36] and Gries [37] (design thinking

process), and Iyengar & Bar-Cohen [38] (design quality comparison based on process

selection). The results of these studies can be viewed within the contexts of either

classic DFM or MDD.

• Based on specific manufacturing processes, new design methods and structures can be

explored that may not have been considered before. Since most AM process mechanics

are relatively new in the world of engineering design, many opportunities exist in this

domain. This is true both for the development of new processes and the more effective

use of their unique characteristics.
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• When used with ST-AM, the basic elements or units (each of which is manufacturable)

can be used as the building blocks for a bottom-up design approach for creating SMTs

• When the AM process used is controlled and well-understood, this enables the pos-

sibility of having more than one designable level of structure (i.e., mesostructure) in

the material. This can complexify the design process but also greatly expand the

design space by adding one more or more additional levels of layout control. This is a

form of the classic design trade-off between formulation effort and solution cost, where

representation, solution accuracy, computational cost, and other considerations must

be balanced for the specific problem at hand.

While this approach has much value for the practical design of new and useful SMTs, it

does restrict the conceptual design freedom significantly and so the produced structures are

limited to what a pre-specified manufacturing process can fabricate. A class of structured

materials, manufacturing process-driven structured materials (MPDSMs) can be defined

based on this concept. The exact design criteria and constraints will vary based on the

process and material selected, but all MPDSMs will have three essential properties or char-

acteristics:

1. MPDSMs are manufacturable regardless of the complexity of the final structure (sub-

ject to the quality of the process modeling and assumptions, of course)

2. MPDSM structure is dependent on the ”abilities” of the process selected to fabricate

it. The structure may have constraints or limitations which are more strict than those

imposed by performance requirements since by definition, MPDMS.

3. Like most structured materials, the specialized or custom properties will depend on

the structure more than on the base material. Since the structure consists of manu-

facturable elements, lattices, unit cells, etc., it is feasible to explore using a cheaper

or more common material than one that may have otherwise been selected if more

uncertainty existed in the true macro-scale properties.
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4.3 Mechanics of FDM as Scanning-Type AM Process

The characteristics and mechanics of the FDM process were discussed in depth in Chapter

3. FDM is the most well-known of the scanning-type AM (ST-AM) processes, a family

which includes any processes having the following characteristics:

1. For each layer of the part, the cross-section geometry of the layer is traced out using

a series of elements, typically with a uniform cross-section and width.

2. The layout of the elements is driven by g-code or some other kind of toolpath

3. Fusion of the new layer with the previously printed material is accomplished using

some energy input during the trace of each element, fusing each with the previous

layer and any neighboring elements in the current layer.

4. With the exception of traditional laser-based stereolithography and some rare ce-

ramic deposition processes, all of the common ST-AM processes use some kind of

re-processable material (typically metals and thermoplastic polymers) which helps

support the scanning without destroying the part.

5. Many ST-AM processes have severe local temperature gradients in the structure dur-

ing processing, which can lead to residual stress formulation [39–46].

6. Most ST-AM-processed parts contain natural meso-scale inclusions and voids left from

the processing [39,47–51]

7. In most cases, the elements deposited by ST-AM processes are homogeneous and

approximately isotropic or transversely isotropic, so most of the anisotropy in the

macro-scale final part comes from the structure of the elements [11,52–61]

8. In most cases, the elements and their layout for ST-AM processes are designable, pro-

ducing 2.5-D of design freedom in an individual layer and 3-D (with some limitations,

as discussed in Section 4.2 and Section 4.4) [53,62–64]

Other common ST-AM processes are the various laser powder bed processes (such as

polymer and metal selecive laser sintering (SLS), selective laser melting (SLM)), laser-based
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stereolithography (SLA), electron beam melting (EBM), direct deposition processes (such

as laser engineered net shaping (LENS) and wire/weld-deposition), and useful variations

of these processes. ST-AM processes tend to be rather slow in their processing speed, but

also tend to provide far better final properties than many non-ST-AM processes (including

projection-type (PT-AM) (such as digital light processing (DLP)) and inkjet-type (IT-AM)

(such as material jetting (Polyjet) or binder-jetting)). Therefore, most of the processes that

have been considered for end-user products have been ST-AM processes.

All AM processes are potentially useful for manufacturing SMTs [3, 14, 15, 22, 26, 28,

65–68], but the scanning nature of ST-AM processes allows selective placement of the fused

material beyond the basic design of each layer. Therefore, ST-AM processes can produce

multiple levels of mesostructure (such as the example demonstrated in Figure 4) and this

can present new design opportunities not available elsewhere. In the case shown, the lat-

tice structure itself (red) is one level of mesostructure that can be designed. When this

architecture is manufactured using ST-AM, the elements themselves can be built of pat-

terned element layouts (yellow), providing a second mesostructure that can potentially be

designed. In the case where only the first (lattice) structure is of interest to the stakehold-

ers, the potential architecture from the printing can be optimized for things like minimal

print time, slight reductions of mass, and similar useful objectives that do not necessarily

contribute to the mechanical design of the overall structure.

Figure 4.4: Example of unit cell lattice structure with two levels of designable mesostructure. Level 1 is
the arrangement of the unit cells (red) and Level 2 is the shell-infill structure (yellow) within each unit cell
element.

4.4 Meso-Scale FDM-Driven MPDSMs

The essential workflow FDM-driven MPDSMs is demonstrated in Figure 4.5. After a process

(and equivalent material) is selected, the element cross-section or set of cross-sections will
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be designed. A layout strategy will then be selected for laying out the designed elements;

this may be automated, manual, or a combination of both. The set of layouts (essentially

the set of layers for the part) are then combined to build the final designed part or product.

4.4.1 Basic Concepts

Given a design problem (such as a structural or other mechanical design problem) including

objectives and constraints and a selected material, elements can be designed around the

mechanics of a specific ST-AM process (FDM in this case, as shown in Figure 4.6a). These

elements will be laid out in a series of 2.5D (i.e., 2-D + non-trivial thickness) or 3-D

layers (ranging from under 10 µm to more than 1 mm thick, depending on the process and

material selected) and the resulting layers fused together to form the final geometry. As

shown in Figure 4.5, the general workflow for accomplishing this (regardless of material

and process) should have three major steps, the second of which (Figure 4.5b) is mainly

concerned with element design. Proper design of the elements is essential, as the process

must be able to fabricate them accurately and consistently if they are to be useful for the

building of MPDSMs (Figure 4.6). In general, the layout of the elements themselves will

be accomplished computationally (driven by manufacturability constraints and selected

printing parameters) and does not require direct design by the user; various slicing and

path generation software tools (e.g., Cura, Preform, RepliSLS3D) do this easily for various

processes. However, it is possible (and often desirable) to manually design the layout. A

good example of this is the fracture toughening method developed by Gardan et al. [62]

where the elements were laid out such that they traced out the calculated stress field around

a crack tip and helped arrest the crack growth. The design perspective outlined in Figure 4.5

allows for either manual or automatic layout calculation or a hybrid of both. In general, all

of the elements within each layer (and often within the whole part) will have a consistent

cross section geometry (Figure 4.6b and 4.6c); however, this is not required if another

configuration is needed but it should be noted that the fabrication will be much more

complex (and potentially require additional controls or hardware) than if standard ST-AM

processes are used.

167



Width (w)

Height (h)

Overlap

α

β

l

d

Voids

Element

(b)

⋯

(c)

(d)

Process selection and manufacturability constraint determination

Material 

elements

Filament input

Heated 

extruder

Part

Build plate

(a)

Design problem (objectives, 

constraints, material, etc.)

Element design

Layer-wise element layout

G-code generation and manufacturing

Figure 4.5: Design and fabrication workflow under ST-AM with a designed mesostructure and layered
construction. Given a design problem (including a set of objectives and non-manufacturability constraints
and a selected material), (a) an ST-AM process is selected (FDM, SLA, and SLS are three common examples
but not an exhaustive list) to generate manufacturability constraints. From here, (b) material elements are
designed and (c) laid out in a series of layers.
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Figure 4.6: Fused deposition modeling/fused filament fabrication (FDM/FFF) process overview. (a)
Essential process mechanics, (b) extrusion mechanics to deposit material element, and (c) element cross-
section design and parameters

4.4.2 Design of Element Cross Section

For the element cross-section design (Figure 4.6b and 4.6c), the most important parameters

are the element width w, the element height h, and the overlap percentage with neighbor

elements. All of these are settings that must be selected by the designer and are subjected to

the manufacturability constraints of the selected process. For FDM, the width is determined

by the extruder diameter and the thermal shrinkage of the material (discussed extensively in

Chapter 3), while the height is a free variable that is generally defined as “layer thickness”;

however, a w/h ratio of less than 3/2 tends to produce weak parts due to the large size of

the resulting voids and the smaller contact area between elements. This can be addressed

by overlapping the elements, but this can waste material, reduce dimensional accuracy (via

a rougher surface), and subject the part to unnecessary thermal stress. In general, the

higher the w/h ratio, the stronger and denser the final part is but the slower the printing

is. For FDM, the element width and w/h ratio are design variables that should be selected

as part of the design requirements and used to generate the final layout. The rheology of

the polymer used will also determine the ranges of available extruder sizes and this should

be considered when selecting a material.
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4.4.3 Intralayer Element Layout Design

After the design of the element cross-section, the individual element layout parameters

should be selected. This is related only to the design of the elements as they are laid out

and is not the design of the final MPDSM. While not an exhaustive list, some of the most

useful and common layout parameters for individual elements are:

• The angle of a gradual turn (smooth corner) for which the extrusion or fusion process

will not stop during the turn (represented by α in Figure 4.5b). This can be defined

as a fixed value, a range with limits (inequality constraint), or a function related to

other elements (equality constraint).

• The angle of a sharp corner where the process stopped and was restarted (β in Fig-

ure 4.5b). Like α, β can be defined as a fixed value (most commonly 90◦), a range

with limits (inequality constraint), or a function related to other elements (equality

constraint).

• The minimum straight length of an element without any turns or corners, described

by l in Figure 4.5b. This setting is directly enforceable in many 3-D printing software

tools and can often be defined as either a minimum distance or a minimum printing

time. Curves can be defined as a sum of small-length straight elements, where the

minimum length is defined by the resolution of the printed file and can be in the path

generation software.

• The distance between elements, illustrated by d in Figure 4.5b. This can be defined as

either a fixed distance or density of the layer regardless of whether the layer is designed

or laid out automatically. For high- or full-density parts or features, the distance may

be very small. In cases where two or more levels of mesostructure are present, the

elements may be very dense in some areas, with significant distance between sets of

elements in others. This is clearly demonstrated in Figure 4.4.

• The option to overlap the ends of elements in corners or against the part shell to better

control gaps within the structure. This is generally only needed when the resulting

MPDSM needs to be very dense. Once the layout parameters (and other printing
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settings) are established, it is a simple matter to automate their enforcement. The

last two (minimum printing distance or time and distance between elements) are two

fundamental constraints that are set by the user during pre-processing and slicing of

the models to be printed. These software settings are usually not focused on creation

of a specific material layout and generally focus on minimizing printing time or printer

operations; however, they are very useful settings when specific layouts are needed.

4.4.4 Bottom-Up Design of MPDSMs

While the concept of material element layout is well-defined, the literature thus far (out-

lined in Section 4.1) has focused mostly on the macroscale behavior of the materials or the

effects of the architecture on the full part (i.e., top-down perspectives). The workflow intro-

duced in this chapter (Figure 4.5) begins with the basic elements as the “building blocks”

(Sections 4.2-4.4) for MPDSMs and uses them to fill the available design space in layers -

a bottom-up design approach. As previously discussed, these elements may take the form

of straight lines, curves, elbows, and other shapes and may be laid out manually, auto-

matically, or a hybrid of the two. This is conceptually similar to other methods which use

building-block approaches for design. Some examples of this design technique in the litera-

ture exist for common design areas, such as architecture [69], compliant mechanisms [70,71],

vehicle design [72], and small customized consumer products [73]. The method presented

here is primarily concerned with manufacturability, so the available design complexity is

lower than available in some other building-block design studies. Essentially, the complex-

ity of the MPDSM is dependent on the complexity of the fabrication and assembly of its

constituent elements (Figure 4.7).

In spite of the limited design space, the focus on manufacturability has several significant

benefits - both for general design problems and structured materials in particular:

1. The shape, size, and quality of the material elements are determined by the process

and material selected. Unlike the study of macro-scale properties of AM materials,

the study and characterization of individual material elements is relatively straight-

forward to accomplish. The elements are approximately isotropic or transversely
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Figure 4.7: The possible design complexity for an AM-driven MPDSM is the sum of the complexity/design
freedom of the elements and layers. If each element is manufacturable, it is assumed that each layer will
be manufacturable (as long as the elements are non-interfering). If each layer is manufacturable, the final
MPDSM is also directly manufacturable.

isotropic on the microstructural level (as previously discussed) and so modeling them

can rely more heavily on standard/catalogued properties and not on the direction-

specific properties usually attributed to AM-processed materials. Since the elements

are generally small compared to the final product, predictable in shape, and ideally

do not contain voids (i.e., voids exist between and at the intersection of elements, not

in the elements themselves), it is also easier to define their properties and dimensions

as probability distributions when needed.

2. The bottom-up approach to designing MPDSMs with well-defined AM-produced ele-

ments is similar in approach to designing trusses and other structural systems (where

the elements can be understood as structural members in many problem formulations)

and so a new design paradigm is not required for most cases.

3. Since the elements are driven by the selected process, they are guaranteed to be manu-

facturable as long as the constituent elements are manufacturable and non-interfering

(subject to modeling and measurement errors and process uncertainties). An ideal

objective is that no un-manufacturable design candidates will be produced, so the

design team can focus only on the performance metrics of the manufacturable design

solutions. In the cases where the problem may be able to formulated around a convex

design space, a global solution can be found which will save time and resources during

the life cycle process.
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4. When the goal of the design problem is actual manufacturing and not modeling of the

SMT behavior, the process-driven nature of the elements under ST-AM allows then

to directly be translated into g-code or other build path definitions for building the

part. This can dramatically decrease the computational cost involved in realizing the

final design and make it extremely simple to translate directly from final design to

manufactured product.

500 µm 100 µm

PBF FDM SLA

Figure 4.8: Experimentally-found element stacking textures for PBF (specifically electron beam melting
(EBM) [74], FDM, and SLA. All views normal to layer stacking direction. PBF panel published under
CC-BY-4.0 license. FDM and SLA panels original to the present work.

While the benefits of using MPDSMs based on AM processes are clear, there are some

general limitations that must be considered as well:

1. The layout of the elements is limited to a layer-based configuration and true 3-D

packing of the individual elements under ST-AM is impossible under most conditions.

3-D structures can be easily built within the MPDSM, but this will consist of several

or many individual elements stacked (Figure 4.8 shows examples for a metal powder

bed process, FDM, and SLA, three common ST-AM processes) to form it.

2. The layout of the elements in layers requires a length scale limit on design features

(generally two shells and intralayer material, in the experience of the authors, for any

ST-AM process). This does not necessarily apply if the design level for the problem
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is the individual elements stacked in single-wall or thin-wall configurations but would

certainly apply in cases where two or more levels of mesostructure exist (as shown in

Figure 4.4).

3. The 3-D structure that is produced after the layers are assembled will exhibit an AM-

driven surface roughness which may affect the mechanical properties (Figure 4.8). For

more solid or large MPDSMs, this effect is likely trivial compared to the effects from

the mesostructure(s), but this could have a very large impact on very thin or small

features and when using more brittle materials.

4.4.5 MPDSMs and FDM Manufacturability Constraints

A good and clear set of manufacturablity constraints is absolutely essential for effective

design of the MPDSMs. The full set for FDM were derived and refined in Chapter 3, so

they do not need to be reproduced here. A total of 54 constraints were identified, plus any

geometry limitations on the final parts or their features.

4.4.6 Final Framework

So far in this article, ST-AM processes have been carefully defined (focusing on FDM),

the necessary manufacturability constraints have been derived, and the basic concepts of

material element design and layout have been developed. Using these elements, a high-

level framework (Figure 8) can be derived which is process- and material-agnostic. Given a

proposed design problem, it must first be screened to make sure that the MPDSM approach

is best or at least feasible; the main screening criteria are the considerations discussed in

Section 4.4.4. If it does not pass the screening, another design method should be used. If all

the concerns are satisfied, then the process and material should be selected, and the design

problem should be defined relative to them. The next step is to design the elements.

The elements are then laid out using the preferred design method, layer by layer until

the full set of layers has been designed. From here, the layers may be converted into g-

code and sent to the printer for manufacturing or may be digitally assembled and used

for simulations (see Appendix C). In general, the design problem (in the Inputs box) will
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Figure 4.9: General MPDSM design and manufacturing framework (material- and process-agnostic within
ST-AM). Choice of manufacturability constraints and layout method will apply this approach to FDM.

consist of a finite element model or other primitive geometry describing the problem that

must be designed for (such as a crack arrest or an overhanging beam problem). This model

(or at least its stress/strain distributions) must be segmented into “slices” representing

each layer to be manufactured. This is not always necessary when the design is consistent

throughout the thickness of the final part. This segmentation is relatively easy to do or

automate using various mesh tools and slicing software packages. Each of these will be a

model which drives the element layouts, considering both the stresses and strains within

the slice, and also those from neighboring slices. Therefore, when the part is manufactured

and each layer re-assembled, the final product will represent a useful and manufacturable

solution to the design problem. The proposed problem should influence, but not directly

control, the decisions made in the Inputs, Element Design, and Element Layout steps.
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4.4.7 Layout Methods

Numerous layout methods could be applied to the design and fabrication of MPDSMs,

using automated or manual approaches or a hybrid of each. As previously discussed, when

the elements are not in contact with each other, they behave like beam elements (isotropic,

uniform cross-section, designed by length and angle, etc.) and the layers behave like trusses.

Treating each layer this way, it is possible to create 3-D FDM-driven MPDSMs easily. When

the desired outcome is a fully-dense MPDSM, the design becomes more complex but follows

the same principles. While manual layout is certainly feasible (and may even be desirable in

come cases), automating the design as much as possible is usually best. Figure 4.10 shows

two example layouts, one dense and the other more sparse.

(a) High-density FDM-based 3-D MPDSM

Extrusion nozzle

Heater

Build plate

Densely-packed 

element layout

Layers/slices

Previous layer

Build direction

Design DoF

xy

z

(b) Low/medium-density FDM-based 3-D MPDSM

Extrusion nozzle

Heater

Build plate

Element layout

Layers/slices

Design DoF

Build direction
xy

z

Figure 4.10: (a) Applied to low/medium density MPDSMs and (b) applied to high density MPDSMs.

Fortunately, design tools exist which can be adapted for this purpose, so automated

layout methods do not have to be designed from scratch. In particular for design under

FDM, there are numerous truss design and topology optimization methods for which the

truss elements can be defined as manufacturable FDM-deposited elements. For more dense

structures, the layout of elements in FDM pre-processing software such as Ultimaker®

Cura® can be controlled locally using a wide variety of settings. The regions which need

to be redesigned must be determined, the element properties must be well-defined, and

the type of pattern must be defined. In general for dense FDM-driven MPDSMs, a layout

following the contours of a stress/strain field or feature is the best approach. A detailed
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tutorial on how to input all of the design parameters and instructions into Cura (assisted by

Autodesk® Inventor® for some problems) is given in Appendix B of this dissertation. All

of the design settings, layout parameters, etc. must be put into Cura or a similar software

but designed carefully prior to input. Note that Cura does not complete the design process,

but simply automates what the designer inputs (in terms of objectives and constraints) and

defines for the design. The main design work is done by the designer prior to automated

application in Cura or other software packages.

4.5 Case Studies

4.5.1 Case 1: Manual 2-D Truss Layout Design

The first and most basic application of the MPDSMs concept is the manual layout of

elements for a particular design, especially for a simple case with only a few elements.

Figure 4.11 shows an example of this approach, specifically a printed layer in the form of a

truss (made from PLA). In this case, it is assumed that the designer determined the layout

of the nodes and size of the elements using some calculations (or other method) and so the

implementation as a sparse MPDSM is manually completed by the designer.

Legend

Three-element bar

Two-element bar

One-element bar

Node (not printed)

(a)

(b) (c)

Figure 4.11: Case study 1 (a) manual layout of sparse MPDSM in the form of a truss, presenting a printed
layer of a solid part, (b) example (real) g-code, and (c) directly-manufacturable outcome. The final product
was made using PLA and each bar element was 0.6 mm wide and 0.2 mm tall.
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The g-code (Figure 4.11b) was driven by the elements themselves and could have

been manually or automatically created, depending on the pre-processing tools used. This

manual layout may represent the entire MPDSM, it could represent a simple truss, or it may

represent only a single layer in a larger part. Essentially, it was designed manually from a

series of manufacturable elements and therefore meets the definition of a manually-laid out

MPDSM.

4.5.2 Case 2: Beam Reinforcement via 3-D Element Layout

A simple PLA beam (5 mm thick) is supported by two pinned joints 130 mm apart and

subject to a center load of 50 N (Figure 4.12a). It can be reinforced (increasing both load

capacity and toughness) by selectively arranging the elements that make up the beam. The

beam is to be made via FDM from PLA (0.6 mm nozzle with 0.2 mm layer height). In

order to identify where the elements may be re-arranged to improve performance (with

the smallest practical change in the structure), the shape generator tool in Autodesk®

Inventor Professional® 2020 was used to find the areas where the stress is highest under

the given load. The highlighted areas in Figure 4.12 show the regions that were preserved

from material removal during the problem setup. This was done to prevent any unnecessary

stress concentrations in the design.

The settings for this topology optimization (TO) tool allowed the input of the im-

portant manufacturability constraints from Chapter 3, ensuring that the solution itself was

manufacturable using FDM; this portion of the problem is similar to case studies reported in

Chapter 2 and in [33]. Two solutions were generated, one (Figure 4.12b) using a minimum

length scale of 1.2 mm and using a 0.03 mm minimum mesh size. This one was meant to

represent the new layout within the primitive, so requiring a thick wall on its own was not

required, simplifying the solution. As shown in Figures 4.12 and 4.13, its performance was

also tested on its own. The second (Figure 4.12c) was meant to be explored and testing on

its own as a sort of sensitivity analysis (and additional demonstration of a sparse MPDSM,

if desired). It used a much finer mesh (minimum element size of 0.005 mm) and required

much more time (35 minutes versus 4 minutes for case 1) to process on a standard desktop

computer. The second case was also given the recommended length scale constraint (2.4 mm
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in this case - see Chapter 3). For both cases, the objective function was to increase stiffness

and to attempt to remove 60% of the material; in both cases, the solution converged at the

desired 40% mass function. Note that both TO solutions were 3-D, even with the simple

problem loading, so each layer of the resulting parts (and later MPDSM) was unique.

50 N

(a)

(b) (c)

16 mm

130 mm

Figure 4.12: Case study 2 (a) problem definition, (b) TO solution with length scale = 1.2 mm and larger
mesh, including embedded layout design, and (c) TO solution for length scale = 2.4 mm and finer mesh.

Figures 4.13 a-d show the basic primitive, the TO solution under the 2.4 mm length

scale, the TO solution under the 1.2 mm length scale, and the final MPDSM, respectively.

The primitive with arranged elements embedded was the focus of this case study, with the

other designs contributing to its creation. As discussed previously in this chapter, Cura was

used to lay out the elements given the two regions and the manufacturability constraints.

The standard raster-45◦ pattern was used for both the primitive (Figure 4.13a) and the non-

optimized regions (Figure 4.12b and Figure 4.13d) of the designed MPDSM. To maximize

stiffness and toughness, a concentric pattern was used for the TO-solution area.
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Figure 4.13: Case study 2 (a) printed basic primitive, (b) printed TO design for length scale = 2.4 mm,
(c) printed TO design for length scale = 1.2 mm, (d) printed MPDSM, (e) experimental setup, and (f)
experimental results.

Mechanical tests (3-point bend with a strain rate of 5 mm/min) were carried out to

verify the success of the design, including the TO solutions on their own without embedding.

Figure 4.13e shows the experimental setup used for all four cases. The performance is

shown in Figure 4.13f. The two TO solutions behaved quite similarly, with the one having

the higher minimum length scale performing slightly better; this is likely due to the fact

that the larger length scale further reduced the probability of manufacturing defects even

beyond what would be predicted by the standard manufacturability constraints. Looking

at the performance of the MPDSM itself, it is very clear that it is a far superior design to

the basic primitive, in spite of the fact that they are both made from the same material and

have the same nominal density and printing parameters. As shown in Figure 4.13f, not only
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is the MPDSM mechanically stronger (while maintaining about the same stiffness as the

primitive) but also much tougher. Upon further analysis, it was found that the primitive

(Figure 4.13, orange inset) began to fail by cracking with very little plastic deformation

once it reached its peak strength. On the other hand, the MPDSM (blue inset) began to

slowly relax, dissipating the energy more effectively though crazing and fiber relaxation,

aided by a spring-like effect from the new part.

Overall, this was a very successful example of the process for creating MPDSMs using

automated design tools (topology optimization in this case) and a clear demonstration of

the benefits. In spite of nearly identical properties and processing (the other difference

being color), the performance (especially the toughness) was greatly enhanced simply by

arranging the manufacturable FDM-produced material elements. This problem could have

been done several other ways, perhaps as successfully, including manual layout and using

design rules. The use of the automated method (TO) to design the optimized region was a

choice by the author to demonstrate this approach for creating good structural MPDSMs.

4.5.3 Case 3: Re-Design of Consumer Product

The final case study in this chapter on the creation and fabrication of general MPDSMs is the

re-design of a consumer product. As shown in Figure 4.14a-b, a small clip (part of a harness)

is subjected to an axial load during use. The team re-designing it as an MPDSM is told that

it is made from PLA, has a designed strength of 250 pounds (approximately 1100N), and is

normally made via FDM using a simple raster-45◦ pattern with a nozzle size of 0.6 mm and

layer thickness of 0.2 mm. The design team is also told that the clip is subject to failure

by fracturing in the regions shown in Figure 4.14c, but it is not specified at what load or

under what conditions they normally fail (a common scenario during re-design). Finally, it

is specified that the external shape, size, and material cannot be changed without changing

the design of the whole system (the hardness) to which it belongs. Therefore, the only

design freedom given is in the design of the element layout. Using some basic design rules

taken from standard engineering practice and from the knowledge about FDM provided in

Chapter 3, the clip can be re-designed as an MPDSM to improve both its strength and

toughness.
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Figure 4.14: Case study 3 (a) design problem, (b) standard manufacturing layout, (c) failure-prone re-
design space, (d) new conceptual design, (e) new design manufacturing layout, (f) printed specimens of each
case, (g) experimental setup, (h) experimental results, and (i) post-experimental failure analysis.

Given the information about the basic geometry and loading (Figure 4.14a), the normal

manufacturing approach (Figure 4.14b), and the potential trouble areas (Figure 4.14, re-

design as an MPDSM can begin. After reflection, it was determined by the design team

that there were three fundamental design properties (assuming a 2.5-D problem) at play in

this problem:

1. Since all of the loading is at the holes, the thinnest areas need the best reinforcement.

2. The design space is symmetric, so only one side needs to be designed and then mirrored

to the other side.

3. If the holes are reinforced, this could have a flow-down effect of increasing the chance

for the middle section to fail if it is not also reinforced in some way, while trying to

change the fundamental design as little as possible.
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A very obvious solution to the problem is to simply print with the entire geometry printed

as a series of concentric circles. However, there are three major issues with this approach

for the problem at hand:

1. First, the having all of the fibers facing in the same direction of the load may decrease

the stiffness of the clip significantly due to fiber relaxation and pullout.

2. Next, every layer in the structure would be a series of concentric rings, so any small

manufacturing defects or fiber relaxation could case it to collapse.

3. PLA has a low glass transition temperature (60-70◦C typically) and the MPDSM

structure could weaken as the temperature rises, causing creep (in the best case) or

disintegration (in the worst case). This is the reason that the raster-45◦ configu-

ration is commonly used for PLA; it is generally considered to be the most stable

configuration [75–79].

