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Abstract 

In this thesis, we explore the electronics applications of the nanoscale allotropes of carbon. 

We work with carbon nanotubes and graphene nanoribbons. The first part involves using carbon 

nanotubes (CNTs) to build composite structures such as fibers. In the past, our group developed 

the “nanosoldering” technique to solder carbon nanotube junctions which significantly improved 

the electrical properties of CNT transistors. For the purpose of our work, we apply the 

nanosoldering technique to the CNT junctions in the fibers to enhance their properties. We study 

the electrical and thermal properties of the fibers before and after nanosoldering. We measure the 

electrical conductivity using a four-terminal sensing circuit, and an IR microscope is used to map 

the real-time temperature profile of the fibers to extract thermal conductivity.  

In the second part, we also fabricate and characterize transistors from thin films of 

atomically precise graphene nanoribbons (GNRs). Device studies of solution synthesized GNRs 

have been limited because of poor processing. In this work, a novel interfacial self-assembly 

approach is used to produce uniform thin films of GNRs. Transistors are then fabricated using the 

GNR thin films as the channel material and the resulting devices are characterized. 
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1. Introduction 

1.1 Carbon Based Materials 

Silicon is the second most abundant element in the earth’s crust. This can be seen in figure 

1, which shows the abundance of each element with respect to the atomic number. Silicon’s 

abundance makes it the backbone of modern electronics. Another element that is of interest to us 

is carbon. Carbon is the 15th most abundant element in the earth’s crust and this also makes it a 

good candidate for electronic applications. 

 

 

 

 

 

 

 

 

 

 

As a result of its valency, carbon is capable of existing in many different physical forms 

(allotropes). The most well-known and naturally occurring allotropes are diamond and graphite. 

These allotropes are vastly different from each other and their structures tell us that the alignment 

of carbon atoms have profound effects on the material properties. 

Over the past three decades, nanoscale sized allotropes of carbon have emerged and their 

discovery has created avenues for new technologies.   Spherical fullerene or buckminsterfullerene 

Figure 1: Abundance of the elements in the Earth’s crust as a 

function of atomic number. [1] 
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(C60) was discovered in 1985 [2] and carbon nanotubes (CNTs) were discovered in 1991 [3]. In 

2004, the Manchester group isolated a single layer of carbon atoms (graphene) from graphite [4].   

These nanoscale allotropes can be categorized by dimensionality and the schematics of each 

material are shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 The nanoscale allotropes of carbon can conduct electricity, absorb and emit light, and 

exhibit magnetic properties. Their attractive properties give them potential applications in 

materials science, synthetic biology and electronics. While fullerenes and Mackay crystals are 

appealing, in this thesis we focus on carbon nanotube and graphene nanoribbons (GNRs). Our 

interest is particularly in the electronics applications of these materials, and in the following 

sections we offer a brief introduction to CNTs and GNRs.      

 

  

Figure 2: Structural representations of nanoscale allotropes of carbon 

organized by their dimensionality. [5]  
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1.2 Carbon Nanotubes  

Carbon nanotubes (CNTs) were discovered by Sumio Iijima in 1991 while working at NEC 

Corporation in Japan [3]. Iijima’s discovery generated a significant interest in carbon based 

nanostructures which fueled research in nanotechnology. CNTs can be considered as one-

dimensional cylinders [6] of monolayer graphene. A further classification splits CNTs into single-

walled (SW) and multi-walled (MW) nanotubes. A multi-walled nanotube contains several 

concentric tubes. In a random network of CNTs, approximately two-thirds of the CNTs possess 

semiconducting properties and one-third possess metallic properties [7]. This is illustrated in figure 

3. 

 

 

 

 

 

 

 

 

CNTs have been researched extensively for numerous applications because of their superb 

electrical [8-10], thermal [11-13], chemical [14, 15], and mechanical [16, 17] properties. In this 

thesis, we explore the use of carbon nanotubes in fibers (composite structures) and aim to tackle 

some of the problems presented in these composite structures. 

Figure 3: A schematic illustration of a graphene sheet being rolled up into a CNT. Depending 

on how the sheet is rolled up, the resulting CNT can be either semiconducting or metallic. [7] 
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1.3 Graphene and Graphene Nanoribbons 

As previously mentioned, graphene was first isolated in 2004 by the Manchester group 

using Scotch tape based micromechanical exfoliation [3]. For their groundbreaking work, Andre 

Geim and Konstantin Novoselov received the Nobel Physics prize in 2010. This new material 

quickly attracted the attention of the electron device community and today major semiconductor 

companies are active in graphene research. The International Technology Roadmap for 

Semiconductors (ITRS), the strategic planning document for the semiconductor industry, 

considers graphene to be a candidate for post-silicon electronics [18].  

The greatest advantage of graphene is its high carrier mobility at room temperature. 

Mobilities of 10,000 – 15,000 cm2V-1s-1 [4, 19] have been measured for graphene on silicon wafers 

and an upper limit between 40,000 and 70,000 cm2V-1s-1 [19, 20] has been suggested. While these 

numbers are impressive and make graphene a compelling candidate, large area graphene is a semi-

metal with a zero bandgap. Its valence and conduction bands are cone-shaped and meet at the K 

points of the Brillouin zone. This can be seen in the red graph of figure 4. Since graphene has a 

zero bandgap, devices using graphene as a channel material cannot be switched off and are thus 

unsuitable for logic applications.  

 

 

 

 

 

 

  

Figure 4: Band structure around the K-point of graphene (red) and graphene nanoribbons 

(green). [21]  
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A bandgap can be opened in graphene by confining it to a narrow strip. This can be 

explained by the principle of quantum confinement. When graphene is isolated into a narrow 

“ribbon” the carriers are confined to a quasi-one-dimensional system; this opens an energy gap 

[22] and the bands become parabolic as shown in the green graph of figure 4. The narrowed 

graphene material is called a graphene nanoribbon (GNR) and it can be used in electronics devices.  

Theoretical predictions have shown that armchair nanoribbons and zigzag nanoribbons 

have a bandgap that is inversely proportional to the width of the nanoribbon [23]. A schematic of 

an armchair nanoribbon is shown in figure 5. In order to use a graphene nanoribbon for 

conventional FETs, well-defined (atomically precise) edges are required.   

 

 

 

 

 

 

 

 

 In this thesis, we explore the use of thin films from atomically precise graphene 

nanoribbons in FET devices. We fabricate and characterize the resulting devices.  

1.4 Thesis Structure 

The purpose of this thesis is to explore the applications of carbon based nanomaterials in 

electronics. Chapter 2 focuses on CNT fibers and chapter 3 focuses on transistors from thin films 

of atomically precise graphene nanoribbons (GNRs).  

