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ABSTRACT

Improving the power density of a power converter has many benefits for

systems integration. Aspects such as thermal management, weight, confor-

mation to mounting locations, and the footprint of the converter all become

critical factors as systems continue to scale down in size. The flying-capacitor

multilevel (FCML) converter topology is of interest because it has charac-

teristics which contribute to high power density. This work presents some

different applications of the FCML converter which exhibit characteristics of

high power density. One such application is a converter built on a flexible

polyimide substrate circuit board controlled to achieve quasi-square-wave

(QSW) zero-voltage switching (ZVS). ZVS minimizes switching losses and

enables high-frequency operation of the converter. The flexible nature of the

board enables the converter to be integrated to non-flat surfaces such as mo-

tors, pipes, or airfoils. Another such application is the minimization of size

and weight of the power stage of a maximum power point tracking system for

usage in the solar photovoltaic space. The frequency multiplication effect of

the FCML topology enables a 4× reduction in size of this power stage. Both

such applications are made possible with the usage of high device switching

frequency, fast GaN transistors, and careful thermal management.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Increasing systems integration density in fields such as transportation, aerospace,

and renewables has made reducing individual component sizes a priority

[1, 2, 3, 4]. Processing the same amount of power in a smaller volume or

weight increases the power density of a power converter in such an appli-

cation, but this also creates new challenges in converter design, such as in

packaging, thermal management, and other areas. Two metrics of interest,

the specific or gravimetric power density (power-to-weight ratio) and the vol-

umetric power density (power-to-volume ratio), will be referenced throughout

this work. This work aims to explore applications and methods to improve

both the gravimetric and volumetric power density of power converters with-

out sacrificing other desirable qualities such as efficiency.

1.1 The Flying Capacitor Multilevel Converter

To improve the power density of power converters, it is desirable to em-

ploy capacitors, as they have superior energy density as compared to that

of inductors [5, 6, 7]. Recently, it has been shown that hybrid resonant and

soft-charging switched-capacitor converters are capable of achieving very high

power densities [8]. A similar capacitor-based converter, the flying-capacitor

multilevel (FCML) topology, has characteristics that make it desirable for

building high power density converters [9]. An advantage is its effectiveness

in allowing large voltage conversion ratios [10], which can also help improve

power density without much impact to efficiency. Another desirable feature

of the FCML converter is its ability to generate very high effective switch-

ing frequencies at the input of the filtering inductor; this reduces the overall

size and weight of the passive components. The FCML topology distributes

switching stress across a number of series-connected switches. Each switch
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withstands a fraction of what a conventional converter’s switches must with-

stand. This has a few important implications. Lower-voltage devices may

be used, which in practical cases tend to be able to switch faster, which

further minimizes passive component size. Since total converter losses are

distributed across multiple devices, this can help reduce hot spots and ease

thermal management requirements.

1.2 Flexible Converters

The FCML topology, combined with novel substrate choices, such as poly-

imide, can reduce the overall weight and volume of a power converter. As

one example, in motor drive applications, such converters may be integrated

into the curved enclosure of the machine rather than requiring a separate

housing. Similarly, conformal power converters can be integrated to surfaces

such as on pipes, shafts, and wings. Moreover, the flexible nature of the PCB

allows the converter to expand and contract more readily than a FR–4-based

circuit board when subjected to thermal stresses. This construction method

can be useful in applications involving high temperature variations, and/or

weight-restricted situations.

At high switching frequencies, loss mechanisms such as overlap loss can

dominate the overall power loss in a hard–switched converter. Of particular

importance is the large commutation loop found in multilevel converters,

as compared to conventional 2-level converters. One method to reduce the

commutation loop is to use decoupling capacitors at strategic locations in

the circuit [9, 11]. However, the physical size of the high voltage capacitors

when creepage and clearance tolerances are considered limits how small the

commutation loop can be made, introducing many restrictions on layout.

To fully utilize the fast switching capabilities of GaN devices [12, 13], we

present a 7-level FCML DC-DC converter operating with quasi-square-wave

(QSW) zero-voltage switching (ZVS) [14]. The converter switching frequency

is pushed up to 500 kHz (3 MHz effective) to reduce passive component size,

and zero-voltage switching keeps the efficiency high. The converter achieves

over 98.5% peak efficiency and 250 W output.
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1.3 Maximum Power Point Trackers

Another practical usage of the FCML topology is in reducing the mass of

the power stage in maximum power point trackers. Such a power stage must

be highly efficient over a wide range of operational conditions, as the solar

resource is highly variable. In conventional designs, a high efficiency power

stage tends to require a relatively slower switching frequency and therefore

larger and heavier passive devices. Here, we again leverage the fast switching

capabilities of GaN devices [12, 13] and the frequency multiplication effect of

the FCML topology to improve the power density figure of the power stage of

a maximum power point tracker. Presented in this work is a 3-level FCML

DC-DC converter used as the main power stage for a solar PV maximum

power point tracker for battery backup applications, which achieves over

98% efficiency for a wide range of operating conditions, and a peak efficiency

of 98.6% including all control, logic, and gate drive losses. The power point

tracker is small and lightweight, achieving a high power density figure of

128 W/in3 and with the ability to process 546 W.
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CHAPTER 2

BACKGROUND OF FLYING-CAPACITOR
MULTILEVEL CONVERTERS

This work aims to improve both the specific and volumetric power density

metrics of the FCML converter and to demonstrate practical hardware pro-

totypes in different application spaces. Power density can be improved by

increasing the switching frequency of such a converter, which reduces the

sizes of the passive components required for the construction of the con-

verter. Power density can also be improved by selecting different, lighter

materials used in construction of the converter. In particular, this work ex-

plores a flexible power converter which can be integrated to non-flat surfaces,

and a high power density maximum power point tracker.

S3A S2A S1A

−
+ Vin

S3B S2B S1B

Vsw

L

Cout

−

+

VoutC3 C2 C1

Figure 2.1: 4-level FCML schematic, buck mode.

2.1 Multilevel DC–DC Conversion

The topology implemented in this work is the flying–capacitor multilevel con-

verter, shown in the schematic drawing of Fig. 2.1. Control of this converter

is achieved through phase shifted pulse width modulation (PSPWM) and is

discussed in [15]. The FCML topology may be extended to include an arbi-

trary number of voltage levels; however, for practicality and for the purposes

of illustration, the 4-level FCML case is examined here. This analysis may
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be extended to different numbers of voltage levels.

The voltage conversion ratio for this converter is the same as that for a

conventional buck converter; the output voltage is directly proportional to

the duty ratio, D. Derivations of this relationship and others for conventional

converters are covered in detail in [16] and will be presented concisely in this

work.

Vout = D · Vin (2.1)

Through appropriate control, the FCML topology generates a high-frequency

waveform at the inductor switch-node (Vsw, Fig. 2.1), which allows converter

size and weight to be reduced dramatically through the reduction of passive

component size. Furthermore, the voltage of the ith flying capacitor (C1–C3)

is a fraction of the input voltage [15]:

VCi
=
i · Vin
N − 1

(2.2)

From analysis of the PSPWM technique, the effective switching frequency

seen by the inductor, fsw,eff , for a switching frequency fsw, is

fsw,eff = fsw · (N − 1) (2.3)

where N denotes the number of levels in the multilevel converter. Varying

the number of levels in a multilevel converter is a way to balance switching

frequency per switch with other important metrics such as control complexity,

efficiency, and size.

Table 2.1 details the possible output voltage states for the 4-level FCML

converter as seen in Fig. 2.1. Complementary switches (SiB) are assumed to

be in the opposite state as that of the SiA switches. Here, the converter is

operating in periodic steady state, so VC1 = Vin/3 and VC2 = 2Vin/3. Note

the redundant switch combinations for generating the different voltage levels.

The PSPWM technique generates waveforms that select between such out-

put states, and balances the voltages on the flying capacitors by alternating

charging and discharging paths throughout the converter [15].

Figure 2.2 details the operational waveforms of a 4-level FCML converter

when Vin/3 ≤ Vout ≤ 2Vin/3. Because the timing of the switches in the

PSPWM method causes each switch on transition to be followed by another

switch off transition (but not necessarily of the same switch channel), the

5



Table 2.1: 4-level FCML Switching States, VC1 = Vin/3 and VC2 = 2Vin/3,
assuming periodic steady state

S1A S2A S3A Vsw (math) Vsw

0 0 0 0 0
1 0 0 Vin/3 Vin/3
0 1 0 2Vin/3 − Vin/3 Vin/3
0 0 1 Vin − 2Vin/3 Vin/3
1 1 0 2Vin/3 2Vin/3
0 1 1 Vin − Vin/3 2Vin/3
1 0 1 Vin − 2Vin/3 + Vin/3 2Vin/3
1 1 1 Vin Vin

switch node voltage swings between two flying capacitor voltages in periodic

steady state. Only one switch transition happens at any point in time. In

addition to the switch timing case seen in Fig. 2.2, the 4-level FCML con-

verter has two other operational modes that have different switch transition

timings. Figures 2.3 and 2.4 show these two additional cases. Note that

since the current ripple, iL, exhibits similar behavior for all cases, the graph

is not shown for the latter two figures. In Fig. 2.3, the output voltage swings

between 0 and Vin/3. In Fig. 2.4, the output voltage swings between 2Vin/3

and Vin. In all cases, the PSPWM method generates an oscillating voltage

signal at the switching node. These principles can be applied to N -level

FCML converters.

The conventional buck converter topology exhibits a ripple current char-

acteristic dependent on duty ratio, maximized when D = 0.5:

∆ipp =
Vin(D · (1 −D))

L · fsw
(2.4)

Similarly, the FCML converter topology exhibits a maximum current ripple

characteristic at select duty ratios. The PSPWM technique gives rise to

effective duty ratios, which are divided across the operating voltage range

(Eqn. 2.5).

Deff = D · (N − 1) − floor(D · (N − 1)) (2.5)

The effective duty ratios are a result of the PSPWM technique; the induc-

tor switch node sees a voltage that swings between multiples of Vin/(N − 1)

6



(Eqn. 2.2). The FCML converter exhibits points of minimized current ripple

which occur when the output voltage is a multiple of Vin/(N − 1) and the

effective duty ratio, Deff , is 0%. At these points, the converter is switch-

ing between the redundant output voltage states shown in Table 2.1. When

this effective duty ratio is 50% – the output voltage is exactly in between

multiples of Vin/(N − 1) – the current ripple is maximized. In addition, the

voltage across the inductor may only change by at most Vin/(N − 1) (Eqn.

2.6).

Veff =
Vin

N − 1
(2.6)

0 T
3

2T
3

T 4T
3

5T
3

2T
0

1

S1A

0 T
3

2T
3

T 4T
3

5T
3

2T
0

1

S2A

0 T
3

2T
3

T 4T
3

5T
3

2T
0

1

S3A

0 T
3

2T
3

T 4T
3

5T
3

2T

Vin

3

2Vin

3

Vsw

0 T
3

2T
3

T 4T
3

5T
3

2T
iL;min

iL;max

IL

Figure 2.2: 4-level FCML operations, Vin/3 ≤ Vout ≤ 2Vin/3.
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Figure 2.3: 4-level FCML operations, 0 ≤ Vout ≤ Vin/3.
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Figure 2.4: 4-level FCML operations, 2Vin/3 ≤ Vout ≤ V in.
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Taking Eqn. 2.4 and replacing Vin with Veff (Eqn. 2.6), fsw with fsw,eff

(Eqn. 2.3), and D with Deff (Eqn. 2.5), the ripple current characteristic of

the FCML converter is derived:

∆ipp,fcml =
Vin(Deff · (1 −Deff ))

L · fsw · (N − 1)2
(2.7)

The FCML topology exhibits a lower maximum current ripple than a com-

parable buck converter running with the same input voltage and switching

frequency. This characteristic allows a further degree of freedom when de-

signing the filter inductor of the converter, as the inductor may now be a

fraction of the size it would be in a conventional 2-level converter. Note that

for N = 2, Eqn. 2.7 is the same as Eqn. 2.4.

Figure 2.5 illustrates the ripple current behavior comparison between a

conventional buck converter (Eqn. 2.4) and FCML converters (Eqn. 2.7)

where N = 3, 4, 5. The current ripple calculations have been normalized to

the maximum current ripple characteristic of a conventional buck converter,

found at D = 0.5.

Duty Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
li
ze

d
C
u
rr

en
t
R

ip
p
le

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conventional
N = 3
N = 4
N = 5

Figure 2.5: Current ripple comparison for conventional buck converter vs
FCML.
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S3A S2A S1A

+

−

Vout

S3B S2B S1B

Vsw

L

Cin

+
−VinC3 C2 C1

Figure 2.6: 4-level FCML schematic, boost mode.