After carefully considering these design properties and considerations, it was clear that

the historical weak areas (around the holes) should be re-designed as a MPDSM to improve

the part. Because of the geometry and an assumed possibility that the applied force (from

a rope or wire) could be applied from any direction, it was decided that the best approach

was to arrange the material immediately around the holes. This extended the edge of the

design space in Figure 4.14c) into a concentric configuration. After this was done, to prevent

simply moving the fracture zone closer to the center of clip, a connecting bridge between

the two concentric region was added while leaving as much of the old structure intact on

the edges as possible to mitigate the three issues described above. This way, the structure

is not simply a stack of identical layers, instead being a hybrid between the older design

and an ideal new design. The new design space is shown in Figure 4.14d and the element

layout for this new design is shown in Figure 4.14e. To verify the effectiveness of the design

change, the two designs were printed (Figure 4.14f) and tested using a standard setup for

compact tension (CT) testing (Figure 4.14g) (strain rate of 5 mm/min) to reproduce the

loading in the problem description. Results of the experiment are shown in Figure 4.14h;

the new design is slightly less stiff (as expected) but performs significantly better than the
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original design, both in raw strength and in toughness. The original design was found

to have a factor of safety of 1.36, which was increased to about 1.50 for the re-designed

clip. Observing the two specimens after testing (Figure 4.14i), the logical reason for the

improvement became very clear: The original design was stiffer until its failure point, but

then experienced total failure. On the other hand, the re-designed version experienced

crazing, fiber pull-out, and local plastic deformation but mostly maintained its structural

integrity. If these were in use, the original design would have caused the harness to fail

completely; for the re-designed version, the harness would have been weakened but would

not have failed without a significant amount of additional deformation in the clip.

4.6 Closing Remarks

This chapter explored the design and creation of MPDSMs to be made by scanning-type

AM (ST-AM) processes (particularly fused deposition modeling). Both qualitative and

quantitative aspects of the problem were explored in depth, as demonstrated by the three

case studies. Unlike most work on design approaches for structured materials (such as that

discussed by Kochmann et al. [80]), this work focuses primarily on manufacturability (since

it is driven by MDD principles) and second on structure, performance, or other factors. The

discussion is material-agnostic, but it is assumed that most of the practical applications for

this proposed method will use standard thermoplastic polymers. A general framework

for the design and manufacturing of MPDSMs by FDM (and by extension, other ST-AM

processes) was developed using a primarily qualitative approach, with some major discussion

of practical implementation. This framework, subject to the discussed restrictions, allows

the bottom-up design and construction of a class of structured materials by starting with

generic, homogeneous, isotropic/transversely isotropic material elements and using these

to build useful 3-D MPDSMs which simultaneously have high manufacturability and the

largest possible design space.
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FRACTURE MECHANICS AND DESIGN
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5.1 Introduction

The fracture behavior of materials has significant implications for practical design and man-

ufacturability decisions, as it is often a major limiting factor for applications and processing

plans [1,2]. Defects in materials can serve as crack initiators and lead to premature failure

of the part. When brittle materials are used, cracks can lead to catastrophic fracture at
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lower loads than those predicted by standard material properties [3–5]. In ductile mate-

rials, the internal defects may not cause an immediate failure but the plastic behavior of

the material under load may be modified, affecting the structural integrity and stability of

the material [6, 7]. The influence of uncertainties in material response (caused by natural

and induced defects, environmental factors, load magnitude and location uncertainties, and

other issues have traditionally been offset by using a “Factor of Safety” (FoS) during design

process [8–10]. Choosing an appropriate FoS is essential, as a low one may still lead to

unplanned failure but one that is too high can result in over-design and waste. It is also

likely that the FoS will need to be locally calculated in order to ensure the most effective and

efficient design. Fracture mechanics can give more precise information on material proper-

ties and relates these properties to the component behavior. It provides guidance on the

size, shape, and locations of any inclusions, defects, cracks, or other stress concentrators;

this perspective can also better help determine the magnitude of the load that can be safely

applied for a given material or structure to withstand fracture [3, 11].

In current practice, advanced materials are extensively considered while designing.

These materials are often complex, structured, and hierarchical systems (e.g., advanced

composites [12,13], architectured [14,15] and functionally-graded materials [16]). By study-

ing the fracture behavior of these materials and structures, a large amount of design knowl-

edge [17–19] can be extracted that can guide design decisions. Rigorous experiments are

thus essential to understand the response of materials. Unlike many other types of mechan-

ical testing, the effects of fracture mechanics can be directly observed, in real time with

a relatively low cost and time investment. Fracture-driven design knowledge can not only

be used to determine limitations and constraints, but also to expand the design space and

guide development of new design methodologies.

These may take the form of discrete layers, sintered powder particles, deposited beads

of material, and other similar elements. AM-driven inclusion/void creation in the material

structure may be inter-layer, intra-layer, or both. This depends mainly on the type of

process used; scanning-type (ST-AM) processes (such as fused deposition modeling (FDM)

and laser powder bed fusion (LBF)) typically deposit and fuse material in the form of

beads or elements (also called “roads” in some literature) while non-ST-AM processes could
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deposit and fuse entire layers at a time (such as the case with digital light processing

(DLP)) or may print in a inkjet-like fashion (such as Polyjet or binder jetting (BJ)). The

most common and well-refined class of additively manufactured materials are those based

on standard thermoplastic and resin-based thermoset polymers [20–22]. Of the involved

processes, FDM is the one with the most extensive history in the literature and the best-

known material properties and mechanical behavior. In the past few years, a fairly extensive

literature has been developed on the standard mechanical properties of many AM-processed

materials, helping to advance them as engineering or commodity materials. However, no

standard guidance has been developed on fracture testing of these AM-processed materials,

which has resulted in variety of test processes and methodologies being used. This has led

to high variance in details and rigor of reported results. ASTM and ISO standards are not

always used for these tests and it has been an open question about which standards to use,

if available, and how to interpret the collected data.

Fracture mechanics as a mechanical load or design driver is a major theme of this

dissertation and will be discussed extensively in the next several chapters. In this chapter,

a deep literature review is presented to show the state-of-the-art for fracture testing of FDM-

processed materials. From this review, a large amount of information about the materials,

testing methods, and standards used (Section 5.2) is shown to help drive decisions for

the work presented in upcoming chapters. In addition to the raw information about the

testing, perspectives on design knowledge and information were also collected and refined

(Section 5.3) from the set of references, providing a more qualitative view of the literature

from the perspective of an expert in mechanical design. After an extensive exploration of

the literature, some practical implementation considerations are developed and presented

in Section 5.4. Finally, some closing remarks are offered in Section 5.5. The purpose of this

chapter was not only to review the literature, but to provide context and motivation for the

study of fracture related to mechanical design which will be explored in upcoming chapters.
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5.2 Review: Fracture Methods, Materials, and Standards for
FDM Materials

This section presents the results of an extensive literature review meant to establish the

state of the art regarding fracture testing of FDM-processed materials. The focus of the

review was on fracture testing methods used previously, the list of materials that have been

successfully tested, and the ASTM/ISO standards (if any) that were used to guide the work.

More details about the review approach and details are given in Appendix G.

5.2.1 Fracture Testing Methods - FDM

The fracture testing methods identified during the review fit into four categories: (1) basic

mechanical tests used to gather fracture information, (2) quasi-static fracture tests, (3)

impact tests, and (4) dynamic tests. Note that all of the impact tests found were defined

by only a single strike of the sample and that the dynamic tests did not involve fatigue

analysis or measurement. Figure 5.1 shows the approximate distribution within the reviewed

literature of each of the tests discussed in Table 5.1.

Table 5.1: Testing methods found during the survey for quasi-static, impact, and dynamic tests. Impact
tests were considered to be those that applied the full load to the material suddenly, while dynamic tests
applied the load in a slower but non-steady-state or non-static way. FLX, ONSENB, and SENB tests may
have used 3-point or 4-point loading. Standard tensile test specimens may be solid or have internal defects
but are not mechanically notched.

Test Studies

Standard Mechanical Tests
SCT Standard compression test [23, 24]
STT Standard tensile test [24–32]
FLX Standard flexure test [24, 29]

Quasi-Static Fracture Tests

CT Compact tension test [28, 33–36]
DCB Double cantilever beam test [37–40]
SENB Single-end notch bending test [26, 36,39,41–51]
SENT Single-end notch tension test [27, 52–55]
DDEN Deep double edge notch test [55, 56]
ENF End-notched flexure test [38]
MMB Mixed-mode bending test [38]
ONSENB Offset-notch SENB test [26,44]
TTT Trouser tear test [57]

Impact Tests
CIT Charpy impact test [24, 58–61]
IDT Impact drop test [59]
IIT IZOD impact test [30, 62,63]

Dynamic Tests
CB Cantilever beam dynamic test [64]
SHPB Split-Hopkinson pressure bar [45]
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Figure 5.1: Distribution of the standard mechanical tests focusing on fracture behavior, the quasi-static
fracture tests, the dynamic tests, and the impact tests performed in the reviewed literature. Specific tests
within each category are also shown. It should be noted that many of the reviewed papers utilized multiple
testing methods. Separate chart not shown for the dynamic tests, as there was only one study involving each
of the two methods.
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Figure 5.2: Fracture testing based on standard mechanical characterization tests: (a) Compression testing
of FDM ABS [23], (b) fractured standard tensile testing FDM PLA samples, and (c) PLA fracture surface
detail [25]. Panel (a) © Elsevier B.V., reproduced with permission. Panels (b) and (c) reproduced under
CC-BY license terms.
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Figure 5.3: Quasi-static fracture tests: (a) Double cantilever beam (DCB) testing setup using FDM
ABS [39], (b) single-edge notch bending (SENB) testing using FDM ABS and polycarbonate [49], (c) CT
testing of FDM ABS [33], and deep double edge notched (DDEN) testing scheme under (d) tension and (e)
punching [56] for FDM nylon. Panel (a) © Elsevier B.V., reproduced with permission. Panel (b) from US
Government document and not subject to copyright. Panels (c-e) reproduced under CC-BY license terms.

The most common testing methods used in the reviewed literature were single-edge

notch bending tests (SENB), single-edge notch tensile tests, compact tension tests (CT),

Charpy impact tests, and standard tensile tests with fracture-related interpretations of the

observed material behavior. The standard mechanical tests identified as being used to study

198



the fracture behavior of AM-processed polymer materials included standard compression

(for example, Figure 5.2a completed by Guessasma et al. [23] on FDM ABS), tensile (Fig-

ures 5.2b and 5.2c observed for fracture behavior by Mourad et al. [25] using FDM PLA),

and flexure tests (such as the study done by Spoerk et al. [29].

© Elsevier Ltd. Used with permission

(c)

© CC-BY 4.0 license

(b)© CC-BY 4.0 
license

(a)
No copyright 

(US Gov)

Figure 5.4: Dynamic and quasi-static fracture tests: (a) trouser tear test [57] on FDM ABS and (b)
Dynamic cantilever beam test [64] for FDM ABS. Panel (a) from US Government document and not subject
to copyright. Panel (b) reproduced under CC-BY license terms.

The experiments completed with quasi-static tests could be divided into two categories,

namely the “common” setups most often used in fracture mechanics testing and those
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that are more specialized and used to find specific information. The common tests that

were found to have been used were the double cantilever beam (DCB) test (an example

of this test from Young et al. [39] is shown in Figure 5.3a), single-edge notch bending

(SENB) (Figure 5.3b as presented by Dunn et al. [49]), single-edge notch tensile (SENT),

and compact tension tests (CT) (for example, Figure 5.3c from a study by Gardan et

al. [33]). Of the quasi-static tests, the four common ones described here were used in the

vast bulk of the experiments, with SENB by far the most common. The remaining studies

used the more obscure and specialized tests, with Cuesta et al. [56] employing deep double

edged notch (DDEN) tests for tensile (Figure 5.3d) and punch (Figure 5.3e) loadings, Khan

et al. studying end-notch flexure (ENF) and mixed-mode bending (MMB), and Davis et

al. [57] used trouser tear testing (TTT) to examine the in-layer strength of FDM ABS

(Figure 5.4a). Finally, some SENB tests were completed by Lanzillotti et al. [26, 44] which

used offset loadings and notches (ONSENB).

(a)

(b)

(c)

© CC-BY 3.0 license

© CC-BY 3.0 license
© IMechE/Sage. Used with permission

Figure 5.5: (a) Examples of a Charpy testing machine and samples [59], (b) drop testing device and tested
samples [59], and (c) Type-E (reversed notch) IZOD [62] tests with results. Panels (a) and (b) reproduced
under CC-BY license terms. Panel (c) © IMechE/Sage, reproduced with permission.

Finally, six different types of impact and dynamic tests were found in the reviewed

literature. It should be noted that the dynamic tests referenced here were not fatigue tests

and were used to evaluate other properties such as natural frequency changes in response

to cracks (as explored by Baqasah et al, [64], with the experimental samples shown in
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Figure 5.4b), and testing the dynamic stress-strain relationship of the fractured material

using a Split-Hopkinson pressure bar as done by Rabbi et al. [45]. With the exception of

the drop impact experiment by Hadidi et al. [59] (Figure 5.5b), all of the impact tests found

during the survey were standard Charpy and IZOD tests. Charpy tests (such as those by

Hadidi et al. [59] (Figure 5.5a) and Caminero et al. [60]) were standardized and followed

essentially the same procedure. Most of the IZOD tests (for example, Peng et al. [30]) used

the Type A IZOD setup (notch in tension), but one very large study by Patterson et al. [62]

(Figure 5.5c) used the Type E (notch in compression) IZOD setup to better explore the

growth behavior of the cracks instead of simply characterizing the studied materials.

5.2.2 FDM-Processed Materials

As with the testing methods, more than one material or process may have been examined in

a single reviewed article. For each of the studies, a list of studied materials was collected and

tabulated (Table 5.2). The FDM process is reliant on the stable and predictable melting of

the raw materials, so all of the discussed materials are thermoplastic polymers. A total of ten

different thermoplastic materials (Table 5.2) were identified, in addition to multi-material

or structural composites (MM-SC). The most widely studied materials were acrylonitrile

butadiene styrene (ABS), polyamide/nylon (PA), and polylactic acid (PLA).

Table 5.2: FDM-processed materials examined in the literature

Thermoplastic Materials FDM

Acrylonitrile butadiene styrene (ABS) [23,26,32–35,37–45,47,52,53,56–59,62–64]

High-impact polystyrene (HIPS) [62]

Polyamide/nylon (PA) [31,54,56,60–62]

Polycarbonate (PC) [62,63]

PC-ABS blend [63]

Polyether ether ketone (PEEK) [24]

Polyethylene terephthalate glycol (PETG) [62]

Polylactic acid (PLA) [25,27,28,36,38,46,51,55,56,62]

Polypropylene (PP) [29,56]

Polyetherimide (ULTEM) [48,63]

Multi-material/structural composite (MM-SC) [30,49,50]

201



5.2.3 Testing Standards - FDM

As previously discussed, 17 different fracture testing methods were identified during the

review. In the majority of the experiments, ASTM and ISO testing standards were followed.

In most cases, these were useful in helping to set up the experiments and interpreting the

results; however, some standards that not been traditionally applied to AM materials were

found to have been used. The list of standards found is given in Table 5.3. It should also

be noted that a number of the studies did not specify a standard or only used standards for

part of the study. Cases were also found where ASTM and ISO standards were mixed in

the same article (such as Hadidi et al. [59] and Hart et al. [42,43]). It was not always clearly

specified which version of a standard was followed, so for the references in this review, it

was assumed that the currently binding standard was the one in use. Figure 5.6 shows the

relative distribution of the relevant ASTM and ISO standards in the surveyed literature.

© Elsevier Ltd. Used with permission
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© CC-BY 4.0 license

(b)© CC-BY 4.0 
license
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No copyright 

(US Gov)
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Not specified/None

ASTM

ISO

Other

ASTM Standards
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D695 D5045
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Other ASTM

ISO Standards

178
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13586

Figure 5.6: Distribution of standards used in the reviewed literature. It should be noted that some papers
used more than one standard and that many either used no standard or didn’t specify which standard was
followed

Some of the standards followed are very commonly seen in the AM polymer litera-

ture (e.g., ASTM D256 [65], ASTM D638 [66], ASTM D695 [67], ASTM D790 [68], ASTM

D6110 [69], ISO 178 [70], and ISO 179 [71] for general hard polymer material characteri-

zation studies. Similarly, standards such as the impact testing standards mentioned above

along with ASTM D5045 [72], ASTM D6068 [73], ASTM E1820 [74], ASTM STP1359 [75],

and ISO 13586 [76] are typical “general” fracture testing standards. More specialized frac-
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ture standards (ASTM D1708 [77], ASTM D1876 [78], and ASTM D1938 [79]) were also

found to be applied to the testing of AM polymer materials. All of these should be expected

to be used during fracture testing of these materials and so their presence is not a surprise.

On the other hand, several standards were used that relate directly to polymer matrix

composites (specifically ASTM D3039 [80], ASTM D3518 [81], ASTM D5528 [82], ASTM

D6671 [83], and ASTM D7905 [84]). These do not seem particularly applicable to AM

polymer fracture testing and their use and assumptions were not explained by the authors

in most cases. These are clearly not applicable for AM-processed pure materials (especially

in the case of thermoplastics), but this is also true in the case where the AM material uses

a filler or fiber since the standards assume that the polymer matrix is well-understood and

the only source of uncertainty is from the added composite material or fibers. In the case

of all the polymer AM processes, this is not true since the structure of the AM material

itself could introduce phenomena into the test results, making it difficult or impossible to

accurately test the effect of the composite.

Table 5.3: Utilized standards from ASTM, ISO, and PN. Some studies did not specify a standard. For
many studies, the exact version of the standard followed was not clear, so standard citations refer to the
active or latest version as of May 2020.

Standard Ref Studies

ASTM D256
Standard Test Methods for Determining the Izod Pen-

dulum Impact Resistance of Plastics
[65] [30, 47,62,63]

ASTM D638
Standard Test Method for Tensile Properties of Plas-

tics
[66] [24–27,30,31,54]

ASTM D695
Standard Test Method for Compressive Properties of

Rigid Plastics
[67] [24, 59]

ASTM D790

Standard Test Methods for Flexural Properties of Un-

reinforced and Reinforced Plastics and Electrical In-

sulating Materials

[68] [24]

ASTM D792
Standard Test Methods for Density and Specific Grav-

ity (Relative Density) of Plastics by Displacement
[85] [37]

ASTM D1708
Standard Test Method for Tensile Properties of Plas-

tics by Use of Microtensile Specimens
[77] [27]
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ASTM D1938

Standard Test Method for Tear-Propagation Resis-

tance (Trouser Tear) of Plastic Film and Thin Sheet-

ing by a Single-Tear Method

[79] [57]

ASTM D3039
Standard Test Method for Tensile Properties of Poly-

mer Matrix Composite Materials
[80] [54]

ASTM D3518

Standard Test Method for In-Plane Shear Response of

Polymer Matrix Composite Materials by Tensile Test

of a +/- 45 Laminate

[81] [38]

ASTM D5045

Standard Test Methods for Plane-Strain Fracture

Toughness and Strain Energy Release Rate of Plas-

tic Materials

[72] [28, 35,36,39,51]

ASTM D5528

Standard Test Method for Mode I Interlaminar Frac-

ture Toughness of Unidirectional Fiber-Reinforced

Polymer Matrix Composites

[82] [38, 39]

ASTM D6068
Standard Test Method for Determining J-R Curves of

Plastic Materials
[73] [42, 43]

ASTM D6110
Standard Test Method for Determining the Charpy

Impact Resistance of Notched Specimens of Plastics
[69] [24, 60]

ASTM D6671

Standard Test Method for Mixed Mode I-Mode II

Interlaminar Fracture Toughness of Unidirectional

Fiber Reinforced Polymer Matrix Composites

[83] [38]

ASTM D7905

Standard Test Method for Determination of the Mode

II Interlaminar Fracture Toughness of Unidirectional

Fiber-Reinforced Polymer Matrix Composites

[84] [38]

ASTM E1820
Standard Tests Method for Measurements of Fracture

Toughness
[74] [33,34,41,47–49,52]

ASTM STP1359 Mixed-Mode Crack Behavior [75] [26]

ISO 178 Plastics – Determination of flexural properties [70] [29]

ISO 179 Plastics – Determination of Charpy impact properties [71] [29, 59,61]

ISO 13586
Plastics – Determination of fracture toughness (GIC

and KIC) - Linear elastic fracture mechanics approach
[76] [42, 43]

PN 10045 Metallic Materials – Charpy Impact Test [86] [58]

Not specified
[23,24,32,40,44–46,

50,53,56,64]
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5.2.4 Remarks on Literature Review

In this review, the collection and discussion of information on the methods, materials, and

standards provided four major outcomes which will be helpful for the remainder of this

present Chapter as well as the following chapters:

• The collection and cataloging of the available data for FDM-processed polymers. This

is useful immediately to help guide efforts in design-for-manufacturability (DFM) and

design-for-AM (DFAM). This dataset is obviously incomplete and needs far more work,

both in the collection of data and the standardization of assumptions and reporting.

• Noting and identifying gaps in the currently available fracture testing methods and

data for FDM polymers.

• The demonstration of how to recognize and collect this information for other studies

and domains. This will be useful for designers when reviewing experimental results

or performing screening/proof-of-concept studies during design.

• To identify areas where improvements can be made in the design and reporting of

fracture tests to ensure the collected information is useful for designers. From the

mechanics side, better alignment with the needs of designers will also help to make

the experiments more consistent and well understood by all users.

These purposes were refined during the review process and were not fully established at

the beginning of the review since it was not certain what information could be found.

In conclusion, this review provides a significant amount of data on the state-of-the-art of

fracture testing of FDM-processed polymer materials which will help derive a logical and

clear perspective on how to use this data in design practice.

In addition to more rigorous and design-focused fracture testing of other materials and

standards development, there are several areas where more attention should be paid in the

future. From the reviewed studies, it is clear that the most important areas are:

• Other polymer AM materials and processes, especially the common and rapidly-

developing processes such as digital light processing (DLP). There is still much that is
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not known about the behavior of projection-based thermoset processes and studying

these from a design-under-fracture perspective could provide very useful information.

• While not covered in detail in this study, the size effect of AM materials should be

studied more deeply, especially those processed using scanning-type (ST-AM) pro-

cesses. There has been some research done in this area, as shown earlier in this

review, but much is still not known.

• The influence of processing parameters on the fracture behavior from a design per-

spective.

• Material characterization and modeling of fracture behavior.

• Fracture properties of the materials relative to the number of samples and/or ex-

perimental replications, including the production of confidence intervals relevant to

design.

• The true performance of commercial raw materials relative to that reported in com-

pany data sheets. Future efforts should focus on collecting the experimental informa-

tion from suppliers and commercial producers and ensuring that standards and best

practices are followed.

• The common testing methods discussed in this review seem to be well-represented

and appropriate for AM polymers (with the current testing standard paradigm) but

further development in the area of experimental design is needed. Considerations

could be sampling points, the appropriateness of Taguchi, factorial, and parametric

experimental designs, the minimum required number of testing specimens, reasonable

expected variance in testing results, testing speeds, correction factors based on the

AM-driven size effects, biases and distributions of collected data, and effective data

analysis methods (parametric, such as ANOVA, or non-parametric methods).

• A rigorous analysis of the range of validity for the small-scale yielding assumption for

AM polymer materials.
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• Finally, the areas of research excluded from this review, especially fatigue (for which

enough information exists relative to AM polymers for a separate review paper), the

fracture behavior of polymer-non-polymer composites, biomaterials, adhesives, and

soft or hyperelastic materials.

5.3 Design Information Gathering from Fracture Studies

5.3.1 Design Knowledge and Fracture Data

One way to define design knowledge is verified information, practices, and processes that

enable engineers and other designers to effectively design products and systems. There are

several major domains of potentially useful design knowledge that can be extracted from

the results of fracture mechanics tests. As with any type of design knowledge, these can

be classified as constraints (limitations of the design space), advantages (expansions of the

design space), and best practices (expert advice, lessons-learned, or soft constraints). In this

context, the term design space can be understood as the set of feasible final designs available

to solve a particular problem; they all satisfy the objectives and each design candidate often

represents different trade-offs within the design space. In the literature review presented in

Section 5.2, seven areas of study were identified as potentially benefiting from the design

knowledge that can be extracted from fracture data and studies [23,27,28,30]:

1. Design of material structures: Material layout design and structural optimization for

anisotropic, structured, and functionally graded standard materials and metamaterials

2. Realistic damage assessment and prediction

3. Manufacturing process effects: The influence and effect of manufacturing process-

induced defects and uncertainties in materials

4. Proper environmental use conditions

5. New manufacturing process development : The need for new manufacturing processes

and process variations to mitigate or take advantage of material phenomena observed

during fracture testing
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6. Design quality evaluation: Realistic performance analysis metric development, includ-

ing verification/validation and design evaluation (both destructive and non-destructive)

7. Material characterization: Rigorous material and material system characterization

Designing with materials processed via AM can especially benefit from these perspec-

tives. Regardless of which AM process or material is used, some anisotropy and structure

at meso-scale exists in the final product [20–22]. In practice, the meso-scale features in AM

materials exist between macro- and micro-scale features and are determined primarily by

their relative size [27,40].

5.3.2 From the Literature

As discussed in the introduction, fracture mechanics data can be extremely useful to consider

in design, since the fracture properties are sometimes more realistic and limiting than

properties such as yield stress (generally the mean value over a large number of tests). This

is especially true for AM polymer materials, due to their natural structures and tendency

to be more brittle than equivalent molded or machined materials. The seven domains of

design knowledge offered by fracture testing data can be summarized as shown in Table 5.4.

Table 5.4: Design knowledge areas related to fracture mechanics data/experiments, with the related studies
reviewed in this chapter

Domain Description Related Studies

Material layout de-

sign and optimiza-

tion

The design of new material structures and composites,

better designed and optimized using information from

the observed fracture behavior. This can include both

modeling of the new material structures and experi-

mental analysis under realistic condition. The appli-

cations of this are not only in the design of structured

materials, but in the use of these structured materials

for more general design problems (such as the design

of aerospace or medical device parts).

[26, 27, 30, 32–34,

38–40, 44, 45, 47, 49–

54,57,60,62,63]
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Damage assessment

and prediction

The realistic assessment of how the design under eval-

uation may fail from damage or how much damage

can be sustained without failure. For many problems,

a fracture mechanics perspective will provide a more

realistic view of damage effects than basic mechanical

tests and stress analysis can provide while being far

easier and more practical than formal fatigue tests for

many problems.

[23, 64]

Influence of process-

induced material

defects

Extremely important for structured materials, since

the small variations of material layout could have very

dramatic effects on reliability and behavior. This can

also drive the selection of manufacturing processes dur-

ing design, since each process has different mechanics

and some could be more appropriate for particular de-

signs than others.

[27, 63]

Environmental use

conditions

Since basic fracture mechanics relies more on the re-

sponse of the material to the input of energy [3] than

the total strength of the basic material, the envi-

ronmental conditions the material will experience can

drastically affect its applicability and usefulness in fi-

nal products. Fracture testing may be more useful in

evaluating this than standard mechanical testing of the

materials and products.

[25, 51,59]

Design-driven pro-

cess development

It has been observed several times in this review (e.g.,

Peng et al. [30], Hart et al. [43], and Hadidi et al. [59])

that the fracture behavior seen in a material or part

necessitated the creation of new manufacturing pro-

cesses. With the additional knowledge available using

a design-driven process, this process can be used more

effectively and reliably. This knowledge can be used to

create processes which both take advantage of positive

effects and mitigate negative ones.

[30,43,49,50,52,59].
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Practical AM prod-

uct performance

analysis

Both when developing realistic design rules or heuris-

tics and when performing verification and validation

of designs, effective, clear, and consistent metrics are

vital. Fracture behavior observations can be used to

produce these metrics and design more effective and

reliable performance tests (both destructive and non-

destructive).