Figure 5: Schematic of an armchair graphene nanoribbon. [21] 
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In chapter 2, we focus on CNT fibers and attempt to improve their electronic and thermal 

properties by applying the “nanosoldering” technique that our research group developed to solve 

the problems caused by CNT junctions. This chapter presents a fabrication procedure for the CNT 

fibers and data from scanning electron microscopy (SEM), Raman spectroscopy, and thermal 

infrared (IR) imaging. Current-voltage curves will also be shown to highlight the electrical 

properties of the fibers and the improvement observed from nanosoldering. 

In chapter 3, we focus on transistors from thin films of atomically precise graphene 

nanoribbons (GNRs). This chapter highlights the synthesis of the GNRs, and the subsequent 

transistor fabrication. Data from SEM and Raman spectroscopy will be presented. Current-voltage 

curves will also be presented to highlight transistor performance. It should be noted that the work 

presented in chapter 3 was published in the journal ACS Applied Materials & Interfaces [24]. 

 Finally, chapter 4 summarizes and discusses the results of the work presented in chapters 

2 and 3. It will conclude with an outlook for future work and other exciting avenues.  
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2. Nanosoldering Carbon Nanotube Fibers 
 

2.1 Nanosoldering as a Mechanism for Self-Healing 

As previously mentioned, CNTs are explored extensively because of their outstanding 

electrical, thermal, and mechanical properties. While CNT networks are relatively easy to fabricate 

and exhibit promise, the performance of these networks is limited by CNT-CNT inter-tube 

junctions (CNT junctions). Carrier mobility, conductivity and power dissipation are greatly limited 

by the resistance at the CNT junctions. Theoretical and experimental studies have revealed that the 

electrical [1-6] and thermal resistances [7-11] at these junctions are at least an order of magnitude 

higher than those of individual CNTs. Thus, passing current through a CNT network causes 

localized heating at these CNT junctions which lowers a device’s performance and reliability. 

 To combat this problem, efforts have been made to lower the CNT junction resistance by 

depositing nanoscale metallic particles at the CNT junctions. Previous studies have utilized AFM 

assisted dip pen nanolithography [12] and transmission electron microscopy (TEM) facilitated 

electron beam induced deposition [13]. While these techniques are unique and elegant, they need 

slow and repetitive processes that need to locate individual junctions. 

 Our research group developed the “nanosoldering” technique to selectively deposit metal 

particles at the CNT junctions using a gas phase CVD process [14] and a solution based approach 

[15]. The nanosoldering process lowers the resistivity of the CNT junctions in the CNT networks 

by cooling them. In the gas phase CVD process, devices are loaded into a vacuum chamber and a 

CVD precursor, either C5H5PdC3H5 or Hf(BH4)4, is introduced into the chamber. When current is 

passed through the devices, the resistance at the CNT junctions generates “hot spots” which cause 

a local chemical reaction depositing either Pd or HfB2 at the CNT junctions. The process improved 

the Ion/Ioff ratio by an order of magnitude. Figure 6 depicts the nanosoldering procedure and the 
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inset displays an IDS – VGS curve of a CNT transistor, before and after nanosoldering. Figure 7 (a) 

shows SEM images of CNT transistors before and after nanosoldering. The deposited HfB2 can be 

seen in yellow and energy dispersive x-ray spectroscopy (EDS) is used to verify the presence of 

the HfB2 at the CNT junctions. This can be seen in figure 7 (b). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: An illustration of the nanosoldering process. The inset shows an I-V curve of a  

CNT device before and after nanosoldering. An order of magnitude in improvement in the 

on/off ratio is observed. [14] 

Figure 7: (a) An SEM image of a CNT device before (left) and after (right) nanosoldering. 

The HfB2 is false colored in yellow. (b) EDS spectra from HfB2 deposited at the nanotube 

junctions (red) and on CNTs from the same device when no HfB2 was deposited (blue). [14] 
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The solution based approach also accomplishes this and it is a simpler alternative to the 

CVD method. In this approach, Pd2(dba)3 is mixed in a volatile solvent and the solution is spin-

coated onto a device forming a thin film of the precursor on top of the CNT networks. Passing 

current through the devices causes localized heating at the CNT junctions and generates thermal 

decomposition of the precursor. Once the Pd nanoparticles are deposited at the junctions, the 

solution and all byproducts of the thermal decomposition reaction are rinsed away. This process 

improved the Ion/Ioff ratio and mobility of the CNT networks by an average factor of ~6. The 

solution based process is highlighted in figure 8 and IDS – VGS curves of transistors, before and 

after nanosoldering, are shown in figure 9. Figure 10 displays an SEM image of a CNT network 

with the deposited Pd nanoparticles. 

   

 

 

 

 

 

 

 

  

 

 

 

 

Figure 8: Schematic diagrams of (a) carbon nanotube (CNT) network growth on a SiO2/Si 

substrate by chemical vapor deposition (CVD). (b) Devices were fabricated using  

photolithography and e-beam evaporation for channel and contact patterning with Ti/Pd 

(0.5/40 nm) electrodes. (c) Solution-mediated application of the Pd2(dba)3 precursor onto 

CNT networks by spin-coating. (d) Selective Pd deposition triggered by resistive heating at 

CNT junctions under device operation in a vacuum probe station. [15] 
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2.2 Nanosoldering with Organic Molecules 

In the previous section, we described an approach demonstrated by our research group that 

selectively deposits metal nanoparticles at CNT junctions utilizing a local chemical reaction. 

Instead of using metal nanoparticles, we believe that by using carbon atoms to link the CNT 

junctions, the results of the nanosoldering process could be further amplified. The covalent 

network of carbon atoms can lead to further improvement in electrical performance by creating an 

all-carbon system with work function matching at the CNT junctions. 

The molecule 1,3,5-tris(2-bromophenyl)benzene (2-TBB) is used as the precursor and it is 

dissolved into chloroform and spin-coated onto the CNT devices. Passing current through the 

devices heats the CNT junctions which causes a chemical reaction. The chemical reaction should 

Figure 9: I-V curve of a CNT device before and after nanosoldering in linear (left) and log 

(right) scales. The on/off ratio improved by a factor of ~4.4. [15] 

  

Figure 10: Magnified SEM images of a CNT network showing CNT junctions nanosoldered 

with Pd particles. The scale bar is 1μm. [15] 
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result in a debrominated and dehydrogenated all-carbon structure resembling graphene 

nanoribbons. 

