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ABSTRACT 

Water-repelling surfaces have been studied for many decades. Hydrophobic and 

superhydrophobic surfaces are beneficial in phase change heat transfer applications, specifically 

during condensation because of the enhanced heat transfer and during freezing because of the anti-

freezing properties. The current study is focused on enhanced phase change phenomena on 

superhydrophobic and biphilic surfaces. Hydrophobic surfaces that enable dropwise condensation 

exhibit 5-10X higher heat transfer. Coalescence induced droplet jumping on superhydrophobic 

surfaces further increases the heat transfer by 30%. Here, biphilic surfaces consisting of 

hydrophilic spots on a superhydrophobic background are studied for enhanced condensation. 

Water droplets nucleating at the hydrophilic spots grow to sizes defined by the biphilic geometry, 

followed by coalescence and departure. A high fidelity model that captures departure dynamics 

during droplet jumping on biphilic surfaces and predict the overall condensation heat transfer has 

been developed. By controlling the spatial geometry and length scale of the hydrophilic spots, 

enhanced (10X) jumping-droplet condensation heat transfer is obtained.  

In terms of freezing and frost formation, understanding the mechanisms of frost formation 

is essential to a variety of Heating, Ventilating, Air Conditioning and Refrigeration (HVAC&R) 

applications. When water vapor in the ambient condenses on a chilled substrate in the form of 

liquid water and then freezes, it is known as condensation frosting. The dominant mechanism 

governing the spread of condensation frosting is inter-droplet ice bridge frost wave propagation. 

When a subcooled condensate water droplet freezes on a hydrophobic or superhydrophobic 

surface, neighboring droplets still in the liquid phase begin to evaporate. The evaporated water 

molecules deposit on the frozen droplet and initiate the growth of ice bridges directed toward the 
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water droplets being depleted. Neighboring liquid droplets freeze as soon as the ice bridge 

connects. In this study, the significance of individual droplet freezing on frost wave propagation 

is studied. 10X slower frost wave propagation speeds on superhydrophobic surfaces are observed. 

Furthermore, at larger length scales, during bulk freezing of water, it has been shown that 

superhydrophobic surfaces offer no delay in freezing.  

Although frosting delay has been shown with superhydrophobic surfaces, complete 

elimination of frosting has not been achieved. Given enough time, frosting will initiate and spread 

to cover the entire surface. In the HVAC&R sectors, the most common approach to remove frost 

from a surface (defrost) is to reverse the system cycle direction and heat the working fluid. 

However, water retention on the heat exchanger surface during defrosting decreases the long term 

heat transfer performance. In this study, the defrosting behavior of superhydrophobic and biphilic 

surfaces comprising of spatially distinct superhydrophobic and hydrophilic domains is used to 

accelerate defrosting. During defrosting, biphilic surfaces are shown to exhibit enhanced surface 

cleaning with no water retention. Furthermore, an ultra-efficient method to defrost a surface 

covered with ice/frost by focusing energy at the substrate-ice interface is studied. To remove 

ice/frost efficiently, only the interfacial layer adhering the ice/frost to the solid surface is melted 

by using a localized ‘pulse’ of heat, allowing gravity or gas shear in conjunction with the ultra-

thin lubricating melt water layer to remove the ice/frost. A high fidelity numerical model is 

developed to simulate pulse defrosting. This work not only provides a fundamental understanding 

of phase change processes on superhydrophobic and biphilic surfaces, but also elucidates its 

applications for a plethora of energy industries. 
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CHAPTER 1: INTRODUCTION  

Water-repelling surfaces have been studied for many decades [1,2]. Hydrophobic and 

superhydrophobic surfaces are beneficial in phase change heat transfer applications, specifically 

during condensation because of the enhanced heat transfer and during freezing because of the anti-

freezing properties. Vapor condensation is a preferred mode of heat transfer in a wide range of 

applications such as thermoelectric power generation, thermal desalination, and thermal 

management. Water vapor condensing on high- or low-surface-energy surfaces forms a liquid film 

or distinct droplets, respectively. The latter, termed dropwise condensation, is desired due to its 5-

10X higher heat transfer coefficient. To further enhance dropwise condensation, researchers have 

recently proposed the use of suitably designed superhydrophobic surfaces to enable coalescence-

induced droplet jumping governed by inertial-capillary energy conversion [3,4]. By enabling 

droplet jumping, the average droplet size on the surface is reduced, decreasing the condensate 

thermal resistance and enhancing overall heat transfer by ≥ 30% when compared to dropwise 

condensation [5,6]. It has been recently shown that biphilic surfaces, consisting of hydrophilic 

spots on a superhydrophobic background, can significantly influence droplet size distributions and 

heat transfer behavior during jumping-droplet condensation [7,8]. Water droplets nucleating at the 

hydrophilic spots grow to sizes defined by the biphilic pattern geometry, followed by coalescence 

and departure. By controlling the spatial geometry and length scale of the hydrophilic spots, 

enhanced jumping-droplet condensation heat transfer can be obtained through the limit of droplet 

density. However, it remains unclear what the necessary surface energy requirements are to 

achieve this “patterned” mode of condensation. Moreover, accurate models that are capable of 

coupling both droplet-adhesion governed departure dynamics with individual transient droplet heat 
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transfer to predict the overall surface jumping-droplet condensation heat transfer on biphilic 

surfaces do not exist. 

In terms of freezing and frost formation, understanding the mechanisms of frost formation 

is essential to a variety of industrial applications including refrigeration, [9,10] aviation, [11] wind 

energy, [12] and power transmission [13]. It has been observed that hydrophobic surfaces offer 

lower frost density and decreased frost growth rate as compared to hydrophilic surfaces [14]. To 

further delay frost formation, researchers have proposed the use of suitably designed 

superhydrophobic surfaces [15-17] to delay the heterogeneous nucleation of ice [18,19] as well as 

condensation frosting [20]. Although, at larger length scales, during bulk freezing, it has been 

shown that superhydrophobic surfaces offer no delay in freezing [21]. The length scales at which 

the droplet conduction resistance become more dominant than the interfacial air-gap resistance at 

solid-liquid interface is still unknown. The dominant mechanism of condensation frost formation 

on hydrophobic surfaces is inter-droplet frost wave propagation, [22,23] or ice bridging. When a 

subcooled condensate water droplet freezes on a hydrophobic or superhydrophobic surface, 

neighboring droplets still in the liquid phase immediately begin to evaporate [22,23]. The 

evaporated water molecules deposit on the frozen droplet and initiate the growth of ice bridges 

directed toward the water droplets that are being depleted. The significance of individual droplet 

freezing on frost wave propagation is still unknown.  

Although frosting delay has been shown with superhydrophobic surfaces, complete 

elimination of frosting has not been achieved [24]. Given enough time, frosting will initiate and 

spread to cover the entire surface [23-25]. Due to the limitations in indefinitely preventing frost 

formation, industrial applications generally rely on active defrosting techniques. One active system 
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defrosting method utilizes reversal of the cycle direction to heat the working fluid and melt the 

frost [26,27]. However, (i) up to 27% of the total defrost heat input is used simply to heat up the 

evaporator [28], and (ii) up to 75% of the defrosting energy goes into heating the refrigeration 

system and not the ice [29]. Moreover, during frost, defrost, and refrost cycles, water retention is 

observed on the heat exchangers [30], which acts to decreases the overall heat transfer coefficient 

of a heat exchanger by 20% [10,31] and act as a seed layer for frost nucleation during the next 

frost cycle. Hence, there is a need of surfaces that enable no water retention upon defrosting.  

In building energy applications, methods to remove frost from the surfaces of thermal 

components use electric heaters or hot-gas from the compressor to melt frost, which results in a 

further increase in energy consumption, and downtime. A need exists for defrosting approaches 

that are more energy efficient and quicker. Past studies have investigated electro-thermal Joule 

heating for de-icing applications [32-35], demonstrating a high energy requirement to achieve 

thermal de-icing. In order to mitigate high energy consumption, pulse electro-thermal defrosting 

has been proposed in the past [36,37], wherein melting of the interfacial layer adhering the ice to 

the solid surface allows gravity in conjunction with the ultra-thin lubricating meltwater layer to 

remove the ice/frost. However, accurate transient phase change heat transfer models of the pulse-

defrosting process are currently not available. Furthermore, the coupling of transient lubricating 

film physics with the transient thermally driven phase change processes has not been explored. 

1.1 Outline of the Thesis  

The present research aims to understand and answer the questions outlined above. Chapter 

2 presents condensation on biphilic surfaces. Enhancing the condensation heat transfer using 

biphilic surfaces is discussed. Chapter 3 presents bulk water freezing dynamics on 
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superhydrophobic surfaces and discusses avenues to delay bulk freezing. Chapter 4 presents the 

mechanism of frost wave propagation on hydrophobic and superhydrophobic surfaces during 

condensation frosting. The significance of individual droplet freezing on frost wave propagation 

is studied. Chapter 5 presents dynamic defrosting strategies on biphilic and superhydrophobic 

surfaces. The avenues to further decrease defrost time and provide design methodologies to create 

effective defrost-enhancing surfaces for industrial applications are explored. Chapter 6 presents a 

high fidelity model for interfacial pulse-defrosting applications, followed by experimental 

validation. A fundamental knowledge base for the design of efficient defrosting surfaces is 

discussed. Chapter 7 presents detailed conclusions from this study.  
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CHAPTER 2: CONDENSATION ON BIPHILIC SURFACES 

2.1 Overview  

Dropwise condensation that generally occurs on non-wetting surfaces exhibits 5-10X 

higher heat transfer coefficient than filmwise condensation. Furthermore, structured 

superhydrophobic surfaces that exhibit coalescence induced droplet jumping further enhances the 

condensation heat flux. However, higher supersaturation causes a superhydrophobic surface to 

flood, resulting in the failure of jumping droplet condensation and drastically decrease the heat 

transfer coefficient. Here we show, through detailed condensation heat transfer modeling coupled 

with numerical simulations of binary droplet coalescence, that biphilic surfaces with relatively 

high apparent surface energy spots on a superhydrophobic background surface exhibit 10X higher 

jumping droplet condensation heat transfer coefficient as compared to homogenous 

superhydrophobic surfaces. By promoting faster droplet growth rates on the spots, we control the 

droplet distribution density on the surface, thereby influencing the heat transfer and potentially 

delay flooding. These findings clarify the role of droplet jumping dynamics and distribution 

densities during condensation on biphilic surfaces and reveal the optimum design guidelines for 

biphilic surfaces with maximum condensation heat flux. 

2.2 Introduction  

Vapor condensation is a preferred mode of heat transfer in a wide range of applications 

such as building environmental control [38-40], power generation [41], and high-heat-flux thermal 

management [42]. Water vapor condensing on high- or low-surface-energy surfaces forms a liquid 

film or distinct droplets, respectively [1,2]. The latter, termed dropwise condensation, is desired 
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due to its 5-10X higher heat transfer coefficient [43-47]. To further enhance dropwise 

condensation, researchers have recently proposed the use of suitably designed superhydrophobic 

surfaces, wherein two or more droplets coalesce on an ultra-low adhesion nanostructured surfaces, 

the resulting droplet jumps away from the surface, termed as “coalescence induced droplet 

jumping”  governed by inertial-capillary energy conversion [3,4,48-52]. By enabling droplet 

jumping, the average droplet size on the surface is reduced, decreasing the condensate thermal 

resistance and enhancing overall heat transfer by ≥ 30% when compared to dropwise condensation 

[5,6]. It has been recently shown that biphilic surfaces, consisting of smooth or rough hydrophilic 

spots on a superhydrophobic background, can significantly influence droplet size distributions and 

heat transfer behavior during jumping-droplet condensation [7,8,53,54]. Water droplets nucleating 

at the hydrophilic spots grow to sizes defined by the biphilic pattern geometry, followed by 

coalescence and departure. By controlling the spatial geometry and length scale of the hydrophilic 

spots, enhanced jumping-droplet condensation heat transfer can be obtained through the increase 

in droplet density. However, it remains unclear what the necessary surface energy requirements 

are to achieve this “patterned” mode of condensation. Moreover, accurate models that are capable 

of coupling both droplet-adhesion governed departure dynamics with individual transient droplet 

heat transfer to predict the overall surface jumping-droplet condensation heat transfer on this class 

of heterogeneous surfaces do not exist.  

In this study, we numerically simulate the individual droplet transient condensation process 

on a jumping-droplet biphilic surface. The transient simulation captures the varying contact angle 

droplet growth dynamics on hydrophilic spots, along with the non-constant liquid-vapor interfacial 

temperature. We utilize our developed model to optimize the design of biphilic surfaces for 

maximum condensation heat transfer through the coupling of Ohnesorge number dependent 
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jumping dynamics and finite droplet adhesion on the droplet growth spots. In contrast to the 

previously used strategy of highly wetting droplet growth spots to achieve ordered droplet growth 

via spatial nucleation control, we explore an alternative strategy of promoting a large droplet 

growth rate contrast. By promoting significantly faster droplet growth rates on the defined growth 

spots, a locally hydrophobic (large receding angle) surface wetting state can be used. The result is 

to significantly reduce the droplet adhesion to extend the range of pattern geometries and droplet 

Oh where droplet jumping is possible. To validate the accuracy of the model, we performed 

condensation experiments to characterize individual droplet growth and departure dynamics on 

biphilic surfaces using optical microscopy. Using our model, we suggest avenues to maximize heat 

transfer on biphilic surfaces by identifying the critical bottlenecks such as optimization of droplet 

growth spot size and density-mediated adhesion, with individual droplet growth prior to departure. 

This work not only provides a more accurate framework for predicting the jumping-droplet 

condensation heat transfer on biphilic surfaces, but it also offers insights into new avenues for 

modeling evaporation and frosting phenomena on biphilic surfaces where analogous heat transfer 

and adhesion dynamics occur. 

2.3 Methods  

2.3.1 Heat Transfer Model  

In this section, I develop a heat transfer model to calculate the condensation heat flux on a 

superhydrophobic and a biphilic surface building on my previous work [55]. To calculate the 

overall condensation heat transfer, we first calculate the heat transfer through a water droplet. 

Then, we multiply the individual droplet heat transfer with the droplet distribution density to get 

the overall condensation heat flux. To calculate the droplet heat transfer, we study the thermal 

resistance network. For a droplet residing on a surface, I start with the calculation of the interfacial 
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resistance at the liquid-vapor interface. I calculate the heat transfer coefficient at the liquid-vapor 

interface of a droplet during condensation.  

Interfacial heat transfer coefficient. There have been many interfacial heat transfer 

coefficient formulae given in the literature, although a generic formula applicable for cases with 

high supersaturation or polyatomic molecules is lacking. One of the first derivations of the 

interfacial heat transfer coefficient was done by Schrage [56], where he derived an interfacial heat 

transfer coefficient associated with mass transfer across a liquid/vapor interface given by 

ℎi =
2𝛼

2 − 𝛼

1

√2𝜋𝑅g𝑇sat

ℎfg
2

𝜈g𝑇sat
 , (2.1) 

where 𝑅g is the specific gas constant and 𝜈g is the water vapor specific volume, 𝑇sat is the water 

vapor saturation temperature, and ℎfg is the latent heat of phase change. During a net condensation 

process, the coefficient 𝛼 represents the ratio of vapor molecules that will be captured by the liquid 

phase to the total number of vapor molecules reaching the liquid surface (ranging from 0 to 1).  

The heat transfer coefficient given by Eq. (2.1) is widely used in the literature to model 

dropwise condensation [57-61]. Rose [62] has shown that the values of condensation coefficient 

𝛼 which can be accepted as most reliable are all close to unity. While in many studies have used 

Eq. (2.1) for polyatomic molecules , it has been shown that Eq. (2.1) is strictly applicable to 

monoatomic molecules [62,63]. Another discrepancy in Eq. (2.1) which has been noted in the 

literature [64-68] is the relation of heat transfer coefficient and the accommodation coefficient, 𝛼; 

the factor 
2𝛼

2−𝛼
 is incorrect. Thus, an appropriate interfacial heat transfer coefficient associated with 

mass transfer across a liquid/vapor interface is desired. Rose [62] proposed a revised condensation 

heat transfer coefficient based on the theoretical result of Labuntsov & Kryukov [67]. Applying 
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the principles of the molecular-kinetic theory and solving the linearized Boltzmann equation, 

Labuntsov & Kryukov [67] calculated the pressure jump at the liquid-vapor interface for low as 

well as high interphase transfer rates. In the limit of low interphase mass transfer rates (𝑃𝑠 ≈ 𝑃𝑣 

and 𝑇𝑠 ≈ 𝑇𝑣), the pressure jump at the liquid-vapor interface is given by:  

𝑃𝑣 − 𝑃𝑠𝑎𝑡(𝑇𝑆) =
2 − 0.798𝛼

2𝛼
𝑚√2𝜋𝑅g𝑇sat , (2.2) 

where 𝑚 is the mass flux on the condensing surface. It should be noted that the pressure jump 

given by Eq. (2.2) has been reported in the literature, [66,69-72] which is obtained from the kinetic 

equations (Boltzmann equation, BGK model). Note, Eq. (2.2) is strictly applicable for a 

monotomic gas or hardsphere molecules [66,69-72].  

For condensation of saturated vapor, and substituting 𝑄 = 𝑚ℎ𝑓𝑔, Eq. (2.2) can be 

rearranged to give 

𝑄 =
2𝛼

2 − 0.798𝛼

hfg

√2𝜋𝑅g𝑇sat
(𝑃𝑣 − 𝑃𝑠𝑎𝑡(𝑇𝑆)). (2.3) 

When (𝑇𝑣 − 𝑇𝑠)/𝑇𝑠 ≪ 1, the Clausius-Clapeyron equation, with linear approximation of the 

saturation curve, gives 

𝑃𝑠𝑎𝑡(𝑇𝑣) − 𝑃𝑠𝑎𝑡(𝑇𝑆)

𝑇𝑣 − 𝑇𝑠
=
ℎ𝑓𝑔

𝑇𝑠𝑣𝑓𝑔
. (2.4) 

Away from the critical point, 𝑣𝑓𝑔 ≈ 𝑣𝑔, so Eqs. (2.2), (2.3) and (2.4) can be re-arranged to give 

ℎi =
2𝛼

2 − 0.798𝛼

1

√2𝜋𝑅g𝑇sat

ℎfg
2

𝜈g𝑇sat
 . (2.5) 

Le Fevre (1964) suggested that for Eq. (2.2) to be valid for diatomic and polyatomic molecules, 

the pressure jump should by multiplied by (𝛾 + 1)/4(𝛾 − 1). It should be noted that for 
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monoatomic molecules the ratio of specific heats, 𝛾 = 5/3, and the correction factor, (𝛾 +

1)/4(𝛾 − 1) = 1. Thus the interface heat transfer coefficient as suggested by Rose [62] becomes 

ℎi =
8𝛼

2 − 0.798𝛼

γ − 1

γ + 1

1

√2𝜋𝑅g𝑇sat

ℎfg
2

𝜈g𝑇sat
 , (2.6) 

It should be noted that the heat transfer coefficient given by Eq. (2.6) is valid only for low mass 

flux on the condensing surface, in other words, 𝑃𝑠 ≈ 𝑃𝑣 and 𝑇𝑠 ≈ 𝑇𝑣. Thus, for any arbitrary mass 

flux, the interpolation expression of mass flux given by Labuntsov & Kryukov [67] using the 

description asymptotics in the low and high intensity regions should be used,   

𝑚̇′′ = 1.67
(𝑃𝑣 − 𝑃𝑠𝑎𝑡(𝑇𝑆))

√2𝜋𝑅g𝑇v
× {1 + 0.515 𝑙𝑛 [

𝑃𝑣
𝑃𝑠
(
𝑇𝑠
𝑇𝑣
)
0.5

]} (2.7) 

Thus by combining Eqs. (2), (4), and (7), the interface heat transfer coefficient along with the 

correction factor suggested by Le Fevre (1964) for non-monoatomic gases becomes 

ℎi =
6.68

√2𝜋𝑅g𝑇v

γ − 1

γ + 1

ℎfg
2

𝜈g𝑇s
× {1 + 0.515 𝑙𝑛 [

𝑃𝑣
𝑃𝑠
(
𝑇𝑠
𝑇𝑣
)
0.5

]} (2.8) 

Note, Eq. (2.8) is valid only for the accommodation coefficient, 𝛼 = 1. If the accommodation 

coefficient is smaller than unity, an implicit equation given in Labuntsov & Kryukov [67] should 

be solved to calculate the mass flux. When the interphase transfer rate is low-intensity (𝑃𝑠 ≈ 𝑃𝑣 

and 𝑇𝑠 ≈ 𝑇𝑣), Eq. (2.8) becomes equivalent to Eq. (2.6). When the interphase transfer rate is no 

longer low-intensity, Eq. (2.6) under predicts the interface heat transfer coefficient.  