2.2 FCML Boost Mode

Like the conventional synchronous buck converter topology, running the

power stage in reverse, switching the input and the output will cause the

converter to run in boost mode (Fig. 2.6), whereby the voltage conversion

ratio will also be the same as a conventional boost converter:

Vout =
1

1 −D
· Vin (2.8)

In this mode, the flying capacitors are charged to a fraction of the output

voltage:

VCi
=
i · Vout
N − 1

(2.9)

The ripple current characteristics and effective duty ratio characteristics

are the same as that of the FCML converter running in buck mode.
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CHAPTER 3

QUASI-SQUARE-WAVE ZERO-VOLTAGE
SWITCHING

In this chapter, the quasi-square-wave (QSW) ZVS technique [14, 17] is ap-

plied to the FCML converter, and a control scheme is proposed. ZVS is

achieved by designing the inductor to allow a large current ripple, such that

the output current goes negative during part of a switching cycle. The nega-

tive inductor current charges the parasitic capacitances of the active switches

and enables ZVS for all switches. This method is common for a conventional

buck converter [17, 18] and is extended here to the FCML topology. Since

the FCML topology has a lower current ripple for all cases as compared to a

conventional buck converter, either a smaller inductor or a slower switching

frequency may be used to achieve the same ripple current characteristics.

As QSW ZVS greatly reduces switching losses, a slower switching frequency

does not make a large difference, so the size of the filter inductor is reduced

in this work.

3.1 Application to the FCML Converter

Here, the QSW ZVS operation of the FCML converter is described using an

arbitrary switching cell pair, as shown in Fig. 3.1. In the switching cell pair,

the inductor current may flow through two possible paths, depending on the

state of the preceding switch pair. These paths are denoted as iLA and iLB.

The rightmost switching cell pair, as shown in Fig. 3.2, is a special case of

Fig. 3.1 for i = 1. We also assume that the value of parasitic capacitor

CSiB
is much smaller than the value of the flying capacitors Ci, which is

true for practical designs. Therefore, during a switching cycle, discharging

or charging the flying capacitors with either path, iLA or iLB, will not change

its voltage appreciably. The resultant QSW ZVS waveforms are as noted in

Fig. 3.3, and the operation of the switch pair is described in Table 3.1. The
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timing is denoted for the ith switch.

Some differences between the operation of this cell and a conventional buck

converter are:

• The parasitic capacitor CSiB
has a voltage swing between 0 and Vin/(N−

1), as opposed to in a buck converter, where this value swings between

0 and Vin. This also reduces the losses in charging and discharging this

capacitor fully during a full switching cycle.

• As the FCML converter has many switch pairs, there can be many

switching events between the commutation of a single switch pair, de-

pending on the overall duty ratio of the converter. Therefore, the turn-

on of the A switch in a switch pair may not be directly followed by the

turn-on of the B switch. However, in all cases, every switch on tran-

sition is followed by a switch off transition, and QSW ZVS is achieved

at a high effective ripple frequency.

...
iLA ...

SiA

SiB

...

+

−
VCi

= iVin

N−1

+

−
VCi−1

= (i−1)Vin

N−1

iLB
...

CSiB

CSiA

Figure 3.1: Arbitrary (ith) FCML switch pair with important elements
labeled.

The proper operations of a switch pair in the FCML converter are depen-

dent only on the commutation behavior of each cell loop, QSW ZVS can be

achieved for the entire converter when combined with the PSPWM technique

of [15], and the switch-node waveform is consistent for all switching events.

There are some challenges associated with the QSW technique. First,

the ZVS operation necessitates a peak-to-peak inductor current ripple that

is greater than twice the load current. Thus, it is essential to design the

inductor such that the conduction and core losses are acceptable. Moreover,
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...

L

iL

Vsw
S1A

S1B

...

+

−
VC1=

Vin

N−1

CS1B

CS1A

Figure 3.2: Rightmost FCML switch pair with important elements labeled.

Vds, SiB

Vgs, SiA
Vgs, SiB

iL

...

...

...

ti1   ti2                        ti3       ti4              T

Vin

...

N-1

Vgs, SiA

td,f td,r

Figure 3.3: Schematic drawing of gate signals and soft-switching waveforms,
at the inductor switch–node.
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Table 3.1: FCML ZVS Operation for Arbitrary Switch Pair

Time Notes

ti1 SiA turns off with zero volts across it.
ti1 to ti2 Inductor current iL discharges parasitic capacitance CSiB

.
ti2 Parasitic capacitance CSiB

has a voltage of zero across it; SiB turns
on with zero volts across it.

ti2 to ti3 During this period, other switch pairs may also undergo similar
ZVS transitions, depending on the output voltage of the FCML
converter. A switch on transition of one switch pair is followed by
either its own complementary switch off transition or by another
switch pair commutation.

ti3 SiB turns off with zero volts across it, while inductor current iL is
negative.

ti3 to ti4 Inductor current iL is negative and charges CSiB
to Vin

N−1
.

ti4 Parasitic capacitance CSiB
has a voltage of Vin

N−1
across it; SiA turns

on with zero volts across it.
ti4 to T Inductor current iL becomes positive again.
T SiA turns off with zero volts across it, and the cycle continues.

as the inductor current changes with load, the switching frequency must

continuously be varied to maintain ZVS operation through the majority of

the load range. Another challenge is the duration of the deadtime, i.e., the

time when both switches are off. Since the capacitance is charged by the

inductor current, the duration that it takes to fully charge or discharge the

capacitance depends on the value of the inductor current at the time of

switching. A deadtime that is too short will force the commutation to occur

before soft-switching is complete. A deadtime that is too long introduces

power loss through the reverse conduction of the GaN switch. Furthermore,

the falling-edge deadtime value (Fig. 3.3, td,f ) is smaller than the rising-

edge deadtime value (Fig. 3.3, td,r). This is because the falling edge of the

switch node voltage happens at the peak of the inductor current while the

rising edge happens at the valley of the inductor current. Therefore, optimal

deadtime values exist for the highest efficiency.

In practice, the timing of the switches will also not be perfect, and the

switches SA and SB will still have a minimal voltage across them when toggled

[19]. Depending on the mismatch, imperfect ZVS can occur and the benefits

of ZVS will be reduced. However, with proper control, the switching losses

associated with switch transition times in ZVS are still reduced greatly as
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compared to hard-switching.

Vout
Vref

_

+
Dnew

Vout
Vin
fsw

Ripple
Calculation

Δipp

Deadtime
Calculation

fsw,new
iout

_

+

td,r,new
td,f,new

PI

PI

Figure 3.4: ZVS control scheme.

In this work, QSW ZVS and output voltage regulation are achieved by

adjusting duty ratio, deadtime, and switching frequency. First, the controller

uses the sensed output voltage, Vout, and adjusts the duty ratio to compensate

for any error. This adjusted duty ratio, Dnew, is then used to compute

the resulting inductor current ripple, ∆ipp. Finally, the current ripple is

compared to the sensed output current, whereby the new switching frequency,

fsw,new, and deadtime values, td,r,new and td,f,new, are computed. Figure 3.4

provides a high-level view of the control scheme.
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CHAPTER 4

EXPERIMENTAL RESULTS OF THE
FLEXIBLE CONVERTER

4.1 Hardware of the Flexible Converter

The flexible converter utilizes a 7-level FCML (Fig. 4.1) as the core power

conversion stage; the prototype has been constructed and tested. Fig. 4.2

shows the placement of the major components on the converter, and Table

4.1 details key components used in the construction of this prototype. The

schematics and the layout of the “switching cell” for the GaN transistors can

be found in Appendix A. The schematics and the layout of the converter can

be found in Appendix B.

S6A S5A S4A S3A S2A S1A

−
+ Vin

S6B S5B S4B S3B S2B S1B

Vsw

L

Cout

−

+

VoutC6 C5 C4 C3 C2 C1

Figure 4.1: 7-level FCML schematic
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Logic and Power Isolators 

Logic and Power Isolators 

Output Inductors

GaN switching cells

Flying Capacitors

Top View Bottom View

Side View

Figure 4.2: Photographs of the flexible converter presented in this work.

Table 4.1: Component Listing

Component Part No. Parameters

GaN FETs EPC 2001C [20] 100 V, 7 mΩ

Gate Drivers TI LM5113 [21] 100 V, half-bridge

Flying Capacitors TDK C5750X6S225K250KA [22] 2.2 µF

Inductor (hard switched) Coilcraft XAL5030-332 [23] 3.3 µH × 2

Inductor (soft switched) Coilcraft XEL4020-331 [24] 0.33 µH × 2

Digital Isolators Silicon Labs Si8423BB-D-IS [25]

Power Isolators Analog Devices ADuM5010 [26]

4.2 Results

Tests comparing conventional hard switching control against soft switching

operations were run to evaluate the merit of QSW ZVS. Efficiency mea-

surements with 500 kHz switching frequency using different inductor values

(Fig. 4.3) show the effects of fixed-frequency ZVS operation versus fully hard-

switched operations. A 10× smaller inductor value allows the converter to

enter shallow forced CCM, making QSW ZVS operations possible. As the

output load increases and the converter enters full CCM, efficiency drops
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slightly as the switches begin operating in a hard-switched regime again.

With soft–switching control techniques [27], the switching losses in the GaN

devices are greatly reduced. Figure 4.4 shows a comparison between hard-

switched converter operations and variable-frequency QSW ZVS operation.
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Figure 4.3: Measured efficiency, 500 kHz, Vin = 200 V, Vout = 116 V.
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Figure 4.4: ZVS versus hard switching, measured efficiency, Vin = 200 V,
Vout = 116 V.
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The control signals for each switch in the 7-level FCML are shown in Fig.

4.5 for D = 0.58. Figure 4.6 shows representative oscilloscope traces of zero–

voltage switching operations for this case at an input voltage of 200 V. These

waveforms correlate with the explanation in Table 3.1. The terms i, j, k, l

correspond to the “A” switch designations – for a 7-level FCML converter,

these are S1A–S6A. In Fig. 4.6, assuming that S1A turns on at t = 0, i = 4,

j = 2, k = 5, and l = 3. The full on–off switch sequencing can be seen in

Fig. 4.5.
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Figure 4.5: Switch control signals for 7-level FCML, D = 0.58
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ti1 ti2                   tj3    tj4             tk1 tk2                 tl1
 ...

Switching Node Voltage (AC coupled)

Inductor Current

Figure 4.6: Oscilloscope traces of measured zero–voltage switching
operations.

The effect of online tuning of ZVS is illustrated in Fig. 4.7. For a fixed

switching frequency and deadtime, the optimal output load range is limited:

efficiency is high at a single operating point but lower elsewhere. The con-

troller adjusts the switching frequency using the control scheme of Fig. 3.4

in response to variations in the output voltage and current to maximize the

efficiency over a wide load range. In this preliminary implementation, the

deadtime values are fixed. Figure 4.8 is a plot of the measured efficiency of

the converter operating under soft-switching conditions over a wide range of

loads. This plot accounts for gate drive losses, which are significant because

of the relatively high switching frequencies employed [28]. However, logic and

control losses are not included in this plot, as a microcontroller evaluation

board was used to generate the switching signals. ADuM5010 power isola-

tors are used to generate the floating voltage supplies required for driving

the gates of the GaN switches, which exacerbates gate drive losses due to

their relatively low efficiency; this is particularly pronounced at light load.

Methods such as a bootstrap gate drive [29, 30] can reduce these losses but

are not explored in this work. The microcontroller code implementation for

this control can be found in Appendix B.
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Figure 4.7: Variable frequency versus fixed frequency operation.
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Figure 4.8: Measured efficiency, D = 0.58 and D = 0.25, Vin = 200 V;
comparison with gate drive losses.

For hard-switched operations, the switching and overlap losses in the GaN

FETs cause the most significant hot spots in the overall assembly; Fig. 4.9

shows the heat distribution for hard switching at D = 0.58 and 150 W out-

put. As a comparison, Fig. 4.10 shows the heat distribution for soft switching
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at D = 0.58 and 150 W output. For the QSW ZVS control scheme, the AC

losses in the inductors dominate.

The EPC2001C GaN FETs [20] for the prototype built in this work are

switched at frequencies of up to 500 kHz, which generates a ripple frequency

of up to 3 MHz at the inductor. The inductor (L) size is therefore reduced

greatly as compared to a conventional converter; two 0.33 µH inductors

placed in series are sufficient for filtering. Capacitors C1 through C6 are

similarly reduced in size, and are only 2.2 µF each. Measured performance

metrics are listed in Table 4.2. Two volumetric power density values are

reported: one calculated using the product of the maximum dimensions in

each direction of length, width, and height, and the other using the total

volume of the individual components. The converter achieves both a high

gravimetric power density of over 14 kW/kg and a high volumetric power

density of over 109 W/in3 (902 W/in3, when empty space is excluded).

Table 4.2: Key Performance Specifications

Parameter Notes Value

Input Voltage Tested 200 V

Output Current Tested 2.5 A

Output Power Tested 250 W

Switching Frequency Per switch 200–500 kHz

Effective Frequency At inductor 1.2–3.0 MHz

Weight Excl. controller 17.5 g

Dimensions Excl. connectors 4.3 in × 2.55 in × 0.209 in

(10.9 cm × 6.48 cm × 0.53 cm)

Volume Excl. connectors 2.29 in3 (37.6 cm3)

Component Volume Excl. connectors 0.277 in3 (4.54 cm3)

Volumetric Power Density Bounded by prism 109 W/in3 (6.65 W/cm3)

Volumetric Power Density Excl. empty space 902 W/in3 (55.0 W/cm3)

Gravimetric Power Density Excl. controller 14 kW/kg
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Figure 4.9: Heat distribution in converter: hard switching. Pout = 150 W .