 The 2-TBB molecules used in this section and in the remainder of this chapter were 

synthesized by Dr. Peter Sempsrott, a former graduate student in Professor Girolami’s group in 

the Chemistry Department at UIUC. The synthesis is described in Dr. Jae Won Do’s PhD thesis 

[16]. 2-bromoacetophene (2.7 mL, 20.0 mmol) was added (via syringe) to a small oven-dried 

Schlenk tube under argon. Trifluoromethanesulfonic acid (TfOH) (0.2 mL, 2.3 mmol) was also 

added (via syringe) and the solution was heated under active argon flow to 130 °C for 7 hours with 

stirring. The resulting dark brown solution was cooled to room temperature, quenched with ~20 

mL of water and extracted with dichloromethane. The organic layer was dried with MgSO4 and 

evaporated. The crude residue was purified by silica gel chromatography eluting  with 

pentane/dichloromethane (6:1) to give a light yellow solid. The solid was recrystallized from 

hexane/dichloromethane to afford 1.336 g (37% yield) of white crystalline powder. The 2-TBB 

powder can be seen in figure 11, and figure 12 shows the synthesis procedure. Figure 13 depicts 

the process for producing the all-carbon structure from the 2-TBB. 

 

 

 

 

 

 

 

 

Figure 11: 2-TBB powder used for the organic nanosoldering process. 

  



14 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

As mentioned previously, 60 – 80 mg of 2-TBB is dissolved in 2 – 3 mL of chloroform and 

spin-coated onto the CNT transistor devices. The devices were loaded into a Janis Variable 

Temperature Probe Station with a pressure of ~10-5 Torr. After that, VDS was applied from 1 V  

and increased in 5 V increments up to 130 V while VGS was swept from -20 V to +20 V. The 

preliminary results of this approach were very promising, but unlike the nanosoldering process 

with the Pd/HfB2 particles we cannot see anything at the CNT junctions with SEM imaging. This 

is because the all-carbon structure that covalently links the junctions is too small to be seen. IDS – 

VGS curves of transistors, before and after the nanosoldering process, are shown in figure 14.  

 

 

Figure 12: Synthesis scheme for 1,3,5-tris(2-bromophenyl)benzene (2-TBB) 

from 2’- bromoacetophenone. [16] 

Figure 13: Process for producing the all-carbon structure from the 2-TBB. 

[16] 



15 
 

 

 

 

 

 

 

 

The preliminary results of the organic nanosoldering process with CNT transistors show 

that our technique can be extended to organic molecules as well. In the following sections we apply 

the organic nanosoldering procedure to CNT fibers. The purpose of this is to improve the electrical 

and thermal conductivity of the CNT fibers by lowering the resistance and cooling the CNT 

junctions in these CNT composite structures. 

2.3 Carbon Nanotube Fibers 

Conventional electric wires comprised of copper and aluminum suffer from weight issues, 

the skin effect, mechanical performance and electromigration [17]. These metal conductors are 

required and their increasing prices suggest the need for a low-cost material that can outperform 

conventional metal conductors. Fibers have had a significant impact on aerospace, military and 

industrial applications requiring lightweight, mechanically strong materials [18].  

The excellent properties of CNTs make them compelling candidates for fiber applications. 

Fibers comprised of CNTs have the potential to form high-strength, lightweight, thermally and 

electrically conducting materials [19].  
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Figure 14: I-V Characteristics of CNT transistors using organic molecules for the nanosoldering process. 
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CNT fibers can be produced through either wet or dry spinning [20]. Wet spinning 

techniques rely on the extrusion of a liquid solution of CNTs into a bath with a liquid which can 

mix with the solvent, but cannot disperse the nanotubes [20]. This technique begins with a liquid 

and is converted into the form of fibers by alignment. 

Dry spinning methods are either a one-step or two-step process. In the one-step process, 

fibers are drawn directly from a CVD reactor [21-24], and in the two-step process, fibers are spun 

from other CNT assemblies such as CNT arrays [25, 26, 27], CNT cotton [28, 29] and CNT films 

[30, 31]. An example of a wet-spinning method where CNT fibers are spun from liquid crystalline 

phase is shown in figure 15, and a dry spinning method where CNT fibers are drawn from a CNT 

array is shown in figure 16.    

 

 

 

 

 

 

 

Figure 15:  (A) The system used by Ericson et al. to spin CNT fibers from 

liquid crystalline phase. (B) Fiber extruded from a capillary tube. (C) CNT 

fiber wound on a rotating spool. [39] 
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For the purpose of this thesis, we use the fabrication method presented by Vigolo et al. 

[32]. In this method, CNTs are dispersed in surfactant solutions and then coagulated into a fiber 

by streaming them in the presence of a polymer solution. A schematic of the experimental setup is 

shown in figure 17. It must be noted that our experimental setup does not use a rotating stage and 

this will be shown in section 2.4.  

 

 

 

 

 

 

 

 

Figure 16: (A) SEM image of a CNT fiber spun from a CNT yarn. (B) A 

magnified SEM image of (A) showing the individual fibers. [25]     
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We pick this method because it allows us to easily dissolve the 2-TBB into the CNT 

solution. Once the CNT fiber is formed, the 2-TBB will be a part of the composite structure. Once 

current is passed through the fiber, the CNT junctions will form local hotspots. This should cause 

the 2-TBB in the structure to undergo thermal decomposition and the resulting all-carbon structure 

to covalently link the CNT junctions. Figure 18 depicts the process where the CNT junctions in 

the carbon nanotube fiber are nanosoldered.  

 

 

 

 

 

 

 

 

Figure 17: Schematic of the experimental setup used by Vigolo et al. to 

make CNT fibers. [32] 

Figure 18: Schematic of the nanosoldering process occurring at the CNT junctions in the 

CNT fiber. 

Image courtesy of Prof. Joseph Lyding (University of Illinois at Urbana-Champaign)     
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2.4 Experimental Procedure  

For the purpose of our CNT fiber fabrication, we use CNTs synthesized through the high 

pressure carbon monoxide (HiPco) method. In this method, carbon monoxide (CO) is flowed at 

high temperatures (900 – 1100 °C) and high pressure (30 – 50 atm) into a CVD chamber on 

catalytic clusters of iron (Fe) [33]. CNTs grow from Fe(CO)5 decomposition and condensation in 

the CO gas. A TEM image of HiPco CNTs can be seen in figure 19.  

 
 
 
 
 
 

 

 

 

 

 

 
 

 

In order to prepare the CNT solution, HiPco CNT powders were added to deionized water 

(DI H2O) with a concentration of 4 mg/mL. Sodium cholate was used as a surfactant and added in 

concentrations of 2.5 mg/mL. The resulting solution is tip sonicated in an ice bath for 90 minutes. 

The poly vinyl alcohol (PVA) solution was prepared by adding 20g of PVA powders to 

230 mL of DI H2O. The PVA solution is then heated at 100 °C for 3-4 hours and stirred 

occasionally. After that, it is set aside. Once the PVA solution has cooled to room temperature, it 

is ready for use. 