It should be noted that all the above analysis is done for a planar interface. At the liquid-

vapor interface of small droplets, Eq. (2.8) over predicts the interface heat transfer coefficient. 

Umur and Griffith (1965)[73] used the Kelvin correction to solve for the heat transfer coefficient 

at the liquid-vapor interface for hemispherical droplets and reported the heat transfer coefficient 

to be equal to Eq. (1) multiplied by a factor (1 −
𝑟∗

𝑟
) where 𝑟∗ is the critical radius. Thus, Eq. (2.8) 
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is updated accordingly for the Kelvin correction, the interface heat transfer coefficient after taking 

into account the droplet curvature effects is 

ℎi =
6.68

√2𝜋𝑅g𝑇v

γ − 1

γ + 1

ℎfg
2

𝜈g𝑇s
× {1 + 0.515 𝑙𝑛 [

𝑃𝑣
𝑃𝑠
(
𝑇𝑠
𝑇𝑣
)
0.5

]} (1 −
𝑟∗

𝑟
) (2.9) 

 

Droplet Growth Model. To calculate the theoretical droplet growth rate (𝑑𝑅/𝑑𝑡), the 

individual droplet heat transfer 𝑄(𝑅, 𝜃) is related to the droplet growth rate by the latent heat of 

phase change [59] 

𝑄(𝑅, 𝜃) = 𝑚̇ℎfg = 𝜌wℎfg
d𝑉

d𝑡
=
𝜋

3
𝜌wℎfg

d

d𝑡
[(1 − cos 𝜃)2(2 + cos 𝜃)𝑅3]  (2.10) 

where 𝜌w, 𝜃, 𝑅 and 𝑉 is the density, contact angle, radius and volume of the water droplet 

respectively. The heat transfer through an individual droplet, 𝑄(𝑅, 𝜃) is obtained from a model 

given in literature [55]. The convective interfacial heat transfer coefficient given by Eq. (2.9) is 

combined with the conductive thermal resistance of the droplet to obtain 𝑄(𝑅, 𝜃) [55]. There are 

two modes of droplet growth – Constant Contact Angle (CCA) and Constant Contact Line (CCL). 

In CCA mode, the droplet grows on a surface by maintaining a constant contact angle, with a 

monotonous increase in the droplet base area. Whereas, in the CCL mode, the contact line of the 

droplet, also known as the three-phase line is pinned to the surface during the droplet growth. In 

CCL, the contact angle of the droplet increases monotonously whereas the droplet base area 

remains constant. Accordingly, the droplet growth dynamics for CCA and CCL are different 

[7,60].  
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To calculate the droplet growth rate for CCA mode, we differentiate Equation (2.10) with 

respect to 𝑅, we get an explicit term for 𝑑𝑅/𝑑𝑡 

𝑄(𝑅, 𝜃) = 𝜋𝜌wℎfg𝑅
2
d𝑅

d𝑡
{(1 − cos2 𝜃)2 sin 𝜃

𝑑𝜃

𝑑𝑅
𝑅 + (1 − cos 𝜃)2(2 + cos 𝜃)} . (2.11) 

For CCA, the contact angle with respect to R remains constant, 𝑑𝜃/𝑑𝑅 = 0. Rearranging Eq. (11), 

we get the theoretical droplet growth rate for CCA mode:  

d𝑅

d𝑡
=

𝑄CCA(𝑅, 𝜃)

𝜋𝜌wℎfg𝑅2{(1 − cos 𝜃)2(2 + cos 𝜃)}
 , (2.12) 

where 𝑄CCA(𝑅, 𝜃) is individual droplet heat transfer across a droplet in CCA mode.  

To calculate the droplet growth rate for CCL mode, the time derivative of droplet volume 

in Equation (2.10) can be represented as,  

d𝑉

d𝑡
=
d𝑉

d𝜃
∙
d𝜃

d𝑡
=

𝜋𝐷b
3

32 cos4 (
𝜃
2)
∙  
d𝜃

d𝑡
 , (2.13) 

where 𝐷b is the droplet base diameter, 𝐷b = 2𝑅 sin 𝜃. Substituting Equation (2.13) in Equation 

(2.10), we get 

d𝜃

d𝑡
=
32 𝑄CCL(𝑅, 𝜃) 

𝜋𝜌wℎfg𝐷b
3 ∙  cos4 (

𝜃

2
) . 

(2.14) 

where  𝑄CCL(𝑅, 𝜃) is the individual droplet heat transfer across a droplet in CCL mode. Since, the 

droplet base diameter is constant for CCL, d𝐷b/d𝑡 = 0. Differentiating the equation, 𝐷b =

2𝑅 sin 𝜃 with respect to time, and substituting it in Equation (14) we get:  
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𝑑𝑅

𝑑𝑡
= −

32 ∙ 𝑅 ∙ 𝑄CCL(𝑅, 𝜃) 

𝜋𝜌wℎfg𝐷b
3 ∙  

cos 𝜃

sin 𝜃
∙ cos4 (

𝜃

2
) . 

(2.15) 

Equation (2.15) governs the theoretical droplet growth rate for the CCL mode.  

To calculate the individual droplet heat transfer, we use the model developed by Chavan 

et al. [55] The individual droplet heat transfer, characterized by the droplet Nusselt number (Nu), 

is a function of the Biot number (Bi) and apparent advancing contact angle (𝜃a), i.e. Nu =

𝑓(Bi, 𝜃a). Here, the Nusselt and Biot numbers are defined in terms of the droplet base radius (𝑅b) 

as: [74] 

Bi =
ℎi𝑅b
𝑘w

 , (2.16) 

Nu =  
𝑄

𝑘w𝑅b(𝑇sat − 𝑇s)
 , (2.17) 

where 𝑄 is the heat transfer through the droplet and 𝑘w is the droplet thermal conductivity. The 

thermal resistance associated with the conduction through the droplet and condensation at the 

liquid vapor interface is calculated as:  

𝜓c =
1

𝑘w𝑅bNu
 . (2.17) 

To calculate the overall individual droplet heat transfer, we calculate the overall thermal resistance 

for the CCA mode and the CCL mode. The CCA mode of droplet growth is observed on the nano-
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structured SHP surfaces wherein, the droplet is present on the top of nanostructured pillars. The 

thermal resistance of air gap and nano pillars beneath the water droplet is given by:[59]  

𝜓gap =
1

𝑘HC𝜋𝑅2sin2𝜃
[

𝑘P𝜙

𝛿HC𝑘P + ℎ𝑘HC
+

𝑘w(1 − 𝜙)

𝛿HC𝑘w + ℎ𝑘HC
]

−1

 , (2.18) 

where 𝑘air is the thermal conductivity of air, 𝑘P is pillar thermal conductivity, ℎ is the height of 

pillars, 𝛿HC is the coating thickness of the silane, 𝜙 is the structured surface solid fraction, 𝑘w is 

thermal conductivity of water, and 𝑘HC is the coating thermal conductivity. The total thermal 

resistance for a droplet growing in CCA mode is, 𝜓tot,CCA = 𝜓c + 𝜓gap. The individual droplet 

heat transfer for CCA mode is:  

𝑄CCA(𝑅, 𝜃) =
Δ𝑇

1
𝑘HC𝜋𝑅2sin2𝜃

[
𝑘P𝜙

𝛿HC𝑘P + ℎ𝑘HC
+

𝑘w(1 − 𝜙)
𝛿HC𝑘w + ℎ𝑘HC

]
−1

+
1

𝑘w𝑅bNu

 , 
(2.19) 

where Δ𝑇 = 𝑇sat − 𝑇s is the temperature difference between saturated vapor and substrate.  

The CCL mode is observed on biphilic surfaces, wherein water nucleates on the flat growth 

sites of a biphilic surface with an SHP background. The water droplet is pinned at the edges of the 

spot. During the droplet growth during CCL mode, the total thermal resistance for the heat transfer 

is the addition of the droplet thermal resistance, 𝜓c (Eq. (2.17)), and the thermal resistance of 

hydrophobic coating, 𝜓coat. The thermal resistance of the hydrophobic coating is given by:  

𝜓coat =
𝛿HC

𝑘HC𝜋𝑅2sin2𝜃
 , (2.20) 
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The individual droplet heat transfer for CCL mode is:  

𝑄CCL(𝑅, 𝜃) =
Δ𝑇

𝛿HC
𝑘HC𝜋𝑅2sin2𝜃

+
1

𝑘w𝑅bNu

 , 
(2.21) 

Substituting Eq. (2.19) in Eq. (2.12) and Eq. (2.21) in Eq. (2.15) gives the theoretical droplet 

growth rate for CCA and CCL modes respectively.  

d𝑅

d𝑡
|
CCA

=
1

𝜋𝜌wℎfg𝑅2{(1 − cos 𝜃)2(2 + cos 𝜃)}

∙
Δ𝑇

1
𝑘HC𝜋𝑅2sin2𝜃

[
𝑘P𝜙

𝛿HC𝑘P + ℎ𝑘HC
+

𝑘w(1 − 𝜙)
𝛿HC𝑘w + ℎ𝑘HC

]
−1

+
1

𝑘w𝑅bNu

 , 
(2.22) 

d𝑅

d𝑡
|
CCL

= −
32 ∙ 𝑅 

𝜋𝜌wℎfg𝐷b
3 ∙  
cos 𝜃

sin 𝜃
∙ cos4 (

𝜃

2
) .

Δ𝑇

𝛿HC
𝑘HC𝜋𝑅2sin2𝜃

+
1

𝑘w𝑅bNu

 
(2.23) 

 

Overall condensation heat transfer. To calculate the overall condensation heat flux we 

combined the individual droplet heat transfer with the total number of droplets on the condensing 

surface. For a superhydrophobic surface, a droplet distribution theory to account for the fraction 

of droplets on the surface of a given radius 𝑅 for the surfaces undergoing shedding and jumping 

available in the literature is used. For small droplets (𝑅 ≤ 𝑅𝑒), the size distribution 𝑛(𝑅) is 

determined by:[58]  
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𝑛(𝑅) =
1

3𝜋𝑅e
3𝑅̂
(
𝑅e

𝑅̂
)
−
2
3 𝑅(𝑅e − 𝑅min)

𝑅 − 𝑅min

𝐴2𝑅 + 𝐴3
𝐴2𝑅e + 𝐴3

exp(𝐵1 + 𝐵2) , (2.24) 

where, where 𝑅̂ is the average maximum droplet radius (departure radius), 𝑅e is the radius when 

droplets growing by direct vapor addition begin to merge and grow by droplet coalescence, 𝑅min 

is the critical nucleation radius for condensing droplets (≈10 nm for water). For large droplets 

(𝑅 ≥ 𝑅e) growing due to coalescence, the droplet distribution 𝑁(𝑅) is determined from:[44] 

𝑁(𝑅) =
1

3𝜋𝑅e2𝑅̂
(
𝑅e

𝑅̂
)
−
2
3
 (2.25) 

The variables 𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2 are constants associated with droplet sweeping, defined as:[59] 

𝐴1 =
∆𝑇

ℎ𝑓𝑔𝜌𝑤(1 − cos 𝜃)2(2 + cos 𝜃)
 (2.26) 

𝐴2 =
𝜃

4𝑘𝑤 sin 𝜃
 (2.27) 

𝐴3 =
1

2ℎ𝑖(1 − cos 𝜃)
+

1

𝑘𝐻𝐶 sin2 𝜃
[

𝑘𝑝𝜙

𝛿𝐻𝐶𝑘𝑝 + ℎ𝑘𝐻𝐶
+

𝑘𝑝(1 − 𝜙)

𝛿𝐻𝐶𝑘𝑤 + ℎ𝑘𝐻𝐶
]

−1

 (2.28) 

𝐵1 =
𝐴2
𝜏𝐴1

[
𝑅𝑒
2 − 𝑅2

2
+ 𝑅𝑚𝑖𝑛(𝑅𝑒 − 𝑅) − 𝑅𝑚𝑖𝑛

2 ln (
𝑅 − 𝑅𝑚𝑖𝑛
𝑅𝑒 − 𝑅𝑚𝑖𝑛

)] (2.29) 

𝐵2 =
𝐴3
𝜏𝐴1

[𝑅𝑒 − 𝑅 − 𝑅𝑚𝑖𝑛 ln (
𝑅 − 𝑅𝑚𝑖𝑛
𝑅𝑒 − 𝑅𝑚𝑖𝑛

)] (2.30) 

𝜏 =
3𝑅𝑒

2(𝐴2𝑅𝑒 + 𝐴3)
2

𝐴1(11𝐴2𝑅𝑒2 − 14𝑅𝑒𝑅𝑚𝑖𝑛 + 8𝐴3𝑅𝑒 − 11𝐴3𝑅𝑚𝑖𝑛)
 (2.31) 

For the case of smooth hydrophobic surfaces (𝜙 = 1, ℎ = 0, 𝛿𝐻𝐶 ≈ 0) or nanostructured 

superhydrophobic surfaces (ℎ ≈ 0, 𝛿𝐻𝐶 ≈ 0), 𝐴3 is defined as: 

𝐴3 =
1

2ℎ𝑖(1 − cos 𝜃)
 (2.32) 
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The total surface steady state condensation heat flux (𝑞tot) for a superhydrophobic surface is 

obtained by incorporating the individual droplet heat transfer obtained from equations (2.19) or 

(2.21), with the droplet size distributions (Equation (2.16) and (2.17)): 

𝑞tot = ∫ 𝑄(𝑅, 𝜃)𝑛(𝑅)𝑑𝑅
𝑅e

𝑅min

+∫ 𝑄(𝑅, 𝜃)𝑁(𝑅)𝑑𝑅
𝑅̂

𝑅e

 (2.33) 

Now, to calculate the condensation heat transfer on a biphilic surface made up of droplet 

growth spots on a non-wetting background, we use the following assumption: (i) water nucleates 

preferentially at the spots, (ii) nucleation takes place at all spots, (iii) after nucleation, the droplet 

grows on the spot in CCL mode with a starting contact angle, 𝜃𝑖, intrinsic to the surface chemistry 

(iv) the droplet grows until it coalesces with the neighboring droplet as shown in Fig. 2.1(a), and 

(v) the droplet jumps off and escapes the surface upon coalescence. The average heat transfer 

through an individual droplet growing on a biphilic surface is:  

𝑄̅(𝑅, 𝜃) =
∫ 𝑄(𝑅, 𝜃)
𝜃a
𝜃𝑖

𝑑𝜃

𝑡growth
 (2.34) 

where 𝑄(𝑅, 𝜃) is the heat transfer through an individual droplet obtained from equations (2.19) or 

(2.21), 𝜃a is the contact angle of the droplet when it coalesces as shown in Fig. 2.1(a), and 𝑡growth 

is the time taken by the droplet from nucleation to grow until it coalesces and jumps. The number 

of spots per unit area on a biphilic surface, 𝑁biphilic gives us the number of water droplets. The 

total condensation heat flux on a biphilic surface is calculated as:   

𝑞tot = 𝑄̅(𝑅, 𝜃) ∙ 𝑁biphilic (2.35) 

The overall condensation heat transfer coefficient is calculated by:  
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ℎc =
𝑞tot 
Δ𝑇

 (2.36) 

where Δ𝑇 is the temperature difference between the ambient temperature, 𝑇a and the condensing 

surface, 𝑇s (Δ𝑇 = 𝑇a − 𝑇s).  

2.3.2 VOF Droplet Jumping Model  

Numerical Simulations. To study droplet coalescence and subsequent jumping on a 

biphillic surface, we simulated the case of symmetric binary coalescence using the volume-of-fluid 

(VOF) approach with custom automated mesh adaption to resolve the liquid/gas interface 

implemented in a finite-volume solver (Fluent v17.0, Ansys Inc.).   

We simulated the cases of symmetric binary coalescence (N = 2) using the volume-of-fluid 

(VOF) method implemented in a finite-volume solver (Fluent v17.0, Ansys Inc.) with automated 

mesh adaption implemented in a user defined function (UDF) to resolve the liquid/gas interface. 

Three levels of adaption were allowed providing for a minimum cell volume (Vmin) with 

characteristic length (𝑉𝑚𝑖𝑛
1/3

) in the interface region of 1.9% the droplet radius. Due to symmetry 

only one quarter of the domain was simulated with dimensions of 3Rx3Rx5R, where R is the 

simulated initial droplet radius. The simulation domain was bounded by two symmetry planes 

where, by definition, the contact angle is single valued at π/2; two walls specified with a shear-

stress free condition; the droplet wetting wall specified as no-slip and a single valued contact angle 

(contact angle hysteresis neglected); and an outlet vent, with backflow direction specified from 

neighboring cell, opposite to the droplet wetting wall. To simulate the biphillic surfaces, the droplet 

wetting wall was decomposed into two regions at the native mesh level. Distinct single valued 

contact angles were specified for each region on the droplet wetting wall; θ = 180° for the 

background surface and θ = θr at the growth spot. The droplet volume was patched into the 
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simulation domain corresponding to the to the start of coalescence. The properties of the liquid 

droplet, the surrounding gas and the interface between them are nominally those of water and 

humid air at room temperature, which corresponds to a nominal viscosity and density ratio of μl/μg 

= 56 and ρl/ρg = 815, respectively. 

The PISO algorithm was used for pressure-velocity coupling. Discretization for pressure, 

momentum and volume fraction was done with the PRESTO!, QUICK and Geo-Reconstruct 

algorithms, respectively. The continuum surface force (CSF) model was used to capture surface 

tension. The VOF implementation is intrinsically volume conserving [ref]. This was confirmed for 

all simulations by tracking the volume of the droplet phase during the simulations. Good results in 

reducing spurious velocities were obtained by using Fluent’s native smoothing function. One fully-

weighted cycle of smoothing at each iteration was found to be suitable for the simulations. Under-

smoothing by reducing the weighting for a single smoothing cycle led to poor results. Over-

smoothing should also be avoided as this unphysically reduces the local curvature of the bridging 

region leading to a reduction in the simulated jumping velocity. 

Determination of jumping speed from simulations. Droplet jumping speeds were 

determined from simulations by calculating the mass averaged droplet velocity when the droplet 

lost contact with the surface. It should be noted that, during the coalescence process the droplet 

typically loses contact with the substrate twice. The first instance occurs during the initial bridge 

development where the entrainment liquid from the droplet bulk into the developing bridge region 

results in loss of contact with the substrate. As the liquid bridge expands, it eventually impacts the 

substrate leading to a substantial increase in the wetted area of liquid on the substrate. The point 
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of departure was found to correlate well with normal force on the wall reaching a minimum 

(negative).  

2.4 Results and Discussions  

Figure 2.1(a) represents the schematic of a biphilic surface. The maximum radius of the 

water droplet, 𝑅e = 𝐿/2, where 𝐿 is the pitch between the biphilic spots. The contact angle of the 

water droplet prior to coalescence is:   

𝜃a = sin
−1 (

𝐷b
𝐿
) (2.37) 

where 𝐷b is the diameter of the biphilic spot. Fig. 2.1(b) represents droplet radius observed from 

the top view, 𝑅top as a function of time during droplet growth on a superhydrophobic and biphilic 

surface. The receding contact angle of water at the biphilic spot is, 𝜃r = 120°. For a biphilic surface, 

we assume that water nucleates at the biphilic spot. Upon nucleation, the water droplet grows in a 

constant contact angle (CCA) mode, with an advancing contact angle, 𝜃a = 120°. It grows in the 

CCA mode until the point the droplet is pinned at the edges of the biphilic spot. After that the 

droplet grows in a constant contact line (CCL) mode, wherein the droplet base area remains 

constant. It keeps on growing until it achieves the maximum droplet radius, 𝑅e. Equations (2.22) 

and (2.23) are used accordingly to calculate the droplet growth rate on a biphilic spot. For a 

superhydrophobic surface, we assume that the droplet nucleates between the nanostructures and 

grows in a CCL mode until it is pinned in between two nanostructures as shown in the schematic 

of Fig. 2.1(b). Since the droplet grows in a CCL mode, with a constant droplet base area and a 

starting contact angle of 10°, the droplet radius observed from the top view remains constant. The 

droplet is assumed to start de-pinning when it has a contact angle of 𝜃a,SHP = 170°. Once it starts 



21 

 

de-pinning, we assume that it goes into the Cassie-Baxter state and further grows in CCA mode. 

As observed in Fig. 2.1(b), the growth rate of a droplet on a biphilic surface is much faster than 

that of a SHP surface, and at a given instance of time, the size of a droplet on a biphilic surface is 

10X than that of a droplet on a SHP surface. Moreover, with an increase in the height of the 

nanostructures on the SHP surface, we observe that the droplet growth rate on a SHP surface is 

further retarded.  