[30, 40,49,59]

New material and

material system be-

havior characteriza-

tion

Fracture testing methods can be used to quickly,

cheaply, and reliably test new materials and material

systems or composites; this is useful for both general

characterization and for exploration during the prod-

uct design process. Characterization methods that ex-

plore specific questions related to a design could be

especially useful.

[24,28,29,31,35–37,

40–42, 46, 48, 51, 55–

58,61]

The two main areas of contribution found represented in the reviewed literature were

the material layout and design and the material characterization domains, followed by the

design-driven process development. It should be noted that the reviewed papers on char-

acterization of AM polymer materials provided more information and insight than simply

reporting datasheet properties for the materials (as many characterization studies do). The

structural effects of AM-processed materials (such as raster patterns and layer fusing qual-

ity), the crack growth patterns and their effects on properties, the repeatability of fracture

behavior, and other important considerations were all presented. Also, it could be said

that this extra layer of information collected is one of the main benefits of using fracture

testing data in design, as the extra detail in inputs provides better design knowledge. In

addition to the general principles discussed in Table 5.4, four other major aspects need to

be considered specifically for AM polymer material design, namely (1) the design freedom,

(2) the process mechanics, (3) the cost of polymer additive manufacturing and experiments,

and (4) the nature and evolution of AM processes.
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5.3.2.1 AM-Driven Design Freedom

The (often) near-net-shape design freedom of most AM processes allows the practical manu-

facturing of a wide variety of metamaterials, functionally graded materials (FGMs), lattices,

solutions for 3-D topology optimization problems, and other difficult design problems. The

processes do have significant manufacturability constraints, but these can be considered as

constraints on the design. These constraints, the material behavior during processing, the

effects of defects, and the elastic-plastic behavior of the AM polymer materials are all well

understood and easily interpreted and applied during design. This aspect was widely seen

in the reviewed literature, but was especially clear in the studies that dealt with the design

of structured materials such those by Allum et al. [27], Peng et al. [30], Lenti [47], Gardan

et al. [33, 34,52], McLouth et al. [35], and Hart et al. [50]. The optimized layouts shown in

Figure 5.7a were generated by Lenti [47] (other studies from the same research group on

similar problems were found in references [26, 33, 34, 44, 52]); in this case, the designs were

based on the free arrangement of the material elements deposited by FDM; only a single

material was used.

(a)

(b)

© CC-BY 3.0 license

© CC-BY 3.0 license

(c)

© IMechE/Sage. Used with permission

(c)

© CC-BY 3.0 license

(b)

©
 W

iley-V
C

H
. U

sed
 w

ith
 p

erm
issio

n

(d)
© CC-BY 4.0 

license

(a)

Figure 5.7: (d) Optimal material structure layouts under various objective functions [47], (b) Composite
filament developed to build structural composites more efficiently [50], (c) new FDM-based manufacturing
process which utilized shot peening on some layers to better control the print structure and toughen the
material [59], and (d) process-induced material structure and features and their effect on fracture mechan-
ics [27]. Panel (b) © Wiley-VCH, reproduced with permission. Panels (a) and (c) reproduced under CC-BY
license. Panel (d) © Elsevier B.V., reproduced with permission.
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5.3.2.2 Process Mechanics

The mechanics of AM (often best understood when using polymer AM processes due to

cost and technical understanding) introduce small voids, other defects, and anisotropy into

the final parts and this must be understood and accounted for during design. Different

processes introduce various types of defects and knowledge of this could help drive the

manufacturing process selection as well as drive design decisions. While the concept was

present in several studies, the work by Allum et al. [27] specifically looked at the small-to-

medium scale features and natural structure of FDM-fabricated materials and examined the

effects on fracture mechanics. Some of the examined structural problems encountered are

demonstrated in Figure 5.7d. It was found in this study that the structure of the elements

(driven completely by the process mechanics of FDM) has a larger influence on the fracture

behavior of the material in many cases than either the natural anisotropy of FDM materials

or the polymer welding quality between the layers and elements.

5.3.2.3 Manufacturing and Experimental Costs

The cost of polymer-based AM (both in terms of raw materials and processing equipment)

is much lower than for other AM materials, making it very practical and efficient to rely

on experimental data to drive design instead of models and simulations. In many of the

studies reviewed in this article, the large number of samples (over 1000 samples in one case)

tested demonstrates this well. Therefore, evaluating the response of AM polymer materials

to damage (whether fatigue is considered or not), the effects of the use environment, and

realistic performance analysis using experimental results (especially fracture testing results)

can provide a very detailed and effective view for designers. One of the main areas of AM

technology yet to be developed is in the standards, verification/validation, and certification

process for end-user parts; due to the wealth of extractable knowledge, fracture testing may

have a very important role to play in developing this area, especially with the relatively low

cost of physical experiments using these materials and processes.
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5.3.2.4 AM Process Nature and Evolution

Design-driven process development is one of the most interesting things discovered during

this review, as it is not an obvious place to look for design knowledge. However, the studies

reviewed made an excellent case for the necessity of this; many AM processes exist but there

are still large gaps in what is needed for specific design problems. Most AM processes are

combinations and small-scale automations of traditional manufacturing processes [20–22]

and therefore are not necessarily novel in themselves. For example, FDM is a combination

of a traditional wire extrusion process with precise mechanical positioners (such as linear rail

positioner and delta robotic arms) and control software; similarly, SLS is similar to powder

metallurgy where the dense powder bed acts as the “tool” and the heat is applied selectively

with a laser instead of tool pressure to generate the green parts. Therefore, as additional

complex design problems are identified, new process combinations and modifications, in ad-

dition to new software and control schemes for old processes, can be developed. Refinements

of existing processes can be performed as well to address problems and take advantage of

potential benefits discovered. Two examples of this found in the reviewed literature were

completed by Hart et al. [50] (Figure 5.7b) and Hadidi et al. [59] (Figure 5.7c). In the first

case, the standard FDM process was modified slightly to deposit a dual-material filament

effectively to build a structured material from two thermoplastic materials simultaneously.

These two materials can have significantly different optimal processing temperatures. Once

effective settings were found and the parts were post-processed, the mechanical properties

(both bulk and fracture properties) were greatly improved, allowing ABS parts to be made

which took advantage of the AM design freedom while also having near-molded-value me-

chanical properties. In the second case, a new process was developed which combined FDM

with a shot-peening process; this helped to ensure that the layers were more effectively

bonded and voids were reduced, greatly increasing the toughness of the printed material.

5.4 Practical Implementation in Design

As discussed throughout this chapter, a large amount of useful design knowledge and data

can be extracted from fracture mechanics literature on FDM (and likely other AM processes
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as well). In addition to the obviously valuable performance data offered by studying the

fracture behavior of materials (especially materials that are difficult to characterize, as are

most AM-processed materials), a significant amount of information valuable for decision-

making is available. Most of the collected information from Table 5.4 falls into this category.

From better learning how to take advantage of the process-induced material effects, to more

accurate damage prediction, to illuminating the need for new manufacturing processes, and

all the other important considerations, these data points can be very valuable for designers.

However, the FDM fracture experiments and their documentation could be improved

in several areas in order to provide more value to practicing designers. In addition to the

general recommendation to consider gaps in the literature when selecting testing methods,

materials, and processes, some recommendations for future FDM fracture studies are:

1. ASTM and ISO standards were used in the majority of the reviewed studies, but the

standards used did not always align well with the testing needs of AM materials. Care

should be taken to use only the most applicable standards or to very carefully describe

the experimental methods used (perhaps as supplemental materials) in lieu of using a

standard which may not match the conditions of the experiment. Testing standards

for these materials need to be developed and best practices during testing should be

recorded carefully in publications to serve as a basis for new standards.

2. Some studies reported values for material properties which are questionable based on

the standards followed. Most standards contain criteria for sample geometry, behavior,

and performance that must be met to validly use the standard. While not calling out

any specific works, there were several cases encountered which failed to fully test the

criteria for validity before reporting data. While the standards may not accurately

collect or test the behavior of the AM-processed materials, it is important that the

standards either be followed exactly or not used at all to avoid any confusion and

inaccurate data in the literature.

3. The general variability in properties is very high for AM materials, so some initial

work should be done before any new experiment to understand the expected range of

performance. This should be carefully compared with the actual data and suspected
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or observed reasons for the variability reported with the data set. If the results are

extreme outliers (as observed in the property tables in the Supplemental Materials)

(such as an order of magnitude lower than expected), this may indicate mistakes in

the experimental procedure or execution. At a minimum, additional replications of

the experiments should be done to verify the unexpected value. It is expected over

time that researchers and practitioners will converge on accepted confidence intervals

for AM properties; however, the field is clearly far from this point and so everything

should be checked and all experiments should be started by understanding the range

of expected property values.

4. It was observed that in many cases, experimental standards were used to set up

experiments and provide sample geometry, but were not used to interpret the results.

A number of the standards also provide correction factors and sensitivity analyses

(ASTM D256 [65] is a good example) which were not used and could have enhanced

the rigor of the studies if used.

5. When possible, the mixing of ASTM and ISO standards in a single study should be

avoided as they sometimes ask for different perspectives, numbers of samples, and

interpretation guidelines.

6. When standards are used, this should always be reported. Likewise, when a standard

is not used, this should be explicitly and prominently disclosed.

7. It was noted in a large number of the reviewed studies that the full experimental details

were not given (it was especially problematic that many studies did not explicitly state

how many samples were actually tested), preferring to focus the main discussion on

other aspects of the study. It is vital for the generation of useful design knowledge

that all the details are given when reporting the study.

8. It was noted in several studies that FDM has a sample-size effect but this was not

considered by most of the other studies. Therefore, details such as the shell-infill

ratio for ST-AM processes and the layer thicknesses should be given in every study.

It should also be considered by experimenters that smaller samples will have larger
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material elements (such as the beads or roads in FDM) relative to the whole sample

size; this should be accounted for or large samples should be used.

9. It was observed in some of the studies that the shown samples had unnecessary man-

ufacturing defects due to poor tuning or poor quality raw filament, which increased

the variability of the observed properties. FDM machines should be tuned properly

and the samples should be inspected before testing.

10. It is well known that different raw material sources vary considerably in quality; if

characterization studies cannot be carried out for each batch of samples or set of

parameters, effort should be made to ensure that the same material and supplier are

used so the results will at least be correct relative to each experiment. All details

regarding material source, quality, and such information should be carefully recorded

and reported along with the experimental results.

11. It was not explicitly stated in many of the studies how and under what conditions the

samples were conditioned prior to testing. This is vital information for FDM samples

and should always be observed. Most of the standards for testing of polymer materials

have specific and clear instructions for conditioning the samples before testing, which

generally involved keeping them a stable temperature, humidity, and pressure for a

specified number of hours between preparation and testing.

5.5 Closing Remarks

One of the best ways to collect useful design data, guided by the discussion presented in

this chapter, is via carefully-designed physical experiments. When this is possible to do

for a specific design process or life cycle, it can provide extremely high-quality design data

that is set up from the beginning to answer specific questions. While literature reviews

are very useful and provide great insight into design questions at minimal cost to the

stakeholders (other than time cost), it is very rare that the collected data will be able to

exactly answer the design questions. In order to explore this further and provide a useful

and high-quality data set for the design problems in this dissertation, Part 2 of this work

on fracture mechanics will be presented in Chapter 6.
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printed continuous fibre reinforced thermoplastic composites using fused deposition modelling,”

Composites Part B: Engineering, vol. 148, pp. 93–103, Sept. 2018.

[61] E. Yasa, “Anisotropic impact toughness of chopped carbon fiber reinforced nylon fabricated by

material-extrusion-based additive manufacturing,” Anadolu University Journal of Science and

Technology-A Applied Sciences and Engineering, vol. 20, pp. 195–203, June 2019.

[62] A. E. Patterson, T. R. Pereira, J. T. Allison, and S. L. Messimer, “IZOD impact properties

of full-density fused deposition modeling polymer materials with respect to raster angle and

print orientation,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of

Mechanical Engineering Science, p. 095440621984038, Apr. 2019.

[63] D. A. Roberson, A. R. T. Perez, C. M. Shemelya, A. Rivera, E. MacDonald, and R. B. Wicker,

“Comparison of stress concentrator fabrication for 3D printed polymeric izod impact test spec-

imens,” Additive Manufacturing, vol. 7, pp. 1–11, July 2015.

[64] H. Baqasah, F. He, B. A. Zai, M. Asif, K. A. Khan, V. K. Thakur, and M. A. Khan, “In-situ

dynamic response measurement for damage quantification of 3d printed ABS cantilever beam

under thermomechanical load,” Polymers, vol. 11, p. 2079, Dec. 2019.

[65] ASTM, “D256 - 10(2018): Standard Test Methods for Determining the Izod Pendulum Impact

Resistance of Plastics,” standard, ASTM International, West Conshohocken, PA, 2018.

[66] ASTM, “ASTM D638 - 14: Standard Test Method for Tensile Properties of Plastics,” standard,

ASTM International, West Conshohocken, PA, 2014.

[67] ASTM, “D695 - 15: Standard Test Method for Compressive Properties of Rigid Plastics,”

standard, ASTM International, West Conshohocken, PA, 2015.

[68] ASTM, “D790 - 17: Standard Test Methods for Flexural Properties of Unreinforced and Re-

inforced Plastics and Electrical Insulating Materials,” standard, ASTM International, West

Conshohocken, PA, 2017.

[69] ASTM, “D6110 - 18: Standard Test Method for Determining the Charpy Impact Resistance

of Notched Specimens of Plastics,” standard, ASTM International, West Conshohocken, PA,

2018.

[70] ISO, “178:2019: Plastics — Determination of flexural properties,” standard, International Or-

ganization for Standardization, Geneva, CH, 2019.

[71] ISO, “179:2010: Plastics — Determination of Charpy impact properties,” standard, Interna-

tional Organization for Standardization, Geneva, CH, 2010.

223



[72] ASTM, “D5045 - 14: Standard Test Methods for Plane-Strain Fracture Toughness and Strain

Energy Release Rate of Plastic Materials,” standard, ASTM International, West Conshohocken,

PA, 2014.

[73] ASTM, “D6068 - 10(2018): Standard Test Method for Determining J-R Curves of Plastic

Materials,” standard, ASTM International, West Conshohocken, PA, 2018.

[74] ASTM, “E1820 - 20: Standard Test Method for Measurement of Fracture Toughness,” standard,

ASTM International, West Conshohocken, PA, 2020.

[75] ASTM, “STP1359: Mixed-Mode Crack Behavior,” standard, ASTM International, West Con-

shohocken, PA, 1999.

[76] ISO, “13586:2018: Plastics – Determination of fracture toughness (GIC and KIC) – Linear

elastic fracture mechanics (LEFM) approach,” standard, International Organization for Stan-

dardization, Geneva, CH, 2018.

[77] ASTM, “D1708 - 18: Standard Test Method for Tensile Properties of Plastics by Use of Mi-

crotensile Specimens,” standard, ASTM International, West Conshohocken, PA, 2018.

[78] ASTM, “D1876 - 08(2015)e1: Standard Test Method for Peel Resistance of Adhesives (T-Peel

Test),” standard, ASTM International, West Conshohocken, PA, 2015.

[79] ASTM, “D1938 - 19: Standard Test Method for Tear-Propagation Resistance (Trouser Tear)

of Plastic Film and Thin Sheeting by a Single-Tear Method,” standard, ASTM International,

West Conshohocken, PA, 2019.

[80] ASTM, “D3039/D3039M - 17: Standard Test Method for Tensile Properties of Polymer Matrix

Composite Materials,” standard, ASTM International, West Conshohocken, PA, 2017.

[81] ASTM, “D3518/D3518M - 18: Standard Test Method for In-Plane Shear Response of Polymer

Matrix Composite Materials by Tensile Test of a ±45◦ Laminate,” standard, ASTM Interna-

tional, West Conshohocken, PA, 2018.

[82] ASTM, “D5528 - 13: Standard Test Method for Mode I Interlaminar Fracture Toughness of

Unidirectional Fiber-Reinforced Polymer Matrix Composites,” standard, ASTM International,

West Conshohocken, PA, 2013.

[83] ASTM, “D6671/D6671M - 19: Standard Test Method for Mixed Mode I-Mode II Interlaminar

Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites,” standard,

ASTM International, West Conshohocken, PA, 2019.

[84] ASTM, “D7905/D7905M - 19e1: Standard Test Method for Determination of the Mode II Inter-

laminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites,”

standard, ASTM International, West Conshohocken, PA, 2019.

224



[85] ASTM, “D792 - 13: Standard Test Methods for Density and Specific Gravity (Relative Density)

of Plastics by Displacement,” standard, ASTM International, West Conshohocken, PA, 2013.

[86] PN, “EN 10045:1994: Metallic Materials - Charpy Impact Test,” standard, International Or-

ganization for Standardization, Geneva, CH, 1994.

225



Chapter 6

FDM FRACTURE MECHANICS - PHYSICAL

EXPERIMENTS
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This chapter may contain previously published text and figures, which are reproduced with

the permission of the copyright holders. See the copyright statement and list of references

at the end of the chapter.

6.1 Introduction

Continuing from the theoretical discussion and background exploration in Chapter 5, this

chapter presents the results of a set of physical experiments. The experiments had three

main goals, namely to (1) collect material properties, (2) observe the fracture behavior
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in various structured FDM-processed materials (from both qualitative and quantitative

perspectives), and (3) derive a set of assumptions and design rules which will be used to

design thermoplastic FDM-driven MPDSMs in Chapter 7 and Chapter 8. As previously

discussed, the materials selected were ABS, polycarbonate, and PLA (Table 6.1). The

print settings shown in Table 6.2 were used for all prints unless otherwise specified for a

particular experiment. All samples were conditioned according to typical ASTM standards

for a minimum of 40 hours in a room at at a temperature of 22−24◦ C and relative humidity

of 40 − 60% unless otherwise noted for a particular experiment.

Table 6.1: Material and source.

Material Source Color Vendor

Acrylonitrile butadiene styrene (ABS) Hatchbox Red Amazon.com
Polycarbonate (PC) Hatchbox Grey Amazon.com
Polylactic acid (PLA) Hatchbox Dark blue Amazon.com

Table 6.2: Basic printing parameters for most experiments in Chapter 6.

Parameter ABS PC PLA

Extrusion Temperature (◦C) 235 250 210
Bed Temperature (◦C) 70 70 60
Print Speed (mm/s) 50 50 50
Nominal Density (%) 100% 100% 100%
Acceleration (mm/s2) 400 400 400
Jerk (mm/s2) 8 8 8

In most characterization studies on FDM-processed materials, all three of the associ-

ated printing orientations are studied. In this dissertation, the main objective is to develop

useful design methods for MPDSMs under fracture and so the appropriate printing orien-

tation or orientations offer significant design freedom. Most standard mechanical testing

samples (such as those shown in Figure 6.1) are much thinner than they are tall. It is

possible in some cases to design the mesostructure for the horizontal orientation (at least

for plane strain conditions), but often the shell is too large and makes this impossible. It is

not usually possible to design the structure in the vertical print direction, beyond perhaps

changing the contact area between layers. Therefore, given the geometric considerations

and objectives of the work, it was decided that the experiments which will be used to col-
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lect design knowledge or data should be done using the flat orientation only. This allows

the most design freedom, allows easier testing and observation of the fracture behavior, and

is more efficient and less wasteful with materials and experimental time. For the main ex-

periments examining the solid materials, ASTM 5045 [1] was used; for this standard, both

the compact tension (CT) and single-edge notched bending (SENB) tests were available

and can provide essentially the same information. Since limited time was available (due to

COVID-19-related campus access restrictions), as well as a limited amount of raw filament

and print bed size restrictions, it was decided that the ASTM D5045 tests should be done

using flat-printed CT samples.

ASTM D5045 

CT Vertical

ASTM D5045 

CT Horizontal

ASTM D5045 

CT Flat

ASTM D5045 

SENB Flat

ASTM D5045 

SENB Horizontal

ASTM D5045 

SENB Vertical

ASTM D638 

Type IV Vertical

ASTM D638 Type 

IV Horizontal

ASTM D638 

Type IV Flat

Figure 6.1: Some example common mechanical testing samples in the standard print orientations.

This chapter was mainly focused on documenting all of the experimental setups, the

equipment used, and the experimental results, beginning with descriptions of the standard

and new equipment used (Section 6.2). The testing series completed are then described:

Series I on basic material characterization (Section 6.3), Series II on the properties of FDM-

printed fibers (Section 6.4), Series III on FDM-printed thin films (Section 6.5), Series IV on

sample size sensitivity (Section 6.6), Series V on pre-cracking sensitivity (Section 6.7), Series
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VI on the fracture behavior versus element layout (Section 6.8), and Series VII on impact

testing (Section 6.9). Finally, Section 6.10 provides some closing remarks for the chapter.

Since this chapter is mainly concerned with collecting and presenting the experimental data,

the bulk of the discussion and exploration of the results will be done in Chapter 7, where

it will be useful for deriving design rules for the three materials in use.

6.2 Hardware, Equipment, and Software Used

6.2.1 FDM Printers

Two printers were used for various experiments (never mixed on an experiment), a standard

aluminum-frame Prusa i3 with an expanded print bed and a Prusa i4 in a non-heated

enclosure (see Section 6.2.2). The printers are shown in Figure 6.2.

(a) (b) 

Figure 6.2: (a) Prusa i3 and (b) Prusa i4 FDM machines used in this chapter.

6.2.2 Printing Enclosure

To provide a secure environment for the printing of the samples, prevent warping and

residual stress development, and make the printing safer in an area where other people

were working (especially when printing ABS), an enclosure was built (Figure 6.3). This

enclosure was well-insulated, well-sealed when the doors were closed, and had the capacity
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to be heated during use. However, it was found that heating (beyond the printer heat itself)

was not necessary and so no additional heat was used. All of the CT and tensile testing

samples described in this chapter were printed inside of this enclosure, while the films and

fibers study specimens and many of the other case studies in this dissertation were printed

using the Prusa i3. The enclosure was set up in the author’s home to ensure access to

printing over several months when campus access was limited.

Figure 6.3: Printing enclosure.

6.2.3 Modeling and Design Software

As discussed extensively in Chapter 1, one of the major requirements for the work described

in this dissertation was that only commercially-available software was to be used. This

requirement was put in place to ensure that all of the presented results are easily applicable

and reproducible by practicing engineers and engineering students. For all of the computer-

aided design (CAD) work, including making testing specimens and models for figures, was
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done using Autodesk® Inventor® 2020 Professional. This was supplemented as needed with

the Autodesk Nastran (for finite element analysis) and Autodesk® Shape Generator (for

topology optimization) tools. All of the pre-processing was done using Ultimaker® Cura®

4.2.1. G-code generation was done using the Autodesk and Cura tools in conjunction; a full

tutorial on setting up and running the g-code layout method shown in this dissertation is

provided in Appendix B.

6.2.4 Notching and Pre-Cracking

Notching of the samples was done either by printing the notch into the sample (Figure 6.4a)

or by machining it into the sample later using a standard milling machine with a 30◦

engraving bit (Figure 6.4c). Samples that were printed retained their shell around the

notch and those that were machined had the infill of each sample exposed; this distinction

was intentional and will be discussed later in this chapter and in Chapter 7.

(a) (b) 

(c) (d) 

Printed notch (no treatment) Printed notch (pre-cracked)

Machined notch (no treatment) Machined notch (pre-cracked)

1 mm 1 mm 

1 mm 1 mm 
(e) 

(f) 

Figure 6.4: Example notches, (a) printed with no treatment, (b) printed and pre-cracked, (c) machined
with no treatment, (d) machined and pre-cracked, and (e) notch machining process with (f) example ABS
specimen before notching.

Pre-cracking of samples (when needed) was done using a standard razor blade with
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the pre-cracks gently cut into the material. Originally, a desktop-sized pre-cracking device

(described in [2]) was developed to help with this task but it was found to be unreliable

with the polycarbonate samples since the material was so brittle. Therefore, the very gentle

hand-held razor blade method was used to ensure consistency. For future work using more

ductile materials, the device described above (or similar) should be used. Figures 6.4b

and 6.4d show examples pre-cracking for printed and machined notches, respectively. A

sample in the process of being machined is shown in Figure 6.4e. Different methods were

developed specifically for the film and impact testing experiments since they needed spe-

cialized notches; these notching device are discussed in Section 6.5 and 6.9, respectively.

(a) (b) (c) 

Figure 6.5: (a) MTS universal testing machine, (b) compact tension (CT) sample tool, and (c) impact
testing machine with IZOD testing clamps.

6.2.5 Mechanical Testing

All mechanical testing was done using an MTS universal testing machine (Figure 6.5a)

fitted with a 2 KN load cell and standard clamps for tensile testing and film testing, an

extensometer, and 3-point bend tooling. To accommodate the CT samples, a CT testing

fixture (Figure 6.5b) was designed and built by the author to fit with the MTS machine.

The MTS Elite software provided with the machine was used to collect data, which was

backed up on a UBS drive and on the University of Illinois Box cloud, as well as the parent

computer, during testing to ensure accurate collection of all data. It was discussed that

a larger tensile testing machine (10 KN or higher) should be used to allow the testing of
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larger samples; however, due to campus closures, access issues, and other considerations

duing COVID-19, the 2 KN MTS machine was the only one to which the author could gain

consistent access to during the research period. Therefore, it was used for all mechanical

testing series.

6.2.6 Impact Testing

Impact testing was done using a standard 2.7J pendulum IZOD testing machine (from ASR

Instruments) to complete ASTM D256 tests. The testing machine is shown in Figure 6.5c

and discussed extensively in Section 6.9.

6.2.7 Analysis Tools

Some computational work was done within the MTS Elite software driving the testing

machine but all other work was done using Microsoft Excel and Minitab. Figures were

created using a combination of Excel, Microsoft PowerPoint, Minitab, and Adobe Creative

Cloud.

6.2.8 Print Beds and Treatment

Both machines were outfitted with tempered borosilicate glass plates held on with small

clamps to allow quick and easy plate replacement. This sped up the printing process

significantly, as it was not required that the printer and parts cool off before being removed.

It also allowed the printer to stay warm during periods of intense printing, helping to reduce

stress on the components and helping extend its life. The plates had limited life spans and

would eventually crack or chip and need to be replaced. For all the testing series described

in this dissertation, about 12 plates were needed, including 5 that needed to be replaced

during the process. Bed treatment was necessary for the specimens since the three materials

used do not stick well to bare glass even when heated. For the polycarbonate parts, 3D

Systems Cube Glue was used (this is no longer manufactured and the product used was

left over from past printing projects). Bed Weld from Layerneer was used for the ABS and

PLA specimens. In all cases, the plates were pre-heated and then carefully cleaned using

isopropyl alcohol wipes before applying the necessary bed treatments.
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6.3 Test Series I: Basic Characterization

6.3.1 Opening Remarks and Notes on Series I

The purpose of Series 1 was to establish the baseline mechanical properties for the three

materials used in this dissertation under the established conditions and parameters. Type

IV samples were used as defined in ASTM D638 [3]. While most of the other experiments in

this chapter used only the flat print orientation (as explained in Section 6.1), this character-

ization used both the flat and horizontal orientations (Figure 6.6). Only the 45◦ and 0/90◦

raster orientations were used, as these are generally the strongest and weakest (respectively)

orientations in the AM literature. Coupled with the two orientations, it was expected that

the average of the four combinations of layout/orientation would give the best “average”

values for the standard properties.

6.3.2 Series I Experimental Design

The experimental design for Series I is given in Table 6.3.

Table 6.3: Experimental design for Test Series I (ASTM D638). Each case was replicated five times for a
total of n = 60.

Combination Material Print Orientation Raster Angle

1 ABS Flat 45◦

2 PC Flat 45◦

3 PLA Flat 45◦

4 ABS Horizontal 45◦

5 PC Horizontal 45◦

6 PLA Horizontal 45◦

7 ABS Flat 90◦

8 PC Flat 90◦

9 PLA Flat 90◦

10 ABS Horizontal 90◦

11 PC Horizontal 90◦

12 PLA Horizontal 90◦

234



6.3.3 Series I Materials and Methods

6.3.3.1 Sample Configuration and Manufacturing

Standard Type IV specimens (Figure 6.6) as described in ASTM D638 were used due the

size of the tensile testing machine available. All specimens were printed using a 0.6 mm

extrusion nozzle. Larger samples would have been ideal for this type of anisotropic material,

but this was the best option available for testing due to limited equipment access and time

due to COVID-19 restrictions at the University of Illinois.

