
c© 2016 Danny J. Lohan

GENERATIVE DESIGN ALGORITHMS IN TOPOLOGY OPTIMIZATION
OF PASSIVE HEAT SPREADERS

BY

DANNY J. LOHAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Systems and Entrepreneurial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Assistant Professor James T. Allison

Abstract

This thesis explores the use of generative algorithms in engineering design. A

framework for using generative algorithms in design is presented and a case

study for passive heat spreaders is devised to demonstrate the execution of

this framework. Topology optimization methods are now the state of the art

for heat spreader design. These methods are introduced herein and are used

to benchmark solutions obtained through generative design methods. The

generative design methodology augments the existing topology optimization

methods using evolutionary algorithms in hybrid optimization. The results

presented in this thesis are the first steps in creating a rich and generalizable

design optimization methodology.

ii

To my parents, for their love and support.

iii

Acknowledgments

I would like to thank my adviser James T. Allison for his trust and patient

support. Professor Allison has been my adviser since I entered the university

my sophomore year. He has introduced me to the field of engineering design

and has provided every opportunity form me to grow as a researcher. I am

grateful for his guidance and look forward to continuing a fruitful collabora-

tion.

As part of Professor Allisons’ research group, the Engineering System De-

sign Laboratory (ESDL), I have had the opportunity to share time with a

diverse group of becoming researchers. I would like to thank those gradu-

ate student researchers here for their continued support during my studies

- Anand, Dan, Ashish, Kevin, Tinghao, Kuocheng, Jason, Lakshmi, Adam,

Yong Hoon, Yashwanth, Andrew, Madhav, Satya. Working towards our re-

search goals, we have not only shared knowledge, but warm memories of

fraternity.

I am also thankful for the Industrial and Enterprise Systems Engineer-

ing department, faculty, and staff whom work together to make this degree

program a entity to strive for.

Last but not least, I would like to thank the Toyota Research Institute

of North America by whose generosity this research was enabled. And I

particularly thank my mentor, Ercan M. Dede, whose continued support has

exposed me to a breadth of engineering applications.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

CHAPTER 1 Introduction . 1
1.1 Generative Design Methodology 1
1.2 Thesis Overview . 3

CHAPTER 2 Generative Algorithms 4
2.1 Lindenmayer Systems . 6
2.2 Cellular Automaton . 8
2.3 Space Colonization Algorithm 9
2.4 Reaction Diffusion Algorithm 10
2.5 Generative Algorithm Categorization 11

CHAPTER 3 Generative Algorithm Design Optimization . . 14
3.1 Design Parameterization . 14
3.2 Optimization Algorithms . 16

CHAPTER 4 Topology Optimization 22
4.1 Homogenization Method Formulation 24
4.2 Gradient Calculation . 27
4.3 Compliance Optimization . 28
4.4 Filtering Methods . 30
4.5 Optimization Routines . 31
4.6 Homogenization Approach as a Generative Algorithm 31

CHAPTER 5 Generative Algorithms for Heat Spreader
Design . 33
5.1 Heat Spreader Design Problem 34
5.2 Heat Spreader Topology Optimization Review 35
5.3 SIMP Optimization . 36
5.4 Generative Algorithm Selection 37
5.5 Optimization Results . 40

v

CHAPTER 6 Alternative Optimization Formulations 43
6.1 Average Temperature Minimization 44
6.2 Max Temperature Minimization 46
6.3 Summary of Results . 47

CHAPTER 7 Temperature Constraints 51
7.1 Temperature Constraint Variations 52
7.2 Numerical Case Study . 53

CHAPTER 8 Conclusion . 56
8.1 Thesis Summary . 56
8.2 Future Work . 57

REFERENCES . 59

vi

List of Tables

2.1 Categorizations of algorithms. 12

4.1 Penalization functions. 26

5.1 Generative algorithm assessment. 38

6.1 Computational expense of SIMP. 48
6.2 Summary of SIMP results. 49
6.3 Summary of Hybrid results. 50

7.1 Alternatives temperature constraint formulations. 52
7.2 Summary of results for different constraints 54

vii

List of Figures

1.1 Generative design methodology. 2

2.1 Generative design applications. 4
2.2 Types of graphs. 5
2.3 Generative methodology. 5
2.4 L-system tree example. 6
2.5 L-system cellular division example. 7
2.6 Cellular automaton truss. 8
2.7 Space colonization algorithm example. 9
2.8 Reaction diffusion example. 10
2.9 Algorithms by variable type. 11

3.1 Direct vs indirect mapping example. 15
3.2 Optimization algorithm comparison by class. 16
3.3 Unconstrained optimization example. 17
3.4 Patternsearch algorithm example. 18
3.5 Mutation operation. 19
3.6 Crossover operation. 19
3.7 Genetic algorithm example. 20
3.8 Sequential hybrid algorithm example. 21

4.1 Truss ground structure . 22
4.2 Optimal truss designs through various optimization. 23
4.3 Truss with optimal topology, geometry, and size. 24
4.4 Homogenization method design problem. 24
4.5 Penalized and un-penalized topology. 25
4.6 Penalization functions. 26
4.7 Optimal topology by filtering method. 30
4.8 Optimal topology by solver. 31

5.1 Generative design methodology for heat spreader design. . . . 33
5.2 Homogeneously heated design domain. 34
5.3 SIMP solutions for heat spreader design. 36
5.4 Space colonization algorithm. 39
5.5 Space colonization algorithm 3D example. 39

viii

5.6 Projection of space colonization algorithm onto a regular mesh. 40
5.7 Compliance Optimization Results 41
5.8 Sample solutions obtained using hybrid approach. 42

6.1 Homogeneously heated design domain. 43
6.2 Temperature sum optimization result. 45
6.3 Maximum temperature optimization solutions obtained by

hybrid approach. 45
6.4 Max temperature optimization result. 47
6.5 Maximum temperature minimization solutions obtained us-

ing the hybrid approach. 48

7.1 Homogeneously heated design domain. 51

ix

CHAPTER 1

Introduction

Design for engineering is a widely researched topic today. The use of one

strategy over another has large implications on the product development

cycle. The products referred to here can range in complexity from consumer

utensils to military aircraft. Often times engineers use intuition gained from

years of experience to shorten the development cycle and make incremental

progress. This is a useful strategy as product development is restricted to

a finite time span. However, heuristics are developed through experience,

which often requires years of practice. Automating the process of discovery

for the next generation of engineering systems would save time in product

development and accelerate innovation. The first steps towards this vision

are presented here. In this thesis a generative design framework is proposed

to challenge and discover new engineering heuristics.

1.1 Generative Design Methodology

The generative design methodology proposed has 5 distinct stages. These

may be followed linearly, or may be looped for iteration. The presentation

here is linear to facilitate description, Fig. 1.1.

The first stage of this methodology is to produce feasible designs that can

be evaluated. This may be accomplished by obtaining existing designs from

literature/practice which are proven, or automatically generating designs for

future evaluation. These designs will serve as basis for learning and the de-

velopment of an algorithm for targeted design optimization. The next stage

of this process is evaluation. This may include physics based simulation

for simple systems (e.g. convective heat transfer), or experimentation for

phenomena that can not yet be simulated well (e.g. rheologically complex

fluids). The evaluation is used to produce a single parameter to capture the

1

Generate
Feasible
Designs

Evaluate
Designs

Extract
Positive
Features

Create
Algorithm

Optimization Gradient Free

Repurpose Existing

Observation

Physics Based Simulation

Manual Creation Automated Generation

Experimentation

Supervised Learning

Algorithm Generation

Gradient Based

Figure 1.1: Generative design methodology.

performance of the system. This parameter is passed on to the next stage,

feature extraction. In this stage, characteristics of the feasible designs are

compared using the performance metric. Simple observations can be made

to extract rules, such as minimizing the gap between wires in circuits to min-

imize inductance, or machine learning can be used to identify features which

are not obvious. These features can be used in the next stage for algorithm

creation. Algorithm creation does not limit design to new algorithms, but

also includes existing algorithms that can be used to mimic these features,

such as cellular division in truss design [1]. As an alternative, Hidden Markov

Models may be used to automatically develop rules and their execution, this

has been done in language processing to describe patterns that emerge in

sentences [2]. The generative algorithms can then be used in optimization,

where they can be tuned to target patterns that will likely increase perfor-

mance. These extracted patterns may form the basis of future engineering

design heuristics.

2

1.2 Thesis Overview

In this document, the generative design methodology is used to create a tar-

geted design tool for the optimization of passive thermally conductive heat

spreaders. First, a discussion of generative algorithms will follow with the

presentation of a framework for classification. A short review of design and

optimization will be presented to provide the background knowledge to un-

derstand subsequent studies. Topology optimization methods will then be

presented, which are a maturing area of generative design. The next sec-

tion will present a case study to benchmark the use of the generative design

methodology for passive heat spreader design. An additional exploration of

optimal design structure is conducted in Chapter 6, where alternative for-

mulations for topology optimization are investigated. The final chapter will

conclude this initial exploration and recommend a workflow for continuing

the automation of future investigations.

3

CHAPTER 2

Generative Algorithms

Generative algorithms are powerful tools that can be used to create or modify

an object. These are used frequently in art and architecture applications to

automate the development of unique structures and artforms. Consider the

three examples in Fig. 2.1. These are produced by algorithms which are

recursive, and hence generative in nature. In this thesis, the operations

that are repeated to automate development or modification of a pattern

are classified as the generative algorithm. In this framework, generative

algorithms begin with a set of instructions. These are carried out for each

iteration resulting in a new set of instructions.

Wikipedia commons flickr.com/fractal ken flickr.com/martkknol

Figure 2.1: Generative design applications.

Visualizing a generative algorithm becomes clear when considering a gener-

ative algorithm in the context of graphs. A generative algorithm begins from

an initial graph. A graph is defined by a set of nodes and edges [3]. The

nodes can be homogeneous, where they are all identical, or heterogeneous

were they may be different. The edges of a graph have more variability.

Edges may be undirected, directed, or labeled. Several variations of these

are demonstrated in Fig. 2.2.

4

A
B

C

D C

D

B C

A

Node
Variations

Edge
Variations

Combinatorial
Variation

Figure 2.2: Types of graphs.

This graph is modified based on the rules of the generative algorithm to

change the graph. These operations may include adding, subtracting, or

modifying the parts of the graph edges, nodes, and/or labels. The resultant

graph may be interpreted as the set of instructions that will produce the

desired pattern. These are the most fundamental steps of the generative

algorithm.

Adapting a generative algorithm to accomplish a goal, however, takes more

creativity. Following the graph modification, the graph is used to build the

desired pattern or structure. It is important to note that the same generative

algorithm can be used to design a bridge or create abstract artwork. On the

other hand, the same bridge or artwork can be obtained using different gen-

erative algorithms. Understanding this concept is important moving forward

because a generative algorithm is an abstraction. It is the middle ground be-

tween a graph and final design. The interpretation of this graph abstraction

may include all nodes of the graph, a particular sequence of the graph, or the

final nodes of the graph. The chosen sequence of the graph is then used to

produce the final pattern. Capturing this discussion in a figure, a proposed

framework for interpreting generative design is presented in Fig. 2.3.

Initialize
Graph

Graph
Modification

Interpret
Instructions

Build
Structure

Figure 2.3: Generative methodology.