Figure 4.10: Heat distribution in converter: QSW ZVS. Pout = 150 W .

23



CHAPTER 5

MAXIMUM POWER POINT TRACKING
SYSTEMS

A possible application of the FCML topology is as the main power conver-

sion stage of a maximum power point tracking system. In this case we will

examine a solar-to-battery DC-DC conversion application. As seen before,

the FCML topology has potential benefits in reducing the overall size and

weight of the MPPT system. This work aims to produce a hardware proto-

type MPPT that will operate on an experimental solar vehicle.

5.1 Maximum Power Point Tracking

Solar PV cells have a typical I-V characteristic as shown in Fig. 5.1. The

product of these two characteristics is the resultant power of the array. At

the extremes of the I-V characteristic are the short-circuit current, ISC , and

the open-circuit voltage, VOC . Operating at these points nets zero power.

Given a particular I-V curve characteristic of a panel, there exists a point at

which the power output of the PV panel is optimized, where the maximum

power point is denoted as the MPP [31]. At this operational point, the prod-

uct of the voltage, VMPP , and the current, IMPP , is maximized. Since the

open-circuit voltage and short-circuit current characteristic of a PV panel

are dependent on the solar resource, which is highly variable, it is advanta-

geous to be able to track the changing maximum power point of the panel.

To accomplish this, a DC-DC converter can be inserted between the solar

panel and the load to change the operational characteristic of the panel. For

a solar panel with multiple sub-arrays, each sub-array will have a DC-DC

converter connected to it. The outputs of these converters are connected in

parallel to a DC bus, which is connected to a battery. Solar sub-arrays may

contain submodules of strings of solar cells; further methods of MPPT for

submodule-level granularity and differential power processing between sub-
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arrays or submodules [32, 33, 34] can be applied to improve efficiency further,

but are not explored in this work.

ISC

VOC

I * V
x

I

V

MPP

VMPP

IMPP

Figure 5.1: Typical solar PV IV characteristic

5.2 Flying Capacitor Multilevel Topology Application

to Maximum Power Point Trackers

This work applies the FCML topology to maximum power point trackers,

in order to improve the overall system power density. The FCML topology

promises improvements in both volumetric and gravimetric power density

figures. In a mobile application, such as in automotive uses, the weight of

the converter becomes a large factor in the overall efficiency of the system,

where the system considered is the vehicle [35, 36]. Reference [36] provides

extensive background on the application of such a converter to a solar vehicle

system, and the implications of efficiency versus weight considerations. In

summary, only optimizing the efficiency of a power converter may result in an

extremely efficient converter, but at the cost of increased system weight. This

hurts the overall system efficiency because the extra weight of the converter

must now be carried with the rest of the system, which could increase static

and dynamic power draw depending on the application. There exists an

optimal point at which efficiency is traded for light weight. Increasing the

power density of the system by using the FCML topology should improve

the overall system efficiency as the weight of the system will be reduced.
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In a solar PV application, the input voltage to the MPPT can vary wildly.

It is advantageous to pick a converter topology that can generate a large

range of conversion ratios to account for this variation. A fast response rate

to transients is also desirable. However, in many cases, large DC conversion

ratios will result in large losses within the converter [37]. An aspect of the

FCML converter is that it is able to produce high step-up ratios with rel-

atively high efficiency and high power density [10]. Another aspect of the

FCML converter is that it is capable of handling fast transient loading con-

ditions [38]. The application of the FCML converter topology to an MPPT

system should allow the system to accept and to respond quickly to a large

range of input voltages while keeping efficiency and power density high.

5.3 Overview of System Topology

The system topology of the MPPT is detailed in Fig. 5.2. It is a DC-DC

converter (in this case, the power stage is an FCML converter) surrounded

by current and voltage sensors which allow a microcontroller to sense and

maximize the system output power through a changing PWM signal to the

DC-DC converter. The microcontroller is able to provide all of the logic and

control functionality to perform MPPT and to generate the PWM signals to

control the DC-DC converter [39, 40, 41]. The solar array and the battery

are included in the illustration for clarity; they are not part of the MPPT.

DC

DC

Micro-
controller

Array Battery

I,VI,V

PWM

Figure 5.2: System block diagram of MPPT.
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In this particular system, both the input and the output voltages are

sensed, and the microcontroller uses both power values to determine the

optimal duty ratio at which to run the DC-DC converter. There is a degree

of redundancy in this schema, and therefore in a future revision, a set of

sensors may be eliminated to reduce logic and control losses as well as to

reduce code complexity.

Voltage and current sensors are implemented using simple op-amp circuits

which buffer resistive elements. The voltage sensor is a simple resistive di-

vider connected to a voltage follower. The current sensor is a differential

amplifier with an offset voltage applied to allow it to sense bidirectional cur-

rent. These circuits are then connected to a multiplexer, and then to an

ADC, which the microcontroller queries regularly. Detailed schematics of

the voltage and current sensors can be found in Appendix C.

5.4 Overview of Design Parameters

The MPPT is designed to operate as the main power input power condition-

ing device of a solar vehicle designed to compete in the World Solar Challenge

(WSC), which is a journey of over 3000 km (over 1864 mi) through the Aus-

tralian Outback in the course of about a week. The vehicle is also designed to

compete in the American Solar Challenge (ASC), a journey of over 1600 mi

(over 2575 km), typically across the American Midwest. Table 5.1 shows the

multitude of design constraints that have been generated to assure proper

operation of the electrical power systems in the vehicle.

Table 5.1: Key MPPT Design Specifications

Parameter Notes Value

Input Voltage Range Solar sub-array 6–84 V

Input Current Range Solar sub-array 0–6 A

Output Voltage Range DC bus voltage 70–120 V

Maximum Power Processed Solar sub-array 500 W

Waterproofing Rain resistance IP63+

Operating Temperature Heat resistance 0–70◦C ambient

Logic Supply Voltage 12 V

Communications Bus CAN

27



The solar array will generate a maximum of 1.5 kW of total power. There

will be five sub-arrays connected to five MPPTs on the vehicle in order

to improve robustness against variable insolation conditions [42]. The sub-

arrays which each MPPT will be attached to are not equivalent in size, so

the MPPT power processing capability has been rated at 500 W to account

for the mismatches between sub-arrays. The FCML converter is run in boost

mode, as the solar sub-array voltages will be lower than the battery bus

voltage.

Reliability is a key concern in the design of this converter system, as the ser-

viceability of the MPPT is limited when in the field. Rain resistance and heat

resistance have been quoted as design parameters because of the multitude

of climate conditions that the vehicle will be traveling through. These two

distinct requirements make the thermal management of the power devices

on the MPPT an important consideration, as waterproofing measures can

interfere with thermal management. One way to alleviate thermal manage-

ment concerns is to keep the efficiency of the DC-DC power stage high. The

FCML topology can be made to be extremely power dense without sacrificing

power conversion efficiency. This can further improve the power density of

the system as the heatsinking requirements of the power devices are reduced

or even eliminated as compared to those in a conventional topology.
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CHAPTER 6

EXPERIMENTAL RESULTS OF
MAXIMUM POWER POINT TRACKING

SYSTEMS

6.1 Hardware of the Maximum Power Point Tracker

The main power stage of the MPPT is a 3-level FCML converter, as shown in

the schematic of Fig. 6.1. In normal operational conditions, both a battery

source, Vbat, and a solar array source, Vsol, are present. The converter runs

in boost mode from the solar array to the battery load. Table 6.1 details

the relevant components used to construct the MPPT system. The system

includes an on-board NXP LPC1549 [43, 44] microcontroller and all sup-

porting circuitry for gate drive [21], current and voltage sensing, etc. Figure

6.2 shows the placement of the major components on the converter. The

EPC 2032 GaN FETs [45] are switched at 120 kHz to balance switching

losses and passive component size. The schematics and the layout of the

“switching cell” used in the FCML DC-DC converter can be found in Ap-

pendix A. The schematics and the layout of the MPPT implementation can

be found in Appendix C.

S2A S1A

−
+Vbat

S2B S1B

Vsw

L

Csol

+
−VsolC2 C1

Figure 6.1: 3-level FCML schematic, connected between a solar array
source and a battery load.
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Figure 6.2: Photographs of the MPPT presented in this work.

Table 6.1: Component Listing

Component Part No. Parameters

GaN FETs EPC 2032 [45] 100 V, 4 mΩ
Gate Drivers TI LM5113 [21] 100 V, half-bridge

Flying Capacitors TDK C5750X6S225K250KA [22] 2.2 µF × 4
Inductor Coilcraft SER1390-153 [46] 15 µH × 2

Digital Isolators Silicon Labs Si8423BB-D-IS [25]
Power Isolators Analog Devices ADuM5010 [26]
Microcontroller NXP LPC1549 [43, 44] 72 MHz ARM Cortex-M3

30



6.1.1 Start-up Behavior

In a field application, this converter does not have the benefit of a soft-

start circuit on either the solar end or the battery end. In addition, the

FCML topology makes use of flying capacitors, which are assumed to be

charged to certain specific voltages during periodic steady state. However,

during startup, the flying capacitors may not be charged at all. Therefore,

a precharge operation must be applied before operating the converter, to

prevent overvoltage failure modes.

S2A S1A

−
+Vbat

S2B S1B

Vsw

L

Csol

+
−VsolC2 C1

SPre

R R

Figure 6.3: 3-level FCML schematic, connected between a solar array
source and a battery load, including precharge circuitry.

To accomplish the precharge task, the circuit of Fig. 6.3 is proposed and

implemented. A resistor value of 3.9 kΩ in the resistive divider allows for an

RC time constant of 250 ms, as the flying capacitor C1 in this implementation

is 4 × 2.2 µ F ceramic capacitors in parallel, with a derating to about 70% of

their nominal value at 65 V as shown by TDK Corporation’s voltage derating

graph for the ceramic capacitors [22]. In the core 3-level FCML converter,

the lowest-side switch, S2B, is turned on to allow a charging current to pass

into the flying capacitor, C1. Since the converter is designed to work with a

battery pack output, this method takes advantage of the existing voltage at

the output terminals of the converter. During precharge, the resistor ladder

is activated, and the flying capacitor is charged to Vout/2. Then, the resistor

ladder is deactivated, and the converter power stage may begin operating

as normal. This method of precharging the flying capacitor requires only

an extra P-MOSFET, two small power resistors rated for pulse currents of
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tens of milliamps at 120 V, and an N-MOSFET and proper bias resistors to

drive the P-MOSFET. The circuit was successfully tested with a hot-plugged

120 V DC voltage source.

6.2 Software of the Maximum Power Point Tracker

To account for full autonomous operations in the field, a simple state machine

is implemented to ensure proper start-up and tracking behavior. Figure 6.4

gives the high level state transition diagram that the converter uses to start

up and track the maximum power point of a solar PV panel charging a

battery load.

StartupOff/Fault Tracking Sweep

Power-on / Fault

Ton > Tsweep,thres

I-V sweep completed

Figure 6.4: High level state transition diagram of MPPT

A description of each level state is given below:

• Off/Fault: The controller is either starting up or has undergone a

fault. The controller attempts to determine whether the fault condition

has cleared, in order to move to the startup state.

• Startup: A battery voltage is present and above the required threshold

to precharge. The controller activates the proper circuitry to charge

the flying capacitor to Vout/2.
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• Tracking: The MPPT state. The classic perturb-and-observe (P&O)

algorithm [47] is implemented here. Sensors are read on both the solar

and the battery side to determine the optimal duty ratio to run the

DC-DC power stage at the solar PV panel’s MPP.

• Sweep: A modification to the P&O algorithm; after a certain threshold

of time, the controller commands a full sweep of the I-V curve of the

solar panel, so as to find the global maximum power point of the panel.

This prevents the classic P&O algorithm from tracking only a local

maximum which may not be the global maximum of power.

The microcontroller code implementation for this control can be found in

Appendix C.