Flat 45°

Horizontal 45°

Horizontal 90°

Flat 90°

ABS PC PLA

Figure 6.6: Sample printing orientations with examples of successful prints for Series 1
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6.3.3.2 Sample Conditioning

Per standard ASTM conditioning guidelines for polymer materials, the specimens were

conditioned in the same ambient environment (described in Section 6.1) as the tests were

planned. The conditioning time was at least 40 hours for all specimens.

6.3.3.3 Experimental Setup

Standard tensile tests were completed using the MTS testing machine and standard clamps

at a strain rate of 5 mm/min until sample rupture. Clamp distance was 80 mm and an

extentiometer with a 25 mm length was used to measure elongation. The machine setup is

demonstrated in Figure 6.7.

DAQ

Clamps

Extensometer

Specimen

Figure 6.7: Series I experimental setup

6.3.4 Series I Results

Figure 6.8 shows example experimental (force vs deflection) curves for the different ma-

terials, orientations, and raster angles. These twelve curves were randomly selected from
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the 60 experimental runs in Series I. The raw data from this experiment is archived and

discussed in Appendix E. The values of the yield stress, the modulus of elasticity, and the

elongation were automatically calculated using the MTS software based on input of the

sample geometry. Table 6.4 gives the calculated material properties, the most important of

which (relative to the other experiments in this chapter) is the yield strength.
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Figure 6.8: Examples of force-deflection curves for each of the 12 cases. One curve for each was randomly
selected for each combination from the five replications of the experiment.

Table 6.4: Calculated material properties relevant to the future experiments and design problems in this
dissertation. Calculated automatically in the MTS software during testing.

Material n
Yield Stress (MPa) Young’s Mod (GPa) Elongation (Yield) (%)
Mean Stdev Mean Stdev Mean Stdev

ABS 20 32.36 4.54 2.01 0.19 1.96 0.09
PC 20 54.23 9.17 2.36 0.15 3.11 0.78

PLA 20 47.84 5.79 2.97 0.34 2.47 1.84

6.3.5 Series I Statistical Analysis

Since the purpose of this testing series was to collect and archive material properties for the

three materials in use and not to provide direct design knowledge, no statistical analysis

was done for Series I.
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6.4 Test Series II: FDM-Processed Fibers

6.4.1 Opening Remarks and Notes on Series II

The most basic component of FDM-processed materials, and the most essential component

of FDM-driven MPDSMs, is the deposited material element. When reviewing the literature

on FDM, it was clear that no specific studies on the properties of the elements or fibers

produced by FDM have been done beyond a few tests in the early development of FDM

(before 2005) described in [4, 5]. Since this information is vital for understanding how to

design MPDSMs (especially for fracture problems), a study was completed and is described

in this section.

6.4.2 Series II Experimental Design

The experimental designs for these cases are shown in Tables 6.5, 6.6, and 6.7, respectively.

The collected response was the highest load before fiber failure. The extruded fibers were

tested to explore the properties between the extruder head and the build plate before

and during printing, the single deposited fibers provided information about behavior after

printing, and the series fibers showed the effect of having several elements printed in parallel

in the same layer. The obvious expansion of this (to printed films) will be examined in

Section 6.5.

Table 6.5: Experimental design for extruded fibers in Test Series II. Each case was replicated five times
for a total of n = 45.

Combination Material Diameter (mm)

1 ABS 0.4
2 PC 0.4
3 PLA 0.4
4 ABS 0.8
5 PC 0.8
6 PLA 0.8
7 ABS 1.75
8 PC 1.75
9 PLA 1.75
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Table 6.6: Experimental design for single deposited fibers in Test Series II. Each case was replicated five
times for a total of n = 30.

Combination Material W/H Ratio

1 ABS 2
2 PC 2
3 PLA 2
4 ABS 3
5 PC 3
6 PLA 3

Table 6.7: Experimental design for series deposited fibers in Test Series II. Each case was replicated three
times for a total of n = 45. For these cases, W/H = 2 with d = 0.4 mm.

Combination Material # of Printed Fibers

1 ABS 2
2 PC 2
3 PLA 2
4 ABS 4
5 PC 4
6 PLA 4
7 ABS 6
8 PC 6
9 PLA 6
10 ABS 8
11 PC 8
12 PLA 8
13 ABS 10
14 PC 10
15 PLA 10

6.4.3 Series II Materials and Methods

6.4.3.1 Sample Configuration and Manufacturing

To best understand the mechanical behavior of the printed material elements, this test series

explored three different types of specimens:

1. Extruded fibers: Individually extruded directly from the nozzle but not deposited

2. Deposited fibers: Fibers that were extruded and deposited onto a heated glass plate

3. Series fibers: Sets of fibers printed in parallel (in groups of 2-10)
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The extruded samples were made by raising the z-axis of an FDM machine such that

at least 10 inches of extruded filament could freely drop (Figure 6.9) and disabling the

other axes. G-code was then used to control the extrusion. Once the extruded fibers were

completed, the printer motors were re-enables and the deposited fibers were simply printed

onto a glass plate by inputting the necessary g-code into the printer; they were later removed

by soaking the plate in warm water to prevent damage to the fibers. The sets of fibers were

printed in the same way as the individual ones, except that the machine was allowed to the

print multiple parallel tracks. Examples of each case are shown in Figure 6.10. Note that

the 1.75 mm extruded samples are samples of raw filament from the roll; since the materials

are thermoplastics, it was decided that the would give a good comparative baseline.

Extruder (temporarily 

fixed in place)

Extruder motor
Extruded material 

drop area

Figure 6.9: Setup for making the extruded fibers

Once all of the fiber samples were made, they were carefully glued into card stock,

since the cut-paper method (Figure 6.11) was to be used to clamp and test the samples. In

this method, the samples are carefully fixed via paper or card stock at both ends, with the

thick card or paper end being placed in the clamp to prevent any damage to the fiber being

tested. The effective tested length of all fibers and fiber series was 4 inches. As shown in

Figure 6.11, a 2 × 4 inch business card cutter from Fiskars was used to prepare the card

stock fiber holders to ensure consistency and accuracy.
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0.4 mm

extruded

0.8 mm

extruded

1.75 mm

extruded

0.4 mm x 0.2 mm

deposited
0.6 mm x 0.2 mm

deposited

2 fibers series (0.4 mm per fiber) 4 fibers series (0.4 mm per fiber) 6 fibers series (0.4 mm per fiber)

8 fibers series (0.4 mm per fiber) 10 fibers series (0.4 mm per fiber)

(a) (b) (c) (d) (e) 

(f) (g) (h) 

(i) (j) 

0.25 mm 1 mm 2 mm 0.25 mm 0.5 mm

Figure 6.10: Examples of (a)-(c) extruded fibers, (d)-(e) deposited fibers, and (f)-(j) series fibers. Red
fibers = ABS, grey/transparent fibers = PC, blue fibers = PLA.

Figure 6.11: Setup for cut-paper method for tensile testing fibers
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6.4.3.2 Sample Conditioning

Per standard ASTM conditioning guidelines for polymer materials, the specimens were

conditioned in the same ambient environment (described in Section 6.1) as the tests were

planned. The conditioning time was at least 40 hours for all specimens.

6.4.3.3 Experimental Setup

Figure 6.12 shows the experimental setup, including the cut locations in the paper after

clamping. Standard tensile testing was done at a strain rate of 50 mm/min until sample

breakage. Since no extensometer that could clamp onto a fiber was available, recorded data

was based on cross head distance.

Card stock with 

post-clamping cut

Fiber

Grips

Figure 6.12: Experimental setup for Series II

6.4.4 Series II Results

The results from the three tests are shown in Table 6.8, Table 6.9, and Table 6.10 below.

Data availability is discussed in Appendix E.
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Table 6.8: Experimental results for extruded fibers testing.

Combination Material Diameter (mm) n
Tensile Strength (N)
Mean Stdev

1 ABS 0.4 5 7.37 0.14
2 PC 0.4 5 9.46 1.17
3 PLA 0.4 5 8.21 1.63
4 ABS 0.8 5 23.92 2.85
5 PC 0.8 5 40.90 6.23
6 PLA 0.8 5 35.57 0.78
7 ABS 1.75 5 84.02 20.69
8 PC 1.75 5 150.15 16.68
9 PLA 1.75 5 125.61 3.60

Table 6.9: Experimental results for deposited fibers testing.

Combination Material W/H Ratio n
Tensile Strength (N)
Mean Stdev

1 ABS 2 5 2.89 0.10
2 PC 2 5 3.52 0.24
3 PLA 2 5 3.57 0.59
4 ABS 3 5 3.40 0.96
5 PC 3 5 5.17 1.40
6 PLA 3 5 9.55 0.77

Table 6.10: Experimental results for series fibers testing.

Combination Material # of Fibers n
Tensile Strength (N)
Mean Stdev

1 ABS 2 5 4.74 0.52
2 PC 2 5 5.38 2.05
3 PLA 2 5 8.65 0.39
4 ABS 4 5 9.48 1.24
5 PC 4 5 12.30 2.54
6 PLA 4 5 19.80 8.02
4 ABS 6 5 14.36 0.37
5 PC 6 5 22.72 4.35
6 PLA 6 5 24.72 4.60
4 ABS 8 5 24.16 7.42
5 PC 8 5 30.13 8.02
6 PLA 8 5 27.76 4.67
4 ABS 10 5 35.10 12.60
5 PC 10 5 39.69 19.26
6 PLA 10 5 42.44 8.15
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Figure 6.13: Box plot representations of the collected data on the tensile strength of the extruded, de-
posited, and series fibers.
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Figure 6.14: Tensile strength pattern of series fibers by material

6.4.5 Series II Statistical Analysis

Since the purpose of this testing series was to collect and archive material behavior/prop-

erties for the three materials in use and help derive design rules, no statistical analysis was

done for Series II.

244



6.5 Test Series III: FDM-Processed Films

6.5.1 Opening Remarks and Notes on Series III

Given that the basic elements (“fibers”) produced by FDM are the building blocks of FDM-

printed parts and material structures, the next level in the material hierarchy is the thin

film. Expanding on from the series fibers, these films represent whole layers or sets of layers

from which a part would be made. Printed in the flat orientation (Section 6.1), these can be

made up of designed element patterns to serve as building blocks for FDM-driven MPDSMs.

6.5.2 Series III Experimental Design

The experimental design for Series III is shown in Table 6.11. The design was used for both

notched and un-notched cases. Three replications were done for each case for a total of 108

tests in Series III. As for the fiber tests in Section 6.4, the experimental response was the

tensile strength of the film.

Table 6.11: Experimental design for thin films (notched and un-notched) in Test Series III. Each case was
replicated three times for a total of n = 108.

Combination Material # of Layers Element Layout

1 ABS 1 R45
2 PC 1 R45
3 PLA 1 R45
4 ABS 2 R45
5 PC 2 R45
6 PLA 2 R45
7 ABS 1 Gyroid
8 PC 1 Gyroid
9 PLA 1 Gyroid
10 ABS 2 Gyroid
11 PC 2 Gyroid
12 PLA 2 Gyroid
13 ABS 1 Concentric
14 PC 1 Concentric
15 PLA 1 Concentric
16 ABS 2 Concentric
17 PC 2 Concentric
18 PLA 2 Concentric
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6.5.3 Series III Materials and Methods

6.5.3.1 Sample Configuration and Manufacturing

The specimens used for this series were created based on the specifications for ASTM D882.

They were printed using the same setup as the series fibers in Section 6.4, except that

specific element layouts were used, as shown in Table 6.11 and Figure 6.15. All specimens

were printed using a 0.6 mm extrusion nozzle. In addition the variable layouts, the thickness

was also varied by printing one or two layers. In addition, the experiment (Table 6.11)

was run once for raw samples as described in ASTM D882 and once for notched samples.

Notching was done using a hand-held film jig and razor blade (Figure 6.16) to produce the

notched sample geometry shown in Figure 6.15.

a

w

l

Raw Notched R45 Gyroid Concentric

Figure 6.15: Specimen configurations for Series III. The dimensions l = 100 mm, w = 10 mm, and a = 2
mm were used for all samples.

6.5.3.2 Sample Conditioning

Per standard ASTM conditioning guidelines for polymer materials, the specimens were

conditioned in the same ambient environment (described in Section 6.1) as the tests were

planned. The conditioning time was at least 40 hours for all specimens. Notched specimens

were conditioned both before and after notching.
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Hand-held jig

Razor blade for 

notching

Notching guide

Film specimen

Figure 6.16: Film notching jig

6.5.3.3 Experimental Setup

The experimental setup for Series III is shown in Figure 6.17. A strain rate of 50 mm/min

was used according with the recommendations of ASTM D882.

Grips

Protective 

tape layer

Film

Figure 6.17: Series III experimental setup

Several layers of blue painter’s tape were placed between the jaws and the samples to

prevent cutting or damaging of the samples by the fixture. The tape was replaced every 25

247



samples to ensure it was effective. The samples were marked with a Sharpie pen to check

for slippage, but none was observed on any of the samples using this setup.

6.5.4 Series III Results

The results from Series III are shown in Table 6.12 and Figure 6.18. Data availability is

discussed in Appendix E.

Table 6.12: Experimental results for raw and notched FDM film testing. n = 3 for all cases in this table.

Combination Material Layers Layout
TS - Raw (N) TS - Notched (N)
Mean Stdev Mean Stdev

1 ABS 1 R45 75.2 5.1 59.5 5.7
2 PC 1 R45 81.0 40.1 53.6 7.9
3 PLA 1 R45 90.8 5.0 62.2 9.6
4 ABS 2 R45 178.8 1.3 139.1 5.0
5 PC 2 R45 223.4 7.7 161.5 27.3
6 PLA 2 R45 217.4 2.0 177.8 4.3
7 ABS 1 Gyroid 73.0 2.7 59.6 6.9
8 PC 1 Gyroid 116.2 4.9 89.0 11.6
9 PLA 1 Gyroid 116.1 4.9 90.6 3.9
10 ABS 2 Gyroid 151.2 7.6 131.7 14.9
11 PC 2 Gyroid 211.0 19.5 184.4 34.8
12 PLA 2 Gyroid 230.6 7.8 175.5 2.0
13 ABS 1 Concentric 66.5 1.1 72.2 3.6
14 PC 1 Concentric 112.8 0.6 83.4 19.1
15 PLA 1 Concentric 127.7 6.8 99.8 5.5
16 ABS 2 Concentric 136.2 4.9 123.2 13.8
17 PC 2 Concentric 156.0 31.2 154.2 25.5
18 PLA 2 Concentric 236.3 0.2 179.6 10.5

6.5.5 Series III Statistical Analysis

Since the purpose of this testing series was to collect and archive material behavior/prop-

erties for the three materials in use and help derive design rules, no statistical analysis was

done for Series III.

6.5.6 Series III Sensitivity Analysis

When examining the results of Series III, especially the large differences between the notched

and raw samples, the question could be raised about the effect of the shell on the results.
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Figure 6.18: Series III experimental results for single and double layer cases with raw and notched samples

Table 6.13: Experimental design for thin films sensitivity analysis in Test Series III. Each case was replicated
three times for a total of n = 36.

Combination Material Layers Layout
Tensile Strength (N)
Mean Stdev

1 ABS 1 R45 62.2 4.6
2 PC 1 R45 66.6 23.0
3 PLA 1 R45 85.1 1.9
4 ABS 2 R45 164.9 5.3
5 PC 2 R45 203.1 11.6
6 PLA 2 R45 193.6 9.5
7 ABS 1 Gyroid 63.2 2.3
8 PC 1 Gyroid 94.9 13.0
9 PLA 1 Gyroid 107.8 9.8
10 ABS 2 Gyroid 137.6 17.8
11 PC 2 Gyroid 210.0 16.1
12 PLA 2 Gyroid 208.2 7.7
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Therefore, a simple sensitivity analysis was done where samples were tested without

shells. The results where then transformed to correct for the difference in width (8.8 mm

instead of 10 mm) and compared. The corrected data is shown in Table 6.13. Only the

R45 and gyroid samples were analyzed, as the removal of the shell for the concentric cases

(Figure 6.15) would clearly have little to no impact on the outcome. As shown in the

sensitivity analysis plots (Figure 6.19), there is not a very large difference between the

samples with shells and those without. A statistical analysis using the Kruskal-Wallace test

produced p-values of 0.062 and 0.054 for the single and double layer cases, respectively.

Using the typical α = 0.05, there is not a statistically significant difference between using

the shell or not for the thin films observed.
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Figure 6.19: Sensitivity analysis regarding the use of a shell or not for the 1 and 2 layer thin film cases.
Analysis indicates no statistically significant difference. n = 3 for all cases.

6.5.7 Series III Crack Pattern Analysis

Figure 6.20 shows some examples of typical crack patterns observed in the tested film

samples for each combination. The behavior of the cracks was fairly consistent with the

expectation that the layout pattern would cause a patterned crack to follow the pattern.

Panel (a) shows an example of an ABS gyroid with the shell removed (from the sensitivity

study); similarly to the gyroid patterns in panels (e) and (f), the crack is jagged but

relatively straight. Looking at the difference between (a) and (e-f), it is clear that the shell

made a difference on how controlled the crack was, even if it did not have a statistically
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significant impact on the tensile strength. Panels (b) and (d) show a similar relationship

for 2-layer R45 ABS samples, where the crack grows along the raster; again, the presence

of the shell certainly had some effect on the crack behavior even if the differences in tensile

strength were not statistically significant at the film level.

(a) (b) (c) 

(d) (e) (f) 

Figure 6.20: Examples of typical crack patterns for FDM-processed thin films

6.6 Test Series IV: ASTM D5045 CT Sample Size Sensitivity

6.6.1 Opening Remarks and Notes on Series IV

Up to this point in the present chapter, the basic macro-scale material properties and the

properties of the fibers and films which serve as building blocks for FDM-processed mate-

rials were collected. With Series IV tests, the analysis of meso-scale materials begins. As

previously described, the flat-printed ASTM 5045 CT sample will be the standard specimen

for these cases. The first order of business is to select the sample size, which is not an easy

task for FDM-processed materials. There is no consensus in the literature about the appro-

priate size to use and the samples used often do not meet all of the established requirements

for plane strain fracture toughness K1c (i.e., independence from sample size effects, as least

for isotropic, homogeneous polymer materials [1]). To judge the appropriate size to test for
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this series, a short literature review was done for CT tests on FDM-processed materials;

the results are shown in Table 6.14.

Table 6.14: Examples of CT testing on FDM-processed materials in the literature. Collected to help guide
choice of specimen size for this dissertation.

Study Material W (mm) B (mm)

[6] PLA 40 8
[7] PLA 30 6
[8] ABS 60 12.7
[9] PLA 19 9.4
[10] Polyether ether ketone (PEEK) 15 7.5

[11,12] ABS 70 4
[13] PC 30 4
[14] Onyx (nylon + carbon fiber) 32 10

Since the experimental equipment available for these tests were limited to a 2 KN load

(and recommended to stay well below this load), it was estimated that samples larger than

W = 50 mm were not feasible without a larger testing machine, especially since the ASTM

5045 standard recommends a thickness of 10 mm for a W = 50 mm specimen. For this

specimen, it was roughly estimated (using data sheet properties) that 1500-1700 N would

be required to handle this sample size (note: As shown later in this chapter, the maximum

observed load for this sample size was 1531 N). The sample size selected must allow a

significant amount of distance between the fracture load and the capacities of the machine,

as later work on designing the layouts will increase the breaking strength of the specimens.

If the necessary load to break the raw sample is too close to the machine capacity, the

machine may not be able to test the new/improved designs.

Reviewing the available information for this problem and keeping in mind the design

objectives of this study, it was also decided that a sample smaller than W = 30 mm and

B = 6 mm was also infeasible. While smaller samples could easily be manufactured and

tested (and would save time and material), they would not present a large enough area

around the crack tip to serve as an effective design space for element layout. Therefore,

it was determined that the smallest feasible sample size for the three materials in use was

W = 30/B = 6 mm and the largest W = 50/B = 10 mm.

Without extensive previous experimental data to rely on, it is impossible to predict
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how the samples will behave and if the criteria for K1c will be satisfied until after some tests

have been done. If the criteria is not satisfied, larger samples can be used or a different

measure of material behavior should be used (such as the conditional fracture toughness

KQ or simply the maximum load before fracture). When advanced testing capacities are

available (such as very high-speed cameras and crack-tip-opening-displacement (CTOD)

sensors), the R-curve and strain energy release rate can be measured in order to allow the

J-integral to be used. Unfortunately, the present research project did not have access to the

advanced testing capabilities and so was limited to completing ASTM D5045 tests which

depend on reporting KQ and K1c values or standard mechanical properties.

6.6.2 Series IV Experimental Design

Given the information from the previous discussion, it was decided that the two extreme

samples sizes and the average one between them should be tested. Therefore, the three

sizes were W = 30/B = 6 mm, W = 40/B = 8 mm, and W = 50/B = 10 mm. The design

is shown in Table 6.15.

Table 6.15: Experimental design for sample size sensitivity in Test Series IV (ASTM D5045). Each case
was replicated three time for a total of n = 27.

Combination Material W (mm) B (mm)

1 ABS 30 6
2 PC 30 6
3 PLA 30 6
4 ABS 40 8
5 PC 40 8
6 PLA 40 8
7 ABS 50 10
8 PC 50 10
9 PLA 50 10

6.6.3 Series IV Materials and Methods

6.6.3.1 Sample Configuration and Manufacturing

Standard flat-printed ASTM D5045 CT samples using the dimensions in Table 6.15 were

manufactured for testing. Based on preliminary observations in other experiments, a printed
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notch with a pre-crack (Figure 6.4) was selected. The crack length used was a = W/2 as

recommended by the standard. Figure 6.21 shows examples of each size from each material.

A standard raster printing pattern was used with a raster angle of 45◦ and a single shell.

PC, W = 30 PC, W = 40 PC, W = 50

ABS, W = 50

PLA, W = 50

ABS, W = 40

PLA, W = 40

ABS, W = 30

PLA, W = 30

Figure 6.21: Examples of printed test specimens for Series IV

6.6.3.2 Sample Conditioning

Per standard ASTM conditioning guidelines for polymer materials, the specimens were

conditioned in the same ambient environment (described in Section 6.1) as the tests were

planned. The conditioning time was at least 40 hours for all specimens.
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6.6.3.3 Experimental Setup

The experimental setup is shown in Figure 6.5b at the beginning of the paper. A strain

rate of 10 mm/min was used as recommended by ASTM D5045.

6.6.4 Series IV Results

In Table 6.16, the mean fracture load at failure is shown for each case. In Table 6.17, the

calculated values of KQ are provided, in addition to the required sample thickness, crack,

and ligament lengths to meet theK1c criteria; the calculation process shown in ASTM D5045

was followed exactly for this. Data availability is discussed in Appendix E. Appendix D

shows example calculations for KQ from this section.

Table 6.16: Experimental results (fracture load) from Series IV

Combination Material W (mm) B (mm)
Fracture Load (N)
Mean Stdev

1 ABS 30 6 326.2 6.8
2 PC 30 6 579.1 55.5
3 PLA 30 6 587.5 34.0
4 ABS 40 8 554.9 39.4
5 PC 40 8 852.1 95.8
6 PLA 40 8 998.8 70.4
7 ABS 50 10 739.7 48.3
8 PC 50 10 1070.4 250.4
9 PLA 50 10 1468.2 67.7

Table 6.17: Conditional fracture toughness KQ from Series IV

Combination Material W (mm) B (mm)
KQ (MPa ·m0.5)
R1 R2 R3

1 ABS 30 6 2.72 2.77 2.80
2 PC 30 6 4.79 5.35 5.54
3 PLA 30 6 5.24 5.03 4.68
4 ABS 40 8 3.05 3.13 3.31
5 PC 40 8 4.72 5.27 4.90
6 PLA 40 8 5.38 5.34 5.92
7 ABS 50 10 3.04 3.10 2.97
8 PC 50 10 3.44 4.84 5.37
9 PLA 50 10 5.82 6.02 5.56
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Table 6.18: Length of B, crack length, and ligament (mm) to meet ASTM D5045 criteria for pure plane
strain fracture toughness K1c. Values of σy taken from Table 6.4.

Combination Material W (mm) B (mm)
2.5

(
KQ

σy

)2

(mm)

R1 R2 R3

1 ABS 30 6 17.6 18.2 18.7
2 PC 30 6 19.5 24.3 26.2
3 PLA 30 6 30.0 27.7 24.0
4 ABS 40 8 22.2 23.3 26.0
5 PC 40 8 18.9 23.7 20.5
6 PLA 40 8 31.7 31.2 38.4
7 ABS 50 10 22.1 22.9 20.9
8 PC 50 10 10.0 20.0 24.6
9 PLA 50 10 37.1 39.6 33.8

Given the values of KQ, the pure plane strain criteria can be calculated for each case.

As seen in Table 6.18, none of the samples satisfy the criteria and so values of K1c cannot

be reported from this experiment. This is typical of FDM materials and discussed in depth

in several of the papers shown in Table 6.14. The plotted results for KQ are shown in

Figure 6.22.

Figure 6.22: Observed KQ values from Series IV

6.6.5 Series IV Statistical Analysis

Since the conclusions made from Series IV will be used to drive decision and testing ap-

proaches for the following several experimental series, a standard ANOVA test (Figure 6.23

was done on the collected data in order to better understand the results. Reviewing the

plots in Figure 6.22, there does not appear to be a large effect on the results from the
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sample size. As seen in the ANOVA results, the difference between sample sizes was not

statistically significant.

Figure 6.23: ANOVA results for Series IV

Figure 6.24: 4-in-1 residual plot for Series IV

However, before this result can be accepted the standard Fisher assumptions must be

checked. First, the Anderson-Darling (AD) test was done to check for residual normality

(Figure 6.24); the resulting p-value of 0.015 indicates that the normality assumption is

invalid. Since the p-value was in the same order of magnitude as one that would be signifi-

cant, the AD test was run again using the optimal Box-Cox transformation (this was done
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automatically in Minitab), producing a p-value of 0.026 < 0.05, so the normality assump-

tion is violated and so a standard ANOVA cannot be relied on. In addition, it is obvious

from Figure 6.24 (Versus Fits plot) that the equal variances assumption is violated even

without testing it formally. However, visual analysis of the main effects and interactions

plots (Figure 6.25) hold up the conclusions from the ANOVA quite well.

(a) (b)

Figure 6.25: (a) Main effects and (b) interaction plots for Series IV

To mathematically address the failure of these assumptions and verify the conclusions

of the failed ANOVA, a non-parametric method must be used. In many cases, the two

methods will agree even if the normality and equal variances assumptions are violated but

not always so this must be checked when the ANOVA assumptions fail. The test selected

was the Kruskal-Wallis test, the results of which are shown in Figure 6.26. As seen in

the figure, the results from the ANOVA were solid enough to hold up even when the two

assumptions were invalid. Therefore, it can be safely assumed that in the range tested and

for the three materials in use, the sample size does not have a statistically significant impact

on the value of the KQ. This suggests that the FDM-processed materials reached the point

of plane strain with smaller samples than would be expected for molded samples, but this
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needs more research before a solid conclusion could be reached.

Figure 6.26: Kruskal-Wallis test results for Series IV

6.6.6 Series IV Plane Strain Size Sensitivity Analysis

Given the conclusions from this testing series, it makes the most sense to go forward with

the rest of the experiments using CT samples of W = 30 mm and B = 6 mm. As one

final check to establish the validity of using these samples, the standard definition for plane

strain and plane stress was consulted (Figure 6.27)

Figure 6.27: Plane stress to plane strain transition curve. From [15] and reproduced under the terms of
the CC-BY license from the original publication of this figure.