Figure 2.2(a) represents total condensation heat flux, 𝑞tot as a function of maximum droplet 

radius, 𝑅e for a biphilic surface and a superhydrophobic surface for various advancing contact 

angle, 𝜃a. Note, it is assumed that droplet with radius, 𝑅 > 𝑅e jump off and escape the surface, 

therefore jumping droplet condensation heat transfer is plotted here. Equations (2.33) and (2.34) 

are used to calculate the condensation heat flux for a superhydrophobic surface and biphilic surface 

respectively. For a biphilic surface, the maximum droplet radius on the surface is, 𝑅e = 𝐿/2, where 

𝐿 is the pitch between the biphilic spots. It is observed that for a given advancing contact angle on 

a condensing surface, the condensation heat flux on a biphilic surface is 10X than that on a 

superhydrophobic surface. Furthermore, as 𝜃a decreases, the heat transfer area at the droplet base 

increases, decreasing the conduction thermal resistance of the droplet. Thus, with decreasing 𝜃a, 

𝑞tot increases. Additionally, it is observed that with decreasing the maximum droplet radius on the 

surface, 𝑞tot increases. It is because with decreasing the maximum droplet size, the average size 

of the water droplet on the surface decreases, decreasing the thermal resistance. Thus, for enhanced 

heat transfer, a biphilic surface with lower contact angle and, accordingly, lower pitch between the 

biphilic spots is preferred.  

To better understand the relation between the total condensation heat flux on a biphilic 

surface, droplet size and the contact angle of the droplet, we plot (Figure 2.3(b)) the condensation 
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heat transfer coefficient for a biphilic surface as a function of biphilic spot size, 𝐷b and pitch ratio, 

𝐿/𝐷b. The relation between the pitch ratio is given by Eq. (2.37). Eq. (2.36) is used to calculate 

the condensation heat transfer coefficient for a biphilic surface. We notice that for enhanced heat 

transfer, smaller biphilic spot sizes that result in smaller droplet sizes, and lower pitch ratios that 

result in lower contact angle are preferred. However, for small droplet sizes, the viscous dissipation 

increases upon coalescence. Moreover, with decreasing the contact angle, the adhesion of the water 

droplet to the biphilic spot increases. Increased viscous dissipation upon coalescence and enhanced 

surface adhesion could result in failure of droplet jumping upon coalescence. The relative 

significance of viscous forces as compared to inertial forces and surface tension can be determined 

by the Ohnesorge number:  

Oh =
𝜇

√𝜌𝛾𝑅
 (2.37) 

where 𝜇, 𝛾, 𝜌, and 𝑅 are the viscosity, surface tension, density and radius of the droplet. Physically 

Oh represents the ratio of two time scales, Rayleigh timescale for coalescence, 𝑡R~√𝜌𝑅3/𝛾, and 

the viscocapillary time scale, 𝑡visc~𝜇𝑅/𝛾 that characterizes the thinning dynamics of a viscously-

dominated thread, Oh = 𝑡visc/𝑡R [75]. The non-dimensional velocity of the jumping droplet is 

given by:  

𝑣∗ = 𝑣√
𝜌𝑅

𝛾
 (2.37) 

where 𝑣 is the maximum velocity of the jumping droplet. Figure 2.3(c) represents the characteristic 

velocity, 𝑣∗ as a function of Oh for a smooth surface with no adhesion (𝜃a = 𝜃r → 180°). We expect 

the smooth approximation of the droplet jumping surface to be reasonable in comparison to 
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experiment provided that the surface structure length scale, l, is ~10X smaller than the droplet 

radius [76]. In this limiting case, we recover a jumping speed 𝑣∗ = 0.254 at Oh = 0.01 (strong 

inertia) and a jumping cut-off of Ohc ≈ 0.66 broadly in-line with previous findings considering the 

viscosity/density ratio simulated here [48,77-80]. 

 To determine the relation of Oh with the maximum droplet size and contact angle of water 

droplet during coalescence induced droplet jumping on a biphilic surface, we plot Oh as a function 

of biphilic spot size, 𝐷b and pitch ratio, 𝐿/𝐷b in Figure 2.3(d). It is observed that Oh increases 

with decreasing the droplet size and droplet contact angle, whereas the condensation heat transfer 

coefficient increases as observed in Figure 2.3(b). Thus, there exists an optimum where we can 

achieve maximum jumping droplet condensation heat transfer on a biphilic surface. To identify 

the optimal design, we study the droplet jumping dynamics for a given biphilic surface design.  

 To explore droplet jumping dynamics on the biphilic surface, we implemented a VOF 

model as described in the methods section. Figures 3(a) and (b) show the time lapse images of the 

3D VOF jumping droplet simulations on a biphilic surface, with a biphilic spot receding contact 

angle, 𝜃r,spot = 120° and 𝜃r,spot = 0°, respectively for Oh = 0.1 and 𝐿/𝐷b = 8.35. It was observed 

that for a superhydrophlic spot, 𝜃r,spot = 0°, satellite droplets are left behind at the biphilic spots 

during coalescence induced jumping (Figure 2.3(c)), whereas for a hydrophobic spot, 𝜃r,spot = 

120°, no such satellite droplets are formed.  

 Further simulations were conducted for 0.15 ≥ Oh ≥ 0.02 (600 nm < 𝑅e < 30 μm), 3 < 𝐿/𝐷b 

< 8.4, and 0 ≤ 𝜃r,spot ≤ 120° to better understand the droplet jumping dynamics on a biphilic 

surface. Note, we restricted our simulations to Oh ≤ 0.15 considering a practical lower limit on 

structure length scale of ~10 nm5,6 so that R/l ≳ 10 at the conditions studied here. In Figure 2.4, 
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we plot the characteristic velocity ratio, 𝑣∗/𝑣na
∗  which is the ratio of characteristic jumping velocity 

on a biphilic surface to that on a smooth, homogenous surface with no adhesion (𝜃a = 𝜃r → 180°) 

as a function of Oh with varying 𝜃r,spot. Figure 2.4(a), (b) and (c) show the simulation results for 

a pitch ratio, 𝐿/𝐷b = 3.16, 4.18, and 8.35, respectively. In Figure 2.4(a), we observe that for a low 

pitch ratio (𝐿/𝐷b = 3.16, 𝜃a = 161.5°) no droplet jumping (𝑣∗ = 0) takes place for biphilic spots 

with a receding contact angle, 𝜃r,spot < 90°. Moreover, for biphilic spots with a receding contact 

angle, 𝜃r,spot = 90°, with increasing Oh, the viscous dissipation and surface adhesion start 

dominating, thereby resulting in the failure of droplet jumping. By increasing the pitch ratio (𝐿/𝐷b 

= 4.18, 𝜃a = 166.2°) as shown in Figure 2.4(b), the Oh at which droplets cease to jump upon 

coalescence can be pushed further. Additionally, biphilic spots with a receding contact angle, 

𝜃r,spot = 60° exhibit coalescence induced droplet jumping for lower Oh cases. In order to achieve 

droplet jumping for biphilic surfaces with receding contact angle, 𝜃r,spot → 0°, the pitch ratio is 

further increased as shown in Figure 2.4(c) (𝐿/𝐷b = 8.35, 𝜃a = 173.2°). The pitch ratio, 𝐿/𝐷b = 

8.35 exhibits coalescence induced droplet jumping for all the studied Oh and 𝜃r,spot. However, 

note that as observed in Fig. 2.2(b), a high 𝐿/𝐷b leads to lower condensation heat transfer 

coefficient. To understand the dependence of the droplet jumping dynamics on the receding 

contact angle of the biphilic spot, we plot the characteristic velocity ratio, 𝑣∗/𝑣na
∗  as a function of 

𝜃r,spot with varying Oh for 𝐿/𝐷b = 8.35 in Figure 2.4(d). We observe that for increasing 𝜃r,spot, 

the droplet adhesion at the hydrophilic spot decreases resulting in an increase 𝑣∗/𝑣na
∗ . Interestingly, 

for hydrophobic spots with 𝜃r,spot = 120°, the characteristic velocity of the jumping droplet on a 

biphilic surface is greater than that on a surface with no adhesion, 𝑣biphilic
∗  > 𝑣na

∗ , by as much as 

~20%. Currently, we have no definite explanation for this observation, but it may be due to 

perturbations in the excess-surface energy-to-kinetic-energy transfer process during coalescence.   
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To optimize the biphilic surface design for maximum condensation heat transfer coefficient, we 

combine the results of VOF droplet jumping simulations with condensation heat transfer model. 

Figure 2.5 shows the condensation heat transfer coefficient as a function of Oh and pitch ratio, 

𝐿/𝐷b. The results of the VOF jumping droplet model are superimposed on Figure 2.5. The area 

under the curve corresponding to a given 𝜃r,spot represents the regime where coalescence induced 

droplet jumping is observed. Above the curve droplets don’t jump upon coalescence and remain 

on the surface. For example, a biphilic surface design with hydrophilic spots (𝜃r,spot ≤ 30° 60° 

(?)), a pitch ratio, 𝐿/𝐷b = 8.35 and Oh = 0.15 gives a model condensation heat transfer coefficient 

of hc ~ 5x104 W/m2-K. With increasing 𝜃r,spot, droplets at lower 𝐿/𝐷b and higher Oh are able to 

jump. For hydrophobic spots (θr = 120°) with a low pitch ratio (~3) and Oh = 0.15, the accessible 

condensation heat transfer coefficient increases to hc ~ 2.6x105 W/m2-K, a 5X increase in 

comparison to the hydrophilic spot limit.  

By taking a strictly thermodynamic view, one expects that hydrophilic spots are necessary 

to promote the organized growth of condensed droplets on superhydrophobic background surface 

[refs, Hong Kong, McCarthy, others?]. However, we have shown that hydrophillic spots impose a 

significant penalty on droplet jumping and, as a result, condensation heat transfer coefficient due 

to increased adhesion. Moreover, one cannot expect that a practical surface can be realized 

whereby all nucleation sites down to ~10 nm size can be eliminated from the superhydrophobic 

background surface. If, instead, we consider the kinetics of the system (Figure 2.1(b)), we suggest 

that droplet growth rate contrast may achieve the same result on a “biphillic” surface that has the 

same wettability at the molecular level, but using smooth spots versus the rough background. 

Recognizing kinetic control as a strategy for ordered droplet condensation significantly expands 
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the allowable range of pattern geometries where droplet jumping can occur and, thus, the upper 

limit of the heat transfer coefficient. 

Our work has been highly simplified to focus on the idealized situation of binary droplet 

growth and coalescence. Future work should investigate, in detail, the evolution of droplet size 

distribution on the surface due to the presence of droplet populations demonstrating distinctly 

different growth rates. Moreover, surface design strategies should be pursued that provide for large 

growth rate contrast between droplet growth spots and the superhydrophobic background surface.  

2.5 Conclusions  

In this study, we couple the individual droplet growth and condensation heat transfer with 

droplet jumping dynamics to optimize the design of a biphilic surface for maximum heat flux. We 

show that a biphilic surface has higher droplet growth rate during condensation than a 

superhydrophobic surface. In contrast to the previously used strategy of highly wetting droplet 

growth spots to achieve ordered droplet growth, we explored an alternative strategy of promoting 

a large droplet growth rate contrast. By promoting significantly faster droplet growth rates on the 

defined growth spots, a locally hydrophobic (large receding angle) surface wetting state can be 

used. This leads to a significant reduction in droplet adhesion to extend the range of pattern 

geometries and droplet Oh where droplet jumping is possible. Furthermore, the biphilic surface 

exhibits 10X higher heat transfer coefficient in comparison to a SHP surface. Biphilic surfaces 

with lower maximum droplet sizes (higher Oh) and lower contact angles during coalescence are 

preferred for higher heat flux. To determine the droplet jumping dynamics in this regime, we 

performed VOF numerical simulations of coalescence induced droplet jumping. The numerical 

simulations show that for hydrophilic spots, higher pitch ratios (high contact angle) and lower Oh 

are required to observe coalescence induced droplet jumping, whereas hydrophobic spots exhibit 
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jumping at higher Oh and lower contact angle, enhancing the heat flux. The characteristic velocity 

of jumping droplets on a biphilic surface with hydrophobic spots was higher than a surface with 

no adhesion. The results of the numerical model are superimposed on the condensation heat 

transfer model to optimize the design of a biphilic surface for maximum condensation heat flux. 

This study not only provides a more accurate framework for predicting the jumping-droplet 

condensation heat transfer on biphilic surfaces, it offers insights into biphilic surface design 

methodologies to achieve maximum condensation heat flux. 
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2.6 Figures  

 

Figure 2.1. (a) Schematic of a biphilic surface from isometric view and side view. (b) Radius of 

the water droplet viewed from the top view direction as a function of time for a biphilic surface 

and superhydrophobic surfaces with varying pillar heights, 𝑡. The droplet radius is calculated 

theoretically from Eq. (2.22) and Eq. (2.23). For a biphilic surface, it is assumed that the water 

droplet nucleates at the biphilic spot (spot radius, 𝑅b = 2 µm), which has a receding contact angle, 

𝜃r,spot = 120°. After nucleation, the droplet grows in a constant contact angle fashion until the 

edge of the droplet base matches the biphilic spot edge, after which the droplet grows in a constant 

contact line fashion. For a superhydrophobic surface, it is assumed that the droplet nucleates in the 

gap between the pillars with top view droplet radius, 𝑅 = 50 nm. After nucleation, the droplet 

grows in a constant contact line fashion until the advancing contact angle of the water droplet 

reaches, 𝜃a = 170°, after which the droplet grows in a constant contact angle fashion. With an 

increment in the pillar height on a superhydrophobic surface, the conduction resistance offered by 

the air gaps increases, delaying the droplet growth. Note, droplet growth rate for a biphilic surface 

is an order of magnitude higher than a superhydrophobic surface. The higher droplet growth rate 

on a biphilic surface leads to enhanced coalescence induced jumping droplet removal, leading to 

higher heat transfer.   
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Figure 2.2. (a) Total condensation heat flux, 𝑞tot as a function of maximum droplet radius, 𝑅e for 

a biphilic surface and a superhydrophobic surface for various advancing contact angle, 𝜃a. (b) 

Total condensation heat transfer coefficient on a biphilic surface, ℎc as a function of spot diameter 

on a biphilic surface, 𝐷b and pitch ratio of the biphilic spots, 𝐿/𝐷b. Lower 𝐷b and 𝐿/𝐷b is preferred 

for higher ℎc. (c) Non-dimensional droplet jumping speed as a function of Ohnesorge number, 

Oh, on a smooth, homogenous surface with contact angle 𝜃 = 180°. The properties of the liquid 

droplet, the surrounding gas and the interface between them are nominally those of water and air 

at 20 °C, which corresponds to a viscosity and density ratio of μl/μg = 56 and ρl/ρg = 815, 

respectively. (d) Ohnesorge number, Oh as a function of spot diameter on a biphilic surface, 𝐷b 

and pitch ratio of the biphilic spots, 𝐿/𝐷b. For low 𝐷b and 𝐿/𝐷b, ℎc as well as Oh increases, 

indicating that coalescence induced droplet jumping may not be feasible in the regimes where ℎc 

is maximum. Thus, an optimum exists corresponding to maximum condensation heat transfer 

possible on a biphilic surface.   
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Figure 2.3.  Time-lapse images of the 3D VOF droplet jumping simulations on a biphilic surface, 

with biphilic spot receding contact angle, (a) 𝜃r,spot = 120° and (b) 𝜃r,spot = 0°. Oh = 0.1 and 𝐿/𝐷b 

= 8.35 for all the simulations. (c) Zoomed in images for 𝜃r,spot = 0°. For a superhydrophlic spot, 

𝜃r,spot = 0°, satellite droplets are left behind at the biphilic spots during coalescence induced 

jumping whereas for hydrophobic spot, 𝜃r,spot = 120°, no such satellite droplets are formed.  
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Figure 2.4. Characteristic velocity ratio, 𝑣∗/𝑣na
∗  as a function of Oh with varying 𝜃r,spot for pitch 

ratios, (a) 𝐿/𝐷b = 3.16, (b) 𝐿/𝐷b = 4.18, and (c) 𝐿/𝐷b = 8.35. With an increase in the pitch ratio, 

coalescence induced droplet jumping is observed even for hydrophilic spots. For 𝐿/𝐷b = 8.35, 

coalescence induced droplet jumping is observed even for superhydrophilic spots (𝜃r,spot = 0) for 

all the Oh explored. (d) Characteristic velocity ratio, 𝑣∗/𝑣na
∗  as a function of 𝜃r,spot with varying 

Oh for 𝐿/𝐷b = 8.35.  
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Figure 2.5. Overall Condensation heat transfer coefficient, ℎc as a function of Oh and 𝐿/𝐷b with 

regime maps indicating the regime where coalescence induced droplet jumping is feasible for 

various 𝜃r,spot. The area below the lines for various 𝜃r,spot marked by arrows represent the regime 

where, from simulation, coalescence induced droplet jumping is expected. Note, biphilic spots 

with 𝜃r,spot = 120° and a pitch ratio of 𝐿/𝐷b ≈ 3 show maximum total condensation heat transfer 

coefficient.  
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CHAPTER 3: BULK WATER FREEZING DYNAMICS 

3.1 Overview  

In this chapter, we elucidate the mechanisms governing the heat-transfer mediated, non-

thermodynamic, freezing delay on non-wetting surfaces for a variety of characteristic length 

scales, 𝐿𝑐 (volume/surface area, 3 mm < 𝐿𝑐 < 6 mm) using carefully designed freezing experiments 

in a temperature-controlled, zero-humidity environment on thin water slabs. To probe the effect of 

surface wettability, we investigated the total time for room temperature water to freeze into ice on 

superhydrophilic (𝜃a
app

→ 0°), hydrophilic (0° < 𝜃a < 90°), hydrophobic (90° < 𝜃a < 125°), and 

superhydrophobic (𝜃a
app

→ 180°) surfaces. Our results show that at macroscopic length scales (> 

100 µm), heat conduction through the water-ice layer (~𝑘/𝐿𝑐) dominates the freezing process 

when compared to heat conduction through the functional coatings or nanoscale gaps (~𝑘air/𝑡) at 

the superhydrophobic surface-water interface. In order to verify our findings, and to determine 

when the surface structure thermal resistance approaches that of the water/ice resistance, we 

fabricated and tested additional substrates coated with commercial superhydrophobic spray 

coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal 

resistance of thicker coatings was much larger than that of nanoscale superhydrophobic features, 

which reduced the droplet heat transfer and increased the total freezing time. Transient finite 

element method heat transfer simulations of the water slab freezing process were performed to 

calculate the overall heat transfer coefficient at the substrate-liquid interface during freezing, and 

shown to be in the range of 1 to 2.5 kW/m2K. The results shown here suggest that in order to 

exploit heat transfer mediated freezing delay at larger length scales (~ 1mm), thicker 
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superhydrophobic coatings must be deposited on the surface, where the coating resistance is 

comparable to the droplet conduction resistance.  

3.2 Introduction  

Ice formation and accretion present serious economic and safety issues for many industrial 

applications such as aircraft, power lines, wind turbines, and HVAC&R equipment [10-12,31,81-

84]. In order to delay ice nucleation via thermodynamic energy barriers, superhydrophobic 

surfaces have been the focus of study in recent decades [19,85-94]. Cooling of the 

superhydrophobic surfaces to subzero temperatures facilitates the formation of metastable 

supercooled spherical condensate that enables delayed frosting compared to traditional hydrophilic 

or hydrophobic surfaces [95-99]. Increased hydrophobicity, decreased solid-liquid contact area of 

the spherical condensate, and higher thermodynamic energy barriers for ice nucleation were 

responsible for the freezing delay [95,97,98].   

Water droplets residing on suitably designed superhydrophobic surfaces exhibit the Cassie-

Baxter wetting state, where droplets reside on the tops of the micro/nanostructured features [1,2]. 

Previous studies have shown that the presence of the air-gaps beneath small water droplets (droplet 

volume = 1.2 mL, characteristic length scale: 0.5 mm < 𝐿c < 2.5 mm) act as a thermal insulation 

blanket, and delay the time required to transiently cool the droplet to the melting point (0°C) when 

compared to hydrophobic surfaces having identical droplet shape and equivalent projected solid-

liquid contact area [100,101]. Interestingly, a simplistic scaling-based comparison of the thermal 

resistances associated with conduction through the water droplet (~𝐿c/𝑘water) and conduction 

through the microscale air gaps (𝑡/𝑘air) reveals that no such freezing delay should be observable 

for microscale, or macroscale water freezing (𝐿c/𝑘water >> 𝑡/𝑘air), where 𝑘water and 𝑘air are the 
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thermal conductivities of water and air, respectively, and 𝑡 is the thickness of nanoscale air gaps. 