6.3 Results

The MPPT power stage was tested under a wide range of operating input

voltage conditions to capture much of the real-world operating range of a

time-varying solar array source and battery load. Further testing will be

done with an emulated solar array input [48] prior to field testing with an

actual solar array. Table 6.2 gives some key performance specifications of

this power stage. As with the flexible converter, two power density metrics

are reported: one calculated using the product of the maximum dimensions

in each direction of length, width, and height, and the other using the total

volume of the individual components. The converter achieves both a high

gravimetric power density of over 9.75 kW/kg and a high volumetric power

density of over 128 W/in3 (574 W/in3, when empty space is excluded).
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Table 6.2: Key Performance Specifications

Parameter Notes Value

Input Voltage Range Tested 6–84 V

Input Current Range Tested 0–6.5 A

Output Voltage Range Tested 6–120 V

Maximum Output Power Tested 546 W

Control Losses Tested 708 mW

Switching Frequency Per switch 120 kHz

Effective Frequency At inductor 240 kHz

System Weight Excl. enclosure 56 g

Dimensions 3.25 in × 2.625 in × 0.500 in

(8.26 cm × 6.67 cm × 1.27 cm)

Volume Excl. enclosure 4.26 in3 (70.0 cm3)

Component Volume Excl. enclosure 0.951 in3 (15.58 cm3)

Volumetric Power Density Bounded by prism 128 W/in3 (7.8 W/cm3)

Volumetric Power Density Excl. empty space 574 W/in3 (35 W/cm3)

Gravimetric Power Density Excl. enclosure 9.75 kW/kg

Figures 6.5 and 6.6 show the operational efficiency of the MPPT power

stage, including all logic, control, and gate driving losses. The converter

system achieves a peak efficiency of 98.6%, and when the input voltage is

higher than 60 V (boost ratio ≤ 2 for 120 V in) the efficiency of the system

exceeds 98% for much of the input current range. The output voltage was

fixed at 120 V to keep a relative comparison point for different input voltages.

Note that for the same input current, the efficiency is higher for a higher input

voltage.
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Figure 6.5: Overall system efficiency, Vout = 120 V, including all control and
logic losses.
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Figure 6.6: Detail of overall system efficiency, Vout = 120 V, including all
control and logic losses.

35



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

A physically flexible converter with simultaneous high power density and

efficiency was developed. Its operations are enabled by a polyimide PCB

substrate and a 7–level FCML converter topology. The QSW ZVS technique

is applied to the FCML converter, which minimizes the switching losses in the

converter. A hardware prototype has been implemented, which has demon-

strated a high gravimetric power density of 14 kW/kg and a high volumetric

power density of 109 W/in3. The prototype implements automatic frequency

scaling (between 200 kHz and 500 kHz per switch, 1.2 MHz and 3 MHz ef-

fective) to attain ZVS operation. A peak efficiency of 98.5% is achieved, and

an efficiency higher than 98% is maintained over a wide load range.

Future work on the flexible converter involves further tuning of the control

loop to achieve more ideal QSW ZVS operation. In addition, the GaN FETs

could be switched at even higher frequencies, allowing still smaller inductors

to be used on the converter. This may improve the efficiency of the system.

A planar inductor could be implemented on this converter, further reducing

its size.

A high power density power stage for a maximum power point tracker

with high efficiency was developed and tested. The 3-level FCML topology

and high-speed GaN switches switching at 120 kHz enable the converter to

process up to 546 W, with a wide input voltage range of 6–84 V and a

wide output voltage range of 6–120 V. The system achieves a peak efficiency

of 98.6% and maintains an efficiency of greater than 98% over a wide load

range. The system achieves a gravimetric power density of 9.75 kW/kg, and

a volumetric power density of 128 W/in3.

Future work on the maximum power point tracker involves further testing

with variable input and output loads, as well as the system response to step

load changes, such as a sudden disconnection of output or input sources.

System efficiency may be improved by modifying converter behavior to re-
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duce switching losses at light loads [49]. Tracking efficiency and speed can

be improved by applying more advanced control methodologies than P&O

[50]. Further protection circuitry may be implemented to improve startup

conditions and reduce device stresses. The start-up circuitry should be fully

integrated into the system in a further revision. Logic and control losses can

be reduced by further optimizing the low-voltage distribution power path.
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APPENDIX A

GAN SWITCHING CELL

Both the flexible power converter and the MPPT make use of a “switching

cell” which contains GaN devices and the supporting gate drive circuitry

required to properly drive them. The schematics and layout files are included

here for reference. The EPC 2001C device used in the flexible converter has

a different footprint than the EPC 2032 device used in the MPPT, and

therefore there are two different layouts used for the switching cell. However,

the electrical schematics are the same, with slight adjustments to gate resistor

R1 and R2 values. For the EPC 2001C device, R1 = R2 = 22 Ω, and for

the EPC 2032 device, R1 = R2 = 10 Ω. For other devices, such as the EPC

2033, the gate resistor value is adjusted as needed.
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A.1 Schematics
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Figure A.1: Toplevel schematics for GaN switching cell.
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Figure A.2: Half-bridge driver and GaN device schematics for GaN
switching cell. The layout is slightly different for the EPC 2001C device
versus the EPC 2032 device, but the schematic connections of the GaN
devices are the same.
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A.2 PCB Layout – EPC 2001C

Note: The EPC 2001C switching cell does not have a bottom silkscreen layer.

Figure A.3: Top silkscreen layer of the EPC 2001C switching cell.

Figure A.4: Top soldermask layer of the EPC 2001C switching cell.

Figure A.5: Top copper layer of the EPC 2001C switching cell.
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Figure A.6: Bottom copper layer of the EPC 2001C switching cell.

Figure A.7: Bottom soldermask layer of the EPC 2001C switching cell.

Figure A.8: Board outline of the EPC 2001C switching cell.
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Figure A.9: Drill layer of the EPC 2001C switching cell.

A.3 PCB Layout – EPC 2029-34

Figure A.10: Top silkcreen layer of the EPC 2029-34 switching cell.

Figure A.11: Top soldermask layer of the EPC 2029-34 switching cell.
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Figure A.12: Top copper layer of the EPC 2029-34 switching cell.

Figure A.13: Bottom copper layer of the EPC 2029-34 switching cell.

Figure A.14: Bottom soldermask layer of the EPC 2029-34 switching cell.
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Figure A.15: Bottom silkscreen layer of the EPC 2029-34 switching cell.

Figure A.16: Board outline of the EPC 2029-34 switching cell.

Figure A.17: Drill layer of the EPC 2029-34 switching cell.
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APPENDIX B

FLEXIBLE CONVERTER

The flexible converter schematics, layout files, and basic microcontroller code

are included here for reference.
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B.1 Schematics

Figure B.1: Main 7-level FCML schematics for flexible converter.
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Figure B.2: Half-bridge isolation and gate drive interface schematics for
MPPT.
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Figure B.3: Voltage divider and sensing schematics for flexible converter.
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B.2 PCB Layout

Figure B.4: Top silkscreen layer of the flexible converter.

Figure B.5: Top soldermask layer of the flexible converter.
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Figure B.6: Top copper layer of the flexible converter.

Figure B.7: Inner top copper layer of the flexible converter.
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Figure B.8: Inner bottom copper layer of the flexible converter.

Figure B.9: Bottom copper layer of the flexible converter.
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Figure B.10: Bottom soldermask layer of the flexible converter.

Figure B.11: Bottom silkscreen layer of the flexible converter.
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Figure B.12: Board outline of the flexible converter.

Figure B.13: Drill layer of the flexible converter.
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B.3 Microcontroller Code

B.3.1 Main

//

###########################################################################

// FILE: main.c

// TITLE: Check PWM Dead -Band

//

//! \ addtogroup cpu01_example_list

//! <h1 > EPWM dead band control ( epwm_deadband ) </h1 >

//!

//! This program is adapted from

//! on a scope.

//!

//! - ePWM1A is on GPIO0

//! - ePWM1B is on GPIO1

//! - ePWM2A is on GPIO2

//! - ePWM2B is on GPIO3

//! - ePWM3A is on GPIO4

//! - ePWM3B is on GPIO5

//! - ePWM4A is on GPIO6

//! - ePWM4B is on GPIO7

//! - ePWM5A is on GPIO8

//! - ePWM5B is on GPIO9

//! - ePWM6A is on GPIO10

//! - ePWM6B is on GPIO11

//!

//!

//! 3 Examples are included:

//! - ePWM1: Active low PWMs

//! - ePWM2: Active low complementary PWMs

//! - ePWM3: Active high complementary PWMs

//!

//! Each ePWM is configured to interrupt on the 3rd zero event.

//! When this happens the deadband is modified such that

//! 0 <= DB <= DB_MAX. That is , the deadband will move up and

//! down between 0 and the maximum value.

//!

//! View the EPWM1A/B, EPWM2A/B and EPWM3A/B waveforms

//! via an oscilloscope

//

//

//

###########################################################################

// $TI Release: F2837xD Support Library v120 $

// $Release Date: Fri Aug 22 15:22:27 CDT 2014 $

//

###########################################################################
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#include "F28x_Project.h" // Device Headerfile and Examples Include File

#include "FCMLPhaseShift.h"

#include "ZVSADC.h"

const uint32_t maxfsw = 500;

const uint32_t midfsw = 400;

const uint32_t minfsw = 200;

void main(void) {

// Step 1. Initialize System Control:

// PLL , WatchDog , enable Peripheral Clocks

// This example function is found in the F2837xD_SysCtrl .c file.

InitSysCtrl ();

// Step 2. Initialize GPIO:

// This example function is found in the F2837xD_Gpio .c file and

// illustrates how to set the GPIO to its default state.

InitGpio ();

// Step 3. Clear all interrupts and initialize PIE vector table:

// Disable CPU interrupts

DINT;

// Initialize the PIE control registers to their default state.

// The default state is all PIE interrupts disabled and flags

// are cleared.

// This function is found in the F2837xD_PieCtrl .c file.

InitPieCtrl ();

// Disable CPU interrupts and clear all CPU interrupt flags:

IER = 0x0000;

IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt

// Service Routines (ISR).

// This will populate the entire table , even if the interrupt

// is not used in this example. This is useful for debug purposes.

// The shell ISR routines are found in F2837xD_DefaultIsr .c.

// This function is found in F2837xD_PieVect .c.

InitPieVectTable ();

// Interrupts that are used in this example are re -mapped to

// ISR functions found within this file.

EALLOW;

// This is needed to write to EALLOW protected registers

PieVectTable.TIMER0_INT = &cpu_timer0_isr;

EDIS;

// This is needed to disable write to EALLOW protected registers
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// Step 4. Initialize all the Device Peripherals :

// This function is found in F28M36x_InitPeripherals .c

// Initialize the ePWM

EALLOW;

CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 0; // disable PWM timer

ClkCfgRegs.PERCLKDIVSEL.bit.EPWMCLKDIV = 0;

EDIS;

EALLOW;

init_ADCs (); // initialize all ADCs (a,b,c,d)

EDIS;

DELAY_US (100);

/* For this part to work properly , must initialize the isolators on

the

converter board first , and then turn on the microcontroller . */

uint16_t NUM_SAMPLES = 32;

uint16_t NUM_DUMMYREAD = 4;

uint32_t vout = 0;

uint32_t iout = 0;

uint16_t resa;

int i;

for (i = 0; i < NUM_DUMMYREAD; i++) {

dummyRead1 ();

}

for (i = 0; i < NUM_SAMPLES; i++) {

dummyRead1 ();

readADC1 (&resa);

iout += resa;

DELAY_US (500);

}

iout /= NUM_SAMPLES;

const float vcurrcorr = iout / 4096.0 * 3.3;

Init_phase_shifted_pwm (); // Initial PWM for phase shifted

operation

Init_cputimer_sin_TMU (); // Initialize cputimer 1 for

interrupt

EALLOW;

CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 1; // start PWM timer

EDIS;

// Step 5. User specific code , enable interrupts :

// Enable CPU int1 which is connected to CPU -Timer 0,

IER |= M_INT1;
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// Enable TINT0 in the PIE: Group 1 interrupt 7

PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

// Enable EPWM INTn in the PIE: Group 3 interrupt 1-3

PieCtrlRegs.PIEIER3.bit.INTx1 = 1;

// Enable global Interrupts and higher priority real -time debug events:

EINT;

// Enable Global interrupt INTM

ERTM;

// Enable Global realtime interrupt DBGM

NUM_SAMPLES = 8;

uint16_t NUM_LOOPS = 8;

/* Hack: offset by -0.1A because of lower efficiency . */

const float curr[] = {0.646 -0.1 , 0.862 -0.1 , 1.508 -0.1};

// const float curr [] = {0.323 , 0.431 , 0.754};

const float slope [] = {-462963 , -154799};

while (1) {

uint32_t vout_accum = 0;

uint32_t iout_accum = 0;

int j;

for (j = 0; j < NUM_LOOPS; j++) {

uint16_t res;

vout = 0;

iout = 0;

int i;

for (i = 0; i < NUM_DUMMYREAD; i++) {

dummyRead0 ();

}

for (i = 0; i < NUM_SAMPLES; i++) {

readADC0 (&res);

DELAY_US (2);

vout += res;

}

for (i = 0; i < NUM_DUMMYREAD; i++) {

dummyRead1 ();

}

for (i = 0; i < NUM_SAMPLES; i++) {

readADC1 (&res);

DELAY_US (2);

iout += res;

}

vout /= NUM_SAMPLES;

iout /= NUM_SAMPLES;

vout_accum += vout;

iout_accum += iout;

DELAY_US (500);

}

vout_accum /= NUM_LOOPS;

iout_accum /= NUM_LOOPS;

float vcurr = iout_accum / 4096.0 * 3.3;

float icurr = (vcurr - vcurrcorr) / 0.066;
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icurr = -icurr;

// float dipp = 12606060.0 / (fsw * 1000 * ( num_levels - 1))

;

float newfsw;

uint16_t dr = 7;

uint16_t df = 3;

/* Linear fit to find best control point for ZVS. */

if (icurr < curr [0]) {

newfsw = maxfsw;

dr = 8;

df = 4;

} else if (icurr >= curr [0] && icurr < curr [1]) {

newfsw = (( maxfsw *1000.0)

+ slope [0]*( icurr - curr [0])) /

1000;

dr = 7;

df = 3;

} else if (icurr >= curr [1]) {

newfsw = (( midfsw *1000.0)

+ slope [1]*( icurr - curr [1])) /

1000;

dr = 6;

df = 2;

}

/* Guard to prevent bad switching frequency calculations . */

if (newfsw > maxfsw) {

newfsw = maxfsw;

dr = 8;

df = 4;

}

if (newfsw < minfsw) {

newfsw = minfsw;

dr = 6;

df = 2;

}

float kp = 0.1;

newfsw = (int32_t)(fsw + (kp*( newfsw - fsw)));

/* Guards to prevent bad deadtimes or switching frequencies .