As shown in the figure, the lack of statistical significance between the sample sizes strongly
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suggests that plane strain has been reached (and therefore KQ = K1c), since the difference

in KQ (or K1 in this figure) between plane stress and plane strain may be an order of

magnitude for polymers. As a final check, two more specimens of each material were made

using the W = 30 mm dimension, but with B = 3 mm, which is half the original thickness

and the thinnest CT sample that the author was able to test successfully without sample

buckling. Ideally, a B < 3 mm should be used to capture plane stress more effectively but

the samples have been observed to buckle at thinner dimensions than that. This sample

dimensions clearly does not fit the requirements for ASTM D5045 (and therefore are not

necessarily valid for testing) but are useful for a sensitivity analysis. Calculating the KQ for

these thinner samples and comparing them to the original (Figure 6.28) continues to show

that there is no major impact from sample thickness as expected from plane stress-plane

strain theory shown in Figure 6.27.

Figure 6.28: Thickness sensitivity observations during sensitivity study

The only material with some difference is PC, but it is in the opposite direction as

expected if there was a sample size effect and PC has been shown to be quite variable and

sometimes unpredictable throughout this chapter. This apparent lack of a dramatic sample

size effect with FDM materials an interesting point that has not been observed with these

materials in the past and certainly warrants further study in the future.

6.6.7 Data Reporting after Series IV

Based on the very clear results of Series IV, it was decided that future experiments using

CT samples will report the fracture load (N) instead of a fracture toughness value (or

both together). This will prevent controversy over the results and will provide several
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major advantages from the perspective of design. Note also that this is not an uncommon

approach and can be observed in a number of studies on the fracture mechanics of FDM

materials, such as Refs [11,12,16–23] and others.

1. This will save time since it is not trivial to calculate KQ values, especially when there

are many of them. It is usually not possible to automate this and still get a very

accurate solution.

2. Fewer steps in calculation will reduce errors.

3. Reporting fracture load instead of fracture toughness will give a more understandable

and easier to apply metric to judge results.

4. Reporting fracture load instead of fracture toughness make it easier to use sample size

and material as independent variables in design decisions. KQ and K1c are heavily

dependent on sample size and material ductility, respectively. In addition, once the

material element layouts are designed, the fracture toughness will vary significantly

for the same sample size, material, etc. simply from the difference in layout.

6.7 Test Series V: ASTM D5045 CT Notch Sensitivity

6.7.1 Opening Remarks and Notes on Series V

Following up on the sample size sensitivity study, it was determined that the sensitivity to

pre-cracking and notching method was also an important consideration. It was concluded

in the last section that ASTM D5045 CT samples with W = 30 mm and B = 6 mm could

be validly used, so they were used in this study as well. This test series was not meant to

be as extensive or in-depth as the previous one as its conclusions only drive the decision

about notching and pre-cracking methods for the final fracture analyses in Section 6.8.

6.7.2 Series V Experimental Design

The experimental design for testing the sensitivity to notching method and pre-cracking is

shown in Table 6.19.
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Table 6.19: Experimental design for pre-crack sensitivity in Test Series V (ASTM D5045). Each case was
replicated three time for a total of n = 27.

Combination Material Notch Style

1 ABS Printed, no treatment
2 PC Printed, no treatment
3 PLA Printed, no treatment
4 ABS Printed + razor blade treatment
5 PC Printed + razor blade treatment
6 PLA Printed + razor blade treatment
7 ABS Machined, raw
8 PC Machined, raw
9 PLA Machined, raw
10 ABS Machined + razor blade treatment
11 PC Machined + razor blade treatment
12 PLA Machined + razor blade treatment

6.7.3 Series V Materials and Methods

6.7.3.1 Sample Configuration and Manufacturing

The sample configuration and manufacturing was identical to that described in Section 6.6

except for the notch preparation. Half the samples were printed with notches included and

half were printed as shown in Figure 6.4f at the beginning of the chapter and notched later

with a milling machine (as described in Section 6.2).

6.7.3.2 Sample Conditioning

Per standard ASTM conditioning guidelines for polymer materials, the specimens were

conditioned in the same ambient environment (described in Section 6.1) as the tests were

planned. The conditioning time was at least 40 hours for all specimens.

6.7.3.3 Experimental Setup

The experimental setup was identical to that described in Section 6.6. Note that the results

from Section 6.6 on razor-blade treated samples with printed notches were reused here in

this section. This gives a good and consistent baseline for the results in the previous section

and this one and makes them easier to compare for making design decisions. Since the setup

and processing procedures of the samples for the two testing series were identical, this was
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not anticipated to introduce any uncertainty into the experimental results. In fact, it was

expected to remove uncertainty since a clear connection could be made between the two

data sets.

6.7.4 Series V Results

The results for Series V are shown in Table 6.20. The necessary information for this experi-

mental section is available without the need to plot the results in this case. Data availability

is discussed in Appendix E. As discussed in Section 6.6, the reported response for this test

series is the fracture load (N) since it is more useful and clear response for the design work

described in this dissertation than conditional fracture toughness KQ or other material

properties would be.

Table 6.20: Experimental results (fracture load) from Series V. n = 3 for all cases in this table.

Combination Material Notch Style
Fracture Load (N)
Mean Stdev

1 ABS Printed, no treatment 300.1 15.2
2 PC Printed, no treatment 502.8 23.7
3 PLA Printed, no treatment 561.7 68.4
4 ABS Printed + razor blade treatment 326.2 6.8
5 PC Printed + razor blade treatment 579.1 55.5
6 PLA Printed + razor blade treatment 578.5 34
7 ABS Machined, raw 380.6 31.1
8 PC Machined, raw 658.9 51.0
9 PLA Machined, raw 692.3 19.7
10 ABS Machined + razor blade treatment 348.9 21.7
11 PC Machined + razor blade treatment 648.5 48.6
12 PLA Machined + razor blade treatment 683.3 42.8

It is very obvious from the experimental results that the notching style used has a very

large impact on the fracture load of the samples for all materials. To better explore and

attempt to explain the effect, a statistical analysis was done on the collected data.
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Figure 6.29: ANOVA results for Series V

Figure 6.30: 4-in-1 residual plot for Series V.

6.7.5 Series V Statistical Analysis

A standard ANOVA was done using Minitab on the collected experimental data, the results

of which can be see in Figure 6.29. Checking the ANOVA for validity, it was found that

the Anderson-Darling (Figure 6.30) test p-value was 0.326 >> 0.05, showing that the resid-

uals are normally distributed as expected. Checking the equal variances assumption, the

Multiple Comparisons test and Levene’s test give p-values of 0.244 and 0.939, respectively.

Therefore, the equal variances assumption is valid. Finally, observing the Versus Order

plot in Figure 6.30, no clear or obvious patterns exist in the data. Therefore, it is safe to

conclude that the ANOVA results are correct and valid.
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6.7.6 Selection of Notching Method

Given that the verified ANOVA results show that the notching method had a statistically

significant impact on the results, further analysis is needed before moving forward to future

experiments. A notching method must be selected, but its selection must be justified in the

light of the experimental results. To establish context, some observations should be made:

• The most variation in fracture load observed is about 15%, which is relatively small

compared with the up to 60% variability observed in the literature for some materials

simply from arranging the material elements [11,12,16–20,22–25].

• For the non-pre-cracked cases, the difference can easily be explained by notch geometry

(as seen in Figure 6.4), as it is clear that the printers used to complete the work of

this dissertation were capable of printing sharper natural notches than the milling

machine was able to make. ASTM D5045 recommends always machining the samples

but does not give a standard machining method or tool for this.

Shell region 

around crack tip

Shell 

separation

Ideal crack path

Figure 6.31: Extra cracks and shell separation observed in the printed notches which did not have pre-
cracks.

• It was observed when looking at the samples after testing that all had clean breaks

with single cracks except a few of the printed notches which were not pre-cracked.

In these cases (such as the one shown in Figure 6.31), there were multiple cracks or
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small areas of shell separation from the infill. These effects likely explain the major

differences between the printed and print + pre-crack samples. Note again that this

effect was not observed (after a search specifically looking for it) in the printed notches

which had also been pre-cracked. Therefore, this observation does not question the

validity of the results from Section 6.6.

• Upon review of the experimental samples to understand the difference between the

printed and machined notches, it was concluded that the shell in the printed notches

was the main contributor. Examining the crack tips (Figure 6.4), the shell around

the crack tip is in tension and helps to make the sample more stiff during testing.

Therefore, the stress concentration provided by the pre-crack and the extra stress

concentration combined likely explains the effect observed. When the notches are

machined, the shell is removed completely and the infill area is able to absorb slightly

more energy before failing since it will be more flexible without the shell.

Based on these observations, it was concluded that the results of three of the cases (printed

notch + pre-crack and the two machined notch cases) were valid and the differences in

performance are easily explainable. For the fourth case, some crack tip effects from the shell

caused some strange results which need to be further explored. Until this effect is better

understood, raw printed notches should not be used for fracture testing FDM-processed

materials. From a design perspective, it does not matter much which of the three valid

methods are used (as long as the selected method is used consistently) since the point of

design-driven fracture tests is to collected comparative information and design knowledge,

not build constitutive material models. With these observations, the data provided by this

section, and the recommendations of ASTM D5045, it was decided that future experiments

related to these materials should use machine-notched samples with pre-cracks.
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6.8 Test Series VI: Fracture Behavior vs Element Layout

6.8.1 Opening Remarks and Notes in Series VI

The purpose of this test series was to quantitatively and qualitatively collect information

on the impact of various standard material element layouts on the fracture behavior. This

data set will be used to drive design rules in Chapter 7.

6.8.2 Series VI Experimental Design

The experimental design for Series VI is shown in Table 6.21. Four different layouts are

studied with two different extrusion nozzle sizes.

Table 6.21: Experimental design for CT sample testing with various layouts in Test Series VI. Each case
was replicated three times for a total of n = 72.

Combination Material Nozzle Size Layout Pattern

1 ABS 0.6 R45
2 PC 0.6 R45
3 PLA 0.6 R45
4 ABS 0.8 R45
5 PC 0.8 R45
6 PLA 0.8 R45
7 ABS 0.6 R90
8 PC 0.6 R90
9 PLA 0.6 R90
10 ABS 0.8 R90
11 PC 0.8 R90
12 PLA 0.8 R90
13 ABS 0.6 Gyroid
14 PC 0.6 Gyroid
15 PLA 0.6 Gyroid
16 ABS 0.8 Gyroid
17 PC 0.8 Gyroid
18 PLA 0.8 Gyroid
19 ABS 0.6 Concentric
20 PC 0.6 Concentric
21 PLA 0.6 Concentric
22 ABS 0.8 Concentric
23 PC 0.8 Concentric
24 PLA 0.8 Concentric
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6.8.3 Series VI Materials and Methods

6.8.3.1 Sample Configuration and Manufacturing

The sample configurations and manufacturing were identical to those described in Sec-

tion 6.6 except for the layout patterns and nozzle sizes. Figure 6.32 shows eight different

layouts and corresponding samples for each.

0.6 mm R45 0.8 mm R45 0.6 mm R90 0.8 mm R90 

0.6 mm gyroid 0.8 mm gyroid 0.6 mm concentric 0.8 mm concentric

Figure 6.32: Material layouts and nozzle sizes for Series VI. Note that these are shown before notching.
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6.8.3.2 Sample Conditioning

Per standard ASTM conditioning guidelines for polymer materials, the specimens were

conditioned in the same ambient environment (described in Section 6.1) as the tests were

planned. The conditioning time was at least 40 hours for all specimens.

6.8.3.3 Experimental Setup

The experimental setup was identical to that described in Section 6.6.

6.8.4 Series VI Results

Experimental results for Series VI are shown in Table 6.22 and Figure 6.33.

Table 6.22: Experimental results for Test Series VI. Each case was replicated three times for a total of
n = 72.

Combination Material Nozzle Size Layout Pattern
Fracture Load (N)
Mean Stdev

1 ABS 0.6 R45 384.6 14.1
2 PC 0.6 R45 621.3 58.5
3 PLA 0.6 R45 688.6 23.4
4 ABS 0.8 R45 490.4 11.9
5 PC 0.8 R45 583.7 53.8
6 PLA 0.8 R45 766.5 32.9
7 ABS 0.6 R90 452.9 12.6
8 PC 0.6 R90 542.4 67.4
9 PLA 0.6 R90 672.8 55.3
10 ABS 0.8 R90 387.8 34.0
11 PC 0.8 R90 582.2 12.2
12 PLA 0.8 R90 650.1 30.3
13 ABS 0.6 Gyroid 338.1 7.8
14 PC 0.6 Gyroid 525.0 14.2
15 PLA 0.6 Gyroid 563.1 16.6
16 ABS 0.8 Gyroid 335.1 22.7
17 PC 0.8 Gyroid 557.9 11.1
18 PLA 0.8 Gyroid 579.9 35.7
19 ABS 0.6 Concentric 538.6 36.4
20 PC 0.6 Concentric 361.2 153.0
21 PLA 0.6 Concentric 828.2 24.9
22 ABS 0.8 Concentric 524.2 35.3
23 PC 0.8 Concentric 752.4 44.6
24 PLA 0.8 Concentric 850.6 26.8
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Figure 6.33: Experimental results for Series VI

6.8.5 Crack Analysis

Some of the important observed crack patterns are shown in Figures 6.34-6.37. The crack

patterns observed for different materials and layouts were very consistent (and clearly had

a major impact on the failure load, unlike what was seen for the films).

• For the R45 samples (Figure 6.34) the cracks followed the raster, occasionally experi-

encing a 90◦ turn to follow the raster of a different layer.

• The R90 samples (Figure 6.35) all had straight cracks from the notch tip toward the

edge.

• The gyroid samples showed behavior similar to R45, except that the cracks were far

more jagged and irregular (Figure 6.36).

• Of all the geometries, the concentrically printed samples were the only ones that

showed specific dependence on the material. As shown in Figure 6.37, the ABS crack

dissipated sideways into the structure (guided by the contour), the PLA crack tended

to split into branches and cause crazing, and the PC samples remained stiff until the

crack hit a contour and then failed in fast fracture.
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Figure 6.34: Typical crack patterns for R45 samples
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Figure 6.35: Typical crack patterns for R90 samples
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Figure 6.36: Typical crack patterns for gyroid samples
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Figure 6.37: Typical crack patterns for concentric samples
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6.9 Test Series VII: IZOD Impact Testing

6.9.1 Opening Remarks and Notes on Series VII

In this section, some experiments using IZOD testing samples were completed to explore the

resulting properties as a function of raster angle. The Type E (notch compression) test was

used to better explore the resulting crack patterns. For many of the tests described in the

present chapter, the standard nozzle size was 0.6 mm. In this experimental series, a nozzle

size of 0.4 mm was used. For the impact testing series, samples were made using various

nozzle sizes and the larger sizes (0.6 mm at above) were too rough for the small standard

ASTM D256 samples and left gaps in the structure; for context, standard IZOD samples are

10% (or less) the volume of many other specimens described in this chapter. In addition,

the small samples were much more difficult to notch correctly with a larger element size, so

a smaller nozzle size was required. For the rest of the experiments, it was found that the

0.6 mm and larger sizes were ideal for exploring crack patterns, as the fracture behavior

was more obvious. Series VI (Section 6.8) examined the impact of the nozzle size, so some

of the discussion in Chapter 7 regarding the IZOD tests will address this and examine if

the change to a smaller nozzle size had a significant impact in the outcome. Based on the

results seen in Sections 6.8, it is unlikely that changing the nozzle size had a significant

impact since the samples were printed at 100% density.

The experimental details reported here were a portion of a much larger study (the full

study is reported in [24]) and only parts of it relevant to the dissertation were reported.

Details, figures, and text from the published study by the author are reproduced in this

chapter with the permission of the copyright holder. Finally, it should be noted that the

original experimental series explored three different printing orientations, but this section

will only discuss the flat configuration for the three relevant materials, as it is the one in

which the raster angles can be controlled to influence properties; therefore, it is the only

orientation that will give useful design information instead of simple characterization or

statistical analysis.
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6.9.2 Series VII Materials and Methods

6.9.2.1 Sample Configuration and Manufacturing

As previously discussed, only information relevant to the three materials under study in

this dissertation are reported here. The experimental design for the three materials and the

seven raster angles relevant to the current dissertation is given in Table 6.23. Since only one

print orientation was used and the five required replications for each case, the total number

of tests recorded here is n = 105.

Table 6.23: Experimental design for IZOD testing (ABS, PC, and PLA) in Test Series VII (ASTM D256).
Each case was replicated five time for a total of n = 105.

Combination Material Raster Angle

1 ABS 0◦

2 PC 0◦

3 PLA 0◦

4 ABS 15◦

5 PC 15◦

6 PLA 15◦

7 ABS 30◦

8 PC 30◦

9 PLA 30◦

10 ABS 45◦

11 PC 45◦

12 PLA 45◦

13 ABS 60◦

14 PC 60◦

15 PLA 60◦

16 ABS 75◦

17 PC 75◦

18 PLA 75◦

19 ABS 90◦

20 PC 90◦

21 PLA 90◦

Figure 6.38 shows the specimen configuration for all cases. Due to the potential for

shrinkage or dimensional errors when processing the FDM materials (some of which have not

yet been characterized fully in the literature), it was decided to establish a nominal sample

thickness of 3.25 mm. This allowed some shrinkage, while ensuring that all samples are at

least 3.00 mm thick as required by ASTM D256 [26]. Rectangular (instead of square) cross-

section samples were used as this is the most common configuration and the one most often
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shown in the testing literature. The precautions taken to prevent bending and buckling of

the samples during the test will be discussed in a later section. The true thickness of each

of the tested samples was recorded and used to calculate the impact resistance and impact

energy at the level of each sample. The sample size and dimensional accuracy distribution

is the same as that reported in Chapter 3 under Dimensional Accuracy.

90° 75°

60°

45°

30°

15°

0°
(c)

(a)

(b)

Figure 6.38: (a) ASTM D256 specimen configuration (nominal dimensions were E = 12.70 mm, A = 10.16
mm, C = 63.50 mm, Z = 3.25 mm, Q = 45◦, and D = 0.25 mm), (b) printed sample before notching, and
(c) raster angle configurations.

6.9.2.2 Sample Notching

Several different notching methods for the FDM parts were attempted during the initial

work on this experiment, including with a milling machine, router, and with a file. All of

these methods were observed to severely damage the samples, making them unreliable for

testing and out-of-spec with the standard. The impact testing experiments discussed in the

FDM literature (at the date of experiment performance) did not focus on a feasible method

for generating reliable and consistent notches, so a standard and reliable method has not

been agreed upon by researchers in practice.

Because of a lack of a standard method for notching FDM samples that does not

destroy the specimens, a custom method was developed by the author which proved to be

effective. Figure 6.39a shows the tool built for this purpose, which uses a strong stand and

rotary tool with a 0.25 mm tip 45 degree steel engraving bit (Figure 6.39c) to make the

basic notches in a vertical configuration. The function was similar to a miniature high-speed
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Figure 6.39: (a) Notcher, (b) inspection station, (c) main notch cutter, (d) notch rounding file, and (e)
example notch after cutting and polishing

milling machine with a clamp that slid only in the Y-axes to ensure that the samples were

held securely during the notching process. The steel engraving tool was very sharp and

rotated at a speed of 35, 000 rpm, allowing a very fast notch cut and no observed sample

damage due to melting or chipping when checked using a microscope. In order to make

the notches conform to the requirements of the ASTM standard, a final finishing of each

notch was done using a 0.5 mm guitar bridge file (Figure 6.39d). Note that each sample

was notched using a backing block. A microscopic inspection station (Figure 6.39b) was

used to ensure that the notches were good quality; each sample was checked, even though

the ASTM standard only requires checking each 100 − 500 samples. Figure 6.39e shows an

example notch under a optical microscope.

6.9.2.3 Sample Conditioning

As required by the standard, the samples were conditioned in an ambient environment

(Section 6.1) after notching for 48-60 hours before impact testing.
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6.9.2.4 Experimental Setup

The impact test chosen to be performed was the ASTM D256 Type E test, which used a

reversed notch (Figure 6.40a). This is one of the four standard IZOD tests described in

the standard and the one that was anticipated to provide both the most consistent tests

and the best comparative information related to performance versus the element layouts.

Often, un-notched tests are used to study highly anisotropic materials [27–29] but it was

found during preliminary tests that the un-notched samples did not behave consistently for

several of the materials. The preliminary work consisted of manufacturing several samples

of each material (including notching and conditioning) for each orientation (raster angles

of 0◦ and 90◦) and running mock IZOD tests using them. None of the preliminary test

samples were counted as true data points and were used only to tune and test the IZOD

machine. It was clear from the preliminary work that a stress concentrator was necessary

to gain consistent results and reliable sample breaks; the Type E test provided the ability

to test the influence of the raster angle and shell easily.

The IZOD machine from ASR Instruments was used for the experiments. Before

the tests, the machine was completely refurbished, during which all of the bearings and

essential fasteners were replaced and the provided weights were replaced using ones that

were carefully calibrated to ensure accuracy. The dial assembly for the machine was also

re-built and carefully tuned. The machine was oiled every 30 impact tests and checked

for calibration regularly. Pointer calibration and error measurement was done according

to Section 10.3 of ASTM D256. This was done at the beginning of the tests and repeated

after each material to insure that the machine remained calibrated. It was found that the

pointer energy loss was consistent throughout the test series at approximately 1.11% with

a small 2.7J pendulum, which will be accounted for in the friction and windage correction

factors.

6.9.2.5 Friction and Windage Correction

As required by the standard, a correction factor was calculated to determine the effects of

friction and windage on the experimental results. A single factor cannot be calculated for
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Figure 6.40: ASTM Type E IZOD machine/sample setup (a) diagram and (b) hardware

the whole experiment and must be calculated for each sample. As described in the previous

sections, careful calibration of the machine was done before any tests were completed, so

the friction and windage effect is inherent in the machine design and not due to wear

or degradation of the machine. The values called for in Section A2 of the ASTM D256

standard are shown in Table 6.24 below; the values are the mean and standard deviation of

10 runs with the freshly calibrated machine. Clearly, the energy lost from the friction and

windage are very small but they are still worth considering in this experiment to ensure the

most accurate data possible. Per the standard, these values can be used to calculate the

correction energies for each specimen. The maximum angle βmax of one swing was measured

from the machine as the value of α1 = 143.9◦ in Table 6.24.

Table 6.24: Friction and windage correction input values

Variable Value

EM Pendulum energy (J) 2.7
hM Pendulum mass height at start (m) 0.600
L Length of pendulum (m) 0.322
θ Starting angle (◦) 150.0
α1 Angle for EA (◦) (mean [stdev]) 143.9 [0.57]
EA Energy lost through friction (J) 0.0153
β1 Angle for EB (◦) (mean [stdev]) 145.3 [0.48]
EB Energy lost through windage (J) 0.0008
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For each sample, the angle βsample is measured and used to calculate the uncorrected energy

ES . For each reading, the total correction energy is:

ETC =

(
EA −

(
EB

2

))(
βsample

βmax

)
+

(
EB

2

)
(6.1)

The impact resistance for each sample is calculated as:

IR =
ES − ETC

t
(6.2)

where t is the sample thickness. Similarly, the impact energy is calculated to be:

IE =
ES − ETC

At
(6.3)

where t is the sample thickness and A is the thickness of material under the notch.

6.9.2.6 Sample Clamping and Dimensional Measurement

Measurement of the samples was completed using a pair of digital vernier calipers with

a resolution of 0.01 mm, using the microscopic inspection station to verify notch depth

as needed. The samples were clamped into the IZOD machine (see Figure 6.40b for the

hardware setup), taking extreme care to ensure that they were straight and correctly aligned.

The notch was positioned using a thin, flat, blunted blade to ensure that it was positioned

correctly relative to the clamp. Clamping was done only finger-tight to provide a secure

base for the sample while providing consistent clamping pressure, since impact tests are

very sensitive to clamping pressure and method.

6.9.3 Series VII Results

Using the procedure in ASTM D256 and the correction factors calculated previously, the

impact strength (Figure 6.41a) and the impact energy (Figure 6.41b) were found for each

sample. The calculated values are shown in Table 6.25. As previously noted, the two sets

were not exactly equivalent since the thicknesses of the specimens varied somewhat (within

the tolerances established in the standard; in all cases, the true specimen thickness was
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used to calculate the impact energy.
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Figure 6.41: Series VII results for (a) impact strength and (b) impact energy. Data points shown represent
means for n = 5, with corresponding standard deviations shown as error bars.

Figure 6.42: ANOVA results for Series VII

6.9.4 Series VII Statistical Analysis

To better understand the results and better use the collected data for design decisions,

a statistical analysis was completed on the data using Minitab (Version 19.2020.1). Fig-

ure 6.42 shows the initial analysis of variance (ANOVA) calculations, showing that both

the material choice and raster angle had a statistically significant impact on the impact

strength. Note that, while the two data sets for impact strength and impact energy are

not exactly equivalent due to variance in sample thickness, they are similar enough so that
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Table 6.25: Experimental results for IZOD testing of Series VII. Each case was replicated five time for a
total of n = 105.

Combination Material Raster Angle n
IR (J/m) IE (J/m2)

Mean Stdev Mean Stdev

1 ABS 0◦ 5 127.7 13.6 12,558 1,335
2 PC 0◦ 5 305.0 53.2 30,017 5,211
3 PLA 0◦ 5 144.2 14.1 14,184 1,385
4 ABS 15◦ 5 124.4 10.0 12,238 981
5 PC 15◦ 5 171.2 43.1 16,855 4,255
6 PLA 15◦ 5 133.7 3.1 13,150 301
7 ABS 30◦ 5 132.8 16.3 13,070 1,607
8 PC 30◦ 5 416.8 37.8 41,028 3,746
9 PLA 30◦ 5 149.4 3.9 14,688 378
10 ABS 45◦ 5 160.9 25.5 15,819 2,508
11 PC 45◦ 5 678.3 44.6 66,707 4,380
12 PLA 45◦ 5 156.5 12.2 15,402 1,197
13 ABS 60◦ 5 111.7 23.4 13,151 2,302
14 PC 60◦ 5 360.1 87.5 35,437 8,637
15 PLA 60◦ 5 160.4 11.3 15,787 1,113
16 ABS 75◦ 5 109.8 4.7 10,991 462
17 PC 75◦ 5 305.4 27.0 30,061 2,656
18 PLA 75◦ 5 164.8 6.0 16,224 581
19 ABS 90◦ 5 109.8 14.1 10,797 1,374
20 PC 90◦ 5 242.4 78.0 23,852 7,667
21 PLA 90◦ 5 158.6 5.1 15,617 512

a regular statistical analysis will produce the same conclusions for each. Therefore, it was

decided that analysis would only be completed on one of them.

To confirm that the ANOVA produced valid conclusions, the Fisher Assumptions

were tested. In Figure 6.43, the set of residual plots for the data is shown. The p-value

for the Anderson-Darling test fails to show normality of the residuals. Checking the equal

variances assumption (Figure 6.44), it was also found that the assumption failed using both

the multiple comparisons test and Levene’s test. Since both assumptions failed, it is not

possible to use a transformation or parametric analysis tool. Therefore, it was necessary

to recalculate the experiment p-values using a non-parametric method. For this series, the

Kruskal-Wallis test was the easiest to use; the results are shown in Figure 6.45. The non-

parametric test technically gave the same conclusion as the original ANOVA, but it should

be noted that the weights of each of the factors is quite different. The impacts of this on

design decisions and effective design-driven experimentation will be discussed in depth in
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Figure 6.43: 4-in-1 residual plot for Series VII

Chapter 7.

Figure 6.44: Equal variances test results for Series VII
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Figure 6.45: Kruskal-Wallis test results for Series VII

After completion of the formal statistical analysis, two more plots were created from

the data: (1) the main effects plot (Figure 6.46a) and (2) the interaction plot (Figure 6.46b).

These plots are useful for graphically interpreting how each factor may affect the experiment

response and how the factors may interact with each other. These are very important tools

for collecting and interpreting design knowledge and will be discussed further in Chapter 7.