Figure 19: TEM image of CNTs grown using the HiPco process. Large 

catalyst particles can be seen in the image. [33] 
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The PVA solution is injected at a speed for 80 mL hr-1 to quickly fill up the quartz tube. 

Once the quartz tube is filled, the PVA solution injection speed is lowered to 30 mL hr-1. After 

that, the CNT solution is injected at a speed of 0.25 mL hr-1. Pictures of the experimental setup are 

shown in figure 20.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: (a) Our experimental setup used to grow CNT fibers. (b) CNT 

solution coagulating into a fiber. (c) CNT fibers picked up and hung to dry 

after coagulation. 

a 

b 

c 
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Once the CNT solution is streamed through the PVA solution, it coagulates into a fiber 

and it is picked up and hung to dry (figure 20 c). The fiber is left to dry for a few hours and after 

that it is characterized using Raman spectroscopy and scanning electron microscopy (SEM). An 

SEM image of the fiber is shown in figure 21 and a Raman spectrum is shown in figure 22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

0 500 1000 1500 2000 2500 3000 3500

In
te

n
s
it
y
 (

A
rb

it
ra

ry
 U

n
it
s
)

Raman Shift (cm
-1
)

Figure 21: SEM image of a CNT fiber without 2-TBB (before 

nanosoldering). 

Figure 22: Raman spectrum of a CNT fiber without 2-TBB (before 

nanosoldering). 
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The SEM image in figure 21 indicates that our CNT fiber possesses a diameter of 30 μm. 

and the Raman spectrum in figure 22 shows the G and 2D peaks at ~1580 cm-1 and ~2700 cm-1 

[34]. The D peak associated with defects is not visible and this tells us that our CNT fiber is of 

good quality. 

 In order to prepare CNT fibers with 2-TBB, the same procedure (described above) is 

repeated, but 20-30 mg of 2-TBB is added to the CNT solution. An SEM image of a CNT fiber 

with 2-TBB and a plot of its corresponding Raman spectrum are shown in figures 23, and 24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: SEM image of a CNT fiber with 2-TBB (before nanosoldering). 
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Figure 23 shows that the CNT fiber with 2-TBB also possesses a diameter of 30 μm and 

the corresponding Raman spectrum in figure 24 gives the peaks corresponding G and 2D peaks at 

~1580 cm-1 and ~2700 cm-1. These fibers are also of good quality. 

Once the CNT fibers (with and without 2-TBB) were characterized and deemed to be of 

good quality, they were cut into smaller piece with lengths of ~ 12 – 15 cm. Individual fibers were 

then placed on a glass slide and coated with silver paint at four different points along the fiber. 

Copper wires were placed on these points and more silver paint was added to hold the copper wire 

in place. The glass slide setup can be seen in figure 25. The glass slide was then placed on a 

substrate holder (figure 25 a) and another glass slide was placed on top of it. A copper block is 

used to hold the glass slides in place. The final device structure can be seen in figures 25 a and b. 

This setup is loaded into the turbo chamber, shown in figure 25 (c), and pumped down to ~ 10-5 

Torr.  
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Figure 24: Raman spectrum of a CNT fiber with 2-TBB (before 

nanosoldering). 
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Electrical wires are connected to the turbo chamber leading to the substrate, creating a four-

terminal sensing circuit. A schematic of the circuit can be seen in figure 26. 

 

 

 

a 

b c 

Figure 25: (a) Device structure used for the nanosoldering experiment (side 

view). (b) Top view of figure 25 (a). (c) Turbo chamber used for the 

nanosoldering experiment. 
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Voltages were applied from 1 V and increased in 5 V increments up to ~ 140 V or when 

the limit of the power supply was reached. For each increment, we recorded the corresponding 

change in current. In section 2.5, we discuss the results of this technique. We compare the results 

of fibers with and without 2-TBB. 

2.5 Results 

The resistance of the fiber was calculated from the application of 1 V. Equation (1) was  

used with V and I being the measured voltages and current. With the resistance, the resistivity (𝜌) 

was computed using equation (2) where L and A are the length of the fiber and the cross-sectional 

area. Finally, the conductivity (𝜎) was obtained by using equation (3). I-V curves of fibers with 

and without 2-TBB are shown in figure 27.  

(1) 

𝑅 =
𝑉

𝐼
 

  

Figure 26: Schematic of the four-terminal sensing circuit used in the 

nanosoldering experiment. 
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(2) 

𝑅 = 𝜌
𝐿

𝐴
 

(3) 

𝜎 =
1

𝜌
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Figure 27: (a) I-V characteristics for a CNT fiber with 2-TBB. (b) I-V characteristics for a  

CNT fiber without 2-TBB.  
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 After the fibers underwent nanosoldering in the turbo chamber, we performed Raman 

spectroscopy and used SEM to observe changes in the structure of the fiber. An SEM image of a 

CNT fiber after nanosoldering is displayed in figure 28 and a raman spectrum is shown in figure 

29. 
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Figure 28: SEM image of a CNT fiber (after nanosoldering). 

Figure 29: Raman spectrum of a CNT fiber (after nanosoldering). 
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SEM images of CNT fibers after nanosoldering show no change in the morphology and 

this is further corroborated by Raman spectroscopy. Referring to figure 29, the G and 2D peaks 

can be seen at ~1580 cm-1 and ~2700 cm-1. This informs us that the nanosoldering does not change 

the physical structure of the CNT fiber.  

The electrical conductivity of CNT fibers with 2-TBB improved from an average value of 

157 ± 36 Sm-1 before nanosoldering to 10,190 ± 1670 Sm-1 after nanosoldering. The electrical 

conductivity of CNT fibers without 2-TBB improved from an average value of 176 ± 37 Sm-1 to  

4869 ± 696 Sm-1. While the conductivity values of the unsoldered fibers are in agreement with 

previous fabrication attempts [32], the conductivity values of the soldered fibers with 2-TBB are 

still lower than those reported by other sources [17]. 

 It must be noted that fibers containing 2-TBB did display a significant improvement in 

electrical conductivity in comparison to fibers without the 2-TBB. We believe that the current 

heating is causing the 2-TBB to undergo thermal decomposition into the holey carbon structure 

that is linking individual nanotubes in the fibers. This covalent linking explains the improved 

conductivity which comes from the reduced resistance of the nanosoldered junctions. 

 In order to fully understand the effects of nanosoldering on the CNT fibers, we decided to 

measure the thermal conductivity of the CNT fibers before and after nanosoldering. Prof. Eric 

Pop’s graduate student Feifei Lian at Stanford University performed the thermal conductivity 

measurements.  