*/

if (newfsw > maxfsw) {

newfsw = maxfsw;

dr = 8;

df = 4;

}

if (newfsw < minfsw) {

newfsw = minfsw;

dr = 6;

df = 2;

}

if (dr > 8) {

dr = 8;
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}

if (dr < 6) {

dr = 6;

}

if (df > 4) {

df = 4;

}

if (df < 2) {

df = 2;

}

fsw = newfsw;

deadtime_f = df;

deadtime_r = dr;

}

}

B.3.2 PWM generation

/*

* 6to1_FCMC.c

*

* Created on: May 8, 2015

* Authors: lei10 , foulkes2 , dchou5

*/

#include "F28x_Project.h" // Device Headerfile and Examples Include File

#include "FCMLPhaseShift.h"

// Global variable definitions

float main_duty = DUTY;

// Local variable definitions

uint16_t deadtime_r = 7; // Rising edge deadtime

uint16_t deadtime_f = 3; // Falling edge deadtime

int32 phase = 360 / (num_levels - 1); // phase shift of each ePWM , in

degrees

int32 sysclk = 120000; // system clock , in kHz

uint32_t PERIOD; // period of the ePWM counter

int32_t fsw = 500;

float ps2_float;

float ps3_float;

float ps4_float;

float ps5_float;

float ps6_float;

float ps7_float;

int32 ps2; // phase shift for ePWM2

int32 ps3;

int32 ps4;

int32 ps5;
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int32 ps6;

int32 ps7;

int32 num_points; // number of points in a complete sine wave

float step;

int32 index = 1; // current position in sine wave

// dither variables

// Function definitions

void Init_cputimer_sin_TMU () {

// Initialize GPIO for unfolder PWM

GPIO_SetupPinMux (0, GPIO_MUX_CPU1 , 0);

GPIO_SetupPinOptions (0, GPIO_OUTPUT , GPIO_PUSHPULL);

GPIO_SetupPinMux (1, GPIO_MUX_CPU1 , 0);

GPIO_SetupPinOptions (1, GPIO_OUTPUT , GPIO_PUSHPULL);

GPIO_WritePin (0, 1);

GPIO_WritePin (1, 0);

// setup sine wave number of points and step size

num_points = PERIOD * 2;

// num_points = sysclk /120/10*2; // Duty ratio update

frequency is 10 kHz

step = 1.0 / num_points;

// CPU Timer 0

// Make sure timer is stopped:

CpuTimer0Regs.TCR.bit.TSS = 1;

// Initialize timer period to maximum:

int32 timer0_period = sysclk * 1000 / fundamental_frequency /

num_points;

CpuTimer0Regs.PRD.all = timer0_period;

// Initialize pre -scale counter to divide by 1 ( SYSCLKOUT ):

CpuTimer0Regs.TPR.all = 0;

CpuTimer0Regs.TPRH.all = 0;

// Reload all counter register with period value:

CpuTimer0Regs.TCR.bit.TRB = 1;

CpuTimer0Regs.TCR.bit.TIE = 1; // Enable timer 0 interrupt

// Start the timer

CpuTimer0Regs.TCR.bit.TSS = 0;

}

void Init_phase_shifted_pwm () {

// enable PWM1 , PWM2 , PWM3 , PWM4 , PWM5 , PWM6

CpuSysRegs.PCLKCR2.bit.EPWM1 = 1;

CpuSysRegs.PCLKCR2.bit.EPWM2 = 1;

CpuSysRegs.PCLKCR2.bit.EPWM3 = 1;
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CpuSysRegs.PCLKCR2.bit.EPWM4 = 1;

CpuSysRegs.PCLKCR2.bit.EPWM5 = 1;

CpuSysRegs.PCLKCR2.bit.EPWM6 = 1;

CpuSysRegs.PCLKCR2.bit.EPWM7 = 1;

// Initialize GPIO pins for ePWM1 , ePWM2 , ePWM3 , ePWM4 , ePWM5 , ePWM6

// These functions are in the F28M36x_EPwm .c file

InitEPwm2Gpio ();

InitEPwm3Gpio ();

InitEPwm4Gpio ();

InitEPwm5Gpio ();

InitEPwm6Gpio ();

InitEPwm7Gpio ();

PERIOD = sysclk / fsw; // ePWM timer period

// Phase shift for each ePWM

ps2_float = 0;

ps3_float = (phase * 1.0 / 360.0);

ps4_float = (phase * 2.0 / 360.0);

ps5_float = (phase * 3.0 / 360.0);

ps6_float = (phase * 4.0 / 360.0);

ps7_float = (phase * 5.0 / 360.0);

ps2 = ((int) (PERIOD * ps2_float)) % PERIOD;

ps3 = ((int) (PERIOD * ps3_float)) % PERIOD;

ps4 = ((int) (PERIOD * ps4_float)) % PERIOD;

ps5 = ((int) (PERIOD * ps5_float)) % PERIOD;

ps6 = ((int) (PERIOD * ps6_float)) % PERIOD;

ps7 = ((int) (PERIOD * ps7_float)) % PERIOD;

InitEPwm_1 (); // Initialize each ePWM

InitEPwm_2 ();

InitEPwm_3 ();

InitEPwm_4 ();

InitEPwm_5 ();

InitEPwm_6 ();

InitEPwm_7 ();

}

void InitEPwm_1 () {

EPwm1Regs.TBPRD = PERIOD; // Set timer period

EPwm1Regs.TBCTR = 0x0000; // Clear counter

// Setup TBCLK

EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading for

the first ePWM , this becomes the master ePWM

EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to

SYSCLKOUT

EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1; // Same frequency as

main clock
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EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO; // send sync output

signal when counter is zero

// Setup compare

EPwm1Regs.CMPA.bit.CMPA = PERIOD * main_duty; // initial 50%

duty ratio

// Set actions

EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Set PWM3A on

Zero

EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET;

// Active high complementary PWMs and Setup the deadband

EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;

EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;

EPwm1Regs.DBCTL.bit.IN_MODE = DBA_ALL;

EPwm1Regs.DBRED.bit.DBRED = deadtime_r;

EPwm1Regs.DBFED.bit.DBFED = deadtime_f;

}

void InitEPwm_2 () {

EPwm2Regs.TBPRD = PERIOD; // Set timer period

EPwm2Regs.TBPHS.bit.TBPHS = ps2; // Phase is 0

EPwm2Regs.TBCTR = 0x0000; // Clear counter

// Setup TBCLK

EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Enable phase loading

EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to

SYSCLKOUT

EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1; // Same frequency as

main clock

EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // pass sync in to

sync out

// Setup compare

EPwm2Regs.CMPA.bit.CMPA = PERIOD * main_duty; // initial 50%

duty ratio

// Set actions

EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Set PWM3A on

Zero

EPwm2Regs.AQCTLA.bit.ZRO = AQ_SET;

// Active high complementary PWMs - Setup the deadband

EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;

EPwm2Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;

EPwm2Regs.DBCTL.bit.IN_MODE = DBA_ALL;

EPwm2Regs.DBRED.bit.DBRED = deadtime_r;

EPwm2Regs.DBFED.bit.DBFED = deadtime_f;

}
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void InitEPwm_3 () {

EPwm3Regs.TBPRD = PERIOD; // Set timer period

EPwm3Regs.TBPHS.bit.TBPHS = ps3; //

EPwm3Regs.TBCTR = 0x0000; // Clear counter

// Setup TBCLK

EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Enable phase loading

EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to

SYSCLKOUT

EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1; // Same frequency as

main clock

EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // pass sync in to

sync out

// Setup compare

EPwm3Regs.CMPA.bit.CMPA = PERIOD * main_duty; // initial 50%

duty ratio

// Set actions

EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Set PWM3A on

Zero

EPwm3Regs.AQCTLA.bit.ZRO = AQ_SET;

// Active high complementary PWMs - Setup the deadband

EPwm3Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;

EPwm3Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;

EPwm3Regs.DBCTL.bit.IN_MODE = DBA_ALL;

EPwm3Regs.DBRED.bit.DBRED = deadtime_r;

EPwm3Regs.DBFED.bit.DBFED = deadtime_f;

}

void InitEPwm_4 () {

EPwm4Regs.TBPRD = PERIOD; // Set timer period

EPwm4Regs.TBPHS.bit.TBPHS = ps4; //

EPwm4Regs.TBCTR = 0x0000; // Clear counter

// Setup TBCLK

EPwm4Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

EPwm4Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Enable phase loading

EPwm4Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to

SYSCLKOUT

EPwm4Regs.TBCTL.bit.CLKDIV = TB_DIV1; // Same frequency as

main clock

EPwm4Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // pass sync in to

sync out

// Setup compare

EPwm4Regs.CMPA.bit.CMPA = PERIOD * main_duty; // initial 50%

duty ratio

// Set actions
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EPwm4Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Set PWM3A on

Zero

EPwm4Regs.AQCTLA.bit.ZRO = AQ_SET;

// Active high complementary PWMs - Setup the deadband

EPwm4Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;

EPwm4Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;

EPwm4Regs.DBCTL.bit.IN_MODE = DBA_ALL;

EPwm4Regs.DBRED.bit.DBRED = deadtime_r;

EPwm4Regs.DBFED.bit.DBFED = deadtime_f;

}

void InitEPwm_5 () {

EPwm5Regs.TBPRD = PERIOD; // Set timer period

EPwm5Regs.TBPHS.bit.TBPHS = ps5; //

EPwm5Regs.TBCTR = 0x0000; // Clear counter

// Setup TBCLK

EPwm5Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

EPwm5Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Enable phase loading

EPwm5Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to

SYSCLKOUT

EPwm5Regs.TBCTL.bit.CLKDIV = TB_DIV1; // Same frequency as

main clock

EPwm5Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // pass sync in to

sync out

// Setup compare

EPwm5Regs.CMPA.bit.CMPA = PERIOD * main_duty; // initial 50%

duty ratio

// Set actions

EPwm5Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Set PWM3A on

Zero

EPwm5Regs.AQCTLA.bit.ZRO = AQ_SET;

// Active high complementary PWMs - Setup the deadband

EPwm5Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;

EPwm5Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;

EPwm5Regs.DBCTL.bit.IN_MODE = DBA_ALL;

EPwm5Regs.DBRED.bit.DBRED = deadtime_r;

EPwm5Regs.DBFED.bit.DBFED = deadtime_f;

}

void InitEPwm_6 () {

EPwm6Regs.TBPRD = PERIOD; // Set timer period

EPwm6Regs.TBPHS.bit.TBPHS = ps6; //

EPwm6Regs.TBCTR = 0x0000; // Clear counter

// Setup TBCLK

EPwm6Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

EPwm6Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Enable phase loading
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EPwm6Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to

SYSCLKOUT

EPwm6Regs.TBCTL.bit.CLKDIV = TB_DIV1; // Same frequency as

main clock

EPwm6Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // pass sync in to

sync out

// Setup compare

EPwm6Regs.CMPA.bit.CMPA = PERIOD * main_duty; // initial 50%

duty ratio

// Set actions

EPwm6Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Set PWM3A on

Zero

EPwm6Regs.AQCTLA.bit.ZRO = AQ_SET;

// Active high complementary PWMs - Setup the deadband

EPwm6Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;

EPwm6Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;

EPwm6Regs.DBCTL.bit.IN_MODE = DBA_ALL;

EPwm6Regs.DBRED.bit.DBRED = deadtime_r;

EPwm6Regs.DBFED.bit.DBFED = deadtime_f;

}

void InitEPwm_7 () {

EPwm7Regs.TBPRD = PERIOD; // Set timer period

EPwm7Regs.TBPHS.bit.TBPHS = ps7; //

EPwm7Regs.TBCTR = 0x0000; // Clear counter

// Setup TBCLK

EPwm7Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

EPwm7Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Enable phase loading

EPwm7Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to

SYSCLKOUT

EPwm7Regs.TBCTL.bit.CLKDIV = TB_DIV1; // Same frequency as

main clock

EPwm7Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // pass sync in to

sync out

// Setup compare

EPwm7Regs.CMPA.bit.CMPA = PERIOD * main_duty; // initial 50%

duty ratio

// Set actions

EPwm7Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Set PWM3A on

Zero

EPwm7Regs.AQCTLA.bit.ZRO = AQ_SET;