(a) (b)

Figure 6.46: (a) Main effects and (b) interaction plots for Series VII
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6.10 Closing Remarks

This chapter covered a wide range of physical experiments related to the fracture behavior of

FDM-processed materials. Following the same bottom-up approach as the MPDSM design

method described in this dissertation, these experiments began with a basic set of material

characterizations to establish a baseline. The individual elements, in the form of fibers,

were then tested. The was followed by the study of films (representing layers) and several

different aspects of meso- and macro-scale fracture behavior.

Numerous important and interesting conclusions for each of the experiments were

found, most especially that FDM materials did not show a sample size effect when tested,

even though typical samples fail to meet the criteria for plane strain established by ASTM

D5045. It was found that the materials were extremely sensitive to the notching method,

which contradicts some published literature, such as in [25]. A final very important obser-

vation from these experiments is that the strength of fibers in series and layers is that the

strength of the bundle or layer may be much less than the sum of the strengths seen in

individual fibers.

Future iterations and replications of these experiments should consider using a much

larger testing machine and J-integral methods. The work presented here is the best that

could be accomplished given the circumstances and available resources, but additional ex-

periments following the approach and principles laid out in this chapter would certainly

improve understanding and design knowledge collection methods in the future.
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Chapter 7

DESIGN RULE DEVELOPMENT FOR

FRACTURE-DRIVEN FDM MPDSMs

This chapter may contain previously published text and figures, which are reproduced with

the permission of the copyright holders. See the copyright statement and list of references

at the end of the chapter.

7.1 Introduction

Up to this point, several essential sources of design knowledge for the design fracture-

driven MPDSMs have been carefully explored or developed, including those which have not

been covered in the engineering literature before. The careful mapping and enforcement of

constraints, new ideas for problem formulations, a deep understand of the manufacturing

process being used, a new design perspective on what it means to design structured ma-

terials, a conceptual and experimental exploration of these materials under fracture, the

meaning of design knowledge in terms of engineering design - all have been discussed in

depth so far in this dissertation. Now, a way to apply these and other important design

concepts and principles (within the MDD context) to real-world design problems is needed.

This chapter brings these concepts together into one place and uses them to develop use-

ful and practical design rules for fracture-driven FDM MPDSMs. These design rules will

288



be applied to several major design studies in Chapter 8 and to develop a practical design

guide for practicing engineers, engineering students, and other designers who have a basic

knowledge of material behavior and mechanics but are not experts in the specific technical

areas explored in this dissertation.

This chapter is structured into several major sections, first exploring (Section 7.2) why

developing design rules under MDD is advantageous and why this is a large improvement

over classic design-for-manufacturing methods in the context of modern design techniques.

Section 7.3 discusses the three major design objectives for fracture-driven FDM MPDSMs.

This is followed up in Section 7.4 with a short but rigorous definition of design knowledge

and how to use it in the context of this work. Several potentially valuable sources of

information are presented, with the focus on giving the reader both the information and

guidance on where and how to look for more if needed in the future. In Section 7.5, the

formal design rules are laid out, each one explored and explained in detail with as many

references to previous work and definitions as possible. Some final remarks are given in

Section 7.6 in preparation for the design studies presented in Chapter 8.

7.2 Design Rules under MDD

As described in Chapters 2 and 4, manufacturability-driven design (MDD) is the design

perspective in which manufacturability is the prime or co-prime design requirement. When

done correctly and with good-quality models and good information about the process-

material interactions, the design space can be limited to only manufacturable designs from

the conceptual design phase [1–3]

This chapter brings all these topics together, along with some additional important

sources of relevant design knowledge. It uses them all to derive a set of rigorous design

rules for FDM-driven MPSDMs under fracture conditions. These design rules will be used

by practicing engineers and designers to produce useful MPDSMs which will help address

numerous design-manufacturing mismatch problems. These design rules will be useful for

both driving problem formulations (for example, for setting up optimal design problems) and

as an expert-driven design method on their own. As previously stated, the approach taken

here goes far beyond classic design for manufacturing (DFM) principles. In particular, this
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manufacturing-driven design (MDD) based approach (developed in Chapter 2 and Chapter

4), offers several major benefits for fracture-driven FDM MPDSM design:

• This MDD design rule approach is far more data-driven and model-driven than classic

DFM and far less reliant on expert experience. Much of the data needed to make

important design decisions can be modeled and cataloged.

• The design constraints generated using this approach are far more clear and specific

than those that would be generated using classic DFM on a general scale.

• This approach does not penalize design complexity, but only limits it enough to ensure

manufacturability.

• Any solution method (optimal design, expert intuition, topology optimization, and

such) can be used in conjunction with the developed design rules

7.3 Fracture Driven FDM MPDSM Design Objectives

Given the crack tip and loading shown in Figure 7.1a, inputting additional energy into the

material will eventually result in crack extension through the shown fields [4–7]. If the

material is homogeneous, isotropic, and the specimen is consistent in size, it is reasonable

to assume that the crack will grow in a straight line from the crack tip to the boundary.

However, if the material is not perfect or is structured, then it should be expected that the

crack may branch out or turn to follow the path of least resistance through the material.

Therefore, the region where the crack could possibly grow after it starts looks like a contour;

generally, the stress or strain field shape around the crack tip indicates its most likely

direction [5, 7–9]. Good representations of these contours relative to position around the

crack tip are given in Figures 7.1b and 7.1c.

One of the basic principles of fracture mechanics is that cracks are formed as a way to

quickly and efficiently dissipate energy from the material [4,7]. This is especially true if the

material is brittle and cannot plastically deform (or deform enough) to dissipate the energy

input. With this in mind, it is reasonable to assume that preventing or stopping cracks will

produce a tougher material, while increasing the number and speed of cracks will increase

the rate at which energy is dissipated from the system.

290



(a)

(b)

(c)

Figure 7.1: (a) A representation of a crack tip and the field zones around it in terms of distance and
(b-c) example stress contours around the crack tip, which are useful in determining which material layout
strategies should be used. All figures from [5] and © Elsevier B.V., reproduced with permission.

From the results of the fracture experiments and literature reviews, it is clear that a

structured contour of material around the crack tip has the best chance of presenting a 90◦

(normal) wall to the crack as it grows, making it break the contour in order to continue

growing and dissipating the maximum energy while stopping, preventing further growth.

Inverting this, the contour can be used to steer the crack or to cause it to accelerate. There-

fore, from the perspective of any fracture-driven design problem, there are three possible

design objectives:

1. Crack arrest: A fracture exists or is possible in a material structure and the de-

signer wants to prevent or stop the crack. This is the most common case and the

objective of most fracture-based design since fracture is one of the common failure

modes for materials (along with yielding and buckling). Therefore, it is common for
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structural design and structural integrity problems to try to prevent or stop cracks in

the structure.

2. Crack acceleration: Material fracturing to generate new surface energy [4] is one of

the most efficient and fast ways to dissipate excess energy from a system. Therefore,

the are numerous design problems (such as sacrificial structural members) which would

benefit from rapid fracture. In this case, two different approaches are possible: (1)

make the material as weak as possible to guarantee fast crack growth or (2) make

the material structurally sound but encourage the crack to grow in the most efficient

path. These two objectives compete, as making the material weak will speed up the

crack but reduce the amount of energy dissipated in the process. The second option

has the opposite effect.

3. Crack pattern control: There are many cases where crack pattern control is needed

(for example, as explored in Refs. [10–14]). In this case, the same objectives are

available as for the crack acceleration option. In fact, it could be said that the crack

acceleration objective is a special case of crack pattern control where the crack is

designed to follow the shortest and most efficient path to the boundary.

7.4 Design Knowledge Drivers

One of the prerequisites for producing a set of solid, consistent, and reproducible design

rules is a good source or set of sources to collect design knowledge. Often, only modeling

and problem formulation are considered when producing design rules but this dissertation

explored many more in previous chapters. This section explores some of the most important

ones in order to show the source and rigor of the design rules which will be generated in

this chapter. A graphical representation is shown in Figure 7.2.

7.4.1 General Problem Understanding

It is extremely important for the designer and other stakeholders to understand the design

problem well. Not only so that reasonable expectations can be set and the proper resources

provided, but because the early project requirements will drive the quality of the design.
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Figure 7.2: Design rule major sources

This is especially true when using an MDD-focused method; while MDD provides a wide

range of benefits (as discussed in Chapter 4), one of its major drawbacks is that it is much

more difficult to change design requirements and approach later in the design life cycle.

Therefore, the requirements must be solid and show the true possible design space that can

be explored.

7.4.2 Structured Material Principles

Another source of information, discussed in Chapter 4 and Chapter 5, is the fundamental

design principles behind existing structured materials and metamaterials. Since many of

the basic design principles will be the same (with MPDSMs being subjected to more specific

constraints but having more design freedom in other areas), it can save time and work to

study at least the basic principles. This was done in Chapter 4 and Chapter 5.
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7.4.3 Material and Manufacturing Process Knowledge

The materials used in this dissertation are standard thermoplastic hard polymers (also often

called engineering plastics or commodity plastics). ABS and PC are amorphous, while PLA

is semi-crystalline. The polymer chemistry is similar for FDM, but the properties and

realistic behavior of the materials during printing can certainly vary. The effects of the

material selection and the manufacturing process was discussed and explored extensively

in Chapter 2, Chapter 3, Chapter 4, and Chapter 5. Some of the major observations that

could be made by a designer who is not an expert in polymer science are:

• Semi-crystalline thermoplastics are far more dense and less brittle than amorphous

plastics. As seen in some of the crack images in Chapter 6, the semi-crystalline PLA

is far more likely to send out webs of small cracks and craze before fracturing, while

the amorphous materials showed fast brittle fracture, especially in the case of PC.

• While the polymerization reaction is complex and far beyond the scope of this disser-

tation, it can be easily observed that amorphous polymers shrink in a more uniform

manner than semi-crystalline ones do. This helps increase the possible effective den-

sity significantly for amorphous materials (this effect was observed in [15] and other

studies). This can help the material to be more homogeneous than it might otherwise

be and therefore a tougher material in many cases.

• Amorphous materials have much higher structural stability at elevated temperature,

as demonstrated by the differences in glass transition temperature between them.

7.4.4 FDM Parameters and Constraints

Chapter 3 presented a rigorous and solid set of manufacturability constraints was derived.

The ones that are relevant to the design and fabrication of FDM MPDSMs are:

• Constraint 4: Extruder temperature

• Constraint 6: Printing speed

• Constraint 7: Build plate temperature
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• Constraint 8: Jerk and acceleration

• Constraint 9: Degree of crystallinity

• Constraint 10: Shrinkage limit

• Constraint 11: Defect tolerance

• Constraint 12: Degree of structural homogeneity

• Constraint 13: Realistic packing density

• Constraint 17: Nozzle size

• Constraint 19: Element width

• Constraint 20: Layer height

• Constraint 22: Element dimensional ratio

• Constraint 25: Stand-alone element length

• Constraint 26: Element corner radius

• Constraints 27-30: Element on previous material length

• Constraints 31 and 34-35: Bridge and overhang distance

• Constraint 33: Shell-infill ratio

• Constraints 38-42: Small feature geometric restrictions

• Constraint 51: Length scale

7.4.5 Experimental Results

Chapter 6 of this dissertation was dedicated to experimentally exploring a large number of

aspects related to the development and manufacturing of MPDSMs. The design knowledge

was collected and used to drive many of the design rules presented in the next section.

Crack pattern behavior, as discussed in Chapter 6, was especially important.
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7.4.6 Fracture Mechanics Theory and Expert Intuition

While it was not necessary to outline detailed fracture mechanics theory, since it was ex-

plored previously from theory (Section 7.3), the literature (Chapter 5) and experimentally

(Chapter 6), it should be noted that it certainly had an impact on the design rules. Given

the extensive experience of the authors related to fracture mechanics, the concepts behind

this field are represented in many areas of the dissertation. The study of fracture mechanics

was one of the major driving forces behind the genesis of this project in the first place and

motivation to continue it to completion.

7.4.7 Design and Engineering Literature

As discussed in Chapter 5, the engineering literature is an excellent place to start looking

for design knowledge or expand it. As shown in Chapter 5, several major areas (not related

directly to design) can be explored for useful information. Re-stating these in terms of what

is needed for MPDSMs:

• Guidance on material element layout and material structure optimization

• Damage mechanics as the structured materials fail

• Understanding the process-material effects and synergy

• Effects of environmental effects

• The need for new manufacturing processes to deal with new design problems

• Realistic performance metrics

• Techniques for effect material and material system characterization and evaluation
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7.5 Design Rules

This section describes the essential design rules which govern the design of fracture-driven

FDM MPDSMs described in this dissertation. These rules come from a combination of

the sources discussed in Section 7.4 and the other tools and themes developed in previous

chapters of this work. In addition to driving a successful and straight-forward design process,

these rules are formulated such that:

1. That there are as few rules as possible and that every possible rule has been turned

into a guideline or best practice in order to maximize design freedom.

2. The designers and stakeholders using these rules do not need to be experts in fracture

mechanics, additive manufacturing, or classic structured materials. Every effort was

made to describe them in such a way that competent designers and engineers of

any experience level (including senior engineering students) can make use of them

effectively.

3. All of the described processes and techniques can be accomplished using standard

commercial software. No specialized or complex design tools are required.

4. The design process can be as manual or as automated as the designer wishes to set it

up to be by selection of the solution method.

These design rules, distilled from the work of this dissertation, will provide many

benefits however, three things should be noted

1. The element layouts produced are at the meso-scale only. The conclusions may be

applicable to other scales but this will need to established through another study.

2. The set of design rules here are the smallest possible set in order to provide the largest

possible design freedom. It is possible that some additional rules or guidelines would

need to be produced and used for some special cases.

3. Due to the requirement in this dissertation that only commercially-available software

and design tools be used, some additional improvements may be accomplished if the

designer is willing to produce more specialized tools.
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7.5.1 Design Rules: Feasibility and Applicability

When setting up any design problem where MDD may be used, the first important step

is to make sure that the MDD approach is both feasible and applicable to the problem at

hand. In addition to a clear problem statement, five basic requirements should be met.

1. The most important (or co-prime) requirement must be manufacturability. This re-

quires that the stakeholders understand and accept that some (usually minor) trade-

offs in performance, geometric freedom, and mathematical optimality may be required

to accomplish this.

2. A specific manufacturing process or well-defined group of processes must be selected

as early in the design life cycle as possible. Ideally this should be done during require-

ments definition and ideation but it is absolutely required by the conceptual design

phase [1].

3. The selection of the manufacturing process early in the life cycle may limit the range

of available materials for the final design. This must be integrated into the design

requirements and understood by the stakeholders.

4. The selected process must be well-understood or well-documented by the design team

OR a team or designer with the appropriate expertise must be available to map and

define the manufacturability constraints.

5. For any application of MDD, there will likely be a clear process-design-material inter-

action. This must be understood and accepted by the stakeholders and must either

be an acceptable trade-off OR part of the design objective. In the case where some

kind of lattice, truss systems, structured material or material system (such as a com-

posite), or something else for which structure drives system mechanical properties is

being designed, there must be a well-defined and designable meso-structure.

Applying these general rules to fracture-driven FDM MPDSM design, the selected process

is FDM and the range of materials available would be pure or composite thermoplastic engi-

neering materials. The mapping of manufacturability constraints was done in Chapter 3, so
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the process can be considered to be well-documented and well-understood by stakeholders.

Finally, the process-design-material interaction produces the useful, designable matrix of

isotropic or transversely isotropic material elements which make MPDSMs via FDM possi-

ble. In this case, MDD is both a design method to ensure manufacturability and a way to

capture these useful meso-scale effects.

7.5.2 Design Rules: Problem Formulation

Assuming that the design problem at hand is applicable and feasible with MDD, as well as

an appropriate problem to solve by using a fracture-driven FDM MPDSM, the next step

is to establish the problem formulation. In particular, this involved defining the problem

and imposing the design objectives and constraints. This step does not involve selecting

a solution method directly, but in many cases the consideration of a solution method may

simplify problem formulation. Now that a problem type and objectives are selected, more

specific rules can be established. The main ones at this level are:

1. The mesoscale (“design scale”) must be carefully defined in terms of FDM. In this

case, the meso-scale is the matrix of elements, which makes the micro-scale level the

elements themselves and the macroscale is the whole part for which the mesostructure

is being designed. Since FDM is an additive manufacturing process, the number of

design degrees of freedom will be the number for the printer minus 1. For a standard

FDM machine, this represents two dimensions of complete design freedom within

each layer (subject to constraints on the elements). Very good 3-D MPDSMs can be

designed and built, but this will be the result of a stacking of carefully-designed 2-D

components and not of true 3-D design.

2. Carefully defining the objective function for the problem and understanding the rules

which accompany this. In this current work, three objectives are possible and each

one will have its own set of design rules.

3. In general, the manufacturability constraints and the performance design objectives

will provide the constraints on the problem. In this case, the FDM constraints, con-

straints on the raw materials, and constraints on the fracture variables will provide
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all of these problem constraints. These must be carefully defined in consistent and

clear terms.

4. Select the printing parameters and settings for FDM as early as possible. Carefully

define each one as a parameter (to be controlled during printing), a constant, or a

constraint.

5. Select materials very carefully; the results in Chapter 6 show the massive difference

in performance and controllability for various materials. In addition, it must be con-

sidered that AM-processed materials often behave very differently than molded ones.

It is best to try to understand material performance on the element/microstructural

level, as this is a better predictor than macroscale tested properties.

6. Any stress concentrators that will be placed in the system should follow the guidelines

for notching and pre-cracking established in Chapter 6. Therefore, any notches must

be able to be machined with a mill, router, saw, broach or other method without

damaging or interfering with the rest of the part or material structure.

7. For fracture-related problems (as discussed in Section 7.4 and in the next subsection),

the best material layout will almost always be a concentric or contoured layout de-

signed to help steer cracks where they are intended to grow and away from areas (or

dissipated) when not intended to grow. This may not be mathematically optimal from

the perspective of the whole part, but it makes the most sense when looking from the

perspective of the crack tip and resulting stress/strain fields.

8. Based on experiments in Chapter 4, it has been noted in this dissertation that adding

newly designed regions to help deal with fracture objectives can help make the result-

ing material structure much more tough but it also makes it less stiff. The stakeholders

must account for this when trying to design or redesign regions.

9. Re-design as little of the part as possible. It is tempting to simply turn the entire

part into a concentrically-printed shape with no design but this is a mistake. While

toughening the material to an extreme degree, it also greatly decreases the structural

stability and makes the structure far more compliant. One way to prevent this is to
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design or re-design only the areas that are necessary to meet the fracture objectives

print the rest using the strong raster-45 pattern with alternating layer directions. Of

course, a full re-design may be necessary in some cases.

10. Make sure that the part shell encloses both original and new regions to avoid cracking

and separation in non-designed regions.

11. Keep in mind that each layer of the part can be examined as if it was a very dense truss

made up on the material elements. This knowledge must guide the design layouts.

12. Follow relevant manufacturability constraints - when using Cura or similar, this is easy

since you can input restrictions on angle, element length, bridge length, etc directly

into the software. Not only is automation of this very easy with the right software, it

will prevent printing errors and problems later.

13. Follow as many of the soft manufacturability constraints as practical with the given

resources.

14. When setting up the areas (if not the whole part) to be designed or re-designed, make

sure that the re-designed part has at least one one connection to a constraint point to

prevent the part from possibly delaminating or shattering early. There may be more

than one area to be re-designed (especially for 3-D problems) but they should all be

connected to a solid boundary condition or connected into one mass.

15. Selecting the means of identifying the areas the designed or re-designed, linear elastic

CAD and FEA models should only be used with a very fine mesh and only when it is

reasonable to assume that the material is LEFM as well.

16. Similarly to other structured materials, the FDM MPDSMs are strongest in com-

pression. If given the choice, the designer should strive to have as much compression

load (versus tension, torsion, ect.) on the designed structure as possible. For FDM

MPDSMs, the printing orientation may affect this significantly and should be consid-

ered prior to fabrication.
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17. Avoid using support material of any kind when constructing an MPDSM, as it will

likely be impossible to actually remove the supports after printing.

7.5.3 Design Rules: Fracture Mechanics

Based on the previous discussion of fracture mechanics theory and its impact on the design,

some simple, logic-based design rules can be applied which do not require specific expertise

in fracture mechanics. These include:

1. The largest and best design space for fracture-driven problems is the face through

which the crack is growing or may grow. This is an important consideration when

selecting a printing orientation for the part.

2. Some regions of the part may need reinforcement to prevent fracturing or yielding

outside of the designed zone (or where the crack is designed to grow), depending on

the load. This may take the form of bolts or other mechanical reinforcement that may

involve post-processing (coatings, resin pours, annealing, etc).

3. For non-experts in fracture mechanics who must design fracture-driven problems,

the following problem statements are useful for setting up the problem and making

decisions:

• If the crack is growing or may grow and the material structure needs to prevent

this (i.e., “crack arrest”), the best way to do this is to dissipate the fracture

energy. This is best done by presenting many obstacles to the crack growth, such

as material elements or contours placed normally to the possible crack path.

• If the crack is growing or may grow and the structure needs to accelerate it, the

opposite should be done as with crack arrest; the shortest and most efficient path

to the boundary should be determined and the material structure designed to

facilitate and guide this growth.

• If the crack needs to grow in a specific pattern, the material elements need to

guide it, as with crack acceleration, but with the material around the crack

remaining structurally sound.
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7.5.4 Design Rules: Solution Method Selection

• If the output of the design process is a directly-manufacturable product, then the final

product should be in the form of g-code. Otherwise, it can be output as a model or

other product. This decision needs to be made as early as possible, as it will drive

the solution method selected.

• It is very unlikely that only one solution will be best and different driver software

packages may produce different g-code. This is not a problem as long as the final

design makes sense in the context of the problem.

7.5.5 Design Rules: Manufacturing

1. While all of the printing parameters are important and should be carefully controlled,

the build plate temperature is one of the most important. For amorphous materials,

proper control of this parameter can help prevent residual stress build up in the

material structure. For semi-crystalline materials, the build plate temperature can

have a direct impact on the degree of crystallinity in the final polymer. For both types

of material, a build plate temperature that is too low can lead to cracking and pre-

mature failure in the parts, while one that is too high can exceed the glass transition

temperature of the polymer and cause it to settle or yield, destroying dimensional

accuracy.

7.5.6 Design Rules: Post-Solution Check

1. User must check to make sure that the produced g-code actually meets the require-

ments. Making a simple “logical” checklist during design can be very helpful. For

example, a simple check could be:

• If the problem requires stopping a crack, does the element layout present as many

obstacles (ideally walls or contours normal to crack direction) as possible to dis-

sipate the fracture energy?

• If an accelerated crack is desired, does the element layout help guide it along
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the best and shortest path to the boundary with the smallest possible amount of

interference?

• If the problem needs to design a crack path, does the layout support this path

growth while still allowing the rest of the material to be structurally sound?

7.5.7 Verification and Validation

Before any product or design can be used in the real world, it must undergo a certification

process. At the current time, this is a major future work direction for the AM community.

However, the pre-certification verification and validation process can be explored. Using the

standard definitions, verification is the process of making sure that the design requirements

are met at a minimal level while validation ensures that the requirements truly captured

the needs of the project or design. There is a lot of designer freedom here regarding FDM

MPDSMs, but two simple rules should still be followed during this process:

1. Both destructive and non-destructive evaluation techniques are useful for final verifi-

cation and validation processes. This must be planned for during design.

2. For mechanical testing, the strain rate used is extremely important and must be

adjusted according to the problem, which may require some experimentation. A

strain rate that is too slow will allow the material to relax, while one that is too high

will cause dynamic effects.

7.6 Closing Remarks

This chapter was the compilation of the previous five chapters, in which the design knowl-

edge collected from modeling, from literature reviews, from physical experiments, and from

expert intuition were converted into a set of clear and simple design rules which may easily

be understood by practicing engineers, engineering students, and designers who are not ex-

perts in fracture mechanics, additive manufacturing, or structured materials. This chapter

ends the collection and modeling part of the dissertation. The next and final major chapter

will set up, demonstrate, and experimentally verify four design studies to show these rules

and concepts in practice.
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Chapter 8

DESIGN STUDIES

8.1 Introduction

In this chapter, the principles and design rules developed in this dissertation are explored

and demonstrated through a series of design studies. The three standard objectives of

fracture-driven design are covered (crack arrest, crack acceleration, and crack pattern con-

trol) using a variety of different design perspectives. Four case studies are presented, all

following the design rules from Chapter 7 and using various strategies for laying out the

elements to meet the objectives of the problem. These do not represent all the possible

approaches or design problems, but do a good job showing the concepts and applications of

the concepts developed in this dissertation. Realistic applications were prioritized, so the

majority of the problems focused on strengthening or toughening (as explored in Chapter

7) but some work demonstrating crack path control and crack acceleration is also presented,

especially in Design Study 3.

1. Design Study 1: A sampling experiment using box plot optimization is used to

explore three factors related to the toughness of a set of compact tension samples.

Layouts are driven from the use of 2-D primitives and no modifications are made

based on specific fracture knowledge. This study simulates a simple screening study,

similar to one that would be done as a proof-of-concept or to identify significant factors

for a large and expensive designed experiment.
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2. Design Study 2: This case is the opposite of Design Study 1; in this study, the

layouts are driven directly by Von Mises criterion for a 2-D plane stress (thin sample)

case and the element layout patterns used are direct mapping of the stress fields for

each material.

3. Design Study 3: This case is similar in approach and objectives to the simple 2-D

ones presented in some previous studies (such as Refs. [1–7]) but with a more complex

geometry and the imposition of the specific design rules. In this case, a linear elastic

finite element model (used since it was concluded in Chapter 7 that the materials in

use behave in an approximately linear elastic manner) is used to create a Von Mises

stress map of the geometry based on percentages of the yield stress of the material.

This map was then directly traced (with some minor modifications due to design rules)

and used as the basis for the contour layout.

4. Design Study 4: The fourth design study has the same goals and approach as

Design Study 3, except in 3-D. A notched cantilever beam with a combined bending

and torsional load is the subject of this study.

Some notes and assumptions should be documented for these case studies in order to ensure

that the full context is clear to the reader, especially for anyone trying to reproduce these

case studies:

1. As explored in Chapter 7, the most appropriate (if not necessarily mathematically

optimal for every element) layout for fracture problems is almost always a contour-

based arrangement of elements based on where the crack may be predicted to grow.

While the fracture mechanics theory behind the concept can be complex (though not

as complex as some mechanics problems), the conclusions are relatively simple:

• When crack arrest is desired, the contours should present a “wall” or normal

obstacle to it so that the material can dissipate some of its excess energy into

breaking the contour (perhaps through crazing or crack branching between the

elements normal to the crack), thus starving the crack of its energy to keep

growing before it affects the boundaries of the part or system.
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• When crack acceleration is needed, the contour should help guide it to the nearest

boundary as quickly as possible using the most efficient route while trying to

dissipate its energy by the time it reaches the boundary; excess energy at the

end may result in shattering or other dangerous behavior, as observed some of

the fracture tests in Chapter 6 which used polycarbonate.

• Crack pattern control requires a combined approach, as the crack both needs

to be steered in the desired direction while dissipating the fracture energy as

quickly as possible and as far from the boundary as possible.

2. One of the requirements for the investigation described by the chapters in this disser-

tation was that only commercially-available software and design tools; the purpose of

this rules was to make sure that the methods and approaches described can easily be

applied and reproduced by practicing engineers, engineering students, and designers

who are not assumed to be experts in fracture mechanics, polymer additive manu-

facturing, or in structure materials. Therefore, a combination of Ultimaker Cura and

Autodesk Inventor were used for the layout designs; a full tutorial on how to accom-

plish this using these standard software packages is provided in Appendix A. Cura is

especially useful for doing such design, as it not only allows control of the element

layouts (both directly and indirectly), but also allows direct input of the manufac-

turability constraints to ensure that any designs produced meet the definitions of an

MPDSM.