 The measurements were performed using the technique described in Lian et al. [35] and 

the experimental setup is shown in figure 30. The temperature profile and IR images of an 

unsoldered and a soldered fiber are shown in figure 31. 
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The fibers were suspended at the contacts using silver paint. A voltage bias is applied to 

flow current through the fiber and an infrared (IR) scope is used to map the temperature in real 

time. To extract the thermal conductivity of the fiber, a finite element analysis of the 1D heat 

transfer equation [36] is used:     

𝐴
𝜕

𝜕𝑦
(κ

𝑑𝑇

𝑑𝑦
) + 𝑝′ − 𝑔[𝑇(𝑦) − 𝑇0] = 0 

A is the cross-sectional area of the film, κ is its in-plane thermal conductivity, and p’ is joule 

heating power per unit length. The term g is the heat loss coefficient per unit length to the air or to 

the contacts and T0 is the background temperature of the device. T(y) is the temperature at a 

location y along the fiber. 
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Figure 30: Experimental setup used by Feifei Lian to measure the thermal 

conductivity of the CNT fibers 

Image courtesy of Feifei Lian (Stanford University)     
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Unsoldered CNT fiber: κ = 40 
 

  

 

 

 

 

 

 

Soldered CNT fiber: κ = 100 

 

The unsoldered fibers possessed a thermal conductivity of ~ 40 – 60 Wm-1K-1. 

Unfortunately, the nanosoldered fibers with 2-TBB witnessed a reduction in thermal conductivity 

to ~ 15 – 30 Wm-1K-1. The best result, displayed in figure 31 (b), showed a thermal conductivity 

of ~ 100 Wm-1K-1. Since these fibers are ~40% PVA, we believe that the nanosoldering thermally 

decomposes the PVA causing amorphous carbon to form along the fibers [37]. The thermal 

conductivity of amorphous carbon thin films ranges from 0.2 to 2.2 Wm-1K-1 [38]. The formation 
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Figure 31: (a) IR image and temperature profile of an unsoldered CNT fiber.  (b) IR image and 

temperature profile of a soldered CNT fiber.  

Images courtesy of Feifei Lian (Stanford University)     
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of the amorphous carbon along the fiber explains the reduction in thermal conductivity after 

nanosoldering. 

  

2.6 Discussions 

In the work described in this chapter, we fabricated CNT fibers and applied the 

nanosoldering technique our group developed for CNT FETs. The purpose of this experiment was 

to use the nanosoldering process to strengthen the CNT fibers (electrically and thermally). While 

the electrical conductivity of CNT fibers with 2-TBB improved from 157 ± 36 Sm-1 before 

nanosoldering to 10,190 ± 1670 Sm-1 after nanosoldering, the thermal conductivity essentially 

decreased. With the exception of a single fiber which improved to 100 Wm-1K-1, most fibers 

witnessed a reduction from ~ 40 - 60 Wm-1K-1 to ~ 15 – 30 Wm-1K-1.   

We attribute these results to the PVA in the fibers. The PVA is a polymeric insulating 

material that could be limiting the effects of nanosoldering and the potential improvement in 

electrical and thermal properties. To overcome this challenge, future work should be centered on 

producing polymer-free CNT fibers that could display greatly enhanced properties after the 

nanosoldering process. 

 

 

 

 

 

 

 



32 
 

2.7    References 
[1] L. Hu, D. S. Hecht, and G. Grüner, "Percolation in transparent and conducting carbon  

      nanotube networks," Nano Letters, vol. 4, no. 12, pp. 2513–2517, Oct. 2004. 

 

[2] P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, and J. J. Boland, "Electrical connectivity  

      in single-walled carbon nanotube networks," Nano Letters, vol. 9, no. 11, pp. 3890–3895,  

      Sep. 2009. 

 

[3] M. Stadermann et al., "Nanoscale study of conduction through carbon nanotube  

      networks," Physical Review B, vol. 69, no. 20, p. 201402, May 2004.   

 

[4] S. Kumar, M. A. Alam, and J. Y. Murthy, "Effect of percolation on thermal transport in  

      nanotube composites," Applied Physics Letters, vol. 90, no. 10, p. 104105, Mar. 2007. 

 

[5] A. V. Kyrylyuk, "Controlling electrical percolation in multicomponent carbon nanotube  

      dispersions," Nature Nanotechnology, vol. 6, no. 6, pp. 364–369, Apr. 2011.  

 

[6] M. S. Fuhrer et al., "Crossed nanotube junctions," Science, vol. 288, no. 5465, pp. 494–497,  

      Apr. 2000. 

 

[7] M. A. Alam, N. Pimparkar, S. Kumar, and J. Murthy, "Theory of nanocomposite network  

      transistors for macroelectronics applications," MRS Bulletin, vol. 31, no. 6, pp. 466–470, Jun.  

      2006. 

 

[8] H. Zhong and J. R. Lukes, "Interfacial thermal resistance between carbon nanotubes: Molecular  

      dynamics simulations and analytical thermal modeling," Physical Review B, vol. 74, no. 12, p.  

      125403, Sep. 2006. 

 

[9] R. S. Prasher et al., "Turning carbon nanotubes from exceptional heat conductors into  

      insulators," Physical Review Letters, vol. 102, no. 10, p. 105901, Mar. 2009.  

 

[10] J. Yang, S. Waltermire, Y. Chen, A. A. Zinn, T. T. Xu, and D. Li, "Contact thermal  

        resistance between individual multiwall carbon nanotubes," Applied Physics Letters, vol.  

        96, no. 2, p. 023109, Jan. 2010. 

 

[11] D. Estrada and E. Pop, "Imaging dissipation and hot spots in carbon nanotube network  

        transistors," Applied Physics Letters, vol. 98, no. 7, p. 073102, Feb. 2011. 

 

[12] G. Shen, Y. Lu, L. Shen, Y. Zhang, and S. Guo, "Nondestructively creating nanojunctions  

        by combined-dynamic-mode dip-pen nanolithography," ChemPhysChem, vol. 10, no. 13,  

        pp. 2226–2229, Jul. 2009. 

 

[13] M. S. Wang, J. Y. Wang, Q. Chen, and L. –M.Peng, "Fabrication and electrical and  

        mechanical properties of carbon nanotube interconnections," Advanced Functional  

       Materials, vol. 15, no. 11, pp. 1825–1831, Sep. 2005. 

 



33 
 

[14] J.-W. Do et al., "Nanosoldering carbon nanotube junctions by local chemical vapor  

        deposition for improved device performance," Nano Letters, vol. 13, no. 12, pp. 5844–5850,  

        Nov. 2013. 

 

[15] J.-W. Do et al., "Solution-mediated selective nanosoldering of carbon nanotube junctions  

        for improved device performance," ACS Nano, vol. 9, no. 5, pp. 4806–4813, Apr. 2015. 

 

[16] J.-W. Do, “Selective metallization and electronic self-healing for high performance  

carbon-based nanoelectronics,” Ph.D. Dissertation, University of Illinois at Urbana-

Champaign, Urbana, IL, Apr. 2015. 