The non-intuitive results beg the question: at what droplet length scales does the droplet 

conduction resistance become more dominant than the interfacial air-gap resistance? In an attempt 

to answer this important question, we performed careful freezing experiments in a temperature-

controlled, zero-humidity, nitrogen environment on thin water columns having characteristic 

length scales 𝐿c, (volume/surface area) greater than 2 mm, radii 𝑅 = 9.5, 12.8 mm, and heights 𝐿 

= 4, 6 mm. Freezing time, 𝑡f was characterized as the total time taken by the water column to freeze 

completely. Time zero was defined as the instant when the room temperature liquid water was 

deposited onto the chilled substrate. The end point of freezing time, 𝑡f is defined when the whole 

water column is converted to solid ice. Thus the freezing time, 𝑡f consists of the summation of the 

time taken by the water column to sensibly cool from room temperature to the melting temperature 

and the time taken by the ice wave front to completely propagate vertically through the water 

column after nucleating at the substrate-liquid interface. To probe the effect of surface wettability 

(air gaps), we fabricated aluminum and copper based superhydrophilic (𝜃a
app

→ 0°), hydrophilic 

(0° < 𝜃a < 90°), hydrophobic (90° < 𝜃a < 125°), and zero-adhesion superhydrophobic (𝜃a
app

→ 

180°) nanostructured (𝑡 < 1 µm) substrates. All of our experiments were initiated to freeze with an 

artificial nucleation site, eliminating the presence of metastable water supercooling and nucleation 

based freezing delay, and increasing substrate-to-substrate consistency. Our results showed that at 

millimetric length scales, heat conduction through the water-ice layer (~𝑘/𝐿𝑐) dominates the 

freezing process when compared to conduction through the nanoscale gaps (~𝑘air/𝑡) at the 

superhydrophobic surface-water interface (𝐿c/𝑘 >> 𝑡/𝑘air). The difference in the experimental 

freezing times between all tested (smooth or nanostructured) substrates was less than ±10% of the 

measured value, independent of the surface wettability. In order to verify our findings, and to 
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determine when the coating thermal resistance approaches the water/ice resistance, we fabricated 

and tested additional substrates coated with a commercial superhydrophobic spray coating 

(NeverWet). To control the thickness of the coatings, the number of spray-dry cycles (𝑛) was 

controlled (1 < 𝑛 < 6). The thicker commercial coatings (𝑡 > 400 µm for n = 5) showed a monotonic 

increase in freezing time with 𝑛. The added thermal resistance of the thicker coatings was much 

larger than that of the nanoscale (~500 nm) superhydrophobic features, which reduced the droplet 

heat transfer and increased the total freezing time (𝐿c/𝑘water ~ 𝑡/𝑘coating). To gain an 

understanding of the critical length scales where the droplet conduction resistance approaches the 

nanoscale air-gap resistance, we performed transient finite element method (FEM) heat transfer 

simulations of the water slab freezing process to calculate the overall heat transfer coefficient at 

the substrate-liquid interface for a given experimental freezing time. The model results confirmed 

our scale dependent findings that for small overall heat transfer coefficient discrepancies between 

the hydrophobic and superhydrophobic surfaces, the difference in freezing time is highly droplet 

size dependent, being negligible for large droplets (~ 1mm), and appreciable for microscale 

droplets (~ 10µm). The results shown here suggest that in order to delay the freezing process inside 

the liquid at larger length scales, one must use thicker superhydrophobic coatings on the surface, 

where the coating resistance is comparable to the liquid/ice conduction resistance. The current 

study paints a picture of the heat transfer mediated water freezing process on superhydrophobic 

surfaces in complete compatibility with classical heat transfer analysis. 

3.3 Substrate Fabrication  

To create surfaces with a range of wettability and to vary the air-gap thickness, copper 

(with microstructured Ag coating) and nanostructured aluminum hydroxide (Al2O3) surfaces were 

fabricated. To fabricate nanostructured Al2O3 samples, commercially available Al 6061 tabs (25 



37 

 

mm x 25 mm x 0.8 mm, 99.90% purity) were first ultrasonically treated in acetone, followed by 

ethanol for 5 min each. After cleaning, the samples were dried in a clean N2 stream. The specimens 

were then immersed into hot deionized water (90˚C) for one hour, followed by removal and rinsing 

with room temperature deionized water. This enabled boehmite (Al2O3.xH2O) formation on the Al 

surface with sharp, knife-like structures having length scales approaching ≈300 nm. The 

nanostructured Al surfaces were used as superhydrophilic Al substrates. To functionalize the 

surface, Heptadecafluorodecyltrimethoxy-silane (HTMS) was deposited using vapor phase 

deposition.[102] Nanostructured Al substrates were placed in a container with a vial of 1 mL 

HTMS toluene solution (5% v/v). A lid was placed on top to seal the container, followed by heating 

in an atmospheric pressure oven at 80˚C for 3 hours. This process allows for the development of a 

highly conformal coating as the HTMS molecules evaporate from solution and re-deposit on the 

aluminum samples. Contact angle measurements (MCA-3, Kyowa Interface Science Ltd.) of ≈300 

nL droplets on a HTMS coated nanostructured Al surface showed advancing/receding contact 

angles of 𝜃a
app/𝜃r

app
 ≈ 170.4 ± 1.4° / 165.4 ± 4.1°. 

To fabricate the microstructured copper samples, commercially available polished 

multipurpose 110 Cu tabs (25 mm x 25 mm x 0.8 mm) were used (99.90% purity). Each Cu tab 

was ultrasonically treated in acetone, ethanol and then in isopropyl alcohol (IPA) for 5 min. An 

electroless galvanic deposition technique was used to coat textured layer of Ag on copper.[103] 

The cleaned copper tabs were immersed into an aqueous Silver Nitrate (AgNO3, 0.010 mol/L) 

solution for 20 s, followed by rinsing with room temperature deionized water. The final surface 

consisted of sharp, knife-like structures having length scales approaching ≈1 µm. The structured 

Cu substrates with nano-structured Ag coating on it were used as superhydrophilic Cu substrates. 

To functionalize the surface, the textured Cu tabs were immersed in a solution of HDFT 
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(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol) and Dichloromethane 

(CH2Cl2) (1 mol/L) for 5 min, followed by washing with Dichloromethane and drying in a clean 

N2 stream. Contact angle measurements of ≈300 nL droplets on Ag/HDFT coated Cu surfaces 

showed advancing and receding contact angles of 𝜃a
app/𝜃r

app
 ≈ 173.4 ± 1.3° / 164.4 ± 4.7°.  

To fabricate the superhydrophobic spray coated samples, commercially available Cu tabs 

were spray coated with industrial superhydrophobic sprays (Rust-Oleum 287337 11 Oz. NeverWet 

Rain Repellent Spray). Contact angle measurements of ≈300 nL droplets on spray-coated Cu 

surfaces showed advancing and receding contact angles of 𝜃a
app/𝜃r

app
 ≈ 164 ± 4° / 159 ± 3°. 

To fabricate the hydrophobic samples, commercially available Al (6061) and Cu (tool 

finished) tabs (25 mm x 25 mm x 0.8 mm, 99.90% purity) were first ultrasonically treated in 

acetone, followed by ethanol for 5 min each. After cleaning, the samples were dried in a clean N2 

stream. To functionalize the surface, Heptadecafluorodecyltrimethoxy-silane (HTMS) was 

deposited using vapor phase deposition.[102] Cleaned smooth Al and Cu substrates were placed 

in a container with a vial of 1 mL HTMS toluene solution (5% v/v). A lid was placed on top to 

seal the container, followed by heating in an atmospheric pressure oven at 80˚C for 3 hours. This 

process allows for the development of a highly conformal coating as the HTMS molecules 

evaporate from solution and re-deposit on the Al and Cu samples. Contact angle measurements 

(MCA-3, Kyowa Interface Science Ltd.) of ≈300 nL droplets on a HTMS coated smooth Al surface 

showed advancing/receding contact angles of 𝜃a
app/𝜃r

app
 ≈ 126.7 ± 5.5° / 108.6 ± 3.6° and on a 

HTMS coated smooth Cu surface showed advancing/receding contact angles of 𝜃a
app/𝜃r

app
 ≈ 

146.0 ± 2.1° / 124.2 ± 3.2°. Note, the Cu tabs were tool finished, exhibiting ~ 50 um roughness. 

Table 3.1 show the wetting characteristics of the surfaces. 
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3.4 Experimental Methods  

In order to study bulk freezing of water on structured superhydrophilic (SHPhil), structured 

superhydrophobic (SHP), and smooth hydrophilic and hydrophobic surfaces we conducted water 

freezing experiments by measuring the time taken by a room temperature water column of a certain 

height to completely freeze to solid ice. Circular water columns resting on the functional surfaces 

and surrounded by insulating PTFE rings were chosen as the ideal experimental freezing 

embodiment in order to ensure consistency from substrate to substrate, maximize the liquid-solid 

contact area, and reduce thermal parasitic losses in the radial direction. Due to geometric similarity, 

each water column was characterized by its characteristic length 𝐿c, defined as the ratio of the 

water column volume to the heat transfer area at substrate-liquid interface [101]. In order to 

identify the effect of 𝐿c, the freezing experiments were performed at a fixed 𝐿c for all wetting and 

non-wetting substrates.  

Figures 3.1a and b show the side view schematic and top view photograph of the 

experimental apparatus, respectively. Experiments were conducted for cold stage (surface) 

temperatures of 𝑇s = -10ºC, and -20ºC. Hydrophilic (smooth Al and Cu tabs), hydrophobic (smooth 

Al and Cu tabs coated with HTMS), spray-coated superhydrophobic (Cu tabs coated with Rust-

Oleum 287337 11 Oz. NeverWet Rain Repellent Spray), superhydrophilic (smooth Al and Cu tabs 

coated with Al2O3 and Ag nanostructures, respectively), and zero-adhesion superhydrophobic 

(smooth Al and Cu tabs coated with Al2O3/HTMS and Ag/HDFT nanostructures, respectively) 

substrates were first placed on the cold stage at a prescribed center position. To enhance thermal 

communication between the substrate and stage, 2mL of water were placed beneath each substrate 

to fill the microscale gaps. To ensure repeatability, water volumes of 1 mL and 3 mL were tried 

with negligible difference in freezing time. In addition, successive independent experimental runs 
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yielded consistent freezing times to within ±5% of the measured time. A hydrophobic (𝜃a = 91 ± 

4.3°) cylindrical insulating ring having an inner diameter equal to 25 ± 0.5 mm or 19 ± 0.5 mm 

was placed on the top of the 25mm x 25mm substrate to retain water from spreading onto the cold-

plate surface. The insulating ring also ensured that consistent water column shapes could be 

obtained with flat menisci, irrespective of the surface wettability. A transparent polymer lid was 

used to cover the whole setup and to ensure a zero humidity environment by facilitating the supply 

of clean and dry N2 in the enclosed space. The flow rate of the N2 was reduced to an almost stagnant 

condition in order to avoid convective heat transfer effects. Room temperature (23.5 ± 0.5°C) tap 

water was injected into the insulating ring from a syringe through a 1mm piercing made in the 

center of the polymer lid when the substrate temperature reached the desired cold stage 

temperature. Freezing time, 𝑡f was characterized as the total time taken by the room temperature 

water column of characteristic length 𝐿c, defined as the ratio of volume of water to the heat transfer 

area at the solid liquid interface (height of water column), to freeze completely. The end of the 

freezing process was characterized by manually vibrating the cold stage as a low frequency (≈30 

Hz) and amplitude (≈ 1 mm) in order to observe the reflection of a hand held light emitting diode 

(LED) through the remaining liquid meniscus. Once the column froze completely, oscillation of 

LED was not observable, indicating complete freezing. Although the freezing observed here was 

a transient process, the substrate temperature quickly equilibrated to the desired cold stage 

temperature after injection of the room temperature tap water. It is important to note, nucleation 

on superhydrophobic substrates would occasionally not initiate due to the formation of a 

metastable state of supercooled water. To avoid this phenomenon, we used tap water in order to 

include impurities that can act as nucleation sites. Furthermore, by injecting the water with the 

syringe touching the surface at the center, we artificially initiated nucleation at the same location 
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for each substrate. Thus, delayed freezing due to the creation of thermodynamic energy barriers, 

which is highly dependent on substrate wettability, is not considered in this study. 

3.5 Results and Discussion  

Figure 3.2 shows the measured freezing time, 𝑡f as a function of characteristic length, 𝐿c 

(height of the water column) for 𝑇s = -10ºC. Interestingly, we did not see any dependence on 

surface wettability on the total freezing time. The difference in the freezing times, 𝑡f between all 

samples was less than ± 10% of the measured value. For brevity and clarity, herein, we only focus 

on smooth hydrophilic (Smooth) and structured superhydrophobic (SHP) substrates to elucidate 

the effect of nanoscale air gaps on the freezing process. Analysis of the complete data set indicated 

a quadratic relationship between the freezing time and characteristic length. Assuming that the 

liquid phase is at the melting temperature of ice, and that the heat capacity of ice is negligible 

compared to the latent heat of solidification, an energy balance on the propagation of a planar ice-

water front during freezing results in:[104,105]  

𝑣ℎfs = 𝜌ice𝑘ice
𝜕𝑇

𝜕𝑧
 , (3.1) 

where 𝑣 is the ice front propagation speed, ℎfs is the latent heat of fusion, 𝑘ice and 𝜌ice are the 

thermal conductivity and density of ice, and 𝜕𝑇/𝜕𝑧 is the temperature gradient in the direction of 

ice propagation. Integrating Eq. (3.1) from ice nucleation to complete icing, we see that the total 

freezing time is proportional to the square of characteristic length is given by 
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𝑡f =
ℎfs𝐿c

2

2𝑘𝑖𝑐𝑒∆𝑇̅̅̅̅
 , (3.2) 

where, ∆𝑇̅̅̅̅  is the average temperature difference between the melting temperature (0ºC) and the 

temperature at the base of water column (∆𝑇̅̅̅̅ = 𝑇melting − 𝑇base). Our experimental data agree 

well with the quadratic trend for ∆𝑇̅̅̅̅  = 5.2ºC (Figure 3.2) . Although the base of the stage 

temperature was set to 𝑇s = -10ºC, implying that ∆𝑇̅̅̅̅exp = 10ºC, the frost propagation model does 

not account for i) sensible cooling of the liquid water or ice, ii) transient temperature response of 

the cold stage, or iii) the placement of the stage thermocouple within the stage and not on the 

sample, all of which would act to decrease the temperature difference ∆𝑇̅̅̅̅ , in agreement with our 

theoretical result [106]. The results indicate that for the length scales tested here, transient 

conduction through the water/ice column (~𝑘/𝐿c) dominated the freezing process as compared to 

the conduction through the nanoscale gaps on superhydrophobic surface (~𝑘air/𝑡). For larger 

characteristic length scales (𝐿c > 3 mm), the difference in the experimental freezing time for 

smooth and structured surfaces was less than ± 10%, indicating that the heat-transfer mediated 

freezing dynamics of water layers at the measured length scales do not depend on the surface 

wettability or micro/nanostructure, rather they depend on the characteristic length of the water 

column. Thus, at the length scales investigated (𝐿c > 2 mm), superhydrophobic surfaces do not 

provide any advantage of heat-transfer mediated delayed freezing of water over smooth 

hydrophilic or even superhydrophilic surfaces. It is important to reiterate, the results presented 

here do not contain thermodynamic delay in ice nucleation, which is dependent on surface 

wettability, and rather water begins to freeze as soon as it reaches the melting temperature. 
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One method to achieve delayed frost wave front propagation inside the liquid at larger 

length scales is to apply more thermally resistive superhydrophobic coatings such that the thermal 

resistance at the substrate-liquid interface (𝑡/𝑘air) is of the same order of magnitude as that of the 

effective conduction thermal resistance inside the water/ice column (𝐿c/𝑘). As expected, for the 

nanostructures examined insofar (~500 nm), the critical water column length scales needed to see 

appreciable heat-transfer mediated delay in freezing time can be estimated as 𝐿c,crit ~ 𝑘𝑡/𝑘air ~ 

25 µm. To validate our hypothesis and to quantify when the interfacial and ice/water conduction 

regimes intersect, we fabricated and tested additional smooth Cu substrates coated successively 

with a superhydrophobic spray solution (NeverWet) consisting of functionalized nanoparticle 

aggregates. To vary the thickness of the coatings, the number of spray-dry cycles (𝑛) was 

controlled (1 < 𝑛 < 6). Since the procedure used for coating the consecutive spray-dry cycles was 

kept consistent and done in a controlled fume hood environment, a non-linear, monotonic increase 

in the coating thickness was observed with increasing 𝑛. 

Figure 3.3 shows the water column freezing time 𝑡f as a function of number of successive 

superhydrophobic coating layers on the surface, 𝑛, at a surface temperature 𝑇s = -10ºC. As 

expected, the thicker commercial coatings (𝑡 > 400 µm for 𝑛 = 5) showed a monotonic increase in 

freezing time as a function of 𝑛. The added thermal resistance of the thicker NeverWet coatings 

was much larger than that of the nanoscale (~500 nm) superhydrophobic features of the Ag and 

Al2O3 structures, which reduced the droplet heat transfer rate at the liquid-substrate interface and 

increased the total freezing time. For the NeverWet coatings, the critical water column length scale 

approached the experimentally tested water column length scale, 𝐿c,crit ~ 𝑘𝑡/𝑘coating ~ 3.5 mm 

(for 𝑛 = 5, 𝑘coating ≈ 0.1 W/m·K). 
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To further elucidate the effect of nano- and microscale superhydrophobic surfaces on 

liquid-solid interfacial heat transfer during freezing, we calculated the overall heat transfer 

coefficient at the substrate-liquid interface (ℎ) by performing transient FEM simulations of 

freezing using the materials, geometry, initial conditions, and experimentally measured freezing 

time as inputs. Prior to turning to FEM, we considered many different modeling approaches to 

elucidate the coupled stage-water-ice freezing physics. The frost wave propagation model (Eq. 3.1 

and 3.2) [104], although appropriate for estimation, fails to take into account sensible cooling of 

the ice/water phase. Modeling of the freezing process analytically by considering the liquid and 

the substrate as semi-infinite bodies is also unphysical as it would pin the interfacial temperature 

to a constant value, until the thermal boundary layer reaches either the cold stage or top of the 

water surface. As evidenced by our experimental results, the interface temperature was not 

constant [106]. Modeling the water column as a semi-infinite body with a constant base 

temperature has been done before for impacting droplets on superhydrophobic surfaces having 

short contact times, [85] however cannot be applied here due to the inference of an infinite heat 

transfer coefficient at the bottom interface through the assumption of a constant base temperature. 

Assuming a constant base temperature boundary condition is unphysical as it leads to transient 

cooling and ice formation times on the order of milliseconds, something not observed in our results 

or the results of others [101]. To effectively model the problem, we apply an effective heat transfer 

coefficient, ℎ, at the base between the constant temperature substrate and the water/ice residing on 

top of the structures. Note, the heat transfer coefficient approach is also an approximation, as the 

temperature of the substrate is not constant after water deposition. However, the developed 

approach is a happy medium between modeling of the entire cold plate assembly with time 
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resolved heat transfer rates (too cumbersome to obtain more generalized results), and simplistic 

models assuming constant base temperatures (too inaccurate when compared to real experiments).  

To elucidate the effect of nano- and microscale superhydrophobic surfaces on liquid-solid 

interfacial heat transfer during freezing, we calculated the overall heat transfer coefficient at the 

substrate-liquid interface (ℎ). A 2D axisymmetric numerical model based on finite element method 

was used to solve the transient phase change heat equation through water column. The ANSYS 

Transient Thermal Module was used to model the water column, with triangular meshing as shown 

in Figure 3.5 with 25,000 nodes. The maximum element size was kept constant for all the cases, 

element size = 0.125 mm. Mesh refinement was used at the liquid-vapor interface, liquid-side wall 

interface and solid-liquid interface (element size = 0.05 mm, Figure 3.5). Further reduction in mesh 

size resulted in < 1% change in the freezing time. Figure 3.4 shows the boundary conditions applied 

to the model during the simulations.  

The input conditions: 

 Geometry (size of the water column) 

 Overall liquid-substrate interface heat transfer coefficient, ℎ 

 Natural convection boundary condition at the liquid-air interface, ℎnc = 15.3 W/m2K 

 Over all heat transfer coefficient at the side wall, ℎsw ~ 13 W/m2K  

ℎnc and ℎsw are analytically calculated for natural convection. Sensitivity analysis was 

done for ℎnc and ℎsw, and it was observed that a 10% change in ℎnc and ℎsw resulted in < 1% 

change in the freezing time. For the above input conditions, the total freezing time was calculated. 

Then, the value of overall liquid-substrate interface heat transfer coefficient, ℎ was varied, such 

that the calculated freezing time matches the freezing time obtained from experiment for a given 
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geometry. The overall liquid-substrate interface heat transfer coefficient, ℎ was calculated for all 

the experimental data points.  