To clarify this framework, several examples of generative algorithms are

presented in the following sections. These algorithms are presented with an

increasing order As a first example, Lindenmayer Systems are presented.

5

2.1 Lindenmayer Systems

Lindenmayer System (L-Systems) were popularized by Aristad Lindenmayer [4].

These algorithms are defined by following grammar rules recursively to create

a design. These rules are usually defined a priori, but can be modified during

execution. Several ways to use L-Systems will be presented to demonstrate

the power of such an algorithm. Consider the following two rules for the

subsequent examples,

[A→ B] and [B → AB] (2.1)

Venation

A simple example of an L-system is that for growing tree-like structures.

Beginning with an initial node A, the system will change size as the rules

are executed. The single node at the first iteration results in 5 nodes in the

final iteration. To achieve a tree-like structure, consider the development

of a heterogeneous non-directed graph throughout all iterations as shown in

Fig. 2.4. This resembles a tree in structure directly in its’ graph form. As

an additional level of complexity, each node label is considered an alphabet

which has an additional set of rules. These can be used to fully parameterize

the final design.

alphabet = [Length , Angle , Thickness , Label] (2.2)

This alphabet is attached to a node, and represents a set of instructions that

describe the geometry of a line in 2 dimensions. Using the instructions at each

node, a detailed branching pattern may be developed. This is demonstrated

in Fig. 2.4.

A
B

A B
B A B

A B B A B

 Iter. State Graph Tree
i = 1
i = 2
i = 3
i = 4
i = 5

Figure 2.4: L-system tree example.

6

The procedure described in Fig. 2.3 was followed here. The graph was ini-

tialized with a single node. The two rules presented earlier were recursively

followed to modify the graph and produce a set of A’s and B’s. This was

then interpreted as a heterogeneous undirected graph. Finally, the graph was

mapped to build a tree-like image.

Cellular Division

Earlier in this chapter it was mentioned that the same generative algorithm

can be used to produce two different structures by interpreting the algorithm

output differently. To demonstrate this, the same grammar rules can be used

to subdivide cells. In this example the graph is no longer interpreted as the

actual structure, but as a set of instructions to divide a square. Where the

alphabet was previously used to parametrically define a line, now it is used

to subdivide a cell in half. The graph is also now directed as to show the

progression of modifications through iterations. This is performed once at

every iteration for each alphabet present.

B A B A
A

B
A

A B A

B

A

B

B A

B

B
A

B

A B

B A B

i = 1 i = 2 i = 3 i = 4 i = 5

Figure 2.5: L-system cellular division example.

Once again, a graph was initialized. The same graph was obtained since the

same rules were used to modify the graph. The interpretation of this graph

has changed, where now the time history of the execution matters. These

instructions were then used to build a subdivided square. It is important

to note here that, given a set of rules, a deterministic generative algorithm

will always produce the same final result. Variety in generative algorithm

7

output can be achieved by changing the rules, or by changing the number

of algorithm iterations. For an example of the use of L-systems for the

optimization of an engineering system, please refer to [1]. In this paper, L-

systems were used to emulate a more complex version of cellular division to

optimize a truss structure.

2.2 Cellular Automaton

The next level of complexity for generative algorithms are present in Cel-

lular Automaton. Similar to Lindenmayer systems, cellular automaton use

grammar-based rules to update a structure. This type of algorithm was stud-

ied thoroughly by Wolfram [5]. Unique to cellular automaton is the strategy

of defining and applying grammar rules based on neighborhoods. These

neighborhoods can be defined by adjacency, norm, or some other metric.

When considering a vector where neighborhoods are defined by adjacency,

the state of cell V(j) may depend of the state of cells V(j-1) and V(j+1). For

example, consider a binary vector with the following rule set:

[V (j) = 1→ V (j) = 0] and [V (j− 1) +V (j+ 1) ≥ 1→ V (j) = 1]. (2.3)

Following these rules recursively reveals a symmetric pattern through time.

By connecting fully all the cells with an ‘on’ or ‘1’ state, a structure made of

triangles can be formed. This procedure is demonstrated in Fig. 2.6.

[0 0 1 0 0]
[0 1 0 1 0]
[1 0 1 0 1]
[0 1 0 1 0]
[1 0 1 0 1]

 Iter. State Graph Pattern
i = 1
i = 2
i = 3
i = 4
i = 5

Figure 2.6: Cellular automaton truss.

The presented implementation of cellular automaton consisted of updat-

ing a one-dimensional, initial vector. Modifying this one-dimensional vector

through time allows results in a final vector of the same length. Interpreting

8

these vectors in a matrix from by aggregating them reveals a geometric pat-

tern where the 1’s are nodes. Fully connecting these nodes into triangular

shapes produces a stable truss structure. The same rules can be applied to

spaces of higher dimension and complexity. As a famous example in two

dimensions, consider “Conway’s Game of Life”, [6]. Cellular automaton was

adapted for truss optimization in a paper by Khetan and Allison.

2.3 Space Colonization Algorithm

The cellular automata algorithms usually consider a discretized space that

is defined prior to updating the graph. This next algorithm is similar to cel-

lular automaton where neighborhoods are used to influence the modification

of a graph, however, this is done in a continuous space. The space coloniza-

tion algorithm [7] was developed to create leaf-like patterns. It does so by

modeling a theory for leaf vein growth called the canalization hypothesis [8].

The canalization hypothesis suggests that leaf veins grow towards hormone

centers on the leaf. This algorithm replicates this procedures by: 1) Initial-

izing the stem, 2) Placing hormone sources on the leaf, and 3) Growing veins

towards hormone sources. Though the algorithm was developed to model

leaf veins, it can be adapted for other purposes. Consider the example in

Fig. 5.4.

Initialize Grow Symmetry Map

Figure 2.7: Space colonization algorithm example.

Analyzing this from a the definition of a generative algorithm presented

in Fig. 2.3, the similarities becomes clear. The graph was initialized with

a stem node and auxin locations. The graph was modified based on rules

defined by neighborhoods. The resultant graph is interpreted directly as its

structure represents leaf veins. The nodes of this output can be used to trace

9

and build the final structure. The algorithm produces a dendritic structure,

which after symmetric reflections, changes into a new type of structure. This

type of structure resembles solutions from micro-structure design in solid

mechanics. The space colonization will investigated further in subsequent

chapters as a tool for designing heat spreaders.

2.4 Reaction Diffusion Algorithm

At a glance, reaction diffusion models are another example of continuous

hybrid cellular automata. Reactions diffusion equations were developed to

model chemical processes. They are interesting as they combine two different

types of algorithms together. The first algorithm is based on continuous

equations for diffusion. The second algorithm involves discrete local updates,

or reactions. Consider a space filled with red (R) and black (B) particles, as

shown in Fig. 2.8. The particles will move (diffuse) based on some physics-

based criteria. If a certain combination of particles come within a distance

of each other, then a reaction takes place. For this example consider the

following grammar based reaction:

[2R + 1B → 3B]. (2.4)

When two red particles come in contact with a blue particle, the red par-

ticles are changed to blue. The execution of this procedure is illustrated in

Initialize Diffuse React Map

Figure 2.8: Reaction diffusion example.

Fig. 2.8, where a set of particles is initialized and allowed to diffuse for a pre-

scribed time. A reaction may take place if the conditions are right, and this

changes the composition of particles on the domain. If this set of particles

is interpreted as a Voronoi type diagram, the local regions around a particle

10

are assigned to it, resulting the mapping shown in the figure. This can be

used to generate a wide variety of interesting patterns. In practical appli-

cation, the chemical domain may be discretized into finite elements and the

particular amounts in each cell may be controlled. This presents a discrete

domain alternative to the continuous representation.

2.5 Generative Algorithm Categorization

Generative algorithms such as the ones presented above are used in various

domain-specific applications. An element that is important to generalizing

the use of these algorithms is understanding the similarities and differences

between the natures of the algorithms. For example, when observing the

discrete or continuous properties of the algorithms, they may be interpreted

as shown in the following figure:

L-System
Reaction
Diffusion

Space
Colonization

Cellular
Automata

ContinuousDiscrete

Figure 2.9: Algorithms by variable type.

The L-system algorithm is the most discrete algorithm based on it’s gram-

mar rules. The reaction diffusion model may be the most continuous of the

algorithms, though also has some discrete elements. The remaining two al-

gorithms fall between these two based on this criteria. This simple example

for categorization is one of many that can be used to classify generative algo-

rithms. As step towards a deeper understanding of algorithm relationships,

Table 2.1 has been compiled.

It is important to note that these algorithms can be modified to obtain

characteristics that may be necessary for a specific application. The pre-

sented categorization was made considering basic forms of each algorithm

for the sake of argument and comparison. The following paragraphs will de-

scribe each categorization and the placement of each respective algorithm.

Physics Update: This criteria describes algorithms that are updated based

on first principles or fundamental laws of physics. A clear example of this is

11

Table 2.1: Categorizations of algorithms.

Categorizations
Algorithm

RD CA SC LS
Physics Update ◦ ◦
Neighborhood ◦ ◦ ◦

Grammar ◦ ◦
Discrete Event ◦ ◦ ◦

Parameter Controlled ◦ ◦
Variable Sized ◦

KEY
RD = Reaction Diffusion CA = Cellular Automaton

LS = L-System SC = Space Colonization

a reaction diffusion algorithm. These are typically used to model chemical

reactions. This characteristic in an algorithm is beneficial for efficiently pro-

ducing engineering designs.

Neighborhood: These algorithms are updated based on the status of local

parts of the system or spatial relationships. When using cellular automata,

the status of a cell is updated based on the status of its neighboring cells.

The space colonization algorithm also uses local information about all auxin

to define growth direction. The reaction diffusion equations update based on

the local information as well.

Grammar: Grammar-based algorithms are updated using on a set of defined

rules. For example the rules that define neighborhood updates when using

cellular automata. L-systems also use these exclusively when the growth of

the structure is chosen apriori. For this reason, L-system are not classified

as neighborhood update algorithms.

Discrete Event: These algorithms will perform changes based on the oc-

currence of a discrete event. The L-system, cellular automaton, and reaction

diffusion algorithms all have this characteristic. Examples of discrete events

include the switch of a state or passing of a threshold.

Parameter Controlled: These algorithms are not defined by designed

rules, but parameters that control a relationship. Clear examples of this

12

are the reaction diffusion and space colonization algorithms that use contin-

uous equations to update the graph.

Variable Sized: This describes algorithms that grow a design in size during

operation. The L-system algorithm is only algorithm that is not bounded by

growth. Output graphs may increase in size indefinitely.

13

CHAPTER 3

Generative Algorithm Design
Optimization

To understand how generative algorithms can be used in optimization, a

short review of optimization is provided here. For an in-depth presenta-

tion of design optimization, please refer to Refs. [9, 10]. Consider a general

optimization problem as shown in Eq. (3.1).

minimize
x

Θ(x)

s.t. h(x) = 0

g(x) ≤ 0
(3.1)

There is some objective function, Θ(·), that depends on a vector of design

variables x. This objective may be subject to a set of equality constraints,

h(x), and/or inequality constraints, g(x). How this optimization problem is

formulated greatly influences whether the problem can be solved and what

type of solution will be obtained. In this chapter the use of generative al-

gorithms in optimization formulation will be clearly outlined. In addition, a

high-level review of optimization algorithms used in subsequent studies will

be presented.