// Active high complementary PWMs - Setup the deadband

EPwm7Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;

EPwm7Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;

EPwm7Regs.DBCTL.bit.IN_MODE = DBA_ALL;

EPwm7Regs.DBRED.bit.DBRED = deadtime_r;

EPwm7Regs.DBFED.bit.DBFED = deadtime_f;
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}

__interrupt void cpu_timer0_isr(void) {

index ++;

#ifndef CONST_DUTY

// if (index <= num_points /2){

// main_duty = 1 - __sinpuf32 (argument);

// }

// else {

// main_duty = 1 + __sinpuf32 (argument);

// }

// main_duty = 0.5*(1+ __sinpuf32 (argument));

float argument=step*index;

main_duty = 0.5+(0.45*( __sinpuf32(argument)));

if (main_duty < .002) {

main_duty = .002;

}

#endif

int32 duty = PERIOD * main_duty;

EPwm7Regs.CMPA.bit.CMPA = duty;

EPwm6Regs.CMPA.bit.CMPA = duty; // update duty ratio

in ePWMs

EPwm5Regs.CMPA.bit.CMPA = duty;

EPwm4Regs.CMPA.bit.CMPA = duty;

EPwm3Regs.CMPA.bit.CMPA = duty;

EPwm2Regs.CMPA.bit.CMPA = duty;

EPwm1Regs.CMPA.bit.CMPA = duty;

// Update frequency

PERIOD = sysclk / fsw; // ePWM timer period

// Phase shift for each ePWM

ps2_float = 0;

ps3_float = (phase * 1.0 / 360.0);

ps4_float = (phase * 2.0 / 360.0);

ps5_float = (phase * 3.0 / 360.0);

ps6_float = (phase * 4.0 / 360.0);

ps7_float = (phase * 5.0 / 360.0);

ps2 = ((int) (PERIOD * ps2_float)) % PERIOD;

ps3 = ((int) (PERIOD * ps3_float)) % PERIOD;

ps4 = ((int) (PERIOD * ps4_float)) % PERIOD;

ps5 = ((int) (PERIOD * ps5_float)) % PERIOD;

ps6 = ((int) (PERIOD * ps6_float)) % PERIOD;

ps7 = ((int) (PERIOD * ps7_float)) % PERIOD;

EPwm1Regs.TBPRD = PERIOD;

EPwm2Regs.TBPRD = PERIOD;

EPwm2Regs.TBPHS.bit.TBPHS = ps2;
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EPwm3Regs.TBPRD = PERIOD;

EPwm3Regs.TBPHS.bit.TBPHS = ps3;

EPwm4Regs.TBPRD = PERIOD;

EPwm4Regs.TBPHS.bit.TBPHS = ps4;

EPwm5Regs.TBPRD = PERIOD;

EPwm5Regs.TBPHS.bit.TBPHS = ps5;

EPwm6Regs.TBPRD = PERIOD;

EPwm6Regs.TBPHS.bit.TBPHS = ps6;

EPwm7Regs.TBPRD = PERIOD;

EPwm7Regs.TBPHS.bit.TBPHS = ps7;

// Update deadtime

EPwm1Regs.DBRED.bit.DBRED = deadtime_r;

EPwm1Regs.DBFED.bit.DBFED = deadtime_f;

EPwm2Regs.DBRED.bit.DBRED = deadtime_r;

EPwm2Regs.DBFED.bit.DBFED = deadtime_f;

EPwm3Regs.DBRED.bit.DBRED = deadtime_r;

EPwm3Regs.DBFED.bit.DBFED = deadtime_f;

EPwm4Regs.DBRED.bit.DBRED = deadtime_r;

EPwm4Regs.DBFED.bit.DBFED = deadtime_f;

EPwm5Regs.DBRED.bit.DBRED = deadtime_r;

EPwm5Regs.DBFED.bit.DBFED = deadtime_f;

EPwm6Regs.DBRED.bit.DBRED = deadtime_r;

EPwm6Regs.DBFED.bit.DBFED = deadtime_f;

EPwm7Regs.DBRED.bit.DBRED = deadtime_r;

EPwm7Regs.DBFED.bit.DBFED = deadtime_f;

if (index == 1) {

GpioDataRegs.GPACLEAR.bit.GPIO0 = 1; // Unfolder Vout_gnd

connects to ground

GpioDataRegs.GPASET.bit.GPIO1 = 1; // Unfolder Vout_gnd

connects to ground

}

#ifndef CONST_DUTY

if (index== num_points /2) {

GpioDataRegs.GPASET.bit.GPIO0 = 1; // Unfolder Vout_gnd

connectes to Vin

GpioDataRegs.GPACLEAR.bit.GPIO1 = 1;// Unfolder Vout_gnd

connectes to Vin

}

#endif

if (index == num_points) {

index = 0;

}

#ifdef ENHANCED_BALANCING

#endif

// Clear interrupt flag

PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

}
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B.3.3 ADC reading

#include "F28x_Project.h" // Device Headerfile and Examples Include File

#include "ZVSADC.h"

volatile int16 dummy_read = 0;

void init_ADCs () {

// stop PWM clock , so no ADC will be triggerred and we can setup ADC

EALLOW;

ClkCfgRegs.PERCLKDIVSEL.bit.EPWMCLKDIV = 0x0; // make PWM clock the

same as SYSCLK

CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 0; // disable synchronization of

all ePWMs to the TBCLK

EDIS;

// Initialize ADC sampling

InitADCd (); // init ADCd

}

void InitADCa () {

EALLOW;

// write configurations

AdcaRegs.ADCCTL2.bit.PRESCALE = 6; // set ADCCLK divider to /4

AdcSetMode(ADC_ADCA , ADC_RESOLUTION_12BIT , ADC_SIGNALMODE_SINGLE);

// Set pulse positions to late (at the end of conversion )

AdcaRegs.ADCCTL1.bit.INTPULSEPOS = 1;

// power up the ADC

AdcaRegs.ADCCTL1.bit.ADCPWDNZ = 1;

// SOC0 measure Vout on A2

AdcaRegs.ADCSOC0CTL.bit.CHSEL = 4; // SOC0 will convert pin A2

AdcaRegs.ADCSOC0CTL.bit.ACQPS = 100; // sample window (# of SYSCLK ,

needs to corresponds to at least 75ns)

AdcaRegs.ADCSOC0CTL.bit.TRIGSEL = 5; // trigger on ePWM1 SOCA/C

AdcaRegs.ADCINTSEL1N2.bit.INT1SEL = 0; // end of SOC0 will set INT1

flag

AdcaRegs.ADCINTSEL1N2.bit.INT1E = 1; // enable INT1 flag

AdcaRegs.ADCINTSEL1N2.bit.INT1CONT = 0; //No further ADCINT1 pulses

are generated until ADCINT1 flag is cleared by user

AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // make sure INT1 flag is

cleared

// note that enabling flag is different from enabling interrupt

// SOC1 measure AC_pos on pin A4

AdcaRegs.ADCSOC1CTL.bit.CHSEL = 5; // SOC1 will convert pin A4

AdcaRegs.ADCSOC1CTL.bit.ACQPS = 100; // sample window (# of SYSCLK ,

needs to corresponds to at least 75ns)

AdcaRegs.ADCSOC1CTL.bit.TRIGSEL = 6; // trigger on ePWM1 SOCB/D

AdcaRegs.ADCINTSEL1N2.bit.INT2SEL = 1; // end of SOC1 will set INT2

flag

AdcaRegs.ADCINTSEL1N2.bit.INT2E = 1; // enable INT2 flag

AdcaRegs.ADCINTSEL1N2.bit.INT2CONT = 0; //No further ADCINT2 pulses

are generated until ADCINT2 flag is cleared by user
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AdcaRegs.ADCINTFLGCLR.bit.ADCINT2 = 1; // make sure INT2 flag is

cleared

EDIS;

}

void InitADCb(void) {

EALLOW;

// write configurations

AdcbRegs.ADCCTL2.bit.PRESCALE = 6; // set ADCCLK divider to /4

AdcSetMode(ADC_ADCB , ADC_RESOLUTION_12BIT , ADC_SIGNALMODE_SINGLE);

// Set pulse positions to late (at the end of conversion )

AdcbRegs.ADCCTL1.bit.INTPULSEPOS = 1;

// power up the ADC

AdcbRegs.ADCCTL1.bit.ADCPWDNZ = 1;

// SOC0 measure Iout on pin B2

AdcbRegs.ADCSOC0CTL.bit.CHSEL = 4; // SOC0 will convert pin B2

AdcbRegs.ADCSOC0CTL.bit.ACQPS = 100; // sample window (# of SYSCLK ,

needs to corresponds to at least 75ns)

AdcbRegs.ADCSOC0CTL.bit.TRIGSEL = 0; // trigger on ePWM1 SOCA/C

AdcbRegs.ADCINTSEL1N2.bit.INT1SEL = 0; // end of SOC0 will set INT1

flag

AdcbRegs.ADCINTSEL1N2.bit.INT1E = 1; // enable INT1 flag

AdcbRegs.ADCINTSEL1N2.bit.INT1CONT = 0; //No further ADCINT1 pulses

are generated until ADCINT1 flag is cleared by user

AdcbRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // make sure INT1 flag is

cleared

// SOC1 measure Vrec on pin B3

AdcbRegs.ADCSOC1CTL.bit.CHSEL = 5; // SOC1 will convert pin B3

AdcbRegs.ADCSOC1CTL.bit.ACQPS = 100; // sample window (# of SYSCLK ,

needs to corresponds to at least 75ns)

AdcbRegs.ADCSOC1CTL.bit.TRIGSEL = 0; // trigger on ePWM1 SOCB/D

AdcbRegs.ADCINTSEL1N2.bit.INT2SEL = 1; // end of SOC1 will set INT2

flag

AdcbRegs.ADCINTSEL1N2.bit.INT2E = 1; // enable INT2 flag

AdcbRegs.ADCINTSEL1N2.bit.INT2CONT = 0; //No further ADCINT2 pulses

are generated until ADCINT2 flag is cleared by user

AdcbRegs.ADCINTFLGCLR.bit.ADCINT2 = 1; // make sure INT2 flag is

cleared

EDIS;

}

void InitADCc(void) {

EALLOW;

// write configurations

AdccRegs.ADCCTL2.bit.PRESCALE = 6; // set ADCCLK divider to /4

AdcSetMode(ADC_ADCC , ADC_RESOLUTION_12BIT , ADC_SIGNALMODE_SINGLE);

// Set pulse positions to late (at the end of conversion )

AdccRegs.ADCCTL1.bit.INTPULSEPOS = 1;

// power up the ADC

AdccRegs.ADCCTL1.bit.ADCPWDNZ = 1;
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// SOC1 measure AC_neg on pin C4

AdccRegs.ADCSOC1CTL.bit.CHSEL = 0; // SOC1 will convert pin C2

AdccRegs.ADCSOC1CTL.bit.ACQPS = 100; // sample window (# of SYSCLK ,

needs to corresponds to at least 75ns)

AdccRegs.ADCSOC1CTL.bit.TRIGSEL = 0; // trigger on ePWM1 SOCB/D

AdccRegs.ADCINTSEL1N2.bit.INT2SEL = 1; // end of SOC1 will set INT2

flag

AdccRegs.ADCINTSEL1N2.bit.INT2E = 1; // enable INT2 flag

AdccRegs.ADCINTSEL1N2.bit.INT2CONT = 0; //No further ADCINT2 pulses

are generated until ADCINT2 flag is cleared by user

AdccRegs.ADCINTFLGCLR.bit.ADCINT2 = 1; // make sure INT2 flag is

cleared

EDIS;

}

void InitADCd(void) {

EALLOW;

// write configurations

AdcdRegs.ADCCTL2.bit.PRESCALE = 6; // set ADCCLK divider to /4

AdcSetMode(ADC_ADCD , ADC_RESOLUTION_12BIT , ADC_SIGNALMODE_SINGLE);

// Set pulse positions to late (at the end of conversion )

AdcdRegs.ADCCTL1.bit.INTPULSEPOS = 1;

// power up the ADC

AdcdRegs.ADCCTL1.bit.ADCPWDNZ = 1;

AdcdRegs.ADCSOC0CTL.bit.CHSEL = 2;

AdcdRegs.ADCSOC0CTL.bit.ACQPS = 50; // sample window (# of SYSCLK ,

needs to corresponds to at least 75ns)

AdcdRegs.ADCSOC0CTL.bit.TRIGSEL = 0;

AdcdRegs.ADCINTSEL1N2.bit.INT1SEL = 0; // end of SOC0 will set INT1

flag

AdcdRegs.ADCINTSEL1N2.bit.INT1E = 1; // enable INT1 flag

AdcdRegs.ADCINTSEL1N2.bit.INT1CONT = 0; //No further ADCINT1 pulses

are generated until ADCINT1 flag is cleared by user

AdcdRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // make sure INT1 flag is

cleared

AdcdRegs.ADCSOC1CTL.bit.CHSEL = 3;

AdcdRegs.ADCSOC1CTL.bit.ACQPS = 50; // sample window (# of SYSCLK ,

needs to corresponds to at least 75ns)

AdcdRegs.ADCSOC1CTL.bit.TRIGSEL = 0;

AdcdRegs.ADCINTSEL1N2.bit.INT2SEL = 1; // end of SOC1 will set INT2

flag

AdcdRegs.ADCINTSEL1N2.bit.INT2E = 1; // enable INT2 flag

AdcdRegs.ADCINTSEL1N2.bit.INT2CONT = 0; //No further ADCINT1 pulses

are generated until ADCINT1 flag is cleared by user

AdcdRegs.ADCINTFLGCLR.bit.ADCINT2 = 1; // make sure INT1 flag is

cleared

EDIS;

}

78



/**

* Do a dummy read of the ADC. Follow directly with an actual read.