Figure 3.6(a) shows ℎ as a function of 𝐿c for the initially tested nanoscale coatings, 

indicating that for any given substrate wettability, ℎ does not depend on the geometry of the water 

column. The overall heat transfer coefficient, ℎ, is approximately equivalent for all surfaces for 

any given 𝐿c due to the negligible thermal resistance of nano-scale gaps beneath the water column. 

At the length scales tested here, the freezing time is actually being constrained by the conduction 

of the latent heat through the water/ice column (𝐿c/𝑘) and not through the interface itself (𝑡/𝑘air), 

otherwise the calculated ℎ should vary with substrate wettability. For a given 𝐿𝑐, the variation of 

ℎ for different substrates arises mainly due to the sensitivity of freezing time to the applied ℎ 

boundary condition in the transient FEM simulation. Although the freezing time was determined 

not to depend on wettability, the variability of experimentally determined the freezing times was 

not negligible from experimental run-to-run. The critical thickness of air gap needed to see 

appreciable delay in freezing time can be estimated as 𝑡crit ~ 𝑘air𝐿𝑐/𝑘w ~ 40 µm. To investigate 

this further, transient FEM freezing simulations were done with an air gap of thickness 𝑡 = 1 µm 

and 10 µm beneath the water column. As expected, with all other parameters kept constant, there 

was negligible difference in the total freezing times for flat surfaces and structured surfaces with 

an air gap of thickness 𝑡 = 1 µm. The critical thickness of air gap needed to see appreciable delay 

in freezing time can be estimated as 𝑡crit ~ 𝑘air𝐿𝑐/𝑘w ~ 40 µm. To investigate this scaling result, 

transient FEM simulations of freezing were done with an air gap of thickness, 𝑡 = 1 µm and 10 µm 

beneath the water column. As expected (Figure 3.7), with all other parameters kept constant, there 

was no appreciable difference in the freezing times for a flat surface (with no air gap, 𝑡 = 0) and a 

structured surface with air gap thickness of 𝑡 = 1 µm. As the thickness of the air gap approached 
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𝑡 → 𝑡crit, a notable difference in the freezing times for flat surfaces (𝑡 = 0) and structured surfaces 

(𝑡 = 10 µm) was observed for 1 µm < 𝐿𝑐 < 5 µm. 

Figure 3.6(b) shows ℎ as a function of the number of successive NeverWet 

superhydrophobic coatings on the surface (𝑛). The added thermal resistance of the thicker coatings 

(~100 µm) was much larger than that of the nanoscale (~500 nm) superhydrophobic features, 

which reduced ℎ and increased the total freezing time.  

The present study offers a unique insight into the design of superhydrophobic coatings for 

anti-icing applications, particularly for heat transfer devices undergoing heat-transfer mediated 

(non thermodynamic limited) bulk water freezing. One may initially think that the added thermal 

resistance of thicker superhydrophobic coatings will penalize the heat exchanger performance 

when freezing is absent. However, the typical convective heat transfer resistance is much larger 

than the thermal resistance of any added functional coating (1/ℎair𝐴 >>  𝑡coating/𝑘coating𝐴), 

indicating that coating may be worthwhile.  

Furthermore, our study brings into question previous results which show that the presence 

of microscale (1 µm) air-gaps delay the time to transiently cool droplets to the melting point (0°C) 

[100,101]. Although our work defines the total freezing time as the time required to convert the 

entire water column from liquid to ice, the results of our FEM analysis reveal that even the initial 

water sensible cooling to the melting point is negligibly affected by air gaps ≈ 1µm, and only 

begins to change once air gap thicknesses approach 10 µm or greater. Interestingly, the 

insensitivity to short superhydrophobic structures on heat transfer during freezing is in agreement 

with condensation experiments and theory which stipulate that structure length scales be 
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minimized to avoid parasitic thermal resistance, and that structure length scales <1 µm have little 

effect on microscale droplet growth rates [107-112]. 

3.6 Conclusions 

In summary, we have demonstrated that the use of nanoscale superhydrophobic surfaces 

does not result in the anomalous heat-transfer mediated delay of water freezing. Instead, classical 

heat transfer effects govern the freezing process irrespective of wettability, indicating that the 

required liquid length scales must approach the length scale of the coating in order to observe an 

appreciable effect. Transient freezing FEM simulations revealed that the overall heat transfer 

coefficient at the column base for freezing on nanoscale superhydrophobic surfaces approaches 2 

kW/m2K, irrespective of wettability or column length scale, and reduces monotonically with 

increased coating thickness. The overall heat transfer coefficient represents the bulk water freezing 

and coating thermal resistance. A reduction in overall heat transfer coefficient means that the 

coating resistance has increased (as the bulk water freezing resistance is maintained constant). The 

results shown here suggest that in order to delay the frost wave front propagation inside the liquid 

at larger length scales, one must use thicker superhydrophobic coatings on the surface, where the 

coating resistance is comparable to the liquid conduction resistance.  
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3.7 Table  

Table 3.1. Surface Wetting Characteristics 

Surface ID Substrate Structures 

Hydrophobic 

Coating 

Advancing 

angle (degrees) 

Receding 

angle 

(degrees) 

Al – SHPhil Al Al2O3.xH2O none ≈20 ± 10° 0° 

Cu – SHPhil Cu Ag none ≈20 ± 10° 0° 

Al – Smooth  Al none none 88.3 ± 4.2° 26.1 ± 2.7° 

Cu – Smooth  Cu none none 82.6 ± 6.9° 16.5 ± 2.4° 

Al – HP Al none HTMS 126.7 ± 5.5° 108.6 ± 3.6° 

Cu – HP  Cu none HTMS 146.0 ± 2.1° 124.2 ± 3.2° 

Al2O3 – SHP  Al Al2O3.xH2O HTMS 170.4 ± 1.4° 165.4 ± 4.1° 

Cu – SHP  Cu Ag HDFT 173.4 ± 1.3° 164.6 ± 4.7° 

Cu – NeverWet  Cu NeverWet NeverWet 164 ± 4° 159 ± 3° 
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3.8 Figures 

 

Figure 3.1. a) Side view schematic of the freezing experiment and b) picture of the actual setup. 

Inset: image of a frozen water column. The cold stage was kept at temperatures 𝑻𝐬 = -10ºC, -20ºC. 

Samples were first placed on the cold stage at a prescribed center position. A hydrophobic 

cylindrical insulating ring (ID = 25 mm, 19 mm) was placed on the top of the substrate (25 mm x 

25 mm) to retain water from spreading onto the cold-plate surface. Room temperature tap water 

was injected into the insulating ring when the substrate temperature reached the desired cold stage 

temperature. A transparent lid was used to cover the whole setup and to ensure a zero humidity 

environment by facilitating the supply of clean and dry N2 in the enclosed space. Freezing time, 𝒕𝐟 

was characterized as the total time taken by the water column of height 𝑳𝐜 to freeze completely.  
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Figure 3.2. Freezing time, 𝑡f as a function of characteristic length, 𝐿c (height of the water column 

in this case) for surface temperature 𝑇s = -10ºC. The characteristic length and diameter of the water 

column ranged from 3.5 mm < 𝐿c < 5.6 mm and 19.1 mm < 𝐷 < 25.4 mm, respectively. The 

theoretical model reveals that 𝑡f ~ 𝐿c
2, [104,105] in excellent agreement well with the 

experimental data. The results indicate that for the length scales tested here, and in previous work, 

conduction through the ice/water column (~𝑘/𝐿c) dominated the freezing process as compared to 

the conduction through the nanoscale gaps on superhydrophobic surface (~𝑘air/𝑡). For larger 

characteristic length scales (𝐿c > 3 mm), the difference in the experimental freezing time for 

smooth and superhydrophobic surfaces was less than ±10%, indicating that the freezing dynamics 

of water layers at the measured length scales do not depend on the surface wettability or 

micro/nanostructure, rather they depend on the characteristic length of the water column. For each 

substrate, three independent measurement were made and the final result was averaged. The 

removal of all humidity from the chamber, and consistent water column shape resulted in highly 

precise measurements (< 5% difference from run to run). Error bars are not included in the graph 

for clarity (maximum error ±5% of measurement).  
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Figure 3.3. Freezing time 𝑡f as a function of number of successive superhydrophobic coating 

layers (𝑛) on the surface for surface temperature 𝑇s = -10ºC and 𝐿𝑐 = 3.95 mm. The results show 

that for single coatings, conduction through the water column (~𝑘water/𝐿c) is the freeze limiting 

step when compared to conduction through the nanoscale gaps on superhydrophobic coatings 

(~𝑘air/𝑡). The thicker commercial coatings (𝑡coating > 400 µm for 𝑛 = 5) showed a monotonic 

increase in freezing time as a function of 𝑛. The added thermal resistance of the thicker coatings 

was much larger than that of the nanoscale (~500 nm) superhydrophobic features, which reduced 

the droplet heat transfer rate at the liquid-substrate and increased the total freezing time 

(𝑡coating/𝑘coating ~ 𝐿c/𝑘). Coating thickness was measured with cross sectioning and optical 

microscopy.  

  

 

 

 

 

n

Substrate

SHP coating layer



53 

 

 

Figure 3.4. The boundary conditions applied to the 2D axisymmetric numerical model. 
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Figure 3.5. Triangular meshing of the water column. Maximum mesh size = 0.125 mm and n, 

Number of nodes = 25,000. 
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Figure 3.6. a) Surface-liquid interface overall heat transfer coefficient (ℎ) as a function of 

characteristic length, 𝐿c for surface temperature 𝑇s = -10ºC. To determine the overall heat transfer 

coefficient, we performed transient finite element method heat transfer simulations of the water 

column freezing process using the geometry, initial conditions, and experimental freezing time as 

input. The results show that for any given substrate type, ℎ does not depend on the geometry of 

the water column, i.e., its height (characteristic length, 𝐿c) and radius (𝑅). b) Surface-liquid 

interface overall heat transfer coefficient (ℎ) as a function of the number of successive 

superhydrophobic coatings on the surface (𝑛) for surface temperature 𝑇s = -10ºC and 𝐿𝑐 = 3.95 

mm. The added thermal resistance of the thicker coatings was much larger than that of the 

nanoscale (~500 nm) superhydrophobic features, which reduced the droplet heat transfer and 

increased the total freezing time (𝑡coating/𝑘coating ~ 𝐿c/𝑘). This resulted in a monotonic decrease 

in the overall heat transfer coefficient with increasing 𝑛.  
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Figure 3.7. Total freezing time (𝑡f) as a function of characteristic length scale (𝐿c) for varying air 

gap height (𝑡). The diameter of the water column is, 𝐷 = 25.4 mm and characteristic length scales 

1 mm < 𝐿𝑐 < 5 mm. The overall heat transfer coefficient at the substrate-liquid interface is ℎ = 

3000 W/m2K.  
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CHAPTER 4: INDIVIDUAL DROPLET FREEZING AND FROST WAVE 

PROPAGATION  

4.1 Overview 

Frost spreads on non-wetting surfaces during condensation frosting via an inter-droplet 

frost wave. When a subcooled condensate water droplet freezes on a hydrophobic or 

superhydrophobic surface, neighboring droplets still in the liquid phase begin to evaporate. The 

evaporated water molecules deposit on the frozen droplet and initiate the growth of ice bridges 

directed toward the water droplets being depleted. Neighboring liquid droplets freeze as soon as 

the ice bridge connects. Two possible mechanisms govern the evaporation of neighboring water 

droplets: (1) the difference in saturation pressure of the water vapor surrounding the liquid and 

frozen droplets induces a vapor pressure gradient, and (2) the latent heat released by freezing 

droplets locally heats the substrate, evaporating nearby droplets. The relative significance of these 

two mechanisms is still not understood. In this chapter, we study the significance of the latent heat 

released into the substrate by freezing droplets, and its effect on adjacent droplet evaporation, by 

studying the dynamics of individual water droplet freezing for varying droplet radii (10 µm 

< 𝑅 < 100 µm) on aluminum, copper, and glass-based hydrophilic (𝜃a < 90°), hydrophobic (110o 

< 𝜃a
app

 < 140o), and superhydrophobic (𝜃a
app

 > 160°) surfaces. The latent heat flux released into 

the substrate was calculated from the measured droplet sizes and the respective freezing times (𝑡f), 

defined as the time from initial ice nucleation within the droplet to complete droplet freezing. To 

probe the effect of latent heat release, we performed 3D transient finite element simulations 

showing that the transfer of latent heat to neighboring droplets is insignificant, and accounts for a 

negligible fraction of evaporation during microscale frost wave propagation. Furthermore, we 
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studied the effect of substrate thermal conductivity on the transfer of latent heat transfer to 

neighboring droplets by investigating the velocity of ice bridge formation. The velocity of the ice 

bridge was independent of the substrate thermal conductivity, indicating that adjacent droplet 

evaporation during condensation frosting is governed solely by vapor pressure gradients. For the 

length scales tested here (𝑅 > 10 um), surface wettability had the largest effect on 𝑡f as it governs 

the droplet conduction thermal resistance, increasing with higher intrinsic and apparent advancing 

contact angles. This study not only provides key insights into the individual droplet freezing 

process but also elucidates the negligible role of latent heat released into the substrate during frost 

wave propagation. 

4.2 Introduction  

Understanding the mechanisms of frost formation is essential to a variety of industrial 

applications including refrigeration, [9,10,82] aviation, [11] wind energy, [12] and power 

transmission [13]. Ice accretion and frost formation is a multi-billion dollar problem in the United 

States alone [113]. It has been observed that hydrophobic surfaces offer lower frost density and 

decreased condensation frost growth rate as compared to hydrophilic surfaces [14]. To further 

delay frost formation, researchers have proposed the use of suitably designed superhydrophobic 

surfaces [15-17,81] to delay the heterogeneous nucleation of ice [18,19,90,114], and thus 

condensation frosting [20]. By exploiting the ultra-low adhesion offered by superhydrophobicity, 

[115] droplets forming during condensation frosting can undergo spontaneous coalescence 

induced droplet jumping at micrometric length scales (~1 µm) prior to supercooling and freezing 

on the surface [23,99]. In addition to condensate removal prior to freezing, previous researchers 

have shown superhydrophobic surfaces to facilitate delayed freezing of individual droplets, 
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[116,117] as well as bulk water layers due to the delay in ice nucleation and higher thermal 

resistance at the liquid-solid interface [21,118].  

The dominant mechanism of condensation frost formation on hydrophobic surfaces is inter-

droplet frost wave propagation, [22,23,119-122] or ice bridging. When a subcooled condensate 

water droplet freezes on a hydrophobic or superhydrophobic surface, neighboring droplets still in 

the liquid phase immediately begin to evaporate [22,23]. The evaporated water molecules deposit 

on the frozen droplet and initiate the growth of ice bridges directed toward the droplets being 

depleted. The neighboring liquid droplets freeze as soon as the ice bridge connects and provides a 

heterogeneous nucleation site. Coalescence induced droplet jumping on superhydrophobic 

surfaces decreases the droplet distribution density, [5,55,123,124] thereby decreasing the frost 

wave propagation speeds, delaying frosting [23]. However, given enough time, frost formation 

still takes place due to the propagation of an inter-droplet frost wave from neighboring edge defects 

[23,125].  

During inter-droplet ice bridging, two mechanisms govern the evaporation of neighboring 

water droplets: (1) the difference in saturation pressure of the water vapor surrounding the liquid 

droplet and the frozen droplet induces a vapor pressure gradient, [14,22,126] and (2) the latent heat 

released by freezing droplets locally heats the substrate, evaporating nearby droplets [23]. The 

relative significance of these two mechanisms is currently not well understood. A simple scaling 

analysis sheds some light on the mechanism. The latent heat of fusion of water at 0°C (ℎsf ≈ 334 

kJ/kg) is approximately an order of magnitude smaller than the latent heat of vaporization at 0°C 

(ℎfg ≈ 2500 kJ/kg). Upon freezing, a microscale liquid water droplet releases the majority of its 

latent heat into the substrate, [127] which will hemispherically diffuse. Thus, we can estimate that 
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similarly sized neighboring water droplets will receive much less thermal energy than what is 

required for complete evaporation (ℎsf ≪ ℎfg). However, if freezing water droplets have larger 

length scales (𝑅 ~ mm), the latent heat of freezing might be significant enough to cause evaporation 

of smaller (𝑅 ~ µm) neighboring droplets. Thus, depending on the substrate thermal conductivity, 

the evaporation rate of neighboring water droplets due to conduction of latent heat into the 

substrate may be significant. Indeed, the substrate thermal conductivity dependent droplet 

evaporation phenomenon has been observed during the formation of frost halos, [128] indicating 

that the latent heat released may play an important role at a particular, and currently ill-defined, 

length scale. 

In this chapter, we establish the length scale at which the latent heat released into the 

substrate is important via the study of individual water droplet freezing and bridge growth 

dynamics for varying droplet sizes (10 < 𝑅 < 100 µm), on aluminum and copper based hydrophilic 

(𝜃a < 90°), hydrophobic (110° < 𝜃a
app

 < 140°), and superhydrophobic (𝜃a
app

 > 160°) surfaces. 

Using optical microscopy, we characterized the latent heat flux released into the substrate by 

measuring the freezing droplet radius and the respective droplet freezing time (𝑡f), defined as the 

time from initial ice nucleation within the droplet to complete droplet freezing. To calculate the 

latent heat flux transferred from the freezing droplet to neighboring droplets, we combined the 

experimentally characterized heat fluxes with 3D transient finite element method heat transfer 

simulations. The simulation results showed that the transfer of latent heat to neighboring droplets 

is indeed insignificant, and accounts for a negligible fraction of evaporation during microscale 

frost wave propagation. In order to further validate our simulations, we conducted additional 

experiments and simulations on substrates having varying thermal conductivity (1 to 400 W/m·K) 

to show that both individual droplet freezing times and adjacent droplet evaporation dynamics 
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remain invariant. Furthermore, we measured a negligible difference between inter-droplet bridging 

velocities for similar droplet arrangements on varying thermal conductivity substrates having 

identical wettability, pointing to vapor diffusion dynamics as the governing driving force for 

bridging. The experiments show that the wettability of the substrate has the largest effect on 

individual droplet freezing time, as the interfacial contact area between the droplet and the surface 

is inversely proportional to the advancing contact angle of the droplet, governing conduction heat 

transfer through the bulk of the droplet. Indeed, the disparity between measured individual droplet 

freezing time scales (~1 ms) to frost wave propagation time scales (~1 s) indicates that the observed 

bridging phenomena is not affected by individual droplet freezing. This study not only provides 

vital information on the role of latent heat released into the substrate during frost wave propagation 

but also explains the effect of substrate thermal conductivity and wettability during ice bridge 

formation.  

4.3 Substrate Fabrication and Characterization 

Six different types of superhydrophobic surfaces (𝜃a > 150°) and four hydrophobic surfaces 

(110° < 𝜃a
app

 < 140°) were fabricated in order to study the effect of substrate thermal conductivity 

(𝑘s), structure length scale (𝑙), and wettability on the latent heat released by individual droplets 

into the substrate. Table 1 shows a summary of the different substrate characteristics. 

Superhydrophobic copper (Cu – SHP) and superhydrophobic copper oxide (CuO – SHP) represent 

substrates with differing 𝑙 and identical 𝑘s. Superhydrophobic bronze (Bronze – SHP) and CuO-

SHP represent substrates with differing 𝑘s and similar 𝑙 (Figure 4.1a and 4.1b). Superhydrophobic 

boehmite (AlO(OH) – SHP) and CuO – SHP represent substrates with both differing 𝑘s and 𝑙. The 

wettability of the substrates was varied by using either micro/nanostructured (SHP), tool finished 
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(Cu – HP(I)) and polished (Cu – HP(II) and Si – HP) substrates functionalized with hydrophobic 

coatings.  

To fabricate nanostructured superhydrophobic (SHP) AlO(OH) samples, commercially 

available Al 6061 tabs (25 mm x 25 mm x 0.8 mm, 99.90% purity) were first ultrasonically treated 

in acetone, followed by ethanol for 5 min each. After cleaning, the samples were dried in a clean 

N2 stream. The samples were then immersed in hot deionized water (90˚C) for one hour, followed 

by removal and rinsing with room temperature deionized water. This enabled boehmite 

(Al2O3.xH2O) formation on the Al surface with sharp, knife-like structures having length scales 

approaching ≈300 nm. To functionalize the surface, Heptadecafluorodecyltrimethoxy-silane 

(HTMS) was deposited using vapor phase deposition [102]. Nanostructured Al substrates were 

placed in a container with a vial of 1 mL HTMS toluene solution (5% v/v). A lid was placed on 

top to seal the container, followed by heating in an atmospheric pressure oven at 80˚C for 3 hours. 