3.1 Design Parameterization

As discussed in the previous chapter, generative algorithms are defined by

the creation of a set of instructions, and the execution of these instructions

to create a pattern. To use generative algorithms in design optimization, the

parameters that guide the growth of the generative algorithm are used as de-

sign variables. Optimizing parameters that guide the growth of the algorithm

14

results in an indirect mapping for optimization, or a design representation

abstraction. To understand better this mapping, consider the specification

of a shaft, shown in Fig. 3.1. To define directly the shaft design represen-

tation, independent geometric dimensions may be selected. An alternative

abstract design representation could involve adding one rule that increases

or decreases the diameter of the shaft at each stage, and one that modifies

the radius. This would form a generative algorithm that modifies design

properties (as opposed to adding or subtracting elements). This design rep-

resentation, however, reduces the set of achievable shafts, but provides an

efficient shaft design representation in terms of optimization variable dimen-

sion.

1
2

3

4
5

6

Direct Mapping
6 Variables

Indirect Mapping
3 Variables

1

Rule 1: Height(i+1) =1/2*Height(i)
Rule 2: Radius(i+1) =1/2*Radius(i)

1, 1

0.5, 0.5

0.25, 0.25
R, H

Variables Shaft Variables ShaftGraph

GDA

Figure 3.1: Direct vs indirect mapping example.

Direct mappings typically result in larger-dimension design problems; de-

sign decisions must be made for every detailed design element. This represen-

tation allows for maximal design flexibility, however, the design problem may

become difficult to optimize with the large number of design variables. Indi-

rect mappings have a reduced number of design variables. This often reduces

design problem solution difficulty, but eliminates access to at least some de-

signs due to dimension reduction (i.e., design space coverage is reduced). If

a generative algorithm intelligently provides coverage of important regions

of the design space, it can help focus design search efforts and increase the

likelihood of finding better designs. An interesting example of the success

of an indirect mapping for soft robotics is present in the work of Cheney et

15

al. [11], where indirect mappings supported the identification of meaningful

designs, whereas direct mappings could not. This effect is generalizable to

other systems. This will become apparent for the heat transfer application

presented in this thesis.

3.2 Optimization Algorithms

The algorithms presented here can be separated into three categories: 1)

Gradient-based, 2) Gradient-free, and 3) Memetic. Gradient based optimiza-

tion strategies are used to locate a point where the gradient of the objective

function is zero (or satisfy similar requirements for constrained problems).

This point may be a maximum, minimum, or a saddle point. These algo-

rithms move towards this stationary point using objective rate of change

information. This can be calculated either analytically (exact), through ad-

joint techniques, finite difference methods, or other sensitivity approximation

methods. Gradient-free algorithms do not use derivative information as a ba-

sis for optimization. These algorithms use different types of rules to search

the design space for an optimum, usually requiring a large number of objec-

tive evaluations to converge. Memetic algorithms combine characteristics of

both algorithms to speed up convergence. These will be discussed in more de-

tail later. As a point of comparison, these classes of algorithm are compared

in Fig. 3.2.

Convergence Speed

Memetic
Algorithm

Gradient
Free

Gradient
 Based

Global Convergence

Figure 3.2: Optimization algorithm comparison by class.

As mentioned in the previous paragraph, gradient-based algorithms are

typically much better at converging quickly to a local optimum than gradient

free methods. However, this does not guarantee convergence to a global

optimum. Though guarantees cannot be made for any algorithm to converge

to a global optimum unless certain restrictive conditions are satisfied, the

likelihood of finding a better optimum increases when using gradient free

methods.

16

Gradient-Based Optimization

Consider unconstrained optimization, which refers to a problem where the

objective function is in sole consideration. A fabricated test function has

been developed and is presented in Fig. 3.3. The function is well defined

and continuous along the solid blue line. At each iteration the gradient is

calculated and used to direct the search towards the optimal solution. In

this particular example, each step is damped to improve convergence. This

strategy is known as a damped gradient descent [12]. The likely progression

for this algorithm is presented in Fig. 3.3.

x

F(x) Initial Point

Figure 3.3: Unconstrained optimization example.

Since this class of optimization algorithm uses gradient information to

move towards a local minimum, these methods typically converge in fewer

steps than gradient-free methods. In this thesis, several gradient-based al-

gorithms are investigated for design optimization. These will be described

prior to their use.

Pattern Search

The pattern search algorithm is a gradient free method that falls under a

class of algorithms called “direct search” algorithms. Algorithms of this type

search the design space iteratively by taking the best possible step at each

17

iteration from a pre-defined template [13]. Like the gradient-based methods,

the pattern search algorithm requires an initial starting point. From this

starting point the algorithm will poll the design space by evaluating designs

in all predefined search directions (in the example strategy presented here,

two per design variable). Of the candidate steps, the pattern search algorithm

will take the step that results in a design with the best objective function

value1. If none of the step directions decrease the objective function value,

the step size is reduced and a new poll is taken.

x

F(x)

Initial Point

Figure 3.4: Patternsearch algorithm example.

This procedure is demonstrated in the one-dimensional example in Fig. 3.4.

The algorithm converges when the poll size falls within a defined tolerance.

The pattern search algorithm is less sensitive to disturbances when compared

to the gradient-based methods, since the poll size may increase or decrease

at a given position. It can be used to optimize non-smooth functions, but

it is not a global optimization algorithm. Pattern search is a local search

algorithm, and may pass over the global optimum if the poll size is too large,

or if started at a point that leads to a local optimum instead of the global.

1An alternate strategy is to select the first step that provides descent.

18

Genetic Algorithm

A genetic algorithm is another type of gradient-free method. This algorithm

was pioneered by John Holland in the late 1960s. This method falls under

a general class of algorithms which model evolutionary processes for use in

optimization. For a good reference on evolutionary computing refer to [14].

A genetic algorithm is an attempt to numerically model Darwin’s theory

of evolution, based on natural selection, for optimization purposes. Unless

otherwise specified, the algorithm begins by selecting a random initial pop-

ulation from the pool of candidate designs. The designs are represented as

a vector of real numbers, for this example, a binary vector. The designs are

evaluated and several actions may occur depending on the implementation of

the algorithm. For example, a fraction of the best designs may be passed on

to the next generation. These are sometimes refered to as the elite members

of the population. Another action that may take place is called a mutation,

where one or more bits in the vector representation may be changed before

being passed on to the next generation:

x1 =
[
1 1 1 1 1 1

]
→ x2 =

[
1 1 1 1 1 0

]
Figure 3.5: Mutation operation.

Some designs may experience a crossover, where two designs may trade

portions of the design vector before being passed on to the next generation.

x1 =
[
1 1 1 | 1 1 1

]
x2 =

[
1 0 1 | 0 1 0

] → x3 =
[
1 1 1 | 0 1 0

]
(3.2)

Figure 3.6: Crossover operation.

Candidates that are not passed on to the next generation are dropped

and new designs are sampled from the design space using these aforemen-

tioned operations. It is likely that through the generations these operations

will result in designs that are near the current best designs. However, some

designs may perform poorly as a result of the crossover and mutation oper-

ations. These designs that are far away from the current best design may

19

increase the likelihood of finding a better local optimum. As this procedure

is repeated, only the best performing designs will be passed on to the final

generation. Fig. 3.7 demonstrates how a genetic algorithm may search the

design space of a 1-dimensional problem using a population size of 4.

x

F(x)

Generation 1
Generation 2
Generation 3

Initial Population

Figure 3.7: Genetic algorithm example.

The genetic algorithm would ideally cover most of the design space during

an optimization and converge to a global optimum based on the spread of

designs in the final generation. Global coverage however, is not guaranteed

and local convergence requires many function evaluation. It is also impor-

tant to note this described convergence will require many generations to be

achieved. This has been grossly simplified in the example for demonstration

purposes.

Hybrid-Strategies

Hybrid algorithms combine qualities of both gradient-free and gradient-based

methods. This is achieved by executing both of algorithms together in search

of a global optimum. In this work, a sequential hybrid approach is used.

20

Namely, a genetic algorithm method is used to search the domain and provide

a good starting point for a gradient based or direct search method. The

optimizer is then switched to an algorithm with better convergence properties

to fine tune the optimization. This is demonstrated in Fig. 3.8.

x

F(x)

Generation 1
Initial Population

Final GA
Initial gradient based

Figure 3.8: Sequential hybrid algorithm example.

In this example, a genetic algorithm is used to scan the design space for 2 gen-

erations before switching to a gradient-based method for rapid convergence.

This method is usually slower than gradient based methods, but improves

the probability of finding a global optimum. As an alternative, a memetic

strategy could be used where a gradient based algorithm is nested in a genetic

algorithm to improve the fitness of each individual in each generation. For

the topology optimization problem investigated here, this implementation is

not computationally tractable, and hence the sequential approach is used.

21

CHAPTER 4

Topology Optimization

In this work various applications of topology optimization are explored. Op-

timization of design topology aims to improve performance by making topo-

logical changes. Two designs have different topologies is a homeomorphism1

does not exist between them. A topological design change is one that cre-

ates a new design that is not homeomorphic with the original design. To

clarify the definition of topology optimization, consider the seven-bar truss

in Fig. 4.1. The optimization will be described in the truss domain as it has

clear visual resemblance to a graph.

Figure 4.1: Truss ground structure

One intuitive strategy for defining a topology optimization problem is to

define a ground structure, i.e., a description of all the possible elements

and connections that may exist in a system, and then to choose a subset

of these available elements as the design. Adding or removing an element

from a design changes its topology. The graph corresponding to the truss

in Fig. 4.1 may be used as a ground structure. Elements may be removed

1A homeomorphism is a transformation that does not involve dividing or combining
spaces.

22

and still produce a structurally stable (feasible) truss. Two of the nodes

are fixed on the left side, and a load is applied at the bottom right node.

A typical structural engineering problem formulation consists of minimizing

the weight of the truss subject to stress and/or displacement constraints.

When optimizing a truss structure such as this, there are three general types

f design changes: topology, size, geometry (or shape).

Topology Size Geometry

Figure 4.2: Optimal truss designs through various optimization.

When performing topology optimization we seek to determine which truss

elements should exist and how they should be connected to minimize weight

while satisfying the constraints [15–17]. Decision of member (edge) existence

from the ground structure is a discrete problem. Size design optimization

here refers to adjusting the cross sectional area of each existing truss bar,

and can help further reduce weight while satisfying constraints [18–22]. Size

optimization is generally a continuous problem, however, it may be treated

as a discrete problem when constrained to a set of standard bar sizes. During

optimization, members that do not bear load tend toward zero area. When

these are removed, optimal designs may converge to optimal topologies (but

not always). The final consideration is geometry or shape optimization, which

considers the position of the nodes as design variables [23–28]. This is usually

treated as a continuous optimization problem. In more complicated struc-

tural design problems shape optimization may involve distributed geometry.

When considering all three optimization types in a single problem, significant

increases in structural performance can be achieved.

23

Figure 4.3: Truss with optimal topology, geometry, and size.

This combined problem, however, is challenging to optimize due to the

need to optimize continuous and discrete variables together. A challenge

associated with this is that the set of continuous variables changes when

topology is changed. For this reason, researchers have developed an alterna-

tive relaxed parameterization of a truss which is based on ground structures.

This next set of methods are categorized as the homogenization approach,

developed by Bendsoe and Kikuchi [29].