 

[17] A. Lekawa-Raus, J. Patmore, L. Kurzepa, J. Bulmer, and K. Koziol, "Electrical properties of  

        carbon nanotube based fibers and their future use in electrical wiring," Advanced  

        Functional Materials, vol. 24, no. 24, pp. 3661–3682, Mar. 2014. 

 

[18] N. Behabtu, M. J. Green, and M. Pasquali, "Carbon nanotube-based neat fibers," Nanotoday,  

        vol. 3, no. 5–6, pp. 24–34, Oct. 2008. 

 

[19] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, "Carbon Nanotubes--the route toward  

        applications," Science, vol. 297, no. 5582, pp. 787–792, Aug. 2002. 

 

[20] A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the   

        Synthesis, Structure, Properties and Applications, A. Jorio, G. Dresselhaus, and M. S.  

        Dresselhaus, Eds., 2001st ed. Germany: Springer, 2008. 

 

[21] R. M. Sundaram, K. K. K. Koziol, and A. H. Windle, "Continuous direct spinning of fibers  

        of single-walled carbon nanotubes with metallic chirality," Advanced Materials, vol. 23,  

        no. 43, pp. 5064–5068, Oct. 2011. 

 

[22] Y.-L. Li, I. A. Kinloch, and A. H. Windle, "Direct spinning of carbon nanotube fibers from  

        chemical vapor deposition synthesis," Science, vol. 304, no. 5668, pp. 276–278, Apr. 2004.   

 

[23] H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, and P. M. Ajayan, "Direct synthesis of  

        long single-walled carbon nanotube strands," Science, vol. 296, no. 5569, pp. 884–886, 

        May 2002.  

 

[24] X.-H. Zhong et al., "Continuous multilayered carbon nanotube yarns," Advanced  

       Materials, vol. 22, no. 6, pp. 692–696, Nov. 2009. 

 

[25] M. Zhang, K. R. Atkinson, and R. H. Baughman, "Multifunctional carbon nanotube yarns by  

        downsizing an ancient technology," Science, vol. 306, no. 5700, pp. 1358–1361, Nov. 2004. 

 

[26] M. Miao, "Electrical conductivity of pure carbon nanotube yarns," Carbon, vol. 49, no. 12,  

        pp. 3755–3761, May 2011.  

 

 



34 
 

[27] X. Zhang et al., "Strong carbon-nanotube fibers spun from long carbon-nanotube  

        arrays," Small, vol. 3, no. 2, pp. 244–248, Jan. 2007. 

 

[28] L. Zheng et al., "Carbon-nanotube cotton for large-scale fibers," Advanced Materials, vol.  

        19, no. 18, pp. 2567–2570, Aug. 2007. 

 

[29] L. Ci, N. Punbusayakul, J. Wei, R. Vajtai, S. Talapatra, and P. M. Ajayan, "Multifunctional  

        macroarchitectures of double-walled carbon nanotube fibers," Advanced Materials, vol. 19,  

        no. 13, pp. 1719–1723, Jun. 2007. 

 

[30] W. Ma et al., "Monitoring a micromechanical process in macroscale carbon nanotube films  

        and fibers," Advanced Materials, vol. 21, no. 5, pp. 603–608, Dec. 2008. 

 

[31] W. Ma et al., "Directly synthesized strong, highly conducting, transparent single-walled  

        carbon nanotube films," Nano Letters, vol. 7, no. 8, pp. 2307–2311, Jul. 2007. 

 

[32] B. Vigolo et al., "Macroscopic fibers and ribbons of oriented carbon nanotubes," Science,  

        vol. 290, no. 5495, pp. 1331–1334, Nov. 2000. 

 

[33] M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, and R. E. Smalley, "Gas-phase  

        production of carbon single-walled nanotubes from carbon monoxide via the HiPco process:  

        A parametric study," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and  

       Films, vol. 19, no. 4, pp. 1800–1805, Jul. 2001. 

 

[34] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, "Raman spectroscopy of carbon  

        nanotubes," Physics Reports, vol. 409, no. 2, pp. 47–99, Feb. 2005.  

 

[35] F. Lian, J. P. Llinas, Z. Li, D. Estrada, and E. Pop, "Thermal conductivity of chirality-sorted  

        carbon nanotube networks," Applied Physics Letters, vol. 108, no. 10, p. 103101, Mar. 2016. 

 

[36] E. Pop, D. A. Mann, K. E. Goodson, and H. Dai, "Electrical and thermal transport in metallic  

        single-wall carbon nanotubes on insulating substrates," Journal of Applied Physics, vol. 101,  

        no. 9, p. 093710, May 2007.  

 

[37] Y. Tsuchiya and K. Sumi, "Thermal decomposition products of poly(vinyl alcohol)," Journal  

        of Polymer Science Part A-1: Polymer Chemistry, vol. 7, no. 11, pp. 3151–3158, Nov. 1969. 

 

[38] A. J. Bullen, K. E. O’Hara, D. G. Cahill, O. Monteiro, and A. von Keudell, "Thermal  

        conductivity of amorphous carbon thin films," Journal of Applied Physics, vol. 88, no. 11,  

        pp. 6317–6320, Nov. 2000. 
 

[39] L. M. Ericson et al., "Macroscopic, neat, single-walled carbon nanotube fibers" Science,  

        vol. 305, no. 5689, pp. 1447–1450, Sep. 2004. 

 



35 
 

3. Graphene Nanoribbon Thin Film Transistors 

3.1 Synthesis and Processing of Graphene Nanoribbons for Device Studies 

As mentioned in chapter 1, the lack of a band gap makes graphene unsuitable for digital 

electronics. As graphene is thinned down to widths ~10 nm and smaller, quantum confinement 

induces a band gap. This material, a graphene nanoribbon (GNR), holds great promise for 

electronic applications.  

Exploring the potential of graphene nanoribbons is difficult because of the challenges 

associated with synthesis. While GNRs can be synthesized using chemical [1-3], sonochemical 

[4], and lithographic techniques [5, 6], and through the unzipping of carbon nanotubes (CNTs) [7-

10], these methods do not guarantee atomic precision. The ability to produce GNRs with atomic 

precision is the key to practical realization of their electronic properties. AFM images of a 

chemically derived GNR and the process for unzipping CNTs are shown in figures 32 and 33.    

 

 

 

 

 

 

 

 

 

 

Figure 32: (A) Photograph of a polymer PmPV/DCE solution with GNRs suspended in the solution. 