This process allows for the development of a highly conformal coating as the HTMS molecules 

evaporate from solution and re-deposit on the aluminum samples. Contact angle measurements 

(MCA-3, Kyowa Interface Science Ltd.) of ≈300 nL droplets on an HTMS coated nanostructured 

Al surface showed advancing/receding contact angles of 𝜃a
app/𝜃r

app
 ≈ 170.4 ± 1.4° / 165.4 ± 4.1°.  

To fabricate the nanostructured SHP Cu samples, commercially available polished 

multipurpose 110 Cu tabs (25 mm x 25 mm x 0.8 mm) were used (99.90% purity). Each Cu tab 

was ultrasonically treated in acetone, ethanol and then in isopropyl alcohol (IPA) for 5 min. An 

electroless galvanic deposition technique was used to coat textured layer of Ag on copper [103]. 

The cleaned copper tabs were immersed into an aqueous Silver Nitrate (AgNO3, 0.010 mol/L) 

solution for 20 s, followed by rinsing with room temperature deionized water. The final surface 
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consisted of sharp, knife-like structures having length scales approaching ≈60 to 200 nm. To 

functionalize the surface, the textured Cu tabs were immersed in a solution of HDFT 

(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol) and Dichloromethane 

(CH2Cl2) (1 mol/L) for 5 min, followed by washing with Dichloromethane and drying in a clean 

N2 stream. Contact angle measurements of ≈300 nL droplets on Ag/HDFT coated Cu surfaces 

showed advancing and receding contact angles of 𝜃a
app/𝜃r

app
 ≈ 173.4 ± 1.3° / 164.4 ± 4.7°.  

To fabricate the structured SHP CuO and Bronze substrates, commercially available 

polished multipurpose Cu and Bronze tabs (25 mm x 2 25 mm x 0.8 mm) were used (99.90% 

purity). Each Cu and Bronze tab was thoroughly rinsed with acetone, ethanol, isopropyl alcohol 

(IPA) and deionized (DI) water. The tabs were then dipped into a 5.0 M hydrochloric acid solution 

for 2 min to remove the native oxide film on the surface, then rinsed with DI water and dried with 

clean N2 gas. Nanostructured CuO films were formed by immersing the cleaned tabs into a hot (96 

± 3°C) alkaline solution composed of NaClO2, NaOH, Na3PO4·12H2O, and DI water 

(3.75:5:10:100 wt. %).[129] During the oxidation process, a thin (≈300 nm) Cu2O layer was 

formed on the dipped side that then re-oxidized to form sharp, knife-like CuO oxide structures 

with heights of ℎ ≈ 1 μm. To functionalize the surface, HTMS was deposited using chemical vapor 

deposition as explained in the fabrication procedure for AlO(OH) – SHP. Contact angle 

measurements of ≈300 nL droplets on an HTMS coated CuO surface showed advancing/receding 

contact angles of 𝜃a
app/𝜃r

app
 ≈ 170.5 ± 7.2° / 162.7 ± 3.4°. Contact angle measurements on an 

HTMS coated nanostructured Bronze surface showed advancing/receding contact angles of 

𝜃a
app/𝜃r

app
 ≈ 165.2 ± 4.3° / 160.8 ± 3.9°. 
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To fabricate the HP Cu (I) and HP Cu (II) samples, commercially available tool finished 

(for Cu – HP (I)) and polished (for Cu – HP (II)) multipurpose 110 Cu tabs (25 mm x 25 mm x 0.8 

mm) were used (99.90% purity). Then, it was thoroughly rinsed with acetone, ethanol, isopropyl 

alcohol (IPA) and deionized (DI) water. The tabs were then dipped into a 5.0 M hydrochloric acid 

solution for 2 min to remove the native oxide film on the surface, then rinsed with DI water and 

dried with clean N2 gas. To functionalize the surface, HTMS was deposited using chemical vapor 

deposition as explained in the fabrication procedure for AlO(OH) – SHP. Contact angle 

measurements of ≈300 nL droplets on Cu – HP (I) surfaces showed advancing and receding contact 

angles of 𝜃a
app/𝜃r

app
 ≈ 146.0 ± 2.1° / 124.2 ± 3.2° and on Cu – HP (II), 𝜃a

app/𝜃r
app

 ≈ 118.9 ± 

1.7° / 74.2 ± 0.9°. The Cu – HP (I) samples are rough, and the water droplets residing on these 

samples are in Wenzel state.[1]  

To fabricate the HP Si sample, commercially available Si wafers were used. The Si wafer 

was first thoroughly rinsed with acetone, ethanol, isopropyl alcohol (IPA) and deionized (DI) water 

and dried with clean N2 gas. To functionalize the surface, HTMS was deposited using chemical 

vapor deposition as explained in the fabrication procedure for AlO(OH) – SHP. Contact angle 

measurements of ≈300 nL droplets on Si – HP surfaces showed advancing and receding contact 

angles of 𝜃a
app/𝜃r

app
 ≈ 110.4 ± 0.3° / 69.7 ± 1.1°.  

To fabricate the SHP Cu-Glaco and Glass-Glaco samples, commercially available polished 

Cu tabs and Glass tabs (25 mm x 25 mm x 0.8 mm) were used. Then, they were thoroughly rinsed 

with acetone, ethanol, isopropyl alcohol (IPA), deionized (DI) water and dried with N2 gas. The 

samples were then spray coated using the commercially available superhydrophobic coating, 

Glaco (Soft 99 Glaco Side Mirror Zero Coat - 40ml). The samples were then left to dry at room 
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temperature for 30 mins. Contact angle measurements of ≈300 nL droplets on Cu-Glaco – SHP 

surfaces showed advancing and receding contact angles of 𝜃a
app/𝜃r

app
 ≈ 165.7 ± 0.7° / 164.3 ± 

0.6° and on Glass_Glaco – SHP, 𝜃a
app/𝜃r

app
 ≈ 163.5 ± 1.9° / 161.3 ± 0.9°. 

4.4 Experimental Methods  

Individual droplet freezing was studied using a custom built top-view optical light 

microscopy set-up shown diagrammatically in a side view schematic in Figure 4.1(a). Briefly, 

samples were placed horizontally on the cold stage (Instec, TP104SC-mK2000A) with a thin film 

of water underneath in order to provide good thermal communication between the sample and 

stage. The cold stage was cooled to the test temperature of 𝑇s = -20 ± 0.5°C in a laboratory 

environment having air temperature, 𝑇air = 22 ± 0.5°C, and relative humidity (RH), 𝛷 = 50 ± 1% 

(Roscid Technologies, RO120). Individual droplet freezing movies were recorded from the top 

view at 7,000 to 23,000 frames per second with a high speed camera (Phantom, V711, Vision 

Research) attached to an upright microscope (Eclipse LV100, Nikon). For a droplet of diameter 

𝐷, the freezing time, 𝑡f, was characterized as the time from initial ice nucleation within the droplet 

to complete droplet freezing. Top view imaging was performed with a 20X and 50X (TU Plan 

Fluor EPI, Nikon) objective. For the 20X, lens, the working distance was measured to be 5.8 ± 0.5 

mm, and for 50X, 11.8 ± 0.5 mm. Illumination was supplied by an LED light source (SOLA SM 

II Light Engine, Lumencor). The LED light source was specifically chosen for its high-intensity 

and low power consumption (3.5 W) in order to minimize heat generation at the surface due to 

light absorption and minimize its influence on the droplet evaporation rates during condensation 

frosting. Furthermore, by manually reducing the condenser aperture diaphragm opening size and 

increasing the camera exposure time, we were able to minimize the amount of light energy needed 

for illumination and hence minimize local heating effects during freezing experiments [130]. 
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Figure 4.2(a) shows the top view time-lapse optical microscopy images of individual 

droplet freezing on the nanostructured CuO surface (CuO – SHP). Visual inspection of the high-

speed videos showing the freezing process clearly delineate the differing stages of freezing due to 

pixel intensity changes. For all the droplet freezing videos taken in this study, it was observed that 

the image intensity of ice was higher than that of water. In order to mimic the human eye and 

quantify when the freezing starts and stops, the intensity (average RGB value) of every frame in 

the droplet freezing video was plotted. Figure 4.2(b) shows the intensity of the optical microscopy 

images as a function of time as the water droplet transitions from liquid to solid. While calculating 

the intensity, a moving average was taken of five neighboring data points to minimize noise. 

Initially, when the droplet was in liquid phase, the intensity was constant. When an ice bridge 

approaches the liquid droplet and appears in the field of view (at 𝑡 = 1.8 ms), the intensity of the 

image increases slightly, as observed at the local maxima near 𝑡 = 2.0 ms. As soon as the ice bridge 

touches the liquid droplet, freezing initiates (𝑡 = 2.0 to 4.0 ms). The image intensity oscillates, and 

then becomes stable at a higher intensity. The oscillation represents the different stages of freezing: 

i) recalescence, defined as the formation of a porous ice scaffold inside the supercooled liquid 

droplet [116,131,132] (which starts at the onset of freezing, 𝑡 = 2.0 ms and ends at 𝑡 = 2.4 ms when 

the droplet is at 0°C), and ii) isothermal (at 0°C) freeze front propagation, which starts at 𝑡 = 2.4 

ms and ends at 𝑡 = 4.0 ms. The initiation and end of freezing was identified by the change in 

intensity from the average value of 27.6 ± 0.1 (peak to peak) before freezing and 29.6 ± 0.1 after 

freezing due to change of phase from liquid to solid. Typical videos taken of the freezing process 

(21,000 FPS) resulted in ≈150 images from start to finish, ensuring enough granularity to capture 

the whole process.  
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Although the relation between the image intensity and phases of water (solid, liquid or 

mixed) is qualitative, small changes in intensity provide a clear and quantifiable window into 

freezing. The developed intensity-tracking method works particularly well for microscale droplets 

due to the significantly smaller radius when compared to the depth of field of the imaging optics. 

To verify our measurements, we performed additional experiments via focal plane shift imaging 

(FPSI) for focal planes located at the droplet base instead of the mid-plane. The FPSI results were 

invariant with a focal plane located within the droplet due to the significantly larger depth of field 

compared to the droplet length scale. To further verify the developed method, the total freezing 

time was also characterized by manual image processing of 30 randomly selected high-speed 

videos from the entire data set, showing the accuracy of our results to be within an error bound of 

±5% when compared to image processing with the human eye. 

4.5 Results and Discussions  

4.5.1 Experiment Results  

Figure 4.3(a) shows the individual droplet freezing time, 𝑡f as a function of droplet 

diameter, 𝐷 = 2𝑅, for surface temperature 𝑇s = -20ºC. The individual droplet freezing time, 𝑡f on 

superhydrophobic (SHP) surfaces was an order of magnitude greater than hydrophobic (HP) 

surfaces due to the higher characteristic length scales of droplets (volume/heat transfer area), and 

presence of air gaps beneath water droplets which act as thermal insulation to heat transfer. The 

four SHP surfaces having differing length scale nano/microstructures (60 nm to 1 µm) led to 

different air gap thickness and thermal resistance beneath the supercooled water droplets. 

Interestingly, for all droplet sizes (10 µm < 𝑅 < 100 µm) analyzed on the varying length scale SHP 

surfaces, 𝑡f showed the identical trend and magnitude, indicating that for the length scales 

examined here, the presence of air gaps beneath supercooled water droplets contributed negligibly 
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to delayed individual droplet freezing, consistent with previous studies on macroscale water 

films.[118] Note, for smaller droplet sizes, (𝑅 < 10 µm), thermal resistance offered by the air gaps 

becomes dominant than the thermal resistance of the droplet during freezing, wherein 𝑡f might 

depend on the length scale of nano/microstructures (Figure 4.9).  

4.5.2 Thermal Resistance Analysis  

To help explain the underlying physics governing individual droplet freezing time, we 

examine the governing analytical heat transfer equations. When ice nucleation initiates in a water 

droplet, the temperature of the water droplet rises to 0°C due to recalescence (stage i in our results, 

Fig. 4.2) [128]. During recalescence, only a fraction of the liquid volume freezes into an ice 

scaffold while the latent heat of freezing is almost entirely absorbed by the resulting ice-water 

mixture, resulting in an increase of its temperature from the subcooled state (-20°C) to 0°C. When 

the ice-water droplet reaches 0°C, freeze front propagation ensues isothermally (at 0°C) within the 

droplet, converting the ice-water droplet to a homogenous ice droplet and rejecting the latent heat 

released into the substrate. The recalescence time was observed to be less than 20% of the total 

freezing time for the water droplets analyzed here. For scaling analysis, we assume that the 

recalescence time is ≈0.2𝑡f and that the process is quasi-steady. Note, the ≈0.2𝑡f recalescence time 

is a conservative estimate appropriate at smaller length scales (𝑅 < 100 µm). Prior experiments 

have shown the recalescence duration to be <0.2𝑡f for larger droplets (𝑅 > 1 mm) [116]. 

Recalescence is a rapid, kinetically controlled process, wherein the fast temperature rise is due to 

the local nuclei growth, rather than heat transfer across the droplet [131-133]. The time taken for 

recalescence (~ 1 ms) is similar for all droplet sizes (10 µm < 𝑅 < 1 mm). For large droplets (𝑅 ~ 

1 mm) with 𝑡f ~ 10 s, the recalescence time is negligible as compared to 𝑡f. Whereas, for the 

microscale droplets studied here (𝑡f ~ 10 ms), the recalescence approaches 0.2𝑡f. The latent heat 
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released during the recalescence freezing stage will be completely absorbed by the freezing 

droplet, to sensibly heat from -20°C to 0°C. Therefore, the total energy released into the substrate 

during freeze front propagation inside the droplet is equal to the heat transfer release rate, 𝑞̇tot, 

multiplied by the time taken for freeze front propagation inside the ice-water droplet during 

freezing, 0.8𝑡f: 

𝑞̇tot(0.8𝑡f) = 𝜌w𝑉drop(ℎsf − 𝑐PΔ𝑇sub) , (4.1) 

where 𝜌w and 𝑐P are the density and specific heat of supercooled liquid water, respectively, 𝑉drop 

is the droplet volume, and Δ𝑇sub is the temperature difference between the supercooled water 

droplet and 0°C.  

To better understand the fundamental physics governing the rate of freezing, we developed 

an analytical thermal resistance model to analyze the rate-limiting steps for varying droplet 

morphologies. The thermal resistance analysis yields Δ𝑇tot = 𝜓tot𝑞̇tot, where Δ𝑇tot is the 

temperature difference between the just-recalesced droplet (0°C) and far-field substrate 

temperature, and 𝜓tot is the total thermal resistance, defined as the summation of the substrate 

spreading, 𝜓subs, air gap, 𝜓gap, and droplet conduction, 𝜓drop thermal resistances.  

Figure 4.8 shows the thermal resistance network for a droplet freezing on a cold 

superhydrophobic nanostructured surface. For a droplet with radius 𝑅 residing on a surface with 

temperature 𝑇𝑠, the conduction thermal resistance offered by the substrate (assuming thermal 

resistance by a semi-infinite body) is: [134] 
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𝜓cond =
1

4𝑘s𝑅 sin 𝜃
 , (4.2) 

where 𝑘𝑠 is the thermal conductivity of the substrate, 𝜃 is the contact angle of the droplet. The 

thermal resistance of air gap beneath the water droplet is given by: [59]  

𝜓gap =
1

𝑘HC𝜋𝑅2sin2𝜃
[

𝑘P𝜙

𝛿HC𝑘P + ℎ𝑘HC
+

𝑘w(1 − 𝜙)

𝛿HC𝑘w + ℎ𝑘HC
]

−1

 , (4.3) 

where 𝑘air is the thermal conductivity of air, 𝑘P is pillar thermal conductivity, ℎ is the height of 

pillars, 𝛿HC is the coating thickness, 𝜙 is the structured surface solid fraction, 𝑘w is thermal 

conductivity of water, and 𝑘HC is the coating thermal conductivity. Thermal resistance offered by 

the droplet while freezing can be calculated from the solution to Stefan’s problem. Assuming that 

the liquid phase is at the melting temperature of ice, and that the heat capacity of ice is negligible 

compared to the latent heat of solidification, an energy balance on the propagation of a planar ice-

water front during freezing results in: [104,105]  

𝑣ℎfs = 𝜌ice𝑘ice
𝜕𝑇

𝜕𝑧
 , (4.4) 

where 𝑣 is the ice front propagation speed, ℎfs is the latent heat of fusion (per unit volume), 𝑘ice 

and 𝜌ice are the thermal conductivity and density of ice, and 𝜕𝑇/𝜕𝑧 is the temperature gradient in 

the direction of ice propagation. Integrating Eq. (4.4) from ice nucleation to complete icing, we 

see that the total freezing time is proportional to the square of characteristic length, 𝐿c (equal to 

height of the liquid droplet in this case, 𝐿c  =  𝑅(1 + cos 𝜃)) is given by: 
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𝑡f =
ℎfs𝐿c

2

2𝑘ice∆𝑇̅̅̅̅
 , (4.5) 

where , ∆𝑇̅̅̅̅  is the average temperature difference between the melting temperature (0ºC) and the 

temperature at the base of water column (∆𝑇̅̅̅̅ = 𝑇melting − 𝑇base).  

For scaling, assuming that the recalescence time is negligible as compared to the total 

freezing time, the energy released into the substrate will be equal to the rate of heat released into 

the substrate by the ice-water droplet during freezing, 𝑞toṫ , multiplied by the total freezing time, 

𝑡f. By energy conservation, the energy released into the substrate will be equal to the latent energy 

released by the ice-water droplet while freezing:  

𝑞toṫ 𝑡f = 𝜌𝑤𝑉dropℎsf , (4.6) 

where 𝑉drop is the droplet volume. Thermal resistance analysis yields ΔT = 𝜓𝑞, Equation 4.6 then 

can be rearranged as:  

𝑡f =
𝜌w𝑉dropℎsf

Δ𝑇tot
𝜓 . (4.7) 

Comparing Eq. (4.5) and (4.7), we get: 

𝜓droplet =
3

8𝜋𝑘ic𝑒𝑅(1 − cos 𝜃)
 . (4.8) 
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Individual thermal resistances (𝜓cond, 𝜓gap, and 𝜓drop) are plotted as a function of droplet 

radius in Figure 4.9. Figure 4.9 corresponds to an aluminum substrate (thermal conductivity, 

𝑘s = 205 W/mK) with AlO(OH) nanostructures (height, ℎ = 100 nm) and a monolayer coating of 

thickness (coating thickness, 𝛿HC = 3 nm and coating thermal conductivity, 𝑘HC = 0.2 W/mK). The 

droplet thermal resistance is dominant for droplet radius 𝑅 > 15 𝜇m. The total thermal resistance 

is thus, 𝜓tot = 𝜓cond + 𝜓gap + 𝜓drop + 𝜓conv. 

For all superhydrophobic substrates tested here, 𝜓gap dominated at smaller droplet length 

scales (𝑅 < 15 µm), while the spreading resistance (𝜓subs) was negligible at all length scales, 

indicating that the freezing kinetics were governed mainly by heat conduction through the 

water/ice droplet. Normalizing the experimentally measured freezing time by the length scale 

dependent parameters in our thermal resistance analysis (𝑉drop and 𝜓tot), results in a surface 

wettability and droplet length scale independent freezing parameter (𝑡fr):  

𝑡fr =
0.8𝑡f

𝑉drop𝜓tot
=
𝜌w(ℎsf − 𝐶PΔ𝑇sub)

Δ𝑇tot
 . (4.9) 

Figure 4.3(b) shows 𝑡fr as a function of 𝐷 for all experimentally measured data points, 

showing that all data from Figure 4.3(a) collapse to the same order of magnitude. The collapse of 

the data indicates that for the substrates and droplet sizes (10 µm < 𝑅 < 100 µm) studied here, the 

contact angle and droplet length scale dependent heat conduction within the droplet governs the 

individual droplet freezing time. It is important to note, the frost wave propagation timescale (~1s) 

observed on the superhydrophobic surfaces was much slower than the individual droplet freezing 

timescale (~ 10ms). Thus, frost wave propagation via ice bridge growth dominates surface 
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condensation frosting dynamics, and delay in individual microscale droplet freezing time has a 

negligible direct effect on frosting time on non-wetting surfaces. However, individual droplet 

freezing may have an indirect effect on droplet ice bridging via the conduction of latent heat 

through the substrate to neighboring evaporating droplets that help grow the liquid bridge. 