4.1 Homogenization Method Formulation

This approach to structural optimization considers a continuous and bounded

design domain. A designer must now decide how to distribute material on

this domain.

Figure 4.4: Homogenization method design problem.

24

To do so, the domain is discretized into finite elements and whether mate-

rial exists in each cell defines the material distribution. A binary value (0 or

1) is assigned to each element to specify material existence. Elements defined

by 0 material are considered void, and elements defined by 1 are considered

solid. This parameterization of the domain results in a large-scale problem

with a set of binary design variables. Evaluating the structural behavior of

a design using finite element analysis requires that each element has a small

amount of material in it (not zero). Otherwise, the corresponding stiffness

matrix would not be well-conditioned. Due to the discrete binary design rep-

resentation, optimization based on this formulation requires use of zero-order

(gradient-free) methods without the benefit of special problem structure to

support efficient computation. This makes converging on a meaningful design

difficult for anything but very small problems. Practical problems normally

involve at least thousands of design variables.

A significantly more efficient strategy was discovered in the 1980s [29]. A

continuous relaxation of the material distribution variables supports gradient-

based methods. Each element is assigned a continuous value between 0 and

1 that indicates material density in that element. This strategy enables

efficient solution of large problems due to special problem structure proper-

ties. This relaxation, however, poses an issue since an element with partial

density is not always manufacturable. To create elements with partial den-

sity, some researchers have looked into micro-structure design [30], where

the material properties of the intermediate density cells can be matched to

a micro-structure. Gradient materials are also realizable using advanced

manufacturing methods. If the engineering application for which topology

optimization is used cannot support the inclusion of custom micro-structures

or partial density elements, a penalization approach may be implemented to

bias element density values toward void or fully-dense.

Figure 4.5: Penalized and un-penalized topology.

This avoids intermediate density elements, and is closer to a design that is

25

manufacturable using more conventional techniques. Consider the following

equation:

C(x) = α(x)C0, (4.1)

where the effective elasticity tensor, C(·), is the elasticity tensor, C0, penal-

ized by a function, α(·), in terms of the design variable, 0 ≤ x ≤ 1. The

penalty function can be designed to penalize intermediate material density

values. Two common penalty functions used are an exponential function—

used with the well-established method referred to as Solid Isotropic Material

with Penalization (SIMP) [31] — and interpolation strategies, such as the

Rational Approximation of Material Properties (RAMP) [32] method. Rep-

resentative penalty functions are defined in Table 4.1.

Table 4.1: Penalization functions.

α(x) = xp α(x) = x
1+q(1−x)

SIMP RAMP

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

,
(x

)

Relaxed
SIMP
RAMP

Figure 4.6: Penalization functions.

From the plot it is easy to see that elements with partially defined material

retain a small amount density (material stiffness) when multiplied by a near-

zero penalty. This makes the optimization favor elements with either fully

defined solid material, or void. Generally, the RAMP formulation is preferred

26

over the SIMP formulation since the derivative of α(0) 6= 0. However, this

does not prevent the SIMP formulation from converging. Alternative formu-

lations to these may be investigated to improve the convergence properties

for specific applications.

4.2 Gradient Calculation

With this relaxed implementation, the optimization problem becomes differ-

entiable. However, obtaining gradient information efficiently for the finite

element model is difficult. To overcome this, the adjoint method for cal-

culating gradients is used. The optimization problem objective function,

represented here as Θ(x), may be expressed in terms of both independent

and dependent variables solved for in a finite element program. To obtain the

gradient of the objective with respect to a given design variable, the chain

rule must be used. To help illustrate the use of the chain rule here, consider

the following representation of the objective function:

Θ(x) =
∑

Π(U(x),P(x),x), (4.2)

where the objective is the summation of a function, Π(·), that depends on

displacement field, U(x), load field, P(x), and the vector of the design vari-

ables, x. Using this representation, it becomes clear where dependencies on

the design variable are possible. To obtain the gradient of this function, the

chain rule can be used:

dΘ(x) =
∂Π

∂U

∂U

∂x
+
∂Π

∂P

∂P

∂x
+
∂Π

∂x
(4.3)

From this equation, it is clear that using a finite difference strategy for ob-

taining the gradient is expensive since calculating the sensitivity of the dis-

placement field with respect to each design variable requires multiple finite

element analyses. To avoid this, the adjoint method for calculating the gra-

dient can be used. The residual of finite element analysis, which should be

approximately zero, is differentiated and added to the gradient of the objec-

tive function.

dΘ(x) =
∂Π

∂U

∂U

∂x
+
∂Π

∂P

∂P

∂x
+
∂Π

∂x
+ λT

[
∂K

∂x
U + K

∂U

∂x
− ∂P

∂x

]
. (4.4)

27

Where, K, represents the stiffness matrix, and an adjoint (dual) variable, λ,

multiplies the differentiated residual equation. This is a fair mathematical

operation since the residual term is zero. Rearranging this equation, the

following representation can be obtained:

dΘ(x) =

[
∂Π

∂U
+ λTK

]
∂U

∂x
+

[
∂Π

∂P
− λT

]
∂P

∂x
+
∂Π

∂x
+ λT

[
∂K

∂x
U

]
. (4.5)

At this point, there are many unknowns in the system. However, by inspec-

tion, λ may be chosen in such a way as to eliminate the expensive partial

derivative terms. This will become clear when considering problem specific

loading and boundary conditions. Since the procedure for obtaining the gra-

dient at this point becomes problem dependent, the derivation of the specific

sensitivity calculation is left for future sections.

4.3 Compliance Optimization

The success of the homogenization method is due to the flexibility of this

method to handle problems of various physics without major modification

to the design optimization method. Topology optimization methods have

been under development for a few decades and are now beginning appear in

many commercial finite element packages. However, many uses of the topol-

ogy optimization method are centered around a particular class of objective

function: compliance. A typical topology optimization problem for the truss

problem is presented in the following equation:

minimize
x

C =

∫
UPdΩ

s.t. V ≤ Vp

R(x) ≥ Rmin,

(4.6)

where the compliance of the structure, C, is minimized with respect to ma-

terial density, x. This is subject to a volume constraint, Vp, and minimum

radius constraint, Rmin. To obtain the gradient information for the compli-

28

ance problem, Eq (4.5) can be reduced. It is restated here:

dΘ(x) =

[
∂Π

∂U
+ λTK

]
∂U

∂x
+

[
∂Π

∂P
− λT

]
∂P

∂x
+
∂Π

∂x
+ λT

[
∂K

∂x
U

]
.

Using problem structure, such as a zero Dirichlet boundary, allows for the

reduction of this equation. Consider splitting variables defined by free and

prescribed degrees of freedom in the residual equation:[
Kff Kfp

Kpf Kpp

][
U f

Up

]
=

[
P f

P p

]
, (4.7)

where the boundary simplifications can be used to reduce the gradient equa-

tion:

dΘ(x) =

[
∂Π

∂Uf
+ λT

f K
ff + λT

pK
pf

]
∂Uf

∂x
− λT

p

∂Pp

∂x
+ λT

f

[
∂K

∂x
Uf

]
. (4.8)

The derivative displacement terms on the fixed boundary drop out, since the

displacement is zero. The derivative of the loading terms on the free domain

also drop out, since the loading is constant. The derivative of the compliance

with respect to the design variable also drops out, since compliance is not

explicitly in terms of the design variable. With the gradient equation in this

form, solving for the adjoint variable becomes clear. If λp is chosen to be

zero, the equation reduces to the following form,

dΘ(x) =

[
∂Π

∂Uf
+ λT

f K
ff

]
∂Uf

∂x
+ λT

[
∂Kff

∂x
Uf

]
, (4.9)

where λf can be obtained as the solution to a linear system of equations to

eliminate the a partial derivative term.

λT
f K

ff = − ∂Π

∂Uf
= Pf = KffUf (4.10)

In fact, the linear system of equations does not need to be solved numerically,

analytically solving this equation reveals λT
f = Uf . The gradient equation is

then reduced to the following form,

dΘ(x) = λT
f

[
∂Kff

∂x
Uf

]
= Uf

[
∂Kff

∂x
Uf

]
(4.11)

29

This expression allows for the calculation of the gradient using known quan-

tities obtained form the finite element analysis, hence further reducing the

computational expense. This makes the compliance objective desirable for

fast optimization.

4.4 Filtering Methods

To handle the satisfaction of the minimum radius constraint, researchers

have implemented image processing techniques. Namely, introducing a filter

to bias the design towards larger or smaller void areas. These filters are

applied on localized neighborhoods to enforce minimum radius constraints

and define how material is updated between iterations. Introducing this fil-

ter effectively removes the constraint from the optimization problem, since

it becomes inherently satisfied after several iterations. Optimal designs ob-

tained by various filtering techniques are presented in Fig. 4.7.

Sensitivity Density Heaviside Projection

Figure 4.7: Optimal topology by filtering method.

In sensitivity filtering, the filter is applied solely to the gradient of the

objective function to redistribute material on the domain [33]. In density

filtering, the filter is applied both to the gradient of the objective and to the

volume constraint to redistribute material on the domain [34]. The Heaviside

projection filter uses the Heaviside function in an inner optimization loop to

redistribute material on the domain [35]. Changing a filter will likely change

the final result of the optimization [36]. When designing a structure, it is a

good idea to obtain an array of designs by optimizing with various filters. Af-

ter post-processing these designs, commercial finite element analysis (FEA)

software can be used to compare fairly the performance of each design.

30

4.5 Optimization Routines

To solve the presented homogenization type problem, many researchers are

designing optimization algorithms to improve computational efficiency. These

may be general algorithms, or tailored to perform well for one specific prob-

lem formulation. Consider once more the truss design problem discussed

in this chapter. The similar optimization problem is solved here using the

homogenization approach with three different optimization algorithms.

OC MMA SQP

Figure 4.8: Optimal topology by solver.

The Optimality Criteria (OC) method was designed specifically to optimize

a problem with a single equality constraint. This is a fair modification since

the optimization solution is generally on the constraint boundary. Under this

assumption, the algorithm can converge quickly to a solution. The Method

of Moving Asymptotes (MMA) algorithm was designed to solve large-scale

optimization problems and can handle multiple constraints. In the topology

optimization community, this is the algorithm of choice. The final solution

was obtained using Matlab’s fmincon() sequential quadratic programming

(SQP) algorithm. It is interesting to see that each algorithm converges on a

somewhat different design, even when sharing the same analysis and filter.

4.6 Homogenization Approach as a Generative

Algorithm

The homogenization approach is enabled by clever problem formulation and

optimization algorithms. It is designed to work as an optimization method

and is considered as such. When analyzing the methodology from a gener-

ative perspective, new insights emerge. Since the homogenization approach

uses a finite element mesh for design, it can be seen as a large scale graph,

where each element of the mesh is a node on the graph. The density of

31

material in an element can be considered the label of a node. Topology

optimization methods then used localized rules to enforce minimum radius

constraints, similar to cellular automaton which uses localized rules to up-

date cells. When recognizing this, the entire problem manifests itself as an

application of cellular automaton with discrete cells and continuous design

rules (gradient based update). From this point of view, this makes homoge-

nization topology optimization methods the most successful and widespread

use of cellular automaton in engineering design. This observation is briefly

discussed in a recent review [37].

32

CHAPTER 5

Generative Algorithms for Heat
Spreader Design

In this chapter the generative design methodology will be applied to pas-

sive heat spreader1 design. The procedure for implementing this method is

presented in the following figure.