* This is to clear the inaccuracies when reading the ADC the first time in

a while.

*/

void dummyRead () {

AdcdRegs.ADCSOCFRC1.all = 1<<0;

while (AdcdRegs.ADCINTFLG.bit.ADCINT1 != 1);

AdcdRegs.ADCSOCFRC1.all = 1<<1;

while (AdcdRegs.ADCINTFLG.bit.ADCINT2 != 1);

AdcdRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // clear INT1 flag

AdcdRegs.ADCINTFLGCLR.bit.ADCINT2 = 1; // clear INT2 flag

}

void dummyRead0 () {

AdcdRegs.ADCSOCFRC1.all = 1<<0;

while (AdcdRegs.ADCINTFLG.bit.ADCINT1 != 1);

AdcdRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // clear INT1 flag

}

void dummyRead1 () {

AdcdRegs.ADCSOCFRC1.all = 1<<1;

while (AdcdRegs.ADCINTFLG.bit.ADCINT2 != 1);

AdcdRegs.ADCINTFLGCLR.bit.ADCINT2 = 1; // clear INT2 flag

}

/**

* Read all of the ADC results. Must be preceded with a dummy read.

*/

void readAllADC(uint16_t* res) {

AdcdRegs.ADCSOCFRC1.all = 1<<0;

while (AdcdRegs.ADCINTFLG.bit.ADCINT1 != 1);

AdcdRegs.ADCSOCFRC1.all = 1<<1;

while (AdcdRegs.ADCINTFLG.bit.ADCINT2 != 1);

res [0] = AdcdResultRegs.ADCRESULT0;

res [1] = AdcdResultRegs.ADCRESULT1;

AdcdRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // clear INT1 flag

AdcdRegs.ADCINTFLGCLR.bit.ADCINT2 = 1; // clear INT2 flag

}

/**

* Read all of the ADC results. Must be preceded with a dummy read.

*/

void readADC0(uint16_t* res) {

AdcdRegs.ADCSOCFRC1.all = 1<<0;

while (AdcdRegs.ADCINTFLG.bit.ADCINT1 != 1);

*res = AdcdResultRegs.ADCRESULT0;

AdcdRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // clear INT1 flag

}
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void readADC1(uint16_t* res) {

AdcdRegs.ADCSOCFRC1.all = 1<<1;

while (AdcdRegs.ADCINTFLG.bit.ADCINT2 != 1);

*res = AdcdResultRegs.ADCRESULT1;

AdcdRegs.ADCINTFLGCLR.bit.ADCINT2 = 1; // clear INT2 flag

}
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APPENDIX C

MAXIMUM POWER POINT TRACKER

The MPPT schematics, layout files, and basic microcontroller code are in-

cluded here for reference.
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Figure C.6: Controller Area Network (CAN) interface schematics for
MPPT.
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Figure C.7: Temperature sense schematics for MPPT.
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C.2 PCB Layout

Figure C.8: Top silkscreen layer of the MPPT.

Figure C.9: Top soldermask layer of the MPPT.
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Figure C.10: Top copper layer of the MPPT.

Figure C.11: Inner top copper layer of the MPPT.
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Figure C.12: Inner bottom copper layer of the MPPT.

Figure C.13: Bottom copper layer of the MPPT.

91



Figure C.14: Bottom soldermask layer of the MPPT.

Figure C.15: Bottom silkscreen layer of the MPPT.
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Figure C.16: Board outline of the MPPT.

Figure C.17: Drill layer of the MPPT.

93



C.3 Microcontroller Code

C.3.1 Main

/**

* MPPT Code

*

* Author: Derek Chou

* February 2016

*

*/

#include <mbed.h>

#include <pins.h>

#include <peripherals.h>

#include <can_id.h>

#include <can_struct.h>

#include <can_buffer.h>

#include <ADCMath.h>

#include <sct0.h>

/** Number of samples that we are going to take per ADC reading. */

const int SAMPLE_SIZE = 4;

/** Time between heartbeat CAN messages. */

const int HEARTBEAT_THRES_US = 1000000;

/** Time between checking CAN controller aliveness . */

const int CAN_CHECK_PERIOD_US = 1000000;

/** Time between sending CAN messages. */

const int SEND_THRES_US = 500000;

/** Time between reading sensors. */

const int READ_THRES_US = 500;

/** IV curve -trace threshold in microseconds - 120 seconds. */

const int TRACE_THRES_US = 30000000;

/** Off -time threshold in microseconds - 3 seconds. */

const int OFF_THRES_US = 3000000;

/** Time elapsed before stepping the duty ratio , in us. */

const int STEP_THRES_US = 10000;

/** Maximum duty ratio that we are comfortable with running at. */

const float MAX_DUTY = 0.95;

/** Minimum duty ratio for PWM. */

const float MIN_DUTY = 0.01;

/**

94



* Maximum voltage that we are comfortable with running at; this is

* on the battery output.

*/

const float MAX_VOLTAGE = 120;

/**

* Drop the maximum voltage down to 115V before switching back into

* the MPPT mode.

*/

const float VOLT_OFFSET = 5;

/**

* Turn off switches if the current goes negative , into the solar

* array.

*/

const float NEG_CURR_THRES = -0.1;

/** Last -seen power output. */

float last_power = 0;

/** Last -seen duty ratio. */

float last_duty = 0;

enum BoardState {

/** Start in this state; no PWM allowed. */

STATE_OFF ,

/** Startup state - read sensors , etc. No PWM allowed. */

STATE_STARTUP ,

/** Tracing I-V curve. */

STATE_SWEEP ,

/** Normal MPPT operations . */

STATE_MPPT ,

/** Limit maximum voltage , no MPPT. */

STATE_VOLT_TRACKING ,

/** Problem; fault state for transition . */

STATE_FAULT

};

/** Different kinds of faults can occur with the MPPT. */

enum faultType {

INPUT_DISCONNECTED , OUTPUT_DISCONNECTED , OV, OT

};

/** Mux for sensors. */

enum readType {

VOLTAGE = false , CURRENT = true

};

/**
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* The ID of this MPPT - the board uses DIP switches to figure out its ID

for

* messages.

*/

int mppt_id = 0;

/** Message buffer. */

CANRXTXBuffer <64, 64> canBuffer(can);

/** CAN RX/TX IRQ handler */

void handleCANMessage () {

canBuffer.handleIrq ();

}

/** Persistent values for past readings of voltage and current. */

float lastBatteryVoltage , lastBatteryCurrent , lastSolarVoltage ,

lastSolarCurrent , lastBatteryPower , lastSolarPower;

/** Persistent temperature readings. */

float tempReadings [] = { 0, 0, 0 };

/**

* Sends a heartbeat over CAN.

*/

void sendHeartbeatMessage () {

CANMessage msg = makeMessage(CAN_HEART_MPPT(mppt_id), timer.read_us ());

canBuffer.write(msg);

}

/**

* Check to see whether the CAN Controller is still alive or not.

*/

void checkCANController () {

// If CNTL is 1, then we have a problem. Set it to 0 to reset the

controller .

if (LPC_C_CAN0 ->CANCNTL & (1 << 0)) {

LPC_C_CAN0 ->CANCNTL &= ~(1 << 0);

}

}

/**

* Read the three thermistors attached to the board.

*/

float readThermistor(int i) {

switch (i) {

case 0:

return getTemp(Therm0.read_u16 ());

case 1:

return getTemp(Therm1.read_u16 ());

case 2:

return getTemp(Therm2.read_u16 ());

default:

return 0;

}
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}

/**

* Read the solar side sensors.

* @param b Voltage = true , Current = false

*/

float readSolar(readType b) {

uint16_t data;

uint32_t dataAggregate = 0;

for (int i = 0; i < SAMPLE_SIZE; i++) {

solarADC.requestConversion(data);

dataAggregate += data;

}

dataAggregate /= SAMPLE_SIZE;

return b ?

convertSolarCurrent(dataAggregate) :

convertSolarVoltage(dataAggregate);

}

/**

* Read the battery side sensors.

* @param b Voltage = true , Current = false

*/

float readBattery(readType b) {

uint16_t data;

uint32_t dataAggregate = 0;

for (int i = 0; i < SAMPLE_SIZE; i++) {

batteryADC.requestConversion(data);

dataAggregate += data;

}

dataAggregate /= SAMPLE_SIZE;

return b ?

convertBatteryCurrent(dataAggregate) :

convertBatteryVoltage(dataAggregate);

}

/** Set default values of pins and other setup functions. */

void setup() {

can.frequency(CAN_FREQUENCY);

can.attach(handleCANMessage , CAN::RxIrq);

can.attach(handleCANMessage , CAN::TxIrq);

LED1 = LED2 = LED3 = LED4 = 0;

/* Pin Assign 8 bit Configuration */

/* SCT0_OUT0 */

/* SCT0_OUT1 */

/* We’ll get a more general implementation in the future. But for now ...

*/

// LPC_SWM ->PINASSIGN [7] = 0 xff0a12ffUL ;

// Multilevel

/* Pin Assign 8 bit Configuration */

/* SCT0_OUT0 */

/* SCT0_OUT1 */

/* SCT0_OUT2 */

97



LPC_SWM ->PINASSIGN [7] = 0x010f0effUL;

/* Pin Assign 1 bit Configuration */

LPC_SWM ->PINENABLE0 = 0xffffffffUL;

/* SCT0_OUT3 */

/* RESET */

/* SWCLK */

/* SWDIO */

LPC_SWM ->PINENABLE1 = 0xff1fffdfUL;

/**

* PWMBL :: PWMTH

* P0_0 :: P0_15

* OUT3 :: OUT1

*

* PWMBH :: PWMTL

* P0_1 :: P0_14

* OUT2 :: OUT0

*/

}

/**

* Obtains all of the voltages and currents from the solar input and the

* battery output.

*/

void readSensors(float& battV , float& solarV , float& battC , float& solarC) {

solarV = readSolar(VOLTAGE);

VC_Solar = CURRENT;

battV = readBattery(VOLTAGE);

VC_Battery = CURRENT;

solarC = readSolar(CURRENT);

VC_Solar = VOLTAGE;

battC = readBattery(CURRENT);

VC_Battery = VOLTAGE;

}

/**

* Simple precharge method.

*/

void precharge () {

SCT0_setMode(converterMode :: ASYNCHRONOUS);

SCT0_prechargeSequence ();

wait_ms (1000);

// LED4 is the precharge toggle currently

LED4 = 1;

wait_ms (150);

LED4 = 0;

SCT0_setMode(converterMode :: SYNCHRONOUS);

}

/**
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* Startup method for MPPT. If the MPPT has a disconnected output at the

point

* of startup , start by calculating the boost ratio to get a floating output

* voltage. Otherwise , use the maximum power point tracking method which

* starts at maximum boost and then sweeps downwards.

*/

void startup () {

float battery_voltage , battery_current , solar_voltage , solar_current;

battery_voltage = 0;

battery_current = 0;

solar_voltage = 0;

solar_current = 0;

VC_Solar = VOLTAGE;

VC_Battery = VOLTAGE;

readSensors(battery_voltage , solar_voltage , battery_current ,

solar_current);

if (battery_voltage < solar_voltage) {

/* Calculate ideal boost ratio to get to 120V output. */

float boost = 1 - (solar_voltage / battery_voltage);

for (float i = MIN_DUTY; i < boost; i+= 0.01) {

SCT0_setDuty(i);

wait_us (100);

readSensors(battery_voltage , solar_voltage , battery_current ,

solar_current);

if (battery_voltage > MAX_VOLTAGE) {

SCT0_stopPWM ();

break;

}

if (battery_current < NEG_CURR_THRES

|| solar_current < NEG_CURR_THRES) {

SCT0_stopPWM ();

break;

}

}

} else {

for (float i = MAX_DUTY; i > 0.0; i -= 0.01) {

SCT0_setDuty(i);

wait_us (100);

readSensors(battery_voltage , solar_voltage , battery_current ,

solar_current);

if (battery_voltage > MAX_VOLTAGE) {

SCT0_stopPWM ();

break;

}

if (battery_current < NEG_CURR_THRES

|| solar_current < NEG_CURR_THRES) {

SCT0_stopPWM ();

break;

}

}

}

}
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/**

* Finds the maximum power point by doing an IV curve sweep.