(B) AFM image of GNRs that are 50 nm wide. Scale bar is 100 nm. [4]  
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The bottom-up approach developed by Cai et al. uses surface-assisted coupling of 

molecular precursors into linear polyphenylenes and their subsequent cyclodehydrogenation to 

produce GNRs with atomic precision [11]. The process and a high-resolution image of the GNRs 

are shown in figure 34. Likewise, several types of atomically precise GNRs with different 

geometries and widths have been synthesized in solution and on metal surfaces [12-14]. Regardless 

of the progress achieved in the solution synthesis of atomically precise GNRs, their device studies 

have been minimal [15-18].  

 

 

 

 

 

 

Figure 33: (a) Schematic illustration of the unzipping of a carbon nanotube to form a graphene 

nanoribbon. (b) AFM images of graphene nanoribbons after the unzipping process. [8]  

a 

b 

Figure 34: (a) Schematic illustration for the basic steps in GNR synthesis. (b) High-resolution STM 

image of the GNRs after the cyclodehydrogenation step. [11]  

a 

b 
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One of the greatest challenges hindering electrical characterization of atomically precise 

GNRs is the lack of simple and effective processing techniques. GNRs that are synthesized on 

growth substrates such as Au (111) require transfer to a target device substrate, which is 

complicated and often of poor quality. Likewise, solution synthesized GNRs are equally difficult 

to transfer because of their aggregation, entanglement and poor solubility in organic solvents.  

  One approach to increasing the solubility of polyaromatic molecules is by functionalizing 

their edges with alkyl chains as this should improve their processability. This approach was applied 

to some of the solution synthesized GNRs [19, 20]. While this technique might prove 

advantageous, the alkyl chains might affect GNR assembly which would reduce the number of 

contacts between GNRs and impair the electronic properties of the bulk material. 

 Another approach would be the use of surfactants. This technique was previously used to 

prepare solutions and suspensions of graphene [21]. Even if this technique were applied to GNRs, 

like the alkyl chains, the surfactants can decrease the volume fraction of GNRs in the bulk material 

and reduce electrical conductivity.   

 The problems associated with these processing techniques create a need for a method that 

can dissolve atomically precise GNRs in solvents without adding surfactants or alkyl chains that 

would otherwise damage either electronic properties. In this chapter, a new fabrication approach 

for large-scale uniform thin films of non-functionalized atomically precise GNRs is proposed. 

These GNR thin films are subsequently used as the channel material for transistor fabrication and 

the resulting devices are characterized. 

3.2 Experimental Procedure 

The GNRs used in this thesis were synthesized by Vo et al. and are 1 nm wide with uniform 

armchair edges [22]. The procedure utilized the polymerization of pre-synthesized molecular 
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precursors by a Ni0-mediated Yamamoto coupling [23] followed by a cyclodehydrogenation via 

Scholl reaction using iron (III) chloride [24] into GNRs. The reaction scheme is shown in figure 

35 (c) and an STM image of the GNR is shown in figure 35 (d).   

 

 
 

 

 

These GNRs were dissolved in chlorosulfonic acid (CSA) with a concentration of 3.75 

mg/mL. CSA was chosen because it was previously shown to be an effective solvent for various 

graphitic materials such as SW CNTs [25] and graphite [26]. The thin films were fabricated by 

taking advantage of the fact that the GNRs are insoluble in most solvents other than CSA. When 

the GNRs are transferred from the CSA to the surface of another solvent, they minimize their 

interaction with the solvent by forming a densely packed self-assembled and layered film. 

d 

Figure 35: (a) Schematic of the GNR synthesized by Vo et al. (b) Corresponding calculated band 

structure. (c) Reaction scheme for the GNR synthesis. (d) STM image of the GNR on Au (111). Scale 

bar is 3 nm. [22]  
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The GNR solution is pipetted along a glass slide, which is half immersed into a tall beaker 

of DI H2O. Once the solution reaches the surface of the DI H2O, the CSA reacts instantly with the 

DI H2O forming sulfuric and hydrochloric acids. This leaves the hydrophobic GNRs at the liquid-

air interface. They self-assemble via π - π stacking to minimize their interactions with the solvent 

and maximize their interactions with each other. The result of this is a densely packed self-

assembled and layered film. The process is highlighted in figure 36.  

 

 

 

 

 

 

 

 

 

 

 

 

 
The thin film is fished out with another glass slide and transferred to another beaker with 

DI H2O to wash away acid residues. The washing procedure is repeated several times and the GNR 

film is fished out by a SiO2/Si substrate with pre-patterned metal contacts for electrical 

characterization. 

The metal contacts were prepared by thermal evaporation of 0.6 nm titanium (Ti) and 80 

nm palladium (Pd) onto the SiO2/Si substrate with gaps ranging from 2 um to ~80um. When the 

GNR film was fished out, it was done to cover the entire substrate area with the Ti/Pd electrodes.  

a b 

Figure 36: (a) Picture of a vial with the solution of GNRs in CSA. (b) Schematic illustration of the 

interfacial self-assembly approach, by pipetting the CSA-GNR solution into water. [3]   
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The device channels were patterned using ultraviolet (UV) lithography and the GNRs outside of 

the channels were etched away with O2 plasma. The O2 plasma etch was performed at 100 mTorr, 

with 20 sccm O2 at 100 watts for 60 seconds. The sample was subsequently placed in a solvent 

stripper (Remover PG) and rinsed with isopropanol (IPA). The purpose of the etch was to create 

individual transistor devices and prevent a continuous GNR film from short circuiting the device. 

A schematic of an individual GNR thin film transistor is shown in figure 37 (a) and SEM images 

of the actual devices are shown in figures 37 (b) and 37 (c). The actual transistor channel is 

comprised of multiple π-π stacked GNRs that are randomly oriented with each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: (a) Schematic of a GNR thin film transistor. [3] (b) SEM image of three GNR thin film 

transistors. (c) Magnified SEM image of a GNR thin film transistor.     

a b 

c 
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The samples were annealed twice in a tube furnace in order to remove contaminants and 

residues from the processing steps. The first anneal occurred in vacuum at 300 °C for 1 hr and 

the second in vacuum in a Ar/H2 atmosphere at 300 °C for 1 hr. The flow rate for the Ar and H2 

was 400 sccm. 

 The devices were tested in air using a Keithley 4200-SCS semiconductor analyzer. All 

measurements were done before and after each annealing procedure. The tube furnace used for the 

annealing is shown in figure 38 (a) and the Keithley tool used for electrical measurements is shown 

in figure 38 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

b 

Figure 38: (a) Tube furnace in MRL used for annealing procedures. (b) Keithley 4200-SCS 

semiconductor analyzer in MNTL used for characterizing the GNR thin film transistors.     
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3.3 Results 

After the GNR thin film was fished out by the SiO2/Si substrate with pre-patterned metal 

Contacts, we performed a Raman measurement to verify the quality of the GNRs. The Raman 

spectrum can be seen in figure 39 (a). Likewise, we performed another Raman spectrum after the 

two annealing procedures to ensure that the GNRs were not damaged during this process. The 

Raman spectrum after the annealing procedures is displayed in figure 39 (b).   
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Figure 39: (a) Raman spectroscopy of the GNR thin film transistors before the annealing procedure. 