Generate
Feasible
Designs

Evaluate
Designs

Extract
Positive
Features

Create
Algorithm Optimization

SIMP
Method

Physics
Based

Simulation
Observation Modify

Existing
Genetic

Algorithm

Figure 5.1: Generative design methodology for heat spreader design.

As an early implementation of this methodology, many of these steps are

done manually. First a literature review of topology optimization for heat

transfer is conducted. Observations are made to identify characteristics of

optimal structures presented in the literature. Then a generative algorithm

is selected that is capable of producing designs with similar features. This

generative algorithm is then used in optimization as a design abstraction to

support efficient search for improved designs. It is my vision to automate

this process in the future to create an autonomous, generalizable, design

tool to aid engineers. Such automation is especially important for cases

where manual observation of important design features is impractical, or

when existing available generative algorithms cannot produce the desired

features. This chapter will walk through the generative design procedure in

detail for the passive heat spreader design study.

1A heat spreader is used to direct heat from a heat source to a heat sink.

33

5.1 Heat Spreader Design Problem

To best evaluate the generative design method (GDM) for designing heat ex-

traction topology, a benchmark problem is used. Consider a homogeneously

heated design domain, as shown in Fig. 5.2.

W

GD

GN

Figure 5.2: Homogeneously heated design domain.

The design domain, Ω, is bounded by the solid black line. The temperature

is fixed at zero on the Dirichlet boundary, ΓD, represented by the dashed line.

The Neumann boundary, ΓN , is adiabatic and restricts heat flux out of the

domain. The steady-state conductive heat transfer across the domain can be

represented by the following governing equations:

∇ · (κ∇T) + q = 0 on Ω (5.1)

T = 0 on ΓD (5.2)

(κ∇T) · n = 0 on ΓN , (5.3)

where T is the spatially-varying temperature state variable, q is the heat

generated, and κ is the thermal conductivity of the material in the domain,

Ω. The thermal compliance of the system is commonly used as a heat transfer

optimization objective function:

C =

∫
∇T · q dA =

∫
∇T (k∇T)dA. (5.4)

This measure sums the element-wise displacement and loading vectors (tem-

perature and heat flux) at each finite element node.

C = U ′P (5.5)

34

The design optimization problem considered here is:

minimize
x

C(x) (5.6)

subject to V (x) ≤ Vp (5.7)

R(x) ≥ Rp (5.8)

where the goal of the optimization is to minimize the thermal compliance of

the system. The amount of material, V(x), is constrained to be less than a

prescribed value Vp. The radius of any conductive path elements, R(x), must

be larger than a prescribed value Rp. The design vector, x, is the relaxed

design representation that maps to element material density. The specific

meaning of elements in the design vector will change between the different

design methods used.

5.2 Heat Spreader Topology Optimization Review

Heat spreader design using topology optimization has been investigated for

numerous applications. Initial work in this domain was conducted by Hansen

et al. [38], where the finite volume method was used with topology optimiza-

tion to solve a planar heat conduction problem. The optimal structure ob-

tained resembled a branching ‘five-finger’ structure. A similar structure is

observed when optimizing a multi-objective problem when heat conduction

is dominant [39]. Beyond the SIMP parameterization of topology optimiza-

tion, researchers have also investigated the use of level set methods, where

similar branching patterns emerged as optimal [40]. When scaling to three

dimensions, it was observed that tree-like structures were again found to be

ubiquitous features in optimal designs [41–43]. These structures, however,

are not limited to heat conduction exclusively. When considering heat con-

vection, researchers observed similar dendritic patterns, [44–47]. This type of

structure seems to correlate more with the governing equations of the physics

than the loading conditions. However, there is still a correlation with loading

conditions. For example, the designs change somewhat when heat convection

becomes the dominant mode of heat transfer. Yet, the topology optimization

results are still dendritic in nature, and it can be concluded that dendritic

35

patterns represent a class of optimal features for conductive and convective

heat transfer. In this work, heat conduction is considered exclusively.

5.3 SIMP Optimization

To validate GDM solutions, the SIMP optimization will be performed here

to confirm the dendritic structure for this specific optimization. Recall that

the gradient calculation for compliance results in the following equation for

a particular element:

dΘ(x) = Uf

[
∂K

∂x
Uf

]
. (5.9)

This avoids the need to solve a linear system to obtain the adjoint variable,

and therefore makes the compliance metric favorable for efficient computa-

tion. The topology optimization problem was solved for three mesh densities

using the MMA algorithm. Fig. 5.3 illustrates the results from each of these

uniform meshes, with increasing refinement from left to right.

6,500 elements 25,600 elements 102,400 elements

Figure 5.3: SIMP solutions for heat spreader design.

From this figure it is clear the same dendritic structure results for all mesh

densities. This confirms the results presented in literature for passive heat

spreaders dominated by heat conduction and motivates the investigation of

this particular structure. The results obtained using the SIMP method will

be used to benchmark the performance of the generative method.

36

5.4 Generative Algorithm Selection

To find an algorithm to produce dendritic strucutres, attention is first di-

rected to existing applications in engineering design. As an alternative to

SIMP topology optimization, Constructal Theory [48] has been used to de-

sign structures for heat transfer. Pioneered by Adrejan Bejan, these ap-

proaches are inspired by biological systems. The optimal topology for heat

conduction problems resemble the naturally occurring phenomena of vena-

tion, the arrangement of veins in a leaf. In heat transfer applications, some

researchers have recognized the tendency of optimal heat transfer topology

to resemble dendritic patterns and capitalize on this to perform optimization

studies. Bejan et al. [48] use an approach similiar to Lindenmayer-systems

to develop tree-like structures to solve heat transfer problems. Salakij et

al. [49] and Heyman et al. [50] solve the topological design for convective

heat transfer using an algorithm that generates fractal like patterns directly.

However, the search for a generative algorithm should not be restricted to

existing use in engineering design. To perform a targeted search of the design

domain, a generative algorithm that efficiently produces complex dendritic

structures must be identified. For this reason, a broader search of algo-

rithms is conducted outside of engineering design. Researchers in computer

graphics have worked to efficiently and accurately reproduce leaf structures.

Meinhardt produced dendritic structures using reaction diffusion models [51].

Rodkaew et al. developed an algorithm based on particle systems which grew

dendritic structures to an origin point [52]. Runions et al. developed a similar

algorithm for the purpose of visualization based on particle systems, which

grew dendritic structures away from an origin point [7, 53]. It is interesting

to note that all the algorithms described in Chapter 2 have been used to

create dendritic structures.

A strategy has been created for this study to assess these algorithms, and

it is presented in Table 5.1. The algorithms have been regrouped based

on common themes. Namely, grammar-based algorithms, interaction-based

algorithms, and physics-based algorithms. These categorizations align well

with observations made in Chapter 2. The algorithms are evaluated based on

the following criteria: number of design variables, whether branches overlap,

and whether the design lies inherently within the design domain. These

three metrics capture the utility of a particular algorithm in optimization

37

of a specific application. A preferred algorithm would have a small number

of design variables, satisfy all constraints, and produce the desired class of

structure. Since all of the algorithm produce dendritic patterns, they score

evenly in last criteria. The remaining metrics are presented in the table.

Table 5.1: Generative algorithm assessment.

Basis Generative Algorithm Design Overlap Boundary.
Vars Conds.

Grammar
L-System (LinenMayer) Med Yes No

Constructal Theory (Bejan) Med Yes No

Interaction
Reaction Diffusion(Meinhardt) Low No Yes

Particle System (Rodkaew) Low No Yes
Space Colonization (Runions) Low No Yes

Physics
Erosion Model (Bejan) High No Yes

SIMP (Sigmund) High No Yes

From the table, it is clear that the algorithms within a category score

identically. With this is mind, it as not as important to identify one algorithm

to use, but to identify what type of algorithm to use. For this optimization

problem, it is important to prevent member overlap and remain within the

design domain. Two types of algorithms satisfy these conditions (interaction

and physics). However, one of them requires a small number of designs

variables, while the other requires a large number of design variables. For

this reason, an ‘interaction’ based algorithms is investigated. For use in

optimization, the space colonization algorithm was chosen since the algorithm

growth procedure transfers intuitively to heat transfer applications. This

observation will be described in more detail in the following section.

5.4.1 Space Colonization Algorithm

The space colonization algorithm was designed to efficiently produce realistic

leaf-like structures. It does so by following rules of the canalization hypothe-

sis [8], which suggests that leaf veins grow towards hormone centers. These

hormone centers are called auxins and are scattered throughout the leaf. The

algorithm begins from a source node or initial stem, shown in green Fig. 5.4.

The nearest vein node to an auxin proceeds to grow towards that auxin by

a fixed step. If a vein node is equidistant from two auxins, it grows in the

38

average direction of those auxins by a fixed step. The algorithms iterates un-

til all auxins are reached by a vein node. At this point the topology can be

post processed to produce realistic leaf veins. In this thesis, the thickness of

each vein node will increase linearly from the extremities towards the origin

node. Alternate nonlinear thickness distributions may be defined.

Initialize Algorithm Complete Growth Final TopologyRecursively Grow

Figure 5.4: Space colonization algorithm.

The procedure in which the space colonization algorithms grows branches

towards auxins shows promise for heat transfer, where cooling channels would

grow towards heat sources. This method to produce dendritic structures has

also been tested in three dimesnions [53]. As a demonstration, the space

colonization algorithm was used to produce the 3D structure presented in

Fig. 5.5.

Figure 5.5: Space colonization algorithm 3D example.

Using this algorithm, a variety of unique dendritic structures can be gen-

erated by changing the algorithm growth parameters. These include, but are

not limited to:

39

• Number of auxins

• Auxin location

• Intervals at which auxins are introduced

• Thickness at each node

For the subsequent studies, the algorithm will be adjusted to satisfy the

constraints of the optimization problem. Namely, vertical symmetry will be

enforced for topologies and a total of eight auxins are used for optimization.

To evaluate a topology obtained by the space colonization algorithm, the

topology will be projected onto a regular mesh.

Figure 5.6: Projection of space colonization algorithm onto a regular mesh.

Specifically, the elements whose centroids lie within a radius of the vein

node will be assigned thermally conductive material properties. Using a

regular mesh to define the space colonization topology enables the use of

the same finite element program to evaluate both the SIMP result and the

generative algorithm result. An important potential advantage of the GDM

is the ability to use a a spatially-varying mesh that could increase accuracy

for a given number of elements.

5.5 Optimization Results

For this study, two optimization routines will be investigated. The first

of which is a SIMP implementation using the MMA algorithm, the second

implementation is the GDM using a genetic algorithm to find a good starting

point for the SIMP algorithm in the hybrid approach. The space colonization

algorithm will use 16 design variables to produce a dendritic topology. The

40

GA is set to evaluate 100 total designs with a population size of 10 before

passing the best topology to the SIMP algorithm. The design domain is

normalized to 1x1m space. There is a uniform heat flux of 20W/m2 applied

on the domain. The maximum amount of material is restricted to 30% of

the domain area. The minimum radius is constrained to be greater than 1
20

of the design domain width. The results of these optimizations are presented

in Fig. 5.7.