8.2 Design Study 1: ASTM D5045 CT Layout using Cube
Plot Optimization

8.2.1 Overview and Objectives

Cube plot optimization allows quick and low-cost screening of physical experiments for var-

ious things, most commonly potentially significant factors to be studied using more rigorous

statistical methods in large and expensive designed experiments. Cube plot optimization

allows a 2-level experimental design to be examined for up to 8 factors (2 will be explored

in this case study), providing a graphical solution to help designers identify statistically
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significant factors and very quickly select the best combination of factors. The objective

is typically very simple, something similar to “which combination of factors produces the

largest (or smallest) value of the response?” In this case, the objective function is to find

two combinations of material choice and two design factors, one that provides the toughest

structure and the one that fractures the most easily. The MPDSM patterns are arbitrarily-

chosen primitive shapes (circle and diamond), which are connected to the tension points as

recommended by Chapter 7.

8.2.2 Design Approach and Results

For this case study, the experimental design is shown in Table 8.1 and the specimen layouts

shown in Figure 8.1 (before notching). The responses are (1) the maximum load before

fracture and (2) the lowest load before of standard ASTM D5045 CT samples (W = 30

mm, B = 6 mm) tested at a strain rate of 10 mm/min.

Table 8.1: Case study 1 experimental design for each material (ABS, PC, and PLA)

Combination Infill Primitive Primitive Size (mm) Fill Pattern

1 Circle 5 R45
2 Diamond 5 R45
3 Circle 20 R45
4 Diamond 20 R45

(a) (b)

(c) (d) (e)

Figure 8.1: Case study 1 layouts with printed examples (PC after notching)
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8.2.3 Experimental Validation

All three of the materials for this dissertation are considered. A total of 12 samples (one

for each material - factor set combination) were printed, conditioned, notched, and tested

as described in Chapter 6. The results were used to generate the cube plots shown in

Figure 8.2. One cube plot was generated for each of the materials.

(a) (b)

(c)

Figure 8.2: 2-factor cube plots for each of the materials generated in Minitab

While only a single run of the experiment was done in this design study, it would

be standard to perform several runs and let the boxes represent means instead of raw

data. No data analysis is needed from these (assuming that a real design study would have

more complex data distributions); simple inspection of the boxes will answer the objective

functions: The best combination for toughness is PLA with a small circle (fractured at

763.5 N) and the best for low fracture strength is PC with a large circle, which fractured

at just 200 N.
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8.2.4 Discussion

This design knowledge collection and design method (experimentally demonstrated above)

is extremely simple, but valuable. To better show the value of such a screening experiment

to aid in making design decisions, ANOVA and main effects analysis were done for each

material. As shown in Figure 8.3, none of the factors are statistically significant at the

normal α = 0.05 level of significance. Therefore, a classic data analysis for design will not

provide any valuable information. However, the box plot optimization method clearly gives

fast and straight-forward answers to the objective functions. It should also be noted that

the main effects plots shown below also show the results of the box plot optimization, even

though the effect was not calculated to be statistically significant using regular methods.

Figure 8.3: ANOVA and main effects analysis results for Design Study 1
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8.3 Design Study 2: Plane Stress Field Trace

8.3.1 Overview and Objectives

In the previous design study, primitive shapes were used to reinforce the areas around

the cracks, giving best performing examples for both the maximum fracture load and the

minimum fracture load. In this case study, the layout is calculated based on the plane stress

field using Von Mesis criterion for establishing the field size and geometry. The objective

for this study was to show that the stress fields could be accurately calculated from the

basic equations and reproduced to solve a practical design problem. A thin ASTM D5045

CT sample is used for this test with dimensions W = 30 mm and B = 3 mm.

8.3.2 Design Approach and Results

Given the Von Mises yield criterion (σ values are principle stresses),

2σ2yield = (σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 (8.1)

Knowing that for the plane stress σ3 = 0, this equation reduces to

2σ2yield = (σ1 − σ2)
2 + σ22 + σ21 =

K2
I

2πr
cos2

(
θ

2

)
(6 sin2

(
θ

2

)
+ 2) (8.2)

Solving for the r (distance from crack tip to field edge),

r =
K2

I

4πσ2yield
(1 + cos(θ) + 3/2 sin2(θ)) (8.3)

Finding the stress intensity factor around the crack for a CT sample,

KI =
P

B

√
π

W
(16.7(a/W )1/2 − 104.7(a/W )3/2

+ 369.9(a/W )5/2 − 573.8(a/W )7/2 + 360.5(a/W )9/2) (8.4)

Assuming P = 150 N, a/W = 0.5 (as recommended by ASTM D5045), and using the yield
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stress values for each material measured in Chapter 6, the Von Mises stress fields for each

material are shown in Figure 8.4. The resulting field traces for each CT sample are shown

in Figure 8.4.

Figure 8.4: Von Mises stress fields for ABS, PC, and PLA based on the mechanical properties measured
in Chapter 6. The fields and plot were produced in Matlab using the derived equations.

(a) (b) (c)

ABS PLA PC

Figure 8.5: Case study 2 layouts
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8.3.3 Experimental Validation

While the samples for this design study were not mechanically tested, they were printed to

show that the stress fields could be easily calculated and transferred into design geometry

with no special tools or software. The prints (under a microscope) are shown in Figure T

Figure 8.6: Printed stress fields for each material (samples not notched), which match Figure 8.4 very well.

8.3.4 Discussion

The purpose of Case Study 2 was to explore the creation of MPDSMs around an analytically-

calculated stress field. This field was reproduced in the design very easily, showing that

such an approach could be an excellent alternative to finite element analysis. Note that the

printed field are not notched, but if they were to be notched with a mill, router, saw, or

other method, the calculated CT dimensions (with a/W = 0.5) would automatically place

the beginning of the pre-crack exactly in the nexis of the fields.

8.4 Design Study 3: 2-D Eccentric Beam Re-Design

8.4.1 Overview and Objectives

In this case study, an eccentric beam with two notches subject to a tensile load (Figure 8.7),

where one notch is in tension and one in compression. The out-of-plane cross-section is

uniform, as is the loading, so the solution is in 2-D. This is typical of the few similar

problems in the engineering literature, such as those cited earlier in this chapter. The
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beam is to be made from PLA and two designs must be produced: One which significantly

increases the fracture load of the beam and one in which a guided crack causes the beam

to fracture quickly and dissipate energy as quickly as possible. Therefore, two designs must

be produced and compared with the baseline beam. Suppose the maximum predicted load

of the beam is 2000 N (including the factor of safety, but the designers were told that its

actual capacity is much less than this, without being given specific information.

P = 2000 N

PLA 

beam

Notch in tension

Notch in compression

1
0

0
 m

m

Figure 8.7: Case study 3 setup and loading

8.4.2 Design Approach and Results

This beam is part of a system and will be difficult and expensive to re-design the geom-

etry itself, so better controlling its performance through using MPDSM principles will be

attempted in this design study. To begin, the basic geometry was subjected to a 2000 N

worst-case load, resulting in a the stress field show in Figure 8.8. The material properties

of PLA from Chapter 6 were used and input manually. A linear elastic finite element model

(Autodesk® NASTRAN®) was used with an average mesh size of 1.5 mm.
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0.50σyield0.25σyield

(a) (b)

(c) (d)

(e) (f)

Figure 8.8: Case study 3 tools and designs. (a) Stress field for the given loading and material, (b) inverted
stress field to find the areas where I designed crack may grow easily, (c-d) the stress field traces (modified
for Chapter 7 rules) for (a-b), and (e-f) manufacturable final designs with element layout.

Figure 8.8a shows the stress field relative to a percentage of the yield stress of PLA,

while Figure 8.8c shows the field trace (i.e., area to be re-designed) to toughen the structure.

Inverting the field (Figure 8.8b), the weaker areas are exposed, which will help the designers

use expert intuition to guide a crack through the most efficient path in order to quickly

dissipate energy if needed. The crack path can be seen clearly in the trace in Figure 8.8d.

These designs follow the rules and guidelines for fracture-driven MPDSMs, though the full

checklist from Chapter 7 will not be repeated here. Two points that should be highlighted,
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however, were that even though the needed reinforcement (as shown by the FEA model)

around the cracks did not necessarily reach a boundary condition or connection. Therefore,

as shown in several parts of Figure 8.8, small bridging areas and connections to the pin

joints were added to meet the requirements outlines in Chapter 7. This was done manually

by the designer, not automatically by any program or model.

(a) (b) (c)

Figure 8.9: Case study 3 samples. (a) toughened MPDSM, (b) designed crack MPDSM, and (c) baseline

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10

T
en

si
le

 L
o

ad
 (

N
)

Crosshead Position (mm)

Case Study 3 Results

Baseline R45 Designed Crack MPDSM

Toughened MPDSM

(a)

(c)(a)

Figure 8.10: Case study 3 (a) experimental setup (strain rate was 5 mm/min), (b) force-deflection curves
for the three cases, and (c) successful crack-control design after testing.

319



8.4.3 Experimental Validation

After re-design and conversion of the two cases, manufacturable forms (g-code), as shown

in Figure 8.8e and 8.8f, were produced and printed (Figure 8.9). The same geometry, but

using a full R45 infill, was printed to serve as the baseline to compare the performance of the

other two. Next, the samples were tensile tested using the MTS machine and equipment

described in Chapter 6. The experimental setup and results are shown in Figures 8.10a

and 8.10b, respectively. Figure 8.10c shows the successful designed crack which behaved so

erratically during the test but which dissipated a lot more energy than the R45 baseline.

8.4.4 Discussion

While the performance of the re-designed beams was not as good as hoped by the designers

(the best load was about 850 N, not the 2000 N that would have been ideal), the improve-

ment was very dramatic, increasing the strength nearly 300% simply by laying out the

elements. This suggests that the designers will have to change the geometry or material to

achieve the desired capability, but that the required changes will be less severe due to the

availability of this design method. The design space is now wider, so it is more likely that

the stakeholders will be able to find a solution with a much less dramatic and less expensive

re-design of the system to which it belongs. One more note should be made here in the

context of the other materials and their performance observed throughout this dissertation:

It is likely that this large improvement was only going to be observed in PLA (and similar

materials), as it is far more dense (40% more that ABS) and tough than ABS or PC. This

design is also a poor application for PC, as it is too brittle to survive this loading pattern

based on its behavior in Chapter 6 and Design Study 1. This problem is a more complex

version of some layout re-design problems in the literature (such as seen in [1–7]), but it

remains a 2-D problem; the next design study extends the ideas to 3-D.
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8.5 Design Study 4: 3-D Beam Design under Bending and
Torsion Load

8.5.1 Overview and Objectives

For this case, a cantilever beam clamped on one end and eccentrically loaded on the other

needs to be toughened without changing the macro-scale geometry of the beam or the

material. This problem is very similar to Design Study 3, except that the design problem

is in 3-D and it made from ABS. Polycarbonate was considered for this case, but after

reviewing its performance in Chapter 6, it was decided that PC was not a suitable material.

Figure 8.11 shows the scenario, loading and major dimensions. In addition, the model

results are shown; the model was made using the same steps as in Case Study 3.

P = 150 N

Clamped

section

(b)

(a)

0.50σyield

0.25σyield

150 mm

25 mm

Figure 8.11: Case study 4 setup
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(a)

(b) (c)

0.50σyield
0.25σyield

Layer 1 Layer 25

Layer 50

Figure 8.12: Case study 4 (a) model sides, (b) traces, (c) design solution, (d) layers

8.5.2 Design Approach and Results

The design approach taken was the same one described in Design Study 3, except that it

was done from both sides of the model (Figure 8.12a and 8.12b) and the results joined in

the middle (Figure 8.12c) via a combine function in Autodesk Inventor. After inputting the

original geometry and the newly designed region into Cura, slicing was one and every layer

was inspected to make sure that there would be no manufacturing problems or unexpected
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stress concentrations. Originally, a loft feature was attempted to create a more “average”

MPDSM geometry throughout the thickness of the beam, but due to the complexity of the

stress fields it was not able to be produced digitally. If the fields were more simple or more

similar in size, the loft approach most likely would produce a design that is even better than

the one shown here. Note that since this was a 3-D problem that every layer was unique;

Figure 8.12d shows images of the first layer, the 25th layer, and the 50th layer.
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Figure 8.13: Case study 4 (a) model sides, (b) traces, (c) design solution, (d) layers

8.5.3 Experimental Validation

To test the quality and effectiveness of the design, two specimens were printed from ABS

(Figure 8.13), conditioned, notched, and pre-cracked like the CT samples used in previous

sections. A simple cantilever system (Figure 8.13a) made from scrap metal and clamps was

used to hold the sample while it was tested in compression in the MTS machine at a strain

rate of 5 mm/min. The recorded results are shown in Figure 8.13c.
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8.5.4 Discussion

While the effect of the designed area is clear, the benefits are not nearly as dramatic as

seen in Design Case 3. It is likely a combination of using softer material, the much more

severe mechanical load, and the fact that larger samples are more likely to contain small

undetectable defects. The reason for the really high stiffness for the first new Newtons of

force applied to the redesigned case is unknown, but it is suspected that this was when the

pre-crack was beginning to release in the material. Note that the strain rate was slow, so

it took a significant amount of time to reach a significant load so it also possible there was

some fiber relaxation effects as well. It was discussed that the experiment should be re-done

using PLA but this was not done due to time constraints, a low supply of material, and

the fact that the behavior of PLA was already well-established in previous design studies.

Future replications and extension of this problem should focus on testing different strain

rates and materials.

8.6 Closing Remarks

The purpose of this chapter was to demonstrate and experimentally validate the design

method and rules developed throughout this dissertation. As such, it is the final chapter

and close of the investigation into this new design approach for creating manufacturable

structured materials that are designed relative to fracture problems. It should be noted

once again that these design studies, while clear and comprehensive, do not represent or

test all of the possible design scenarios or variations on the design rules. Further devel-

opment is needed for other types of mechanical design problems and other materials. Of

the three materials considered during these design case studies, PLA performed by far the

best in almost every case. This is important knowledge for future designers, as PLA is an

environmentally-friendly, non-toxic, and biomass-generated engineering plastic. It is not

nearly as common as the hydrocarbon-based engineering plastics such as ABS and PC, but

this could change quickly if designers are convinced to seriously consider it as a material

option. Based on the results of these case studies, this appears to be a feasible reality in

the near future.
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Chapter 9

CONCLUSIONS AND FUTURE WORK

This dissertation explored the idea of using a manufacturing process-material-mechanics

interaction (i.e., the natural bottom-up construction of parts and products by laying out

material elements) as a new design method for producing manufacturable structured mate-

rials under fracture load. The process used was fused deposition modeling, a well-developed

and common additive manufacturing process for thermoplastic polymers. This is an excel-

lent problem for exploring the interfaces and synergies between solid mechanics (not limited

to fracture), manufacturing science, and mechanical design methods. Exploring this prob-

lem effectively required consideration of perspectives from all of these domains. This also

involved refining methods, definitions, and tools to support this new design perspective.

Most importantly, all of the proposed methods, approaches, rules, and design tools were

experimentally validated.

In addition to some additional tools and processes (discussed throughout the docu-

ment), six major contributions were made toward this problem in the course of this dis-

sertation, including (1) a very extensive literature review on several major topics, (2) the

development and validation of a method for capturing and mapping manufacturability con-

straint, (3) a full application of the constraint mapping method to a new manufacturing

process, (4) the full development and validation of a new bottom-up design method for

producing manufacturable structured materials (MPDSMs) based on the material-process

effects of FDM, (5) the completion of a very large course of fracture mechanics experiments,
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some of which have not been presented in the literature in any for before, and finally (6)

the compilation of all other contributions and tools to develop a new method for designing

and manufacturing MPDSMs under fracture conditions.

Future work will focus on several major areas, including but not limited to:

• Applying the design rules and principles developed in this dissertation to other ma-

terial configurations, including bio-inspired materials and composites.

• Further refinement of the MPDSMs concept specifically for application to current

aerospace and automotive design problems.

• Refining and developing an MPDSM perspective for other AM processes, especially

nylon selective laser sintering and metal-based processes.

• Further refinement of the design rules presented by scientifically comparing them with

other design methods and different perspectives.

• Further development of major design studies which expose the developed principles

to more intellectual risk (both to validate the method more completely and to explore

which types of problems are applicable and which are not).

• Development of a graduate-level course on this topic, as well as undergraduate-level

modules which can be integrated into advanced undergraduate mechanics or design

courses.

• Better design automation

• More design-valuable fracture testing approaches, including standards development,

more rigorous experimental methods, and better reporting standards for results.
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Appendix A

PRELIMINARY DESIGN GUIDE

Introduction

This appendix expands the design rules from Chapter 7 and provides guidance for practical

implementation, as well as guidance on when the methods proposed in this dissertation are

applicable. This guide is meant to be used by practicing engineers and engineering students

who are not experts in fracture mechanics, structured materials, or advanced mechanics but

need to use the presented methods in real-world design.

Feasibility and Applicability

When using the MPDSMs approach for design, it is applicable and practical to use only

when five conditions are met. If it does not meet these conditions, then the design approach

must be modified or a different method used.

1. The most important (or co-prime) requirement must be manufacturability. It is very

important this this be very clear to the design team and stakeholders, as it will likely

require some trade-offs to accomplish. Some important things that the designer should

keep in mind are:
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• Manufacturability does need to be the most important requirement, since the suc-

cessful application of the MPDSMs concept requires that the process-material

interactions be captured and taken advantage of. However, a compromise could

be made if necessary so that another requirement (say, geometry or performance)

is equally important with manufacturability. As long as the formulation of the

problem allows both the restriction of the design space to manufacturable de-

signs AND allows the process-material effects to be controlled or captured, this

requirement should be satisfied. This determination should be made before the

establishment of any design requirements if possible for the most effective use of

the MPDSMs concept.

2. A specific manufacturing process or well-defined group of processes must be selected

as early in the design life cycle as possible. Ideally this should be done during require-

ments definition and ideation but it is absolutely required by the conceptual design

phase.

• Since in MDD the mechanics of the process influence so much of the design

and many of the design decisions, it is extremely important that the process be

selected as early as possible. This will help to focus the design effort and make

the design process more efficient. However, there is a trade-off: Once the design

moves out of the very early design phases, it is very difficult to change the design

approach or (in many cases) the material since the design decisions up to that

point were largely influenced by the process choice.

3. The selection of the manufacturing process early in the life cycle may limit the range

of available materials for the final design. This must be integrated into the design

requirements and understood by the stakeholders.

• Within the range of the selected process, this is not as limiting of a factor as

the selection of the process itself. For example, selecting machining or FDM or

investment casting still leaved a wide range of materials available. On paper, it is

extremely important to document and maintain the material catalog within the
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process capabilities, but in practice this is not a huge design problem for many

manufacturing processes. In fact, this consideration could influence the selection

of the process. For example, would the stakeholders rather take advantage of a

process which is specific and limited but offers a lot of design freedom (many AM

processes) or rather keep the material flexibility and give up some of the design

freedom?

4. The selected process must be well-understood or well-documented by the design team

OR a team or designer with the appropriate expertise must be available to map and

define the manufacturability constraints.

• Basic requirement when putting together the team. Since this design approach

is heavily dependent on the manufacturing method, someone very familiar with

that method (or an excellent digital twin or dataset) is essential for the design

team.

5. For any application of MDD, there will likely be a clear process-design-material inter-

action. This must be understood and accepted by the stakeholders and must either

be an acceptable trade-off OR part of the design objective. In the case where some

kind of lattice, truss systems, structured material or material system (such as a com-

posite), or something else for which structure drives system mechanical properties is

being designed, there must be a well-defined and designable meso-structure.

• In most cases, the practicing engineer can determine if this rule is satisfied or not

by simple inspection of the proposed design or design problem. In more complex

cases, this can be determined experimentally or may be artificially defined to be

part of the design.

Design Rules: Problem Formulation

Assuming that the applicability rules are satisfied, the next step is to establish the prob-

lem formulation. Specifically, this involved defining the problem and imposing the design

objectives and constraints. This step does not involve selecting a solution method (such
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as topology optimization or other method) directly, but in many cases the consideration of

a solution method may simplify problem formulation. Of all the design rules for fracture-

driven FDM MPDSMs, the problem formulation is the concern of the largest number of

rules. In most cases, these rules are simple to establish and self-explanatory.

1. The mesoscale (“design scale”) must be carefully defined in terms of FDM. In this

case, the meso-scale is the matrix of elements, which makes the micro-scale level the

elements themselves and the macroscale is the whole part for which the mesostructure

is being designed. Since FDM is an additive manufacturing process, the number of

design degrees of freedom will be the number for the printer minus 1. For a standard

FDM machine, this represents two dimensions of complete design freedom within

each layer (subject to constraints on the elements). Very good 3-D MPDSMs can be

designed and built, but this will be the result of a stacking of carefully-designed 2-D

components and not of true 3-D design.

2. Carefully defining the objective function for the problem and understanding the rules

which accompany this. In this current work, three objectives are possible and each

one will have its own set of design rules.

• For general mechanical problems (as discussed in Chapter 4), a much larger

number of objective functions are possible depending on the needs and goals of

the designers.

3. In general, the manufacturability constraints and the performance design objectives

will provide the constraints on the problem. In this case, the FDM constraints, con-

straints on the raw materials, and constraints on the fracture variables will provide

all of these problem constraints. These must be carefully defined in consistent and

clear terms.

• The way that the MPDSMs concept is defined in this dissertation is compatible

with the systems engineering theory and approach structure proposed in the

NASA Systems Engineering Handbook. This would be an excellent reference to

use along with this design guide. Organizing the constraints according to the
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ISRC technique discussed in Chapter 2 and in the NASA Handbook can be a

very helpful, simple, and effective way to handle large problems.

4. Select the printing parameters and settings for FDM as early as possible. Carefully

define each one as a parameter (to be controlled during printing), a constant, or a

constraint.

5. Select materials very carefully; the results in Chapter 6 show the massive difference

in performance and controllability for various materials. In addition, it must be con-

sidered that AM-processed materials often behave very differently than molded ones.

It is best to try to understand material performance on the element/microstructural

level, as this is a better predictor than macroscale tested properties.

6. Any stress concentrators that will be placed in the system should follow the guidelines

for notching and pre-cracking established in Chapter 6. Therefore, any notches must

be able to be machined with a mill, router, saw, broach or other method without

damaging or interfering with the rest of the part or material structure.

7. For fracture-related problems, the best material layout will almost always be a con-

centric or contoured layout designed to help steer cracks where they are intended to

grow and away from areas (or dissipated) when not intended to grow. This may not be

mathematically optimal from the perspective of the whole part, but it makes the most

sense when looking from the perspective of the crack tip and resulting stress/strain

fields.

8. Based on experiments in Chapter 4, it has been noted in this dissertation that adding

newly designed regions to help deal with fracture objectives can help make the result-

ing material structure much more tough but it also makes it less stiff. The stakeholders

must account for this when trying to design or redesign regions.

9. Re-design as little of the part as possible. It is tempting to simply turn the entire

part into a concentrically-printed shape with no design but this is a mistake. While

toughening the material to an extreme degree, it also greatly decreases the structural

stability and makes the structure far more compliant. One way to prevent this is to
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design or re-design only the areas that are necessary to meet the fracture objectives

print the rest using the strong raster-45 pattern with alternating layer directions. Of

course, a full re-design may be necessary in some cases.

10. Make sure that the part shell encloses both original and new regions to avoid cracking

and separation in non-designed regions.

• In practice, this rule is an ideal that should strived for but may not always be

feasible or realistic. The designer should inspect the final design and make sure

that there are at least no regions which could easily separate away from the

intended stress field. This is especially important when a part would be under a

tensile stress or the load is applied normal to the print orientation.

11. Keep in mind that each layer of the part can be examined as if it was a very dense truss

made up on the material elements. This knowledge must guide the design layouts.

12. Follow relevant manufacturability constraints - when using Cura or similar, this is easy

since you can input restrictions on angle, element length, bridge length, etc directly

into the software. Not only is automation of this very easy with the right software, it

will prevent printing errors and problems later.

13. Follow as many of the soft manufacturability constraints as practical with the given

resources.

14. When setting up the areas (if not the whole part) to be designed or re-designed, make

sure that the re-designed part has at least one one connection to a constraint point to

prevent the part from possibly delaminating or shattering early. There may be more

than one area to be re-designed (especially for 3-D problems) but they should all be

connected to a solid boundary condition or connected into one mass.

15. Selecting the means of identifying the areas the designed or re-designed, linear elastic

CAD and FEA models should only be used with a very fine mesh and only when it is

reasonable to assume that the material is LEFM as well.
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16. Similarly to other structured materials, the FDM MPDSMs are strongest in com-

pression. If given the choice, the designer should strive to have as much compression

load (versus tension, torsion, ect.) on the designed structure as possible. For FDM

MPDSMs, the printing orientation may affect this significantly and should be consid-

ered prior to fabrication.

• In practice, this may require some experimentation and/or expert intuition in

order to accomplish and there may be some design trade-offs involved.

17. Avoid using support material of any kind when constructing an MPDSM, as it will

likely be impossible to actually remove the supports after printing.

Design Rules: Fracture Mechanics

Based on the previous discussion of fracture mechanics theory and its impact on the design,

some simple, logic-based design rules can be applied which do not require specific expertise

in fracture mechanics. These include:

1. The largest and best design space for fracture-driven problems is the face through

which the crack is growing or may grow. This is an important consideration when

selecting a printing orientation for the part.

2. Some regions of the part may need reinforcement to prevent fracturing or yielding

outside of the designed zone (or where the crack is designed to grow), depending on

the load. This may take the form of bolts or other mechanical reinforcement that may

involve post-processing (coatings, resin pours, annealing, etc).

3. For non-experts in fracture mechanics who must design fracture-driven problems,

the following problem statements are useful for setting up the problem and making

decisions:

• If the crack is growing or may grow and the material structure needs to prevent

this (i.e., “crack arrest”), the best way to do this is to dissipate the fracture

energy. This is best done by presenting many obstacles to the crack growth, such

as material elements or contours placed normally to the possible crack path.

334



• If the crack is growing or may grow and the structure needs to accelerate it, the

opposite should be done as with crack arrest; the shortest and most efficient path

to the boundary should be determined and the material structure designed to

facilitate and guide this growth.

• If the crack needs to grow in a specific pattern, the material elements need to

guide it, as with crack acceleration, but with the material around the crack

remaining structurally sound.

Design Rules: Solution Method Selection

• If the output of the design process is a directly-manufacturable product, then the final

product should be in the form of g-code. Otherwise, it can be output as a model or

other product. This decision needs to be made as early as possible, as it will drive

the solution method selected.

• It is very unlikely that only one solution will be best and different driver software

packages may produce different g-code. This is not a problem as long as the final

design makes sense in the context of the problem.

Design Rules: Manufacturing

1. While all of the printing parameters are important and should be carefully controlled,

the build plate temperature is one of the most important. For amorphous materials,

proper control of this parameter can help prevent residual stress build up in the

material structure. For semi-crystalline materials, the build plate temperature can

have a direct impact on the degree of crystallinity in the final polymer. For both types

of material, a build plate temperature that is too low can lead to cracking and pre-

mature failure in the parts, while one that is too high can exceed the glass transition

temperature of the polymer and cause it to settle or yield, destroying dimensional

accuracy.
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Design Rules: Post-Solution Check

1. User must check to make sure that the produced g-code actually meets the require-

ments. Making a simple “logical” checklist during design can be very helpful. For

example, a simple check could be:

• If the problem requires stopping a crack, does the element layout present as many

obstacles (ideally walls or contours normal to crack direction) as possible to dis-

sipate the fracture energy?

• If an accelerated crack is desired, does the element layout help guide it along

the best and shortest path to the boundary with the smallest possible amount of

interference?

• If the problem needs to design a crack path, does the layout support this path

growth while still allowing the rest of the material to be structurally sound?
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Appendix B

CURA-BASED G-CODE GENERATOR

TUTORIAL

Overview

This tutorial demonstrates how to complete element layouts in Ultimaker® Cura. It should

be noted that Cura is used only for implementing the layout and is not an optimization or

design software in itself. The region to be re-designed or optimized (including its shape), the

manufacturability constraints, and the other inputs must be independently input into Cura.

It is recommended that Cura be paired with Autodesk® NASTRAN or the Autodesk®

Shape Generator tool for the best design outcomes. As with other implementation software,

bad inputs will result in bad outputs so care must be taken to ensure that the design is

sound before implementation.
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Inputs

The basic inputs will be two or more STL files (one for the primitive to describe the design

space and at least one for the MPDSM region), the FDM manufacturability constraints

for the process settings and materials used, and any other relevant settings and printing

parameters.