(b) Raman spectroscopy of the GNR thin film transistors after the annealing procedure.  
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The most intense lines corresponding to GNRs can be seen at ~1300 and ~1600 cm-1 in 

both figures 36 and 37. These are the D and G bands [27]. The peak at ~500 cm-1 corresponds to 

the SiO2 substrate. It is interesting to note the reduction in the D peak in figure 37 as compared to 

figure 36. We believe that the reduction in the D peak is caused by the two annealing procedures. 

The annealing procedures serve to remove residues and contaminants from the processing steps 

and restore the structure of the GNRs. The D/G peak ratio in figure 37 agrees with the Raman 

characterization of the original GNRs after synthesis described by Vo et al. [22]. The Raman 

spectrum of the GNRs (after synthesis) is displayed in figure 40.  

 

 

 

 

 

 

 

 

 

 

The electronic properties of the GNR based devices are shown in figure 41. 

Figure 40: (a) Raman spectroscopy of the GNRs after synthesis. [22] 



44 
 

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 4 8 12 16 20 24 28 32

10
-10

10
-9

10
-8

10
-7

10
-6

 Average Ion (Before Annealing)

 Average Ion (After Annealing)

 Average Ion (After Ar+H2 Annealing)

A
v
e

ra
g

e
 I

o
n
 (

A
)

Channel Length (um)

-40 -20 0 20 40

2.0x10
-7

4.0x10
-7

6.0x10
-7

8.0x10
-7

1.0x10
-6

V
G
 (V)

I D
 (

A
)

 L = 10 um

 L = 5 um

 L = 2 um

a 

b 

Figure 41: (a) Average Ion of the GNR thin film transistors after the processing steps with respect to 

channel length. (b) I-V characteristics of the GNR thin film transistors for channel lengths (L = 2, 5, 

and 10 μm). Continued on next page.  
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Figure 41 (continued):  (c) I-V characteristics of an L = 2 μm GNR thin film transistor after the 

various processing steps. (d) Table showing the average Ion/Ioff ratio and average Ion after each 

processing step. 
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Electrical measurements in figure 41 (b) and (c) showed that the devices exhibit p-type 

behavior with gate modulated conductance. Considering that the source-drain distances (L) varied 

from 2 μm to 30 μm, and the GNRs are less than 100 nm long, the electrical measurements probed 

the GNR films and also the inter-GNR junctions. Figure 41 (a) shows increasing conductivity with 

decreasing channel lengths. This can also be seen in figure 41 (b) which shows the ID – VG curves 

of L = 2, 5 and 10 μm devices. We attribute the improvement in conductivity to the smaller number 

of inter-GNR junctions in the shorter channel devices. These results encourage future studies into 

even shorter channel length GNR devices. 

  For the purpose of this experiment, we also studied the effects of the annealing procedures 

on the electrical performance on the GNR devices. After annealing in vacuum at 300 °C, the 

average on currents (Ion) improved from 9.41 nA to 46.06 nA. This improvement can be attributed 

to the desorption of adsorbates, and improvement in the inter GNR junctions. Subsequent 

annealing in Ar/H2 improved the average Ion from 46.06 nA to 832.57 nA. The significant 

improvement in conductivity after annealing in Ar/H2 might be caused by the removal of 

photoresist residues and other contaminants introduced during the processing steps [28]. 

Considering that the GNRs are dissolved in CSA, it must be noted that minor functionalization 

cannot be ignored. The Ar/H2 annealing might also help to restore the structure of the GNRs, which 

would improve the conductivity.   

 While the conductivity of the GNRs improved with each annealing procedure, the On/Off 

ratios decreased. The largest On/Off ratio (before annealing) was ~19 and the average On/Off ratio 

decreased from 8.97 to 4.21 and finally to 3.04 after the Ar/H2 annealing. Referring to figure 39 

(c), this occurred due to a significant increase in the off currents. 
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3.4 Discussion 

In the work described in this chapter, we fabricated and characterized transistors from thin 

films of atomically precise GNRs. While the electronic properties of these GNR based devices are 

very poor, they are not surprising considering the magnitude of inter-GNR junctions, domain 

structure of the films and other defects. However, it must be noted that the characteristics of our 

GNR devices are comparable to and even better than those reported in other studies of solution 

synthesized atomically precise GNRs  [15-18]. This is because of the high structural quality and 

uniformity of the self-assembled GNR films. 

Future work should focus on the miniaturization of the GNR devices in order to reveal the 

true potential of the atomically precise GNRs. 
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4. Conclusions 
 

4.1 Summary and Future Work 

In this thesis, we explored the electronics applications of carbon based materials: carbon  

nanotubes and graphene nanoribbons. Our work touched upon the applications of carbon 

nanotubes to composite fiber structures and we attempted the nanosoldering technique to improve 

the electrical and thermal properties of these fibers. While the nanosoldering technique showed 

tremendous improvement in the electrical properties, the thermal properties essentially 

deteriorated. We attribute this deterioration to the presence of the poly-vinyl alcohol which acts as 

an insulator and could be inhibiting the true potential of the nanosoldering technique. Future work 

on this project will focus on creating pure CNT fibers and applying the nanosoldering technique 

accordingly. When the metal molecules were used, we could view them and verify their presence 

at the junctions using SEM and XPS. Unfortunately, the carbon based structures that result from 

the thermal decomposition of the precursor cannot been seen in SEM. In order to verify the 

presence of these structures at the junctions, we believe that aberration corrected TEM could 

provide high-resolution imaging and should be used. 

 In addition, we also fabricated and characterized transistors from thin films of graphene 

nanoribbons. While the electronic properties of these transistors were poor, the interfacial self-

assembly approach used for the fabrication of the thin films allowed for a streamlined process to 

fabricate and characterize multiple transistors. We attribute the poor performance to the possible 

intercalation of the CSA, and the numerous inter-GNR junctions. Future work on this project 

should involve reducing device channel lengths and optimizing the device structure. Alternatively, 

a different type of GNR that exhibits better electronic properties could be used for the channel 

material. 
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 As mentioned in the introduction, carbon’s material abundance makes it compelling 

for use as a building block in technology. While there are challenges associated with the processing 

of the various nanoscale allotropes of carbon, their superb electrical, thermal and chemical 

properties could address the issues associated with the materials that form the backbone of modern 

electronics. Future work centered on the processing issues of the nanoscale allotropes of carbon 

could solve the prevalent problems faced by current materials and help build better electronics for 

a better world. 

 

 