SIMP

0

20

40

60

80

100

120

140

160

C = 1997 T = 226
GDA

0

50

100

150

200

C = 1920 T = 227

Figure 5.7: Compliance Optimization Results

Interestingly, the hybrid optimization presents a topology which is less den-

dritic and has a better compliance value. This raises a question regarding the

optimality of highly dendritic structures. The maximum temperature on the

domains are roughly equal, however, the distribution of high temperatures

on the domain are somewhat different. The GDA solutions has generally

less deep red on the domain, however, the SIMP solutions has more deep

blue. Recognizing this different raises a question about the validity of the

compliance metric, which clearly does not capture enough information about

heat flow on the domain. Whether a single metric can capture this is an

open research question. Additional metrics for topology optimization will be

41

investigated in the next chapter to answer this question. Prior to investigat-

ing alternative objectives, the hybrid optimization result must be analyzed

further. Since a genetic algorithm is used in this optimization, there is no

guarantee for convergence, or even to obtain the same solution twice. For

example, the 5 topologies presented in the top row of Fig 5.8 were obtained

using the GA in 5 different optimization trials, all other things being equal.

GA Topology

↓ ↓ ↓ ↓ ↓

SIMP Topology
C = 1977 C = 1920 C = 2012 C = 1980 C = 1955

Figure 5.8: Sample solutions obtained using hybrid approach.

These five topologies were used to initialize the SIMP algorithm, which

then generated the five topologies directly under them. It is clear from the

image that none of the initial topologies remained unchanged by the SIMP al-

gorithm. Yet, the structure of the SIMP solutions resemble their initial GA

obtained structures. This highlights the non-convex nature of this design

problem where many local minima exist. The final solutions vary in perfor-

mance based on the initial starting point for the SIMP algorithm, namely,

solutions with better starting objective values often converged to better op-

timized structures. Increasing the population size in the GA will likely result

better starting topology for the SIMP algorithm, but increases the compu-

tational expense of the algorithm. A GA population size of was used to

demonstrate that even a small number of GA evaluations can result in a

significant impact on final performance. The next chapter will defend these

claims with additional examples.

42

CHAPTER 6

Alternative Optimization
Formulations

While optimizing thermal compliance results in an optimization with inex-

pensive gradient calculations, this objective is not completely aligned with

the goal of a heat spreader, general temperature minimization. To design the

most efficient heat spreader, several topology optimization formulations are

investigated in this chapter. The design problem will mirror that presented

in the previous chapter. The figure below illustrates the design domain,

followed by the baseline problem formulation.

W

GD

GN

Figure 6.1: Homogeneously heated design domain.

minimize
x

Θ

subject to V (x) ≤ Vp

R(x) ≥ Rp

(6.1)

Using this formulation with a fixed zero temperature boundary results in

the following element-wise gradient equation if λp is chosen to be zero,

dΘ(x) =

[
∂Π

∂Uf
+ λT

f K

]
∂Uf

∂x
+ λT

f

[
∂K

∂x
Uf

]
. (6.2)

This general equation is a result of problem structure and will hold for

43

any of the objectives used here. The difference between the design problems

manifests in the adjoint variable, which will be different depending on the

objective function. The formulations presented here relate to temperature

requirements in practical systems. For each problem formulation, the adjoint

equation is defined and a topology optimization solution is presented. A

discussion of these results is presented in Sec. 6.3, after all objective functions

have been described.

6.1 Average Temperature Minimization

As a first step away from thermal compliance optimization, consider the

following formulation minimizing the temperature sum on the domain.

minimize
x

Θ(x) =

∫
Ω

T (6.3)

subject to V (x) ≤ Vp (6.4)

R(x) ≥ Rp (6.5)

The temperature sum is aligned with average temperature, which is simply

the temperature sum scaled by the number of elements. To obtain the sen-

sitivities for this objective function, the following adjoint equation must be

solved:

λTf K = − ∂Π

∂Uf
= −1. (6.6)

The resultant adjoint variable can be used to evaluate the sensitivity equa-

tion,

dΘ(x) = λT

[
∂K

∂x
Uf

]
. (6.7)

When using the SIMP penalty method to optimize this problem formulation,

the following structure is obtained, Fig 6.2.

44

0

50

100

150

200

sum(T) = 2.70e6 C max(T) = 231 C

Figure 6.2: Temperature sum optimization result.

This result resembles the compliance solution obtained in the previous

section, however, the maximum temperature on the domain increased. The

algorithm also appears to have trouble satisfying the minimum radius con-

straint near the extremities of the branches. This highlights the numerical

instabilities that exist in the algorithm. Using the GDM method, a strikingly

different structure is obtained, Fig 6.3.

Solution 1 Solution 2 Solution 3

sum(T) = 2.50e6 sum(T) = 2.52e6 sum(T) = 2.57e6

0

50

100

150

200

0

50

100

150

200

0

20

40

60

80

100

120

140

160

180

200

max(T) = 221 C max(T) = 230 C max(T) = 224 C

Figure 6.3: Maximum temperature optimization solutions obtained by
hybrid approach.

These solutions are not highly dendritic when compared to the compliance

solutions. The temperature sums decrease significantly with these designs

dominated by long slender conductive paths. It is also interesting to note

45

the asymmetry that is present in some of these solutions. This asymme-

try is likely to be due to the implicitly enforced minimum radius constraint,

which is fairly large, and numerical instabilities. It shows that improved

solutions can be obtained, though they may be suboptimal. However, the

best design obtained is symmetric. The maximum domain temperatures of

these solutions are not significantly lower than those obtained with a com-

pliance objective, however, the temperatures on the domain look generally

lower (there is less red on the domain). If what we really want to minimize

is maximum temperature, this objective function is a proxy for the actual

objective.

6.2 Max Temperature Minimization

A more direct representation of temperature optimization is the minimization

of the maximum temperature on the domain. This particular implementa-

tion is challenging to solve since the max function in non-differentiable. To

address this, a p-norm approximation for the maximum temperature is used.

Tmax ≈ ||T ||p =

(
n∑

i=1

|Ti|p
)1/p

(6.8)

As the norm exponential increases, this function more accurately represents

the maximum temperature on the domain. However, the derivative becomes

less well behaved. Hence, there is a tradeoff in selecting the appropriated

p-norm for optimization. For this study, a p-norm value of 10 is used. To

obtain the gradient for this objective the following adjoint equation must be

solved:

λTf K = − ∂Π

∂Uf
= −∂||T||p

∂T
= −Ti|Ti|

p−2

||Tp−1
p ||

. (6.9)

Since the boundary conditions did not change, the gradient equation has the

same form:

dΘ(x) = λT

[
∂K

∂x
Uf

]
. (6.10)

Solving this maximum temperature approximation problem results in the

following topology and heat map.

46

0

20

40

60

80

100

120

140

160

180

||T ||p = 416 max(T) = 191

Figure 6.4: Max temperature optimization result.

For this objective, a very different type of dendritic structure is obtained.

The branches appear to cover much of the surface of the design domain.

The maximum temperature is greatly reduced when compared to the last

two problem formulations. However, it the p-norm approximation of the

temperature has over 100% error. This does not hinder the results since

the gradient is decreasing a maximum temperature directly. In other words,

while the absolute value of the approximate objective function is inaccurate,

it is well-aligned with the desired objective function. Enforcing a temperature

constraint with the p-norm would be inappropriate, as constraint satisfaction

would not be guaranteed. To improve these solution, a good starting topology

will be obtained using the hybrid approach. Once more, a genetic algorithm

is used to find a good starting topology using the space colonization algorithm

abstraction. The resultant topology is passed to the MMA algorithm where

the where the gradient based method is used to fine tune the solution.

What is particularly interesting is that there exists multiple different so-

lutions that have the same objective value. Notice that solution 2 and 3 are

asymmetric, this is typically a characteristic of suboptimal designs. With

that in mind, these solutions are likely suboptimal, however, they are per-

form better than the previously obtained symmetric designs.

6.3 Summary of Results

In this chapter, an investigation of problem formulations for heat spreader

design was conducted. Two alternative problem formulations for compli-

ance were presented. While these proposed formulations are slightly more

47

Solution 1 Solution 2 Solution 3

0

20

40

60

80

100

120

140

160

180

0

20

40

60

80

100

120

140

160

180

0

20

40

60

80

100

120

140

160

180

max(T) = 189

Figure 6.5: Maximum temperature minimization solutions obtained using
the hybrid approach.

expensive computationally when calculating the adjoint variable, they offer

much improvement in their results. Table 6.1 presents the computational

expense of solving the SIMP topology optimization problem for each formu-

lation. The expense is measured in number outer loop MMA iterations and

the total time of the MMA optimization.

Table 6.1: Computational expense of SIMP.

Compliance Average Max
Time 27.4 s 26.6 s 34.1 s
Iter. 100 100 100

It is interesting to note that the computational expense of solving the

average temperature minimization problem was lower than that of the com-

pliance minimization problem. Though all algorithms performed the same

number of outer loop optimization iterations, they performed different num-

ber of inner loop iterations in the MMA subroutine. For this reason, a direct

comparison of optimization expense cannot be established. While it is clear

that the optimization problems took roughly the same amount of time to

solve, this similarity may be a fact of the small problem size. Validating

these observations use larger scale problems is left a topic of future work.

To culminate this investigation, the best performing designs are presented in

48

Fig. 6.2.

Table 6.2: Summary of SIMP results.

Compliance Solution sum(T) Solution ||T ||p Solution

0

50

100

150

200

0

50

100

150

200

0

20

40

60

80

100

120

140

160

180

Compliance 1997 2083 2250

sum(T) 2.6e6 2.7e6 2.9e6

mean(T) 101 C 104 C 112 C

||T ||p 453 C 462 C 416 C

max(T) 226 C 231 C 191 C

In this table, the best designs obtained using the SIMP algorithm only

are presented. Each of the final topologies are evaluated across all objective

functions to highlight similarities and differences. It is clear from this data

that the SIMP algorithm does not obtain the best solution for a given ob-

jective when optimizing the given objective. The best optimized objectives

are shown in bold. Take for example the temperature sum solution. A lower

temperature sum was found when using the compliance objective function.

However, when using the p-norm approximation, significantly reduced tem-

peratures on the domain were found. This inconsistency in the results are

corrected when using a hybrid method to pick a good starting topology for

the SIMP method, demonstrating the multi-modal nature of these topology

optimization problems.

49

Table 6.3: Summary of Hybrid results.

Compliance Solution sum(T) Solution ||T ||p Solution

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

Compliance 1920 1933 2180

sum(T) 2.5e6 2.5e6 2.8e6

mean(T) 96 C 96 C 109 C

||T ||p 424 C 426 C 410 C

max(T) 227 C 221 C 189 C

Once again the best optimized objective values are shown in bold. The

temperature sum solution now obtains the same value as the compliance solu-

tion. This is due to the similarity between the two objectives, the compliance

objective is a non-linear scaling to the temperature sum. This non-linearity

affects the solution, which has slightly different scores. The p-norm solu-

tion was improved with the hybrid strategy and still dominates its objective.

This is promising for use in optimization, but this simple objective may not

accurately reflect the objective of the system. A strategy to address this

is presented in the following chapter. It appears that obtaining consistent

results with topology optimization is difficult. This issue can be helped us-

ing better starting points for the SIMP algorithm, however, the non-convex

nature of this design problem causes convergence to local optima.