Process Steps

Setting Up the Workspace

Open Cura, making sure that any needed updates have been completed. The version used

in this dissertation was Cura 4.2.1. Make sure to use a native Cura build and not one that

is customized for a particular printer or brand.

Figure B.1: Initial Cura setup.
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As shown in Figure B.1, some initial settings should be carefully considered. First, Cura

should be put into manual mode (or custom selection mode, depending on the version).

At a minimum, the settings shown in the figure should be turned on (see Figure B.2 for

the button to modify setting visibility). Note that this is also the main gateway into the

settings catalog, which is the best way to input and enforce manufacturability constraints

during the layout process. The designers should add as many settings as needed to the

control window in order to account for all the manufacturability constraints.

Figure B.2: Button to access setting visibility in Cura manual mode.

The following should be set:

1. Wall thickness should be set to the nozzle size and the wall line count should be set

according to the need of the designer. In this setting configuration, one shell can be

sufficient but more can be used as needed. It should be noted that the more shells

used, the smaller the design area for the MPDSM or MPDSM region will be.

2. Very importantly, the bottom and top thickness (and layers) values should be set to

zero. These layers are difficult to control and setting them to zero allows the designer

to use only designable layers for the whole build. The horizontal expansion setting is

optional and up to the designer and has little effect on the layouts; it is mainly used

to account for shinkage in the cases where severe residual stresses are present.
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3. The initial infill density and pattern (“Lines” gives the standard raster configuration

in Cura) should be input.

4. Connect infill lines and the overlap settings should be activated in order to make sure

the laid out elements connect well.

5. Finally, it is recommended that the walls be printed last before the infill. In the

experience of the author, this is the best way to produce good quality layouts while

still maintaining good macro-scale dimensional accuracy.

Importing STL Files

Once the work space is set up, the various STL files (at least the primitive and the file

describing the designed or re-designed region) should be imported (Figure B.3) and checked

for errors.

Figure B.3: Imported STL files.
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The designer should ensure that both parts land flat on the build plate in the correct

orientation relative to each other and made any needed adjustments. While not required,

it is often helpful to scale the part representing the designed area in one direction so that

it extends above the other part; make sure to turn off the uniform scaling requirement so

that the important dimensions are not affected by this. Th results of this scaling is shown

in Figure B.3 and Figure B.5.

Relative Settings

First, set the primitive part as the base and overlap the designed area part as shown in

Figure B.4. This should look like the primitive + designed region from the analysis or model

from BEFORE the Cura input of the two regions.

Figure B.4: Relative placement of the primitive and designed region STL files.
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Scaled in Z

Figure B.5: Select Per Model Settings.

Next, select the primitive and select the Per Model Setting (Figure B.5). From there, make

sure that the primitive is set as “Normal Model”. Select settings (Figure B.6, Figure B.7,

and Figure B.8) and ensure they are the basic settings needed for the primitive for the

regions that are not designed or re-designed. As a test, slice the model (Figure B.9); at this

point, both regions should have the same settings.
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Selected part

Figure B.6: Confirm primitive settings, Step 1.
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Figure B.7: Confirm primitive settings, Step 2.
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Figure B.8: Confirm primitive settings, Step 3.
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Figure B.9: Test slice.
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New Designed Region

Given that the primitive is now finalized and ready to print, the designed region layout

should be done. As shown in Figure B.10, the designed region part should be active. Again

select the Per Model Setting and select Modify Settings for Overlap with Other Models

(Figure B.11).

Selected part

Figure B.10: Design of the laid out region.

Select the desired layout pattern (usually will be concentric, at least for fracture problems)

(Figure B.11 and Figure B.12).
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Figure B.11: Select layout pattern for designed region.
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Figure B.12: Concentric layout selection
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Output

Figure B.13 shows a successful output after slicing. From here, the g-code can be output

directly to the printer. If desired, an animation of the build layer-by-layer can be produced

using the print animation tool (Figure B.14)

Figure B.13: Caption
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Figure B.14: Caption
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Appendix C

CONVERTING G-CODE BACK TO STL WITH

VOXEL MESH

It is standard practice to use pre-processing software to prepare parts for printing. These

tools (such as Ultimaker Cura) take STL files as input, slice them into layers, and generate

g-code based on the given inputs plus the inputs provided by the user. Some programs

are very basic (such as those which come from proprietary printer manufacturers and only

work with one machine or small family of machines), while some (such as Cura) are very

advanced. The more advanced pre-processing software packages allow the direct input of

design and manufacturability constraints, custom materials, and allow direct control of the

g-code presented. From the additive manufacturing perspective, the pre-processing software

packages available are powerful and reliable and are usable by anyone from a beginning

hobbyist to manufacturing engineers working with advanced MPDSMs (Chapter 4).

One of the main features of manufacturability-driven design (Chapters 3 and 4) that

the final output of the design process is a directly manufacturable design. For the cases

where AM is used, this generally will consist of g-code. While this gives a practicing

engineer a directly manufacturable design without having to worry about further analysis

or processing, this is not always a good outcome. In the cases where further design analysis

is desired or the printed part needs to be simulated as part of the verification, validation,

and accreditation process, it would be very useful to have a means for outputting a digital

part instead of g-code.
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There are several ways to do this, including producing both a final model and g-code

as design outputs. However, this can be extremely computationally expensive. A much

more simple way to accomplish it is to convert the g-code itself into a solid model when

needed. The best way to do this is to use a tool which converts the toolpath instructions

(both the travel path and the cross-section element design) into a voxel-based mesh. Voxel

meshes are the easiest way to accomplish this outcome in general, as they are simple to

apply and the elements are all of a consistent size. The trade-off for this is a slightly less

dimensionally-accurate digital model but one that is simple and low-cost to produce.

G-code of layout design (Cura®) Voxel-based model from g-code 

with settings (Voxelizer®)

STL file of designed layout 

(Autodesk® Inventor®)

Figure C.1: Example conversion of a g-code layout (with printing parameters and manufacturability
constraints imposed) into a useful STL file using the Voxelizer tool to translate the toolpaths to equivalent
solid geometry. The STL file can easily be further converted into a STEP or Parasolid file for finite element
analysis.

In practice, the best tool to use for this will be Voxelizer (Voxelizer.com), which can

accept g-code (including all the information about the cross-section of elements) and convert

it into an STL file. This file can then be converted (using Autodesk Inventor or similar)

into a parasolid or STEP file for inputting into a finite element solver. Figure C.1 shows an

example where this was done successfully. Some notes from the author on how to do this

more effectively and with less risk of failure:

• Standard Voxelizer and other similar softwares will start with the outer shell when

building the voxel mesh. Therefore, if the internal printed geometry is to be repro-

duced, it should be outside of a shell in the g-code

• It is recommended that in Voxelizer that no roof or floor layers be used, as this will
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more accurately reproduce any internal geometry

• The largest mesh that should be used should be such that at least 3 voxels cover the

cross section of each printed element. If computational cost is not too high, it should

be more than this. The smaller the voxels, the more accurate the final model will be.
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Appendix D

CALCULATION PROCESS FOR KQ AND K1c IN

CHAPTER 6

This appendix demonstrates the calculation process for finding KQ and K1c from

experimental data. The specimen used is a CT specimen with W = 50 mm, B = 10 mm,

and a/W = 0.5. The specimen was made from PLA and printed using an R45 configuration.

Figure 1 shows the specimen and the force-deflection data collected during the test.
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Figure D.1: Example specimen and testing data

The calculation procedure follows the guidelines from the ASTM D5045 standard.

First, calculating the tangent line (Figure 2), the following equation can be approximated:

y = 457.38x− 433.04 (1)
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Finding the value of C (inverse slope):

C = 1/457.38 = 0.002186 (2)

Finding the 1.05C line,

y = 435.59x− 433.04 (3)

y = 457.38x - 433.04

y = 435.6x - 433.04
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Figure D.2: Calculations and intercept lines

This provides a value of PQ = 1349 N. Inspecting the dataset, Pmax = 1477 N. Therefore,

Pmax

PQ
= 1.094 < 1.1→ Valid test (4)

Given the values and dimensions above (f(x) = 9.65 from ASTM D5045),

KQ = f(x)

(
PQ

BW 1/2

)
= 5.82MPa

√
m (5)

Given that the measured yield stress for PLA is σy = 47.8 MPa,
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2.5

(
KQ

σy

)2

= 37.1 mm (6)

Since B, a, and (W − a) are all smaller than the required sample size, it is not possible to

conclude that KQ = K1c and KQ should be reported as the conditional fracture toughness.
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Appendix E

EXPERIMENTAL DATA SHARING AND

AVAILABILITY

All of the experimental data generated during this course of this investigation is

archived and is available upon request to the author at pttrsnv2@illinois.edu or aepatterson12@

gmail.com. Upon publication of all the related articles from this dissertation, the data will

be publicly archived and available under a CC-BY licence. To allow time to publish the

related work, the data will be kept from public disclosure until April 30, 2023.
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Appendix F

INTERESTING EXPERIMENTAL FIGURES

Figure F.1: 3-point bend testing of one of the topology optimization solutions from the design studies in
Chapter 4.
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Figure F.2: Fracture samples from the sample size sensitivity study, including some trial nylon (white)
samples which were not used in the final study.
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Figure F.3: Grip setup (with blue tape) for the tensile film testing.
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Figure F.4: Film sample set pre- and post-testing. Includes some nylon testing samples that were not used
in the final study.
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Figure F.5: Fiber sample set pre- and post-testing. Includes some nylon testing samples that were not
used in the final study.
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Figure F.6: Basic characterization sample set pre- and post-testing. Includes some nylon testing samples
that were not used in the final study.
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Figure F.7: Fractured sample compared shown next to the collected data from testing it.
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Appendix G

DETAILED REVIEW APPROACHES FOR

CHAPTER 2 AND CHAPTER 5

Chapter 2 Review

Chapter 2 Detailed Survey Approach and Design

While this project was intended as a detailed survey and not a meta-analysis review, every

effort was made to include all the relevant literature and provide an accurate view of the

topic under study within the limitations discussed in the main paper. It should be noted

that the collection of references for this survey had some limitations in scope, specifically

excluding references in the following categories:

• Papers not published in English

• Most review papers where the authors could not find new and unique information not

available from the primary sources

• Patent literature, editorials, posters, and viewpoint papers except those reporting

major field problems and/or experimental results

• Technical reports and theses published before 2005 (more than 15 years old)

• Conference papers for which a later journal version was published and available
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• Conference papers published before 2000 (which did not have a journal version), were

not hosted by a major society (such as IEEE, ASME, IISE, ESIS, AIAA, etc.), or

were not indexed (such as in ACS and Scopus).

• Any paper from an online-only mega-journal (which publishes papers without a focus

on a specific field), with the exception of papers from IEEE Access, Scientific Reports

(Nature), AIP Advances, and PLOS One.

• Any paper from a journal considered to be possibly predatory (failure of the Think-

Check-Submit test [https://thinkchecksubmit.org/], an unknown publisher, a pub-

lisher on Beall’s List [https://en.wikipedia.org/wiki/Beall%27s List], or a combina-

tion of these)

These exclusions were made to ensure that only credible works which could be com-

petently evaluated by the authors were included in the survey and that works were counted

only once (in the case of excluding earlier conference versions of journal papers). It should

be noted that small, new, or national-level journals or conferences were considered legit-

imate if the authors could establish credibility and they were not widely suspected to be

predatory.

To begin the survey, a set of relevant keywords were compiled by the authors, which

were then used to search for literature in both major indexes which hold engineering-related

papers (Google Scholar and Scopus); in each case, the search was ended when reaching the

third page with no useful results. The results were sorted based on relevance and no date

restrictions were placed on the search criteria. In addition to the standard indexes, a set of

peer-reviewed journals and major international conferences related to manufacturing and

design were specifically queried.

A total of 180 unique potentially useful papers were found, based on title and abstract,

after the search. The papers were then subjected to a review of reference sections to uncover

any additional references that were missed in the search; 15 more were found, bringing the

total to 195. The set of papers were then subjected to the standard quality screening

employed by the authors when completing review papers, screening out any papers that

fall into one or more of the categories described above. The final list of papers was then

screened carefully for relevance to the topic of this review. After both screenings, 52 papers
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were excluded from the review. Therefore, a total of 143 papers were explored and discussed

in this review. In addition to papers directly on the topic of the review, an additional 108

papers were found to support the review, such as papers describing manufacturing processes

or design needs or papers providing information needed to understand the context of the

review. These papers were specifically searched for and only the best 1-2 found on each

topic were included in the reference section. With these additional papers, the total number

of references for the main paper stands at 251.

Chapter 2 Search Keywords

• Design for manufacturing

• Manufacturability

• Manufacturing constraints

• Manufacturing design constraints

• Manufacturing considerations

• Manufacturability constraints

• Additive manufacturing

• Subtractive manufacturing

• Formative manufacturing

• Tooling design

• Manufacturing design

• Manufacturing system

• Systems engineering manufacturing

• Top-down design

• Bottom-up design
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• Product design

• Product design manufacturing

• Sustainable manufacturing

• Sustainability manufacturing

• Green manufacturing

• Macro design, macro design + constraint

• Meso design, meso design + constraint

• Micro design, micro design + constraint

• Sub-micro design, sub-micro design + constraint

• In addition, the names of each of the most common subtractive, additive, and forma-

tive manufacturing processes followed by “design”, “constraints”, and “optimization”

were also queried.

Chapter 2 List of Journals and Conferences Queried

• ASME Journals

– Journal of Manufacturing Science and Engineering

– Journal of Mechanical Design

• Elsevier Journals

– Additive Manufacturing

– Advances in Engineering Software

– CIRP Annals – Manufacturing Technology

– Composites Part B: Engineering

– Computer Aided Design

– Engineering Fracture Mechanics
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– International Journal of Machine Tools and Manufacture

– Journal of Cleaner Production

– Journal of Manufacturing Processes

– Journal of Manufacturing Systems

– Journal of Materials Processing Technology

– Manufacturing Letters

– Materials & Design

– Procedia CIRP

– Procedia Structural Integrity

– Robotics and Computer-Integrated Manufacturing

• Emerald Journals

– Assembly Automation

– Rapid Prototyping Journal

• Liebert Journals

– 3D Printing and Additive Manufacturing

• MDPI Journals

– Journal of Manufacturing and Materials Processing

– Designs

– Machines

– Materials

• Sage Journals

– Concurrent Engineering

– Proceedings of the Institution of Mechanical Engineers, Part B: Journal of En-

gineering Manufacture
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– Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Me-

chanical Engineering Science

• Springer-Nature Journals

– International Journal of Advanced Manufacturing Technology

– International Journal of Fracture

– JOM

– Journal of Intelligent Manufacturing

– Progress in Additive Manufacturing

– Structural and Multidisciplinary Optimization

• Taylor & Francis Journals

– IISE Transactions

– International Journal of Computer Integrated Manufacturing

– International Journal of Production Research

– Journal of Engineering Design

– Machining Science and Technology

– Virtual & Physical Prototyping

• Wiley Journals

– International Journal for Numerical Methods in Engineering

• Independent Journals

– International Journal of Bioprinting

• Conference Proceedings

– Solid Freeform Fabrication (SFF) Symposium: An Additive Manufacturing Con-

ference

– ASME International Mechanical Engineering Congress and Exposition (IMECE)

– ASME International Design Engineering Technical Conferences & Computers

and Information in Engineering Conference (IDETC/CIE)
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Chapter 5 Review

Chapter 5 Detailed Survey Approach and Design

While this project was intended as a survey and not a formal review paper, every effort was

made to include all the relevant literature and provide an accurate view of the topic. Note

that only papers published in English were included in the survey. To begin the survey, a

set of 38 relevant keywords were compiled by the authors, which were then used to search

for literature in both major indexes which hold engineering-related papers (Google Scholar

and Scopus); in each case, the search was ended when reaching the third page with no useful

results. The results were sorted based on relevance and no date restrictions were placed on

the search criteria. The only exclusion from the search was for patent literature, as it was

not anticipated to be useful for this review. In addition to the standard indexes, a set of 19

peer-reviewed journals and two major international conferences related to AM and fracture

mechanics were specifically queried.

A large set of unique potentially useful papers were found, based on title and abstract,

after the search. The vast majority of the works found were published in peer-reviewed

journals since 2014, with only a handful of conference papers, theses, and technical reports

found on the topic. The papers were then subjected to a review of reference sections to

uncover any additional references that were missed in the search; several more were found,

bringing the total to 112. The set of papers were then subjected to the standard quality

screening employed by the authors when completing review papers, screening out any papers

that fall into one or more of the following categories:

• Technical reports and theses published before 2005 (more than 15 years old at the

time of the start of the review)

• Review papers in which no new information could be found in addition to the original

works

• Conference papers published before 2008 (which did not have a journal version), are

not hosted by a major society (such as IEEE, ASME, IISE, ESIS, AIAA, etc.), or

were not indexed (such as in ACS and Scopus)
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• Any paper from an online-only mega-journal (which publishes papers without a focus

on a specific field), with the exception of papers from IEEE Access, Scientific Reports,

AIP Advances, and PLOS One.

• Any paper from a journal considered to be possibly predatory (failure of the Think-

Check-Submit test [https://thinkchecksubmit.org/], an unknown publisher, a pub-

lisher on Beall’s List [https://en.wikipedia.org/wiki/Beall%27s List], or a combina-

tion of these)

It should be noted that small, new, or national-level journals or conferences were

considered legitimate if the authors could establish credibility and they were not known

to be predatory. After screening using the above categories, two papers were removed

from consideration and are given at the end of this document for the reader to evaluate.

After screening, the final list contained 84 articles for deeper review. The final list of 84

papers were then screened carefully for their relevance to the topic of this review, with 21

papers being removed due to not being directly related to the topic or providing no useful

information relative to the research questions for this review. The remaining papers were

divided into two categories:

1. Direct relevance and included in the review (40 papers – given in the main paper)

2. Interesting information, but not directly related to the research questions and were

therefore not included in the main review (26 papers). Earlier iterations (including

pre-expansion conference versions) of papers included in the review were also included

in this category.

Other supporting works for the main survey (to supply definitions, to back up claims

in the introduction, to supply standards, etc.) were also found, bringing the total cited

works to 86 in the main manuscript and an additional 26 in these supplemental materials.

Chapter 5 Search Keywords

Google Scholar, Scopus, and the queried journals/conferences were searched for relevant

literature using the following 38 keywords related to the topic of this literature survey:

373

https://thinkchecksubmit.org/
https://en.wikipedia.org/wiki/Beall%27s_List


• Additive manufacture charpy

• Additive manufacture crack

• Additive manufacture crack propagation

• Additive manufacture CTOD

• Additive manufacture fracture

• Additive manufacture IZOD

• Additive manufacture notch

• Additive manufacture precrack

• Additive manufacturing digital image correlation

• Additive manufacturing failure analysis

• Additive manufacturing fracture energy

• Additive manufacturing fracture toughness

• Additive manufacturing LEFM

• Additive manufacturing linear elastic fracture

• mechanics

• Additive manufacturing testing method

• AM CTOD

• AM charpy

• AM crack

• AM crack propagation

• AM digital image correlation

• AM failure analysis
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• AM fracture

• AM fracture energy

• AM fracture test

• AM fracture toughness

• AM IZOD

• AM LEFM

• AM mechanical testing method

• AM notch

• AM precrack

• FDM crack

• FDM fracture

• Fused deposition modeling crack

• Fused deposition modeling fracture

• Polymer additive manufacture crack

• Polymer additive manufacture fracture

• Polymer AM crack

• Polymer AM fracture

Chapter 5 List of Journals and Conferences Queried

In addition to the index searches in Google Scholar and Scopus, the following journals and

conferences were specifically queried using the same keywords as described in the previous

section.

1. Rapid Prototyping Journal (Emerald)
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2. International Journal of Advanced Manufacturing Technology (Springer-Nature)

3. Virtual & Physical Prototyping (Taylor & Francis)

4. Additive Manufacturing (Elsevier)

5. Progress in Additive Manufacturing (Springer-Nature)

6. JOM (TMS/Springer-Nature)

7. Materials & Design (Elsevier)

8. 3D Printing and Additive Manufacturing (Liebert)

9. Journal of Manufacturing Science and Engineering (ASME)

10. Materials (MDPI)

11. Journal of Manufacturing and Materials Processing (MDPI)

12. Polymers (MDPI)

13. Polymer Testing (Elsevier)

14. Engineering Fracture Mechanics (Elsevier)

15. Procedia Structural Integrity (Elsevier)

16. International Journal of Fracture (Springer-Nature)

17. Journal of Materials Processing Technology (Elsevier)

18. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering

Manufacture (Sage)

19. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science (Sage)

20. Solid Freeform Fabrication (SFF) Symposium: An Additive Manufacturing Confer-

ence (2008 to present)

21. ASME IMECE (2008-present)

376



Chapter 5 Excluded But Potentially Relevant References

The following references were excluded from the review but were evaluated to possibly be

of interest to the readers of this survey. They were excluded for a variety of reasons, as

explained in the introduction to this section. All are rigorous and reliable sources from

reputable publication venues.

1. Ahmed, A.A. & Susmel, L. (2017). On the use of length scale parameters to assess

the static strength of notched 3-D printed PLA. Frattura ed Integrità Strutturale, 41:

252-259.

2. Chacon, J.M., Caminero, M.A., Garcia-Plaza, E., et al. (2017). Additive manufactur-

ing of PLA structures using fused deposition modelling: Effect of process parameters

on mechanical properties and their optimal selection. Materials and Design, 124:

143-157.

3. Damodaran, V., Castellanos, A.G., Milostan, M., et al. (2018). Improving the Mode-

II interlaminar fracture toughness of polymetric matrix composites through additive

manufacturing. Materials and Design, 157: 60-73.

4. Dizon, J.R., Espera Jr, A.H., Chen, Q., et al. (2018). Mechanical characterization of

3D printed polymers. Additive Manufacturing, 20: 44-67.

5. Dong, Y., Milentis, J., & Pramanik, A. (2018). Additive manufacturing of mechanical

testing samples based on virgin poly(lactic)(PLA) and PLA/wood fibre composites.

Advances in Manufacturing, 6: 71-82.

6. Dowoud, M., Taha, I., & Ebeid, S.J. (2016). Mechanical behavior of ABS: An experi-

mental study using FDM and injection moulding techniques. Journal of Manufactur-

ing Processes, 21: 39-45.

7. Durgun, I. & Ertan, R. Experimental investigation of FDM process for improvement

of mechanical properties and production costs. Rapid Prototyping Journal, 20(3):

228-235.
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8. Garg, A. & Bhattacharya, A. (2017). An insight to the failure of FDM parts under

tensile loading: finite element analysis and experimental study. International Journal

of Mechanical Sciences, 120: 225-236.

9. Goh, G.D., Dikshit, V., Nagalingam, A.P., et al. (2018). Characterization of mechan-

ical properties and fracture mode of additively manufactured carbon fiber and glass

fiber reinforced thermoplastics. Materials and Design, 137: 79-89.

10. Hill, N. & Haghi, M. (2014). Deposition direction-dependent failure criteria for fused

deposition modeling polycarbonate. Rapid Prototyping Journal, 20(3): 221-227.

11. Hoskins, T.J., Dearn, K.D., & Kukureka, S.N. (2018). Mechanical performance of

PEEK produced by additive manufacturing. Polymer Testing, 70: 511-519.

12. Islam, M.S. & Prabhakar, P. (2017). Interlaminar strengthening of multidirectional

laminates using polymer additive manufacturing. Materials and Design, 133: 332-339.

13. Liao, G., Li, Z., Cheng, Y., et al. (2018). Properties of oriented carbon fiber/polyamide

12 composite parts fabricated by fused deposition modeling. Materials and Design,

139: 283-292.

14. Miguel, M., Leite, M., Ribeiro, A.M.R., et al. (2019). Failure of polymer coated

nylon parts produced by additive manufacturing. Engineering Failure Analysis, 101:

485-492.

15. Patterson, A.E., Chadha, C., Jasiuk, I.M., et al. (2019). Design and repeatabil-

ity analysis of desktop tool for rapid pre-cracking of notched ductile plastic fracture

specimens. Engineering Fracture Mechanics, 217: 106536.

16. Riddick, J.C., Haile, M.A., Von Wahlde, R., et al. (2016). Fractographic analy-

sis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition

modeling. Additive Manufacturing, 11: 49-59.

17. Slotwinski, J. & Moylan, S. (2014). Applicability of existing materials testing stan-

dards for additive manufacturing materials. NIST Report # NISTIR 8005. DOI:

10.6028/NIST.IR.8005.
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18. Spoerk, M., Arbeiter, F., Cajner, H., et al. (2017). Parametric optimization of intra-

and inter-layer strengths in parts produced by extrusion-based additive manufacturing

of poly(lactic acid). Journal of Applied Polymer Science, 134(41): 45410.

19. Spoerk, M., Arbeiter, F., Raguz, I., et al. (2018). Polypropylene filled with glass

spheres in extrusion-based additive manufacturing: Effect of filler size and printing

chamber temperature. Macromolecular Materials and Engineering, 303: 1800179.

20. Studart, A.R. (2016). Additive manufacturing of biologically-inspired materials. Chem-

ical Society Reviews, 45: 359.

21. Torrado Perez, A.R., Roberson, D.A., Wicker, R.B. (2014). Fracture surface analysis

of 3D-printed tensile specimens of novel ABS-based materials. Journal of Failure

Analysis and Prevention, 14: 343-353.

22. Torres, J., Cole, M., Owji, A., et al. 2016. An approach for mechanical property opti-

mization of fused deposition modeling with polylactic acid via design of experiments.

Rapid Prototyping Journal, 22(2): 387-404.

23. Tronvoll, S.A., Welo, T., & Elverum, C.W. (2018). The effect of voids on struc-

tural properties of fused deposition modelled parts: A probabilistic approach. The

International Journal of Advanced Manufacturing Technology, 97: 3607-3618.

24. Uddin, M.S., Sidek, M.F.R., Faizal, M.A., et al. (2017). Evaluating mechanical

properties and failure mechanisms of fused deposition modeling acrylonitrile butadiene

styrene parts. Journal of Manufacturing Science and Engineering, 139: 081018.

The following papers were identified as being clearly presented and containing poten-

tially useful data (even if the using obsolete methods or standards), but the publication

venues could not be verified, were excluded due to criteria established in the introduction,

or and have been called out as being predatory publishers. Readers should review these

carefully before citing or using these are references to guide research decisions. Note that

the inclusion of these on this list is in no way a personal criticism of the paper authors;

their work should be evaluated and judged based on its own merit.
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1. Patel, N.D. & Patel, B.B. (2015). Fracture analysis of FDM manufactured acryloni-

trile butadiene styrene using FEM. International Journal of Recent Research in Civil

and Mechanical Engineering, 2(1): 84-90.

2. Patel, R., Shah, H.N., & Kumari, S.V. (2015). Experimental investigation of fracture

of ABS materials by ASTM D-5045 for different crack length & layer of orientation

using FDM process. International Journal of Mechanical and Industrial Technology,

3(1): 79-83.
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Appendix H

COPYRIGHT PERMISSION FORMS

Chapter 2 Figure Copyright Permissions

Note on copyright permissions from ASME. The journal paper that was submitted and in

review at the time of this thesis deposit required the signing of copyright forms (see email

below). However, upon further analysis and speaking with ASME, the copyright remains

with the author until and if the paper is accepted for publication. The collection of the

copyright forms at the beginning of the process is for the convenience of the publisher.

Albert E. Patterson retains all rights and copyright to the paper MANU-21-1143 until and

if the paper is accepted for publication by ASME. As of April 14, 2021 the paper is being

reviewed but no decision has been made about publication. If the paper is eventually

accepted, the copyright on the material in it (from Chapter 2) will be assigned to ASME

by the author of this dissertation at that time. Therefore, no permission is needed at this

time for that paper. Written permissions to reuse the other four papers can be seen in the

following permission email.
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