*/

float max_power () {

float solar_power , battery_power , battery_voltage , battery_current ,

solar_voltage , solar_current , efficiency , max_power , duty;

solar_power = battery_power = battery_voltage = battery_current =

solar_voltage = solar_current = efficiency = max_power = duty =

0;

VC_Solar = VOLTAGE;

VC_Battery = VOLTAGE;

for (float i = MAX_DUTY; i > 0.0; i -= 0.01) {

timer.reset ();

timer.start ();

SCT0_setDuty(i);

uint16_t start = timer.read_us ();

uint16_t now = start;

while (now - start < STEP_THRES_US) {

now = timer.read_us ();

readSensors(battery_voltage , solar_voltage , battery_current ,

solar_current);

solar_power = solar_voltage * solar_current;

battery_power = battery_voltage * battery_current;

efficiency = battery_power / solar_power;

if (battery_voltage > MAX_VOLTAGE) {

break;

}

if (solar_power >= max_power) {

max_power = solar_power;

duty = i;

}

if (battery_current < -0.1 || solar_current < -0.1) {

SCT0_stopPWM ();

break;

}

}

}

last_power = max_power;

last_duty = duty;

return duty;

}

/** The classic perturb -and -observe algorithm for MPPT. */

void perturbAndObserve () {

float kp = 0.001;

float solar_power , battery_power , battery_voltage , battery_current ,

solar_voltage , solar_current , efficiency;

solar_power = battery_power = battery_voltage = battery_current =

solar_voltage = solar_current = efficiency = 0;

VC_Solar = VOLTAGE;

VC_Battery = VOLTAGE;

readSensors(battery_voltage , solar_voltage , battery_current ,

solar_current);
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solar_power = solar_voltage * solar_current;

battery_power = battery_voltage * battery_current;

efficiency = battery_power / solar_power;

float newDuty = last_duty + kp*( solar_power - last_power);

last_power = solar_power;

if (newDuty > MAX_DUTY) {

newDuty = MAX_DUTY;

}

if (newDuty < MIN_DUTY) {

newDuty = MIN_DUTY;

}

last_duty = newDuty;

SCT0_setDuty(newDuty);

}

/**

* State transition logic.

* Given a previous state and the amount of time we’ve spent in the current

state , do a transition

* between states.

* @param prevState The previous state that we are transitioning from.

* @param stateTime The time that we’ve spent in the current state.

*/

BoardState doTransition(BoardState prevState , int stateTime) {

switch (prevState) {

case STATE_STARTUP:

return STATE_SWEEP;

case STATE_MPPT:

if (stateTime > TRACE_THRES_US) {

return STATE_SWEEP;

} else {

return STATE_MPPT;

}

case STATE_SWEEP:

return STATE_MPPT;

case STATE_VOLT_TRACKING:

if (lastBatteryVoltage < MAX_VOLTAGE - VOLT_OFFSET) {

return STATE_MPPT;

} else {

return STATE_VOLT_TRACKING;

}

case STATE_FAULT:

return STATE_OFF;

case STATE_OFF:

if (stateTime > OFF_THRES_US) {

return STATE_STARTUP;

} else {

return STATE_STARTUP;

}

default:

return STATE_OFF;

}

return prevState;

}
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/**

* State action logic. Given the current state , do something.

* @param currState The current state that we’re in.

* @param prevState The previous state , which we were in.

*/

void stateAction(BoardState currState , BoardState prevState) {

switch (currState) {

case STATE_STARTUP:

startup ();

break;

case STATE_MPPT:

perturbAndObserve ();

break;

case STATE_SWEEP:

SCT0_setDuty(max_power ());

break;

case STATE_FAULT:

SCT0_stopPWM ();

break;

case STATE_OFF:

SCT0_stopPWM ();

break;

default:

SCT0_stopPWM ();

break;

}

}

int main() {

BoardState state = STATE_OFF;

SCT0_Init ();

SCT0_stopPWM ();

setup();

LED4 = 0;

timer.start ();

PRGM.mode(PullUp);

int old_time = timer.read_us ();

int last_heartbeat , last_check , last_read , last_state_time;

last_read = last_heartbeat = last_check = last_state_time = old_time;

CANMessage msg;

while (true) {

int now = timer.read_us ();

if (now < old_time) {

last_heartbeat = last_check = last_read = last_state_time = now;

old_time = now;

continue;

}

if ((now - last_read) > READ_THRES_US) {

last_read = now;
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}

if ((now - last_heartbeat) > HEARTBEAT_THRES_US) {

last_heartbeat = now;

sendHeartbeatMessage ();

}

while (canBuffer.read(msg)) {

// Clear the buffer.

}

BoardState prev_state = state;

state = doTransition(state , now - last_state_time);

last_state_time = now;

stateAction(state , prev_state);

// Check if the CAN controller is alive or not. If it isn ’t, reset

the controller .

if ((now - last_check) > CAN_CHECK_PERIOD_US) {

last_check = now;

checkCANController ();

}

}

}

C.3.2 PWM generation

/**

* SCT0 driver for PWMs.

* Adapted from the application note that was given.

*/

#include <mbed.h>

#include <LPC15xx.h>

#include <sct0.h>

#define EN1_SCT0 (1<<2)

#define DC1 (1) // duty cycle 1

#define DC2 (11) // duty cycle 2

#define hperiod (300) // 1 / 36000000 *

300 = 120 kHz

#define deadTime (1) // 2 counts = 40ns

deadtime

#define SCTPLLCTRL_Val 0x00000007 // SCT clock

void SCT0_Init(void) {

LPC_SYSCON ->PDRUNCFG |= (1 << 24); // Power down SCT

PLL

LPC_SYSCON ->SCTPLLCTRL = SCTPLLCTRL_Val; // Change rate to

custom value
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LPC_SYSCON ->PDRUNCFG &= ~(1 << 24); // Power up SCT PLL

while (!( LPC_SYSCON ->SCTPLLSTAT & 0x01)); // Wait Until PLL

Locked

LPC_SYSCON ->SYSAHBCLKCTRL1 |= EN1_SCT0; // enable the SCT0

clock

LPC_SCT0 ->CONFIG |= (1 << 17); // split timers ,

auto limit

LPC_SCT0 ->CTRL |= (1 << 4); // configure SCT0 as

BIDIR

LPC_SCT0 ->MATCH0 = hperiod; // match on (half)

PWM period

LPC_SCT0 ->MATCHREL0 = hperiod;

LPC_SCT0 ->EV0_STATE = 0xFFFFFFFF; // event 0 happens

in all states

LPC_SCT0 ->EV0_CTRL = (1 << 0) | (1 << 12); // match 1 (DC1)

only condition

LPC_SCT0 ->EV1_STATE = 0xFFFFFFFF; // event 1 happens

in all states

LPC_SCT0 ->EV1_CTRL = (2 << 0) | (1 << 12); // match 2 (DC2)

only condition

LPC_SCT0 ->EV2_STATE = 0xFFFFFFFF; // event 0 happens

in all states

LPC_SCT0 ->EV2_CTRL = (3 << 0) | (1 << 12); // match 3 (DC1)

only condition

LPC_SCT0 ->EV3_STATE = 0xFFFFFFFF; // event 1 happens

in all states

LPC_SCT0 ->EV3_CTRL = (4 << 0) | (1 << 12); // match 4 (DC2)

only condition

LPC_SCT0 ->OUT0_SET = (1 << 0); // event 0 sets OUT0

LPC_SCT0 ->OUT0_CLR = (1 << 0); // event 0 clears

OUT0

LPC_SCT0 ->OUT1_SET = (1 << 1); // event 1 sets OUT1

LPC_SCT0 ->OUT1_CLR = (1 << 1); // event 1 clears

OUT1

LPC_SCT0 ->OUT2_SET = (1 << 2); // event 2 sets OUT2

LPC_SCT0 ->OUT2_CLR = (1 << 2); // event 2 clears

OUT2

LPC_SCT0 ->OUT3_SET = (1 << 3); // event 3 sets OUT3

LPC_SCT0 ->OUT3_CLR = (1 << 3); // event 3 clears

OUT3

LPC_SCT0 ->RES |= 0x000000FF; // toggle OUT0 and

OUT1 on conflict
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NVIC_EnableIRQ(SCT0_IRQn); // enable SCT0

interrupt

}

/**

* PWMBL :: PWMTH

* P0_0 :: P0_15

* OUT3 :: OUT1

* 1B :: 1A

* MATCH4 :: MATCH2

*

* PWMBH :: PWMTL

* P0_1 :: P0_14

* OUT2 :: OUT0

* 2B :: 2A

* MATCH3 :: MATCH1

*

*/

void SCT0_setDuty(float duty) {

int newDuty1 = (int) ((duty) * hperiod);

if (newDuty1 <= 0) {

newDuty1 = 1;

}

if (newDuty1 >= hperiod) {

newDuty1 = hperiod - 1;

}

LPC_SCT0 ->CONFIG |= (1 << 7); // Temporarily stop reload

/** 1B */

LPC_SCT0 ->MATCH4 = newDuty1;

LPC_SCT0 ->MATCHREL4 = newDuty1;

/** 1A */

LPC_SCT0 ->MATCH2 = newDuty1 + deadTime;

LPC_SCT0 ->MATCHREL2 = newDuty1 + deadTime;

/** 2B */

LPC_SCT0 ->MATCH3 = hperiod - newDuty1;

LPC_SCT0 ->MATCHREL3 = hperiod - newDuty1;

/** 2A */

LPC_SCT0 ->MATCH1 = hperiod - newDuty1 - deadTime;

LPC_SCT0 ->MATCHREL1 = hperiod - newDuty1 - deadTime;

LPC_SCT0 ->CTRL &= ~(1 << 2 | 1 << 18); // Start timer

LPC_SCT0 ->CONFIG &= ~(1 << 7 | 1 << 8); // Start reload

}

/** Stop PWM signals from running. */
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void SCT0_stopPWM () {

LPC_SCT0 ->CTRL |= (1 << 2 | 1 << 18);

LPC_SCT0 ->CONFIG |= (1 << 7 | 1 << 8);

LPC_SCT0 ->OUTPUT &= (0xFFF0);

}

/** Start PWM signals again at duty ratio D. */

void SCT0_startPWM(float duty) {

LPC_SCT0 ->OUTPUT |= 0b1001;

SCT0_setDuty(duty);

}

/** Precharge the flying capacitor to V=Vin. */

void SCT0_prechargeSequence () {

LPC_SCT0 ->OUTPUT |= (0b1000);

}

void SCT0_setMode(converterMode m) {

if (m == ASYNCHRONOUS) {

LPC_SCT0 ->EV0_STATE = 0x0;

LPC_SCT0 ->EV1_STATE = 0x0;

} else {

LPC_SCT0 ->EV0_STATE = 0xFFFFFFFF;

LPC_SCT0 ->EV1_STATE = 0xFFFFFFFF;

}

}

/** Startup the converter by running in asynchronous mode. */

void SCT0_startupSequence () {

LPC_SCT0 ->EV2_STATE = 0x0;

LPC_SCT0 ->EV3_STATE = 0x0;

}

C.3.3 ADC reading

/**

* ADCMath.h

* Math that the microcontroller needs to do to interpret the different

* readings from the MPPT correctly.

*

* Author: Derek Chou

* March 2016

*

*/

const float R_REF = 10000.0;

const float V_REF = 3.0;

const float T0 = 298.15;

const float BETA = 3428.0;

const float R_INF = R_REF * exp(-BETA / T0);

const float voltsPerBit = (3.000 / 4096.0);
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/** Gets the battery voltage based on the bits read from the ADC. */

float convertBatteryVoltage(uint16_t readingBits) {

return readingBits / 4096.0 * 3.0 * 480000 / 10000;

}

/** Gets the battery current based on the bits read from the ADC. */

float convertBatteryCurrent(uint16_t readingBits) {

return (readingBits * 3.0 / 4096.0) / 68 / 0.003;

}

/** Gets the solar voltage based on the bits read from the ADC. */

float convertSolarVoltage(uint16_t readingBits) {

return readingBits / 4096.0 * 3.0 * 490000 / 20000;

}

/** Gets the solar current based on the bits read from the ADC. */

float convertSolarCurrent(uint16_t readingBits) {

return (readingBits * 3.0 / 4096.0) / 68 / 0.003;

}

/**

* @param theReading ADC reading in bits.

*/

float getTemp(uint16_t ADC_Reading = 0) {

float voltage = 0, resistance = 0, temp = 0;

// Interpret analog into the voltage:

voltage = ADC_Reading * voltsPerBit;

// Use voltage to get resistance

resistance = (R_REF * V_REF / voltage) - R_REF;

// Get temperature :

temp = BETA / log(( resistance) / R_INF);

return temp - 273.15; // This is in celsius

}
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