4.5.3 Numerical Model to Calculate Latent Heat Transferred to Neighboring Droplet  

To elucidate the effect of latent heat released into the substrate by freezing of supercooled 

droplets, we calculated the latent heat transferred to neighboring droplets by performing transient 

numerical simulations. A 3D numerical model based on finite element method (ANSYS) was used 

to solve the heat transfer from the freezing droplet to a neighboring water droplet via the chilled 

substrate. The substrate was modeled (Figure 4.4) with a constant temperature boundary condition 

at the left, bottom and right surface. Utilization of insulated boundary conditions negligibly 

affected the results (< 4%) due to the large domain size 𝛿 (discussed later). An insulated boundary 

condition was used at the top surface excluding the areas where heat flux is input and output (base 

areas of freezing and neighboring water droplets respectively). Using a convective boundary 

condition at the top surface instead of insulated resulted in < 1.5% change in the heat transfer 

results, at the price of significant convergence time increases. Thus, the insulated boundary 

condition was used at the top surface where droplets were not present. The heat flux input, 𝑞"lat 

into the substrate at the base of freezing droplet was calculated by:  

𝑞"lat =
𝜌w𝑉dropℎfs

𝜋𝑅2 sin2 𝜃 𝑡f
 , (4.10) 

where 𝜌w is the water density, 𝑉drop is the droplet volume, and 𝜃 is droplet apparent contact angle.  
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During the isothermal freeze front propagation inside a water droplet on substrates with 

very low thermal conductivity (< 1 W/m·K), the latent heat released by the freezing droplet can 

lead to significant evaporation of the remaining liquid in the freezing droplet, resulting in a smaller 

heat flux being released into the substrate. Here, we calculate the percentage of latent heat lost via 

evaporation of the mother droplet and the remaining percentage of latent heat released into the 

substrate.  

Based on the individual droplet freezing times (𝑡f), we calculate the thermal penetration 

depth, 𝛿 for a given substrate (𝛿 = √𝛼s𝑡f, where 𝛼s is the thermal diffusivity of the substrate). As 

a conservative estimate, we define the volume of the substrate exchanging heat with the freezing 

droplet, [127]   

𝑉ex = 𝜋(𝛿 + 𝑅b)
2𝛿 , (if 𝛿 > 2𝑅b) (4.11) 

𝑉ex = 𝜋(𝛿 + 𝑅b)
2𝑅b , (if 𝛿 < 2𝑅b) (4.12) 

where 𝑅b is the base radius of the freezing droplet. We have considered a cylindrical volume in 

the substrate which will exchange heat with the freezing droplet rather than a hemispherical 

volume due to the conservative (maximum volume) estimate provided by the cylindrical geometry. 

The maximum increase in the temperature of the substrate during droplet freezing will be, Δ𝑇 =

𝑇melting − 𝑇𝑠 = 20°C, assuming that the latent heat released into the substrate will heat up the 

substrate to the equilibrium temperature of the droplet during freezing, 𝑇melting = 0°C. The 

maximum amount of energy absorbed by the substrate, assuming that the energy absorbed will 

increase the temperature of the volume 𝑉ex underneath the freezing droplet by 𝛥𝑇 is,  
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𝑄s = 𝜌s𝑉ex𝑐P∆𝑇 , (4.13) 

where 𝜌s and 𝑐P are substrate density and specific heat respectively. The latent heat released by 

the freezing water droplet is:    

𝑄lat = 𝜌w𝑉dropℎfs, (4.14) 

where 𝑉drop is the volume of freezing droplet. If the latent heat released by the freezing droplet, 

𝑄lat < 𝑄s, it is assumed that all the latent heat is released into the substrate. If 𝑄lat > 𝑄s, it is 

assumed that the freezing droplet releases latent heat equivalent to 𝑄s into the substrate and the 

remaining latent heat, 𝑄lat − 𝑄s, leads to the evaporation of the remaining liquid in the mother 

droplet.  

It was observed that for substrates with very low thermal conductivity (< 1 W/m·K, 

formation of Frost Halos on PMMA), more than 50% of the latent heat released during freezing 

leads to evaporation of the mother droplet and the remaining latent heat is released into the 

substrate (𝑄s< 0.5𝑄lat). For substrates with higher thermal conductivity (> 10 W/m·K), it was 

observed that that no latent heat is lost via evaporation of the freezing droplet, and all latent heat 

is released into the substrate (𝑄lat < 𝑄s). Based on this criteria, the input heat flux in Fig. 4.5, 𝑞"lat 

is defined as: 

𝑞"lat =
𝑄lat

𝜋𝑅b
2𝑡f
 , (if 𝑄lat < 𝑄s) (4.15) 
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𝑞"lat =
𝑄s

𝜋𝑅b
2𝑡f
, (if 𝑄lat > 𝑄s) (4.16) 

It is important to note, the above analysis assumes from the start that local evaporation of droplets 

due to heat conduction into the substrate is negligible. This arises due to the assumption that all of 

the latent heat released from the freezing mother droplets is transferred into sensible heating of the 

substrate beneath. In actuality, a portion of the conducted latent heat may be utilized to evaporate 

nearby droplets and result in 𝑄lat < 𝑄s. However, this assumption can be inferred to be incorrect 

due to the already shown minimal contribution of latent heat for local droplet evaporation at higher 

substrate thermal conductivities. For substrates with very low thermal conductivity (< 1 W/m·K), 

the latent heat released by the freezing droplet can lead to significant evaporation of the remaining 

liquid in the freezing droplet, resulting in a smaller heat flux being released into the substrate.  

A convective heat transfer boundary condition is used at the base of the neighboring water 

droplet with an overall heat transfer coefficient, ℎb, representing the conduction thermal resistance 

through the droplet (~ 20,000 W/m2K, Fig. 4.4a). The neighboring water droplet was assumed to 

be supercooled at the substrate temperature, 𝑇neigh,drop = 𝑇s = -20°C. To verify the sensitivity of 

this assumption, additional simulations were conducted to show that a change in neighboring 

droplet temperature to 𝑇neigh,drop = -10°C resulted in <10% change in the heat transfer results, 

thus the neighboring droplet temperature was fixed at -20°C for all the simulations. The output of 

the simulation was the heat flux received by the neighboring water droplet, 𝑞"iw. The distance 

between the freezing droplet and a neighboring droplet, 𝑥 was varied along with the substrate 

thermal conductivity, 𝑘𝑠. 
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ANSYS Fluent was used model the substrate, with hexahedral meshing as shown in Figure 

4.4(b) with ≈ 2 million cells. Mesh refinement was used at the droplet-substrate interface with 

minimum element size = 100 nm. A grid refinement study via a further reduction in mesh size 

resulted in < 1% change in the heat transfer results. The size of the domain was taken to be 0.5 

mm x 0.5 mm x 1 mm (𝛿 = 0.5 mm, Fig. 4.4b). Further increment in 𝛿 resulted in < 1% change in 

the heat transfer results. The domain was chosen based on the calculation of the thermal penetration 

depth of the released latent heat, estimated as 𝛿 ~ √𝛼s𝑡f. For the individual droplet freezing times 

considered here (≈10 ms) and thermal diffusivity of aluminum (𝛼Al ≈ 9.7 × 10−5 m2/s), we 

calculated a thermal penetration distance of 𝛿 ≈ 1 mm. During the simulations of droplet freezing 

at larger length scales (𝑅 ~ 1 mm), a larger domain size was chosen accordingly. Among the 

substrates used, Copper had the highest thermal penetration depth, 𝛿 ≈ 20 mm (𝛼𝐶𝑢 ≈ 1.1 × 10−4 

m2/s, and 𝑡f = 3.1 s), resulting in a 20 mm x 20 mm x 50 mm domain size for the simulations. 

Further increment in domain size resulted in < 1% change in the heat transfer results. To allow for 

the latent heat pulse to diffuse, we run the transient simulations for time scales 5X greater than 𝑡f.  

Figure 4.5 shows the heat flux (𝑞”iw) transferred from a freezing droplet to a neighboring 

droplet as a function of center-to-center distance, 𝑥 (left axis). To determine the magnitude of the 

latent heat received at a distance 𝑥 from the freezing droplet, we calculated 𝑅evap as a function of 

𝑥 (right axis), where 𝑅evap is the radius of the water droplet which would evaporate completely 

due to the added latent heat flux, 𝑞”iw for the duration of freezing time 0.8𝑡f. For the droplet size 

scales examined here (𝑅 < 120 µm), 𝑅evap < 0.1 nm, which is smaller than the condensation 

nucleation radius of water at STP (~ 10 nm) [57]. Thus, for the droplet length scales and 

wettabilities tested here (𝑅 < 120 µm), the transfer of latent heat to neighboring droplets was 



78 

 

insignificant, and account for a negligible fraction of neighboring droplet evaporation during frost 

wave propagation.  

Our simulations and analytical model both reveal that the transfer of latent heat to 

neighboring droplets varies with substrate thermal conductivity. However, due to the high degree 

of heat spreading through the substrate, the fraction of evaporation of neighboring water droplets 

due to heat conduction through the substrate remains negligible for all thermal conductivities 

simulated (0.1 < 𝑘s < 400 W/m·K). Thus, our simulations results predict that the velocity of the 

ice bridge growth should be invariant with substrate thermal conductivity, in good agreement with 

a previous study which modeled the growth velocity of an ice bridge independent of latent heat 

considerations [126].  

4.5.4 Experiments to Measure Ice Bridge Growth Velocity  

To experimentally verify our model and simulations, we conducted additional frosting 

experiments on glass (𝑘𝑠 = 1 W/m·K) and copper (𝑘s = 401 W/m·K) substrates spray-coated with 

a thin layer (< 100 nm) [135] of a superhydrophobic commercial coating. The optical microscopy 

setup (Fig. 4.1a) was used to record top view videos at 100 FPS of inter droplet ice bridge 

formation during frost wave propagation. Figure 4.6 shows the ice bridge average growth velocity, 

𝑣ib as a function of ice bridge length 𝑙ib, defined as the distance between the freezing droplet and 

neighboring droplet for superhydrophobic glass and copper substrates. The temperature of the 

substrate was maintained at, 𝑇s = -20°C and the temperature of the ambient was maintained at, 𝑇a 

= 22.3 ± 0.5°C with a relative humidity of, 𝛷 = 49.2 ± 1%. The velocity of the ice bridge was 

determined to be on the same order of magnitude (≈1-4 µm/s) for both low and high thermal 

conductivity substrates, in line with our model and simulations. In agreement with previous 



79 

 

studies, [126] we observed that 𝑣ib for the microscale droplets studied here was proportional to the 

rate of evaporation of the neighboring water droplet which is governed solely by vapor pressure 

gradients.  

4.5.5 Droplet Freezing at Millimetric Length Scale  

Contrary to our microscale frost wave propagation results, at larger droplet length scales 

(𝑅 ~ 1 mm) the latent heat transfer into the substrate may play a significant role in the evaporation 

of neighboring microscale water droplets. Previous studies of millimetric droplet frost halo 

formation showed that during the recalescence stage, if the supersaturated pressure required for 

heterogeneous nucleation of condensate on the substrate, 𝑝n, is less than that of the pressure at the 

interface of the freezing ice-water droplet, 𝑝i,0, water molecules will diffuse from the liquid-vapor 

interface of the large freezing droplet to the ambient surroundings [128]. These water vapor 

molecules re-condense as microdroplets in the form of an annular ring surrounding the frozen 

droplet that can rapidly freeze, forming a frost halo. The survival and extent of the frost halo 

formation has been shown to depend on the duration of the transient pressure condition (𝑝i,0 > 𝑝n), 

which is governed by the time taken after recalescence, 𝜏f to complete freeze front propagation 

[128]. With an increase in the substrate thermal conductivity 𝑘s, 𝜏f decreases [128]. 

To probe the effect of latent heat released into the substrate by freezing droplets at larger 

length scales, we calculated the latent heat transferred to neighboring droplets, 𝑞”iw by performing 

additional 3D transient numerical simulations. As previously mentioned, for substrates having low 

thermal conductivity (< 1 W/m·K), the latent heat released by the freezing droplet can lead to 

significant evaporation of the remaining liquid in the freezing (mother) droplet, resulting in a 

smaller heat flux released into the substrate [128]. We used analytical calculations to estimate the 
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fraction of latent heat lost via evaporation of the mother droplet and the remaining latent heat 

released into the substrate (Eq. 4.15 and 4.16) [127]. For substrates having very low thermal 

conductivity (< 1 W/m·K), more than 50% of the latent heat released during freezing goes to 

evaporating the mother droplet while the remaining heat is released into the substrate. For 

substrates with higher thermal conductivity (> 10 W/m·K), a negligible amount of heat is lost via 

evaporation of the mother droplet, hence all latent heat is released into the substrate.[127] For the 

simulations conducted herein, the percentage of latent heat released into the substrate was a 

conservative (theoretically maximum) estimate. The experimental data of individual droplet 

freezing times for larger droplet length scales (𝑅 = 1.1 mm) on substrates with varying thermal 

conductivity was obtained from a previous study, [128] and utilized in the transient numerical 

simulations via the application of an appropriate conductivity-dependent heat flux during droplet 

freezing.  

Figure 4.7 shows the heat flux, 𝑞”iw (left axis), and computed evaporation radius, 𝑅evap 

(right axis), as a function of substrate thermal conductivity, 𝑘s, for freezing droplets having 𝑅 = 

12.2 µm and 𝑅 = 1.1 mm neglecting frost halo microdroplet condensation effects. The distance 

between the edge of the base circle of the freezing droplet and the center of neighboring 

evaporating droplet, 𝑥e = 8 µm was fixed. For 𝑅 = 1.1 mm, 𝑅evap ~ 1 µm, indicating that millimeter 

sized freezing water droplets have the capability of evaporating micron sized neighboring water 

droplets. The neighboring water droplets can be pre-existing neighboring supercooled condensate, 

or the small droplets that consist of the halo itself. As 𝑘s decreases (401 to 0.19 W/m·K) the 

transferred heat flux from the freezing droplet to a neighboring water droplet increases due to the 

larger semi-infinite body resistance, 𝜓subs  =  1/(4𝑘s𝑅b), where 𝑅b is the droplet base radius, 

resulting in greater spatially confined heat flow to adjacent droplets. However, as previously 
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discussed, for sufficiently thermally insulating surfaces more than 50% of the droplet latent heat 

content can be lost via evaporation as opposed to substrate conduction. On thermally insulating 

surfaces assuming no frost halo microdroplet condensation effects, two competing effects are 

established: (1) the reduction of latent heat transferred to the substrate that acts to lower adjacent 

microdroplet evaporation, and (2) the localization of latent heat transferred from the freezing 

droplet to the neighboring droplets which act to increase adjacent microdroplet evaporation. For 

these simulations conducted here (Figure 4.7), the effect of heat localization dominated resulting 

in larger 𝑅evap with lower 𝑘s. To understand this counter intuitive result which opposes previous 

experiments, [128] we need to examine the main invalid assumption made during our simulations: 

neglecting frost halo mediated microdroplet condensation. The third and dominant factor affecting 

neighboring microscale droplet formation or evaporation is the pressure gradient (𝑝i,0 > 𝑝n), and 

how long it persists, resulting in diffusion of water vapor from the freezing ice-water droplet to 

the surrounding substrate. The discrepancy between our computational results and experiments 

clearly indicate that latent heat transfer to neighboring droplets via conduction through the 

substrate is not a dominating factor driving frost halo formation with large scale (~ 1mm) droplets. 

Instead, vapor pressure gradients constitute the main driving force for bridge formation and local 

droplet evaporation. Indeed, previous results have shown frost halo condensed microdroplets to be 

𝑅 ≈ 10 µm ≫ 𝑅evap, [128] clearly pointing to vapor diffusion effects dominating droplet freezing 

dynamics across length scales. 

The experimental and numerical results presented here clearly show that latent heat transfer 

through the substrate during frost formation has a negligible effect on condensation frosting 

dynamics on non-wetting substrates. While individual droplet freezing dynamics are governed by 

liquid/solid heat conduction within the droplet, bridge growth and frost halo formation across 
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length scales are governed by vapor diffusion dynamics. In the future, coupling 3D numerical 

simulations of vapor diffusion dynamics with heat conduction within the supercooled freezing 

droplet will be key to fully capturing the underlying physics of frost formation on arbitrary 

surfaces. Furthermore, the development of multi-droplet simulations in the frozen and supercooled 

state will be important to better represent the physical phenomena where droplet-droplet coupling 

has the potential to significantly alter the temperature fields inside the substrate and resulting frost 

wave propagation dynamics. In addition, future studies should examine the important effect of 

relative humidity on ice bridge formation. Although key for a variety of phase change processes, 

we do not expect the key message to change based on relative humidity due to the minute 

contribution of latent heat on adjacent droplet evaporation. 

4.6 Conclusions  

In conclusion, we have demonstrated that latent heat released into the substrate during 

freezing of individual droplets does not affect frost wave propagation or frost halo formation. 

Furthermore, we showed that the ice bridge velocities are independent of the substrate thermal 

conductivity. Ice bridge formation during frost wave propagation is governed solely by the vapor 

pressure gradient caused by the difference in saturation pressure of the water vapor surrounding 

the liquid droplet and the frozen droplet. We showed that at length scales tested here, the individual 

droplet freezing time depends on the substrate wettability, since it governs the droplet thermal 

resistance (which is the most dominant thermal resistance), increasing with higher intrinsic and 

apparent advancing contact angles. By characterizing the individual droplet freezing (~1ms) and 

frost wave propagation (~1s) timescales, we show that delay in individual droplet freezing (due to 

wettability effects) does not affect the overall frosting speed due to the disparate timescales of the 

two processes. This study not only elucidates the role of latent heat released into the substrate 
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during frost wave propagation but also explains the effect of substrate thermal conductivity and 

wettability during ice bridge formation and individual droplet freezing. 
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4.7 Figures 

  

Figure 4.1. (a) Side view schematic of the freezing experiment (not to scale). Scanning electron 

micrograph of a (b) 10 min oxidized nanostructured CuO surface coated with a ≈ 3 nm thick layer 

of HTMS and (c) 10 min oxidized nanostructured Bronze surface coated with a ≈ 3 nm thick layer 

of HTMS. The length scale of structures on Cu and Bronze substrates are same with different 

substrate thermal conductivity (𝑘Cu = 401 W/m·K, 𝑘Bronze = 110 W/m·K). The sharp, knife-like 

CuO structures have characteristic heights, ℎ ≈ 1 μm, and solid fraction, 𝜑 ≈ 0.04. The cold stage 

was kept at a temperature 𝑇s = -20 ± 0.5°C. Movies were recorded at 7000 to 23000 frames per 

second. Experimental conditions: ambient air temperature 𝑇air = 22 ± 0.5°C, vapor temperature 

𝑇v = 𝑇sat(𝛷𝑃sat(𝑇air)) = 11.1 ± 0.5°C, relative humidity 𝛷 = 50 ± 1%.  
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Figure 4.2. (a) Time-lapse optical microscopy images of individual droplet freezing on a 

nanostructured CuO – SHP surface (𝜃a
app

 ≈ 170.5 ± 7.2°). (b) Intensity (average RGB value) of 

the optical microscopy images as a function of time as the water droplet transitions from liquid to 

solid. At the beginning of the video at 𝑡 = 0, the droplet is still in liquid state. Freezing initiates at 

𝑡 = 2.0 ms and it ends at 𝑡 = 4.0 ms. The initiation and end of freezing was identified by the increase 

in intensity from the average value of 27.63 ± 0.04 (peak to peak) before freezing and 29.59 ± 0.05 

after freezing.  
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Figure 4.3. (a) Individual droplet freezing time, 𝑡f and (b) reduced freezing parameter, 𝑡fr as a 

function of droplet diameter, 𝐷 for surface temperature 𝑇s = -20ºC. For the hydrophobic samples 

(Cu – HP (I), Cu – HP (II), and Si – HP), frost wave propagated on the whole surface before the 

droplets could grow greater than 60 μm in diameter. Thus, there is no data for 𝐷 > 60 μm for 

hydrophobic samples. The individual droplet freezing time, 𝑡f for superhydrophobic (SHP) 

surfaces is an order of magnitude greater than hydrophobic (HP) surfaces due to the higher 

characteristic length scales (volume/heat transfer area) for 𝐷 > 30 μm, and presence of air gaps 

beneath water droplets which act as thermal insulation to heat transfer for 𝐷 < 30 μm. To normalize 

the results, the freezing time is divided by the droplet volume and the total thermal resistance, 

𝑡fr = 𝑡f/(𝑉drop𝜓tot), resulting in a constant reduced freezing parameter ss a function of droplet 

diameter, 𝐷. Error bars are not included for clarity (maximum error in freezing time and diameter 

≈ ±5% of the measured value).  
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Figure 4.4. (a) Schematic of the simulation domain. (b) The hexahedral meshing of the domain 