50

CHAPTER 7

Temperature Constraints

In the previous chapters, generative algorithms were used to augment the

SIMP algorithm for the heat spreader design problem. In the last chapter, al-

ternative formulations for topology optimization were investigated to demon-

strate the importance of using true objectives for optimization. Though tem-

perature minimization is often the goal of a heat spreader design problem,

it may not be the true goal of the overall system that includes the heat

spreader. In power electronics applications, signal integrity is often as im-

portant as system loss characteristics. Having the minimum temperature

on all of the domain may not present a system-level optimum, where di-

rected heating may help increase signal integrity. Yet, there still exists a

temperature a maximum temperature in which electrical components oper-

ate. Here, I propose using temperature constraints to satisfy heat spreader

requirements, and using an objective that aligns better with the overall sys-

tem performance. To explore the use of temperature constraints, the same

design problem will be used once again.

W

GD

GN

Figure 7.1: Homogeneously heated design domain.

In this study, the problem formulation is changed to include temperature

as a constraint instead of as an objective. This allows us to use a higher-

level system performance objective, while still ensuring the domain does not

exceed a maximum allowed temperature. Consider the following formulation:

51

minimize
x

Θ

subject to V (x) ≤ Vp

R(x) ≥ Rp

T (x) ≤ Tp

(7.1)

The temperature constraint above requires that the temperature of an ele-

ment, T (x), is no higher than a prescribed value, Tp. To enforce this temper-

ature constraint there are several options; these will be discussed in detail in

this chapter and numerical results will be presented.

7.1 Temperature Constraint Variations

To enforce the temperature constraint, three constraint formulations are in-

vestigated. The first of which is to directly enforce one constraint per element

to ensure no element violates the temperature constraint. An alternative to

this may be to select a few point on the domain that have a high likeli-

hood of high temperatures and constrain those points. In addition to point

constraints, a single global constraint may be proposed to enforce a maxi-

mum temperature on the domain. These three constraint formulations are

presented in Table 7.1.

Table 7.1: Alternatives temperature constraint formulations.

Distributed Constraint Selective Constraint Global Constraint
Ti(x) ≤ Tp ∀i = [1, nel] Ti(x) ≤ Tp ∀i ∈ S ||T (x)|| ≤ Tp

The distributed constraint is enforced for all nel elements on the domain.

The selective constraint is enforced on all elements in some subset, S. The

global constraint may be approximated as a norm, similar to the examples

in the previous chapter. Before presenting numerical results, I would like to

discuss the implications of each temperature constraint in more detail.

The distributed constraint is the most simple to conceptualize. There ex-

ists one constraint per finite element, and enforcing this constraint will ensure

that no element temperature exceeds the maximum temperature. Using the

52

MMA algorithm, enforcing such a large set of constraints is possible. How-

ever, implementing this constraint is computationally expensive. To obtain

the sensitivity of the design variable to a single constraint, an adjoint problem

must be solved. Solving for the adjoint vector for each constraint requires re-

quires solving a separate linear system of equations for each constraint. This

will decrease the speed of the topology optimization by the order of the num-

ber of elements per iteration. For this reason, the alternative formulations

have been presented.

The next most simple method may be to enforce the constraint in loca-

tions where high temperature is likely. This strategy makes sense in power

electronics applications where the temperature will be highest on the compo-

nents, and enforcing this constraint on the elements of the components will

prevent temperature failure with confidence. Physically speaking, tempera-

ture constraints only exist for the components on the board, so this constraint

makes sense. This rationale may not be generalizable for all problems. This

strategy sounds promising, however, there may still be a large number of

constraints to enforce depending on the number of elements which represent

these components.

The third constraint is a p-norm approximation of the maximum temper-

ature on the domain. This strategy is appealing because it only requires the

solution to one adjoint equation to obtain the sensitivities of the constraint.

Choosing a large p-value for the norm approximates the max function, but

makes the derivative ill-behaved. Choosing a small p-value results in an in-

accurate description of the maximum temperature. Successfully using this

constraint requires careful consideration of its implementation. A wiser ap-

proach may be to enforce one p-norm constraint per heating device, such as

in power electronics application.

7.2 Numerical Case Study

To show the effects of the different constraint strategies, they will each be

enforced in a compliance minimization problem. Compliance is used here to

decrease the computational burden of the design problem. Since the smallest

maximum temperature obtained in the last chapter was 191◦C, that will be

enforced as the temperature constraint here. The idea is to use the temper-

53

ature constraint to force the MMA algorithm to find a topology near our

current best design. The selective temperature constraint will be enforced

at several key locations where temperature where often the highest. For the

purpose of this study, the top left and right corners are constrained.

The global constraint uses a p-value of 50. To increase the accuracy of the

p-norm approximation, the constraint is enforced in the following manner:∣∣∣∣∣∣∣∣Tmax

Tp
− 1

∣∣∣∣∣∣∣∣
p

. (7.2)

This normalization of the maximum temperature prevents raising large num-

ber to large powers. This allows using a larger p-norm. In addition, this

prevents additional error which may be incurred from summing all of the

temperatures on the domain. Recall that there exists a temperature at all

finite element nodes, aggregating hundreds of thousands of temperatures in-

troduces more error. The solutions to these problems are presented in Ta-

ble 7.2.

Table 7.2: Summary of results for different constraints

Distributed Selective Global

Constraint Constraint Constraint

0

20

40

60

80

100

120

140

160

180

0

50

100

150

200

0

50

100

150

200

Compliance 1859 2161 2057

||T ||p - - 421

max(T) 208 239 228

There a few items to note from these results. The domain resolution was

reduced for the distributed constraint problem. Solving this problem presents

an unreasonable computational expense, and the simplified results are pre-

54

sented here for completeness. The selective constraint solution reduces the

temperature successfully at the constraint points, however, temperature in-

creases are observed at other parts of the domain. This same tendency was

observed when varying the number and location of temperature constraints.

The global constraint did not succeed at reducing the domain temperature

to satisfy the constraint. Furthermore, the approximated maximum temper-

ature was twice the actual maximum temperature. This is similar to the

result seen when using the p-norm as an objective. As a constraint, it be-

comes important to obtain a true temperature. Normalizing this constraint

as discussed did not reduce sufficiently the error of the norm approximation.

Investigating an accurate measure for the maximum temperature on the do-

main is a critical factor in using topology optimization in multi-physics design

with heat transfer, and is an important topic for ongoing work. Generative

algorithms may alleviate some of these numerical issues when coupled to a

gradient-free optimization algorithm. However, there will be an increased

computational expense to find a feasible design.

55

CHAPTER 8

Conclusion

8.1 Thesis Summary

This thesis focused on improving topological design using generative algo-

rithms. A framework was presented to create structure in the infinite space

of design.

Generate
Feasible
Designs

Evaluate
Designs

Extract
Positive
Features

Create
Algorithm

Optimization Gradient Free

Repurpose Existing

Observation

Physics Based Simulation

Manual Creation Automated Generation

Experimentation

Supervised Learning

Algorithm Generation

Gradient Based

This framework includes and investigation of optimal heat spreader de-

signs in literature. Optimal designs were observed to be dendritic in struc-

ture. The verification of this structure using SIMP topology optimization

was conducted and used in comparison. The dendritic nature of optimal

heat spreaders was used as a target for generative algorithm replication. The

space colonization algorithm was chosen to create dendritic patterns for use

as an abstract design representation for topology optimization.

56

One of the weaknesses of homogenization topology optimization methods

is the lack of global convergence properties for the algorithms. To address

this, a generative design method was proposed coupling the global search

properties of the genetic algorithm with the local convergence properties of

the MMA algorithm. Namely, a generative algorithm rule-set was optimized

using a genetic algorithm to produce dendritic structures. These structures

were evaluated and optimized by the GA. The final solution of the opti-

mization is used as a starting point for the SIMP algorithm, where local

search strengths can be utilized to fine tune the designs. The results ob-

tained using this strategy frequently outperformed the typical homogeneous

implementation of the SIMP method. Furthermore, it did so for various

problem formulations that relate to cooling requirements. Another weakness

that branches from local convergence is the inability of the optimization al-

gorithms to obtain the best solution for a given objective. For example, the

compliance minimization solution had a lower average temperature than the

average temperature minimization solution. This was remedied somewhat

using the hybrid optimization approach.

Further investigating the parameterization for design, it was noted that

heat spreaders are used to reduce temperatures on a domain to a thresh-

old. This motivated an exploration of temperature-constrained topology op-

timization problems. This a difficult problem to solve given the strict tem-

perature requirements that must be enforced at all locations on the domain.

As mentioned in the last chapter, generative algorithms may offer an alter-

native when used with gradient-free methods. Using a gradient-free method

eliminates the need to calculate difficult gradients, such as those between

lumped and continuum parameters. Further investigation of this problem

formulation is left as a topic of future study.

8.2 Future Work

The results presented in this thesis resulted from a slow manual investiga-

tion, with slow manual tuning. With the investment of time, a consistent

improvement in design performance was observed. In practice, engineers may

not have sufficient time to tune their models and algorithms to have confi-

dence in a result. This motivates a further investigation into an automated

57

generative design methodology that is driven by design data. The following

list contains several key areas of future work to realize the full potential of a

generative design methodology.

• Applying the generative design methodology to other forms of struc-

tural designs (e.g. mechanics, magnetics, fluid flow).

• Investigating the use of the generative design methodology to systems

that can be represented by heterogeneous graphs (e.g. circuit or pow-

ertrain architecture with distinct component types).

• The automation of the generative design methodology in pattern recog-

nition and algorithm creation for abstract design representation in op-

timization.

• Investigating the usefulness of problem formulations in capturing sys-

tem requirements.

It is my hope that this thesis presents how simple topology optimization

methodologies can be to implement. Furthermore, it is my hope that this

demonstrates how simple it is to use a generative algorithm to find a good

starting topology for conventional topology optimization methods. Using

both gradient-free and gradient-based methods shows promise in addressing

some of the known issues with homogenization-based approaches.

58

REFERENCES

[1] A. Khetan, D. J. Lohan, and J. T. Allison, “Managing Variable-
Dimension Structural Optimization Problems Using Generative Algo-
rithms,” Structural and Multidisciplinary Optimization, vol. 50, no. 4,
pp. 695–715, 2015.

[2] L. Rabiner, “A tutorial on hidden Markov models and selected applica-
tions in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp.
257–286, 1989.

[3] R. Diestel, Graph Theory (Graduate Texts in Mathematics), 2006.

[4] A. Lindenmayer, “Development Algorithm for Multicellular Organisms:
A Survery of L-Systems,” Journal of Theoretical Biology, vol. 54, pp.
3–22, 1975.

[5] W. Stephen, “Statistical Mechanics of Cellular Automata,” Rev. Mod.
Phys., vol. 55, no. 3, pp. 601 – 644, 1983.

[6] M. Gardner, “The Fantastic Combination of John Conway’s New Soli-
taire Game of ”Life”,” Scientific American, vol. 223, pp. 120–123, 1970.

[7] A. Runions, M. Fuhrer, B. Lane, P. Federl, A.-G. Rolland-Lagan, and
P. Prusinkiewicz, “Modeling and Visualization of Leaf Venation Pat-
terns,” in ACM Transactions on Graphics, vol. 24, no. 3, 2005, pp.
702–711.

[8] T. Sachs, “The Control of Patterned Differentiation of Vascular Tis-
sues,” Advances in Botonical Research, vol. 6, pp. 151–262, 1981.

[9] P. Y. Papalambros and D. J. Wilde, Principles of Optimal Design. Cam-
bridge University Press, 2000.

[10] A. Messac, Optimization in Practive with Matlab. Cambridge University
Press, 2015.

59

[11] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson, “Unshackling Evolu-
tion: Soft Robotics with Multiple Materials and a Powerful Generative
Encoding,” in Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation Conference, ser. GECCO ’13. ACM,
July 2013, pp. 167–179.

[12] R. Fletcher and M. Powell, “A Rapid Convergent Descent Method for
Minimization,” The Computer Journal, vol. 6, no. 2, pp. 163–168, 1963.

[13] C. Audet and J. Dennis Jr, “Analysis of Generalized Pattern Searches,”
SIAM Journal on Optimization, vol. 13, no. 3, pp. 889–903, 2003.

[14] A. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Springer, 2003.

[15] P. Hajela, E. Lee, and C. Lin, “Genetic Algorithms in Structural Topol-
ogy Optimization,” in Topology design of structures. Springer, 1993,
pp. 117–133.

[16] K. Deb and S. Gulati, “Design of Truss-Structures for Minimum Weight
Using Genetic Algorithms,” Finite Elements in Analysis and Design,
vol. 37, no. 5, pp. 447–465, May 2001.

[17] T. Hagishita and M. Ohsaki, “Topology Optimization of Trusses by
Growing Ground Structure Method,” Structural and Multidisciplinary
Optimization, vol. 37, no. 4, pp. 377–393, January 2009.

[18] V. Venkayya, “Design of Optimum Structures,” Computers & Struc-
tures, vol. 1, no. 1, pp. 265–309, Aug 1971.

[19] L. A. Schmit and B. Farshi, “Some Approximation Concepts for Struc-
tural Synthesis,” AIAA Journal, vol. 12, no. 5, pp. 692–699, 1974.

[20] M. Dobbs and R. Nelson, “Application of Optimality Criteria to Auto-
mated Structural Design,” AIAA Journal, vol. 14, no. 10, pp. 1436–1443,
1976.

[21] D. Goldberg and M. Samtni, “Engineering Optimization via the Genetic
Algorithms,” Computers and Structures, vol. 40, pp. 1321–1327, 1991.

[22] S. Rajeev and C. Krishnamoorthy, “Discrete Optimization of Structures
Using Genetic Algorithms,” Journal of Structural Engineering, vol. 118,
no. 5, pp. 1233–1250, May 1992.

[23] H. Rahami, A. Kaveh, and Y. Gholipour, “Sizing, Geometry and Topol-
ogy Optimization of Trusses via Force Method and Genetic Algorithm,”
Engineering Structures, vol. 30, no. 9, pp. 2360–2369, September 2008.

60

[24] M. Giger and P. Ermanni, “Evolutionary Truss Topology Optimization
Using a Graph-Based Parameterization Concept,” Structural and Mul-
tidisciplinary Optimization, vol. 32, no. 4, pp. 313–326, 2006.

[25] S. Rajan, “Sizing, Shape, and Topology Design Optimization of Trusses
Using Genetic Algorithm,” Journal of Structural Engineering, vol. 121,
no. 10, pp. 1480–1487, October 1995.

[26] R. J. Balling, R. R. Briggs, and K. Gillman, “Multiple Optimum
Size/Shape/Topology Designs for Skeletal Structures Using a Genetic
Algorithm,” Journal of Structural Engineering, vol. 132, no. 7, pp. 1158–
1165, July 2006.

[27] A. Kaveh and K. Laknejadi, “A Hybrid Evolutionary Graph-Based
Multi-Objective Algorithm for Layout Optimization of Truss Struc-
tures,” Acta Mechanica, vol. 224, no. 2, pp. 343–364, November 2013.

[28] C. M. Chilan, D. R. Herber, Y. K. Nakka, S.-J. Chung, J. T. Allison,
J. B. Aldrich, and O. S. Alvarez-Salazar, “Co-Design of Strain-Actuated
Solar Arrays for Precision Pointing and Jitter Reduction,” in In AIAA
2016 Science and Technology Forum and Exposition, Jan 2016.

[29] M. P. Bendsoe and N. Kikuchi, “Generating Optimal Topologies for
Structural Desing Using a Homogenization Method,” Computational
Methods in Applied Mechanical Engineering, vol. 71, no. 2, pp. 197–224,
1988.

[30] X. Huang, S. Zhou, Y. Xie, and Q. Li, “Topology Optimization of Mi-
crostructures of Cellular Materials and Composite for Macrostructures,”
Computational Materials Science, vol. 67, pp. 197–407, 2013.

[31] M. P. Bendsoe, “Optimal Shape Design as a Material Distribution Prob-
lem,” Structural Optimization, vol. 1, no. 4, pp. 193–202, 1989.

[32] M. Stolpe and K. Svanberg, “An Alternative Interpolation Scheme for
Minimum Compliance Optimization,” Structural and Multidisciplinary
Optimization, vol. 22, no. 2, pp. 116–139, 2001a.

[33] O. Sigmund, “On the Design of Compliant Mechanisms Using Topology
Optimization,” Mechanics of Structures and Machines, vol. 25, no. 4,
pp. 493–524, 1997.

[34] T. Bruns and D. Tortorelli, “Topology Optimization of Non-Linear Elas-
tic Structures and Compliant Mechanisms,” Computer Methods in Ap-
plied Mechanics and Engineering, vol. 190, no. 26–27, pp. 3443–3459,
2001.

61

[35] J. K. Guest, J. Prevost, and T. Belytschko, “Achieving MInimum Length
Scale in Topology Optimization Using Nodal Design Variables and Pro-
jection Functions,” International Journal of Numerical Methods in En-
gineering, vol. 61, no. 2, pp. 238–254, 2004.

[36] K. Svanberg and H. Svard, “Density Filters for Topology Optimization
Based on the Geometric Harmonic Means,” in 10th World Congress on
Structural and Multidisciplinary Optimization, Orlando, U.S.A., May
2013.

[37] O. Sigmund and K. Maute, “Topology Optimization Approaches: A
Comparative Review,” Structural and Multidisciplinary Optimization,
vol. 48, no. 6, pp. 1031–1055, 2013.

[38] A. Gersborg-Hansen, M. P. Bendsoe, and O. Sigmund, “Topology
Optimization of Heat Conduction Problems Using the Finite Volume
Method,” Structural and Multidisciplinary Optimization, vol. 31, pp.
251–259, Mar 2006.

[39] N. de Kruijf, S. Zhou, Q. Li, and Y.-W. Mai, “Topological Design of
Structures and Composite Materials with Multiobjectives,” Interna-
tional Journal of Solids and Structures, vol. 44, pp. 7092–7109, 2007.

[40] C. Zhuang, Z. Xiong, and H. Ding, “A Level Set Method for Topology
Optimization of Heat Conduction Problems Under Multiple Loading
Cases,” Computer Methods in Applied Mechanics and Engineering, vol.
196, pp. 1074–1084, Jan 2007.

[41] E. M. Dede, “Optimization and Design of a Multipass Branching Mi-
crochannel Heat Sink for Electronics Cooling,” ASME Journal of Elec-
tronic Packaging, vol. 134, no. 4, p. 041001, Dec 2012.

[42] Y. Chen, S. Zhou, and Q. Li, “Multiobjective Topology Optimization
for Finite Periodic Structures,” Computers & Structures, vol. 88, pp.
806–811, 2010.

[43] F. H. Burger, J. Dirker, and J. P. Meyer, “Three-Dimensional Conduc-
tive Heat Transfer Topology Optimization in a Cubic Domain for the
Volume-To-Surface Problem,” International Journal of Heat and Mass
Transfer, vol. 67, pp. 214–224, Dec 2013.

[44] T. E. Bruns, “Topology Optimization of Convection-Dominated,
Steady-State Heat Transfer Problems,” International Journal of Heat
and Mass Transfer, vol. 50, no. 15-16, pp. 2859–2873, 2007.

[45] A. Iga, S. Nishiwaki, K. Izui, and M. Yoshimura, “Topology optimization
for thermal conductors considering design-dependent effects, including
heat conduction and convection,” International Journal of Heat and
Mass Transfer, vol. 52, no. 11-12, pp. 2721–2732, 2009.

62

[46] G. H. Yoon, “Topological Design of Heat Dissipating Structure with
Forced Convective Heat Transfer,” Journal of Mechanical Science and
Technology, vol. 24, no. 6, pp. 1225–1233, 2010.

[47] E. M. Dede, P. Schmalenberg, T. Nomura, and M. Ishigaki, “De-
sign of Anisotropic Thermal Conductivity in Multilayer Printed Circuit
Boards,” IEEE Transactions on Components, Packaging and Manufac-
turing Technology, vol. 5, no. 12, pp. 1763–1774, Dec 2015.

[48] A. Bejan, I. Dincer, S. Lorente, A. F. Miguel, and A. H. Reis, Porous
and Complex Flow Structures in Modern Technology. Springer Science,
2004.

[49] S. Salakij, J. A. Liburdy, D. V. Pence, and M. Apreotesi, “Modeling
in Situ Vapor Extraction During Convective Boiling in Fractal-Like
Branching Microchannel Networks,” Interantional Journal of Heat and
Mass Transfer, vol. 60, no. 0, pp. 700–712, May 2013.

[50] D. Heymann, D. Pence, and V. Narayanan, “Optimization of fractal-like
branching microchannel heat sinks for single-phase flows,” International
Journal of Thermal Sciences, vol. 49, no. 8, pp. 1383–1393, 2010.

[51] M. Meinhardt, “Morphogenesis of Lines and Nets,” Differentiation; Re-
search in Biological Diversity, vol. 6, no. 2, pp. 117–123, aug 1976.

[52] Y. Rodkaew, S. Siripant, C. Lursinsap, and P. Chongstitvatana, “An
Algorithm for Generating Vein Images for Realistic Modeling of a Leaf,”
in Computational Mathematics and Modeling, 2002.

[53] A. Runions, B. Lane, and P. Prusinkiewicz, “Modeling Trees With a
Space Colonization Algorithm,” in Eurographics Workshop on National
Phenomena, 2007, pp. 63–70.

63

	List of Tables
	List of Figures
	CHAPTER 1 Introduction
	Generative Design Methodology
	Thesis Overview

	CHAPTER 2 Generative Algorithms
	Lindenmayer Systems
	Cellular Automaton
	Space Colonization Algorithm
	Reaction Diffusion Algorithm
	Generative Algorithm Categorization

	CHAPTER 3 Generative Algorithm Design Optimization
	Design Parameterization
	Optimization Algorithms

	CHAPTER 4 Topology Optimization
	Homogenization Method Formulation
	Gradient Calculation
	Compliance Optimization
	Filtering Methods
	Optimization Routines
	Homogenization Approach as a Generative Algorithm

	CHAPTER 5 Generative Algorithms for Heat Spreader Design
	Heat Spreader Design Problem
	Heat Spreader Topology Optimization Review
	SIMP Optimization
	Generative Algorithm Selection
	Space Colonization Algorithm

	Optimization Results

	CHAPTER 6 Alternative Optimization Formulations
	Average Temperature Minimization
	Max Temperature Minimization
	Summary of Results

	CHAPTER 7 Temperature Constraints
	Temperature Constraint Variations
	Numerical Case Study

	CHAPTER 8 Conclusion
	Thesis Summary
	Future Work

	REFERENCES