(substrate) used in ANSYS Fluent. Inset: Zoomed-in view of the input and output boundary 

conditions. The domain was chosen based on the calculation of the thermal penetration depth of 

the released latent heat, estimated as 𝛿 ~ √𝛼s𝑡f. The total number of mesh elements exceeded 2 

million with a minimum mesh refinement length scale of 100 nm at the locations immediately 

beneath the droplets. 
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Figure 4.5. Heat flux (𝑞”iw) transferred from a freezing droplet to a neighboring droplet as a 

function of center-to-center distance, 𝑥, between the two droplets (left axis). Inset: Schematic of 

the simulation. The simulations are done for aluminum substrate (𝑘Al = 205 W/m·K). To determine 

the magnitude of the latent heat received at a distance 𝑥 from the freezing droplet, we calculated 

𝑅evap as a function of 𝑥 (right axis), where 𝑅evap is the radius of water droplet which will evaporate 

completely due to the added latent heat flux, 𝑞”iw available at the distance 𝑥 for the duration of 

freezing time 𝑡f. For the droplet size scales examined here (𝑅 < 120 µm), 𝑅evap < 0.1 nm, smaller 

than the condensation nucleation radius of water at STP (~ 10 nm).  
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Figure 4.6. Ice bridge velocity, 𝑣ib as a function of ice bridge length, 𝑙ib, defined as the distance 

between the freezing and neighboring droplets (inset schematic), for glass and copper substrates 

spray-coated with Glaco commercial coatings. The ice bridge velocity, 𝑣ib is the cumulative rate 

at which an ice bridge forms between two droplets spaced by the distance 𝑙ib. The temperature of 

the substrate was, 𝑇s = -20°C and the temperature of the ambient was maintained at, 𝑇a = 22.3 ± 

0.5°C with a relative humidity of, 𝜙 = 49.2 ± 1%. Boxes represent the standard deviation, square 

dots represents the mean, horizontal lines within the box represents the median, and the whiskers 

represent the minimum and maximum of the experimental data. The velocity of ice bridge was on 

the same order of magnitude for copper (𝑘s = 401 W/m·K) and glass (𝑘s = 1 W/m·K) substrates.  
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Figure 4.7. Heat flux, 𝑞”iw (left axis) and evaporation radius, 𝑅evap (right axis) as a function of 

substrate thermal conductivity, 𝑘s for freezing droplet having 𝑅 = 12.2 µm and 𝑅 = 1.1 mm. The 

distance between the edge of the base circle of the freezing droplet and the center of neighboring 

evaporating droplet, 𝑥e = 8 µm is fixed. Inset: Schematic of the simulation. As 𝑘s decreases (𝑘Cu = 

401 W/m·K, 𝑘Al = 205 W/m·K, 𝑘Ti = 21.9 W/m·K, 𝑘Steel = 16 W/m·K, 𝑘PMMA = 0.19 W/m·K) 

the transferred heat flux from the freezing droplet to a neighboring water droplet increases due to 

the larger semi-infinite body resistance 𝜓t,s  =  1/4𝑘s𝑅b. The experimental data of individual 

droplet freezing times at higher length scales (𝑅 = 1.1 mm) on substrates with varying thermal 

conductivity was obtained from literature [128]. Note, the results presented are incorrect and 

opposite trends compared to prior experimental results due to the omission of vapor diffusion 

effects in the simulation.  
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Figure 4.8. Thermal resistance network for a droplet freezing on a cold superhydrophobic 

nanostructured surface. 
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Figure 4.9. Individual thermal resistances (𝜓cond, 𝜓gap,and 𝜓drop are as a function of droplet 

radius. An aluminum substrate (thermal conductivity, 𝑘𝑠 = 205 W/mK) with AlO(OH) 

nanostructures (height, ℎ = 100 nm) and a monolayer coating of thickness (coating thickness, 𝛿HC 

= 3 nm and coating thermal conductivity, 𝑘HC = 0.2 W/mK) is considered. 
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CHAPTER 5: DYNAMIC DEFROSTING ON SUPERHYDROPHOBIC AND 

BIPHILIC SURFACES 

5.1 Overview  

Ice formation and accretion present serious concerns for many building energy 

applications. In the heating, ventilation, air-conditioning, and refrigeration sectors, the most 

common approach to remove frost from a surface (defrost) is to reverse the system cycle direction 

and heat the working fluid. However, water retention on the heat exchanger surface during 

defrosting decreases the long term heat transfer performance. Here, we study the defrosting 

behavior of superhydrophobic and biphilic surfaces comprising of spatially distinct 

superhydrophobic (𝜃a → 180°) and hydrophilic (𝜃a = 78°) domains. Using top and side view 

optical imaging, we show that superhydrophobic regions undergo dynamic defrosting, where the 

frozen ice/frost layer undergoes spontaneous motion via the formation of a highly mobile slush. 

We experimentally show that the high mobility of dynamic defrosting enables the use of surface 

forces to ‘pull’ and remove the slush from the surface prior to it completely melting, even in the 

absence of forces such as gravity or shear. To explore the effect of pattern heterogeneity, we 

studied various biphilic patterns inspired from nature such as the banana leaf. We optimized the 

design space with respect to minimizing water retention during defrosting. Our work not only 

provides the fundamental understanding required for the design of heterogeneous defrosting 

coatings, but also elucidates the role of wettability gradients on defrosting dynamics for a plethora 

of energy applications. 
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5.2 Introduction  

Ice accretion and frost formation on solid surfaces is a crucial phenomenon to industrial 

applications, such as heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems 

[9,10,136-141], aircraft [142-149], energy conversion systems [150,151], and transportation 

platforms [152-155]. Ice accretion and frost formation is a multi-billion dollar problem in the 

United States [113]. Specifically, frost formation on heat exchanger surfaces in HVAC&R systems 

reduces heat transfer efficiency and results in significant economic losses [137,156-159], making 

defrosting a required engineering protocol. Broadly, two methods of defrosting exist: passive and 

active [160]. Passive methods use engineered surfaces to delay or reduce frost formation without 

additional power consumption. Active methods require additional power input for defrosting. With 

regards to passive defrosting methods, researchers have been developing hydrophobic [14] and 

superhydrophobic surfaces [15,16,81] in an attempt to delay frosting. The current approach to 

fabricate frost-reducing surfaces focuses on rough hydrophobic surfaces to increase the energy 

barrier for ice nucleation [14-16,18,19,81,90,114,119,161-164], and to further reduce both the 

contact angle hysteresis and the ice adhesion strength of the frost once it inevitably forms [106,165-

169]. More recently, researchers have shown coalescence induced droplet jumping on ultra-low 

adhesion superhydrophobic surfaces to delay condensation frosting [115]. Droplet jumping 

enabled condensing droplets to escape at micrometric length scales (~1 µm) prior to supercooling 

and freezing on the surface [23,99].  

In addition to jumping droplet condensate removal prior to freezing, studies have shown 

superhydrophobic surfaces to facilitate delayed freezing of individual droplets [116,117,170], as 

well as bulk water layers due to the delay in ice nucleation and higher thermal resistance at the 

liquid-solid interface [21,118], respectively. Although frosting delay has been shown with 
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superhydrophobic surfaces, complete elimination of frosting has not been achieved [24]. Given 

enough time, frosting will initiate and spread to cover the entire surface [23-25]. In lieu of this 

fact, anti-frosting surfaces that use sacrificial ice-stipes across the surface to keep the surrounding 

area dry for longer periods of time (> 3 hours) have been developed [171]. However, simple and 

passive defrosting strategies that guarantee no ice/frost formation on supercooled surfaces are 

lacking.  

Due to the limitations in indefinitely preventing frost formation, industrial applications 

generally rely on active defrosting techniques. Three active defrosting methods exist: system 

defrosting, electro-hydrodynamics (EHD) [172], and oscillation/ultrasonic vibration [173,174]. 

Since EHD and vibration defrosting are not economically feasible, system defrosting is preferred. 

One system defrosting method utilizes reversal of the cycle direction to heat the working fluid and 

melt the frost [26,27]. However, (i) up to 27% of the total defrost heat input is used simply to heat 

up the evaporator [28], and (ii) up to 75% of the defrosting energy goes into heating the 

refrigeration system and not the ice [29]. Moreover, during frost, defrost, and refrost cycles, water 

retention is observed on the heat exchangers [30], which acts to decreases the overall heat transfer 

coefficient of a heat exchanger by 20% [10,31] and act as a seed layer for frost nucleation during 

the next frost cycle.  

To eliminate water retention, we study dynamic defrosting on superhydrophobic (SHP) 

and biphilic surfaces. Our biphilic surfaces consist of spatially distinct ultra-low surface energy 

SHP (𝜃a → 180°) and high surface energy hydrophilic (𝜃a = 78°) domains. Upon defrosting on a 

SHP region, the frost melts into a highly mobile slush. It was observed that the high mobility of 

slush enables the use of surface forces at hydrophilic regions to ‘pull’ the slush from SHP regions 
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prior to complete melting, even in the absence of external forces such as gravity or gas shear. We 

optimize the design of our biphilic surfaces for quicker cleaning of the surface during dynamic 

defrosting and for reduced water retention on SHP regions. Biphilic surface design optimization 

was performed for surfaces with horizontal (no gravity) and vertical (with gravity) configurations. 

Branched biphilic designs based on the banana leaf [175] were studied and optimized to achieve 

surface cleaning during dynamic defrosting. Furthermore, we studied the performance of biphilic 

surfaces during evaporation-mediated cleaning and drying of surfaces. Our work not only provides 

the fundamental design guidelines for the rational fabrication of biphilic surfaces for dynamic 

defrosting, it elucidates the role of wettability gradients on defrosting dynamics. Our results 

suggest avenues to further decrease defrost time by identifying critical bottlenecks in the process, 

and provide design methodologies to create effective defrost-enhancing surfaces for industrial 

applications. 

5.3 Substrate Fabrication and Characterization  

To fabricate the biphilic surface, first a microstructured superhydrophobic (SHP) CuO 

surface was fabricated, and later particular areas of the surface were laser ablated to make it 

hydrophilic. To fabricate the SHP CuO surface, commercially available polished multipurpose Cu 

tabs (30 mm x 30 mm x 0.8 mm) were used (99.90% purity). Each Cu tab was thoroughly rinsed 

with acetone, ethanol, isopropyl alcohol (IPA) and deionized (DI) water. The tabs were then dipped 

into a 5.0 M hydrochloric acid solution for 2 min to remove the native oxide film on the surface, 

then rinsed with DI water and dried with clean N2 gas. Nanostructured CuO films were formed by 

immersing the cleaned tabs into a hot (96 ± 3°C) alkaline solution composed of NaClO2, NaOH, 

Na3PO4·12H2O, and DI water (3.75:5:10:100 wt. %) [129]. During the oxidation process, a thin 

(≈300 nm) Cu2O layer was formed that then re-oxidized to form sharp, knife-like CuO oxide 
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structures with heights of ℎ ≈ 1 μm. Heptadecafluorodecyltrimethoxy-silane (HTMS, CAS # 

83048-65-1) was deposited using vapor phase deposition to functionalize the surface [102]. 

Nanostructured CuO substrates were placed in a container with a vial of 1 mL HTMS toluene 

solution (5% v/v). A lid was placed on top to seal the container, followed by heating in an 

atmospheric pressure oven (Thermo Scientific BF51732C-1) at 90°C for 3 hours. This process 

allowed for the development of a highly conformal coating as the HTMS molecules evaporated 

from solution and covalently bonded with the free radicals on the surface. Contact angle 

measurements (MCA-3, Kyowa Interface Science Ltd.) of ≈300 nL droplets on an HTMS coated 

SHP CuO surface showed advancing/receding contact angles of 𝜃a
app/𝜃r

app
 ≈ 170.5 ± 7.2° / 162.7 

± 3.4°. 

Particular areas on the SHP surface were laser ablated to make the surface biphilic [175]. 

A CO2 laser source (Epilog Fusion M40) was used at 75 W power to ablate the HTMS coating and 

CuO microstructure from pre-defined areas. Scanning Electron Microscopy (SEM) images of the 

laser ablated region (Figure 1d) revealed that laser ablation melted the CuO nanostructures, making 

the surface flat and hydrophilic (HL) as compared to the structured superhydrophobic counterpart 

which was not irradiated (SHP, Figure 1d). Contact angle measurements on a homogeneous laser 

ablated SHP CuO surface showed advancing/receding contact angles of 𝜃a
app/𝜃r

app
 ≈ 78 ± 8.1° / 

0°. The laser ablation technique was used to fabricate various biphilic patterns as shown in 

Figure 1(c). Specifically, binary patterns with varying thickness of hydrophilic, 𝐿HL and SHP, 𝐿SHP 

regions as well as nature-inspired biphilic designs such as the banana leaf [175] were fabricated to 

study their dynamic defrosting performance.  

To fabricate the sample base consisting of a nanostructured superhydrophilic (SHL) 

AlO(OH) sample, a commercially available Al tab (50 mm x 50 mm x 0.8 mm, 99.90% purity) 
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was first ultrasonically treated in acetone, followed by ethanol for 5 min each. After cleaning, the 

Al sample was dried in a clean N2 stream. The Al sample was then immersed in hot deionized 

water (90°C) for one hour, followed by removal and rinsing with room temperature deionized 

water. This enabled boehmite (Al2O3·xH2O) formation on the Al surface with sharp, knife-like 

structures having length scales approaching ≈300 nm [102]. Contact angle measurements on the 

AlO(OH) surface showed perfect wetting with apparent advancing contact angles of 𝜃a
app → 0°. 

 

5.4 Experiment Methods  

Dynamic defrosting was studied using a custom built set-up that enabled top-view and side-

view optical access. The set-up is shown diagrammatically in Figure 1(a). A photograph of the set-

up is shown in Figure 1(b). Samples were placed on the cold plate (Lytron Direct, CP10G14 Tubed 

Cold Plate) with a thin (≈ 100 µm) film of thermal paste (Apiezon N Grease) underneath in order 

to provide good thermal communication between the sample, base, and cold plate. The 

superhydrophilic AlO(OH) base was sandwiched between the sample and the cold plate. The 

superhydrophilic base acted as a sink for the defrost product (slush) which melted on the biphilic 

or SHP samples. The temperature of the superhydrophilic base, 𝑇s was monitored using a surface 

K-type thermocouple (Omega SA1-K-120). The surface of the cold plate was oriented horizontally 

and vertically for different sets of experiments to study the effect of gravitational orientation. The 

cold plate was cooled using a chiller (Polyscience N0772046) circulating a mixture of water and 

ethylene glycol (50/50) at a flow rate of 11.8 ± 0.2 LPM. The sample temperature set point was 

𝑇s = - 15 ± 0.9°C in the laboratory environment having air temperature, 𝑇air = 22 ± 1.2°C, and 

relative humidity (RH), 𝛷 = 50 ± 3% (Roscid Technologies, RO120). The cooling cycle was 
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operated until a frost of thickness ℎ = 5 mm was formed on the biphilic sample. The frost thickness 

was monitored actively using side view optical imaging with an accuracy of ± 0.5 mm, and 

typically took 77.9 ± 5.2 minutes to grow to ℎ = 5 mm.  

To vary the surface heating rate, two types of defrost methods were used for experiments: 

(i) heating the cold plate by setting the chiller at a higher temperature, or (ii) heating the sample 

by Joule heating a strip heater (McMaster-Carr Ultra-Thin Flexible Heat Sheet, 10 W/in2. Density, 

2" Long x 2" Wide, 120V AC) sandwiched between the base and the cold plate. For the cases 

where the sample was heated by changing the chiller set point, when ℎ = 5 mm, the chiller was set 

to 𝑇chiller = 20 ± 0.1°C. For the cases where the sample was heated using a strip heater, when ℎ = 5 

mm, a DC power source (N5752A, Keysight Technologies) was used to energize the strip heater 

with 120 V, providing approximately 42.7 ± 1.2 W of heating. During Joule heating, the chiller 

was turned off, resulting in zero coolant flow. During the defrost cycle, 𝑇s increased gradually. 

When 𝑇s crossed the melting point of water, 𝑇melt = 0°C, frost began to melt forming a highly 

mobile slush (water/frost mixture). The hydrophilic regions on the biphilic sample dynamically 

pulled the mobile slush, thereby cleaning the surface. The cleaning time, 𝑡cleaning was 

characterized as the time from when the surface reached 𝑇s = 0°C, to the time when complete 

cleaning of the SHP regions was achieved (zero surface coverage of slush) by dynamic movement 

of the slush on biphilic patterns. Defrosting movies were recorded from the top view and side view 

at 24 fps with a DSLR camera (Canon Rebel T3i, Canon EFS 18-55mm lens). To ensure 

repeatability, all experiments were conducted three separate times for every surface design and 

geometric orientation. 
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5.5 Results and Discussion  

5.5.1 Horizontal Orientation  

Figure 5.2 shows time-lapse images of dynamic defrosting on SHP and biphilic surfaces. 

The time 𝑡 = 0 represents the instant when melting of frost was first observed visually. Figure 

5.2(a) shows top-view time-lapse images of defrosting on a horizontal SHP surface. After 

defrosting, water retention was observed in the form of melt water that formed a puddle. To 

passively clean the surface during defrosting, dynamic defrosting was tested with biphilic surfaces 

that enable gradients in surface forces to remove the mobile slush. The hydrophilic regions on the 

biphilic surface pull the slush from the SHP regions, thereby cleaning the surface. Figure 5.2(b) 

shows top-view time-lapse images of defrosting on a horizontally oriented biphilic surface with 

𝐿SHP = 1 mm and 𝐿HL = 1 mm. The hydrophilic regions dynamically pulled the slush during 

defrosting, eventually cleaning the surface. Figure 5.2(c) shows top-view time-lapse images of 

defrosting on a horizontally oriented biphilic surface with 𝐿SHP = 6 mm and 𝐿HL = 1 mm. Although 

the hydrophilic regions dynamically pulled the slush, complete cleaning of the surface was not 

achieved. Formation of satellite water droplets on the SHP areas was observed during the dynamic 

movement of slush. To clean the SHP areas of retained satellite water droplets, surface heating 

driven droplet evaporation had to be employed. To avoid the increased energy consumption due 

to heating, biphilic designs with no water retention were investigated.  

To further optimize the cleaning performance with dynamic defrosting, branched biphilic 

surfaces inspired by the banana leaf were investigated [175]. Figure 5.2(d) shows top-view time-

lapse images of defrosting on a horizontally oriented branched biphilic surface. On the branched 

surface, hydrophilic triangular branches originated from a hydrophilic trunk. During dynamic 

defrosting, the slush on the SHP regions initially moved in the direction of the hydrophilic branches 



101 

 

and later traveled transversely in the direction of the HL trunk. Therefore, during defrosting on 

branched surfaces, the slush traveled sequentially in two directions before it reaches the sink. It is 

important to note, the shape of the branches is an important feature which governs the passive 

capillary pumping of the slush. The branched regions are triangular in nature, diverging from the 

inner regions in close proximity to the SHP areas towards the trunk. The divergent channel creates 

a Laplace pressure gradient in the liquid that generates a capillary pumping force, which enables 

the passive flow of water and slush towards the trunk upon contact with the melt.   

Figure 5.2(e) and 5.2(f) show top view and side view time-lapse images of defrosting on a 

vertically-oriented binary biphilic (aligned hydrophilic strips, 𝐿SHP = 6 mm and 𝐿HL = 2 mm) 

surface, respectively. During dynamic defrosting on the vertically oriented biphilic surface (Figure 

5.2f), “de-blooming” was observed, characterized by slush lift-off from the SHP area coupled with 

coalescence with water droplets residing in the hydrophilic area. During defrosting on the vertical 

SHP surface, frost melted at the frost-surface interface with the remaining sheet of slush falling 

downwards from the surface due to gravitational force. Figure 5.2(f) shows that when frost melts 

at the frost-solid interface on a biphilic surface, although the frosts detaches from the SHP region 

due to gravity, it maintains attachment to the hydrophilic areas. At later times, the remaining sheet 

of frost-water mixture coalesced with water in the hydrophilic regions in a manner that is opposite 

of blooming, termed here as de-blooming. De-blooming was observed for vertically aligned 

biphilic surfaces, irrespective of the heating rate of the sample or orientation of the hydrophilic 

stripes.  

To examine the physics of slush removal due to wettability gradients, we characterized the 

total cleaning time to remove the slush from the SHP surface. The total cleaning time, 𝑡cleaning, 
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was characterized as the time from when the surface thermocouple reached a value of 𝑇s = 𝑇melt 

= 0°C, to the time that complete cleaning of the SHP regions by dynamic movement of the slush 

was attained. Figure 5.3(a) shows the cleaning time, 𝑡cleaning, as a function of 𝐿SHP on horizontally 

oriented (no gravity) biphilic surfaces (Figure 5.1c). Defrosting was achieved by changing the set 

point temperature on the chiller to 20 ± 1°C. To represent the biphilic designs that failed to achieve 

surface cleaning with remnants of satellite water droplets on the SHP areas, a value of 𝑡cleaning = 

350 s was assigned. The hydrophilic surface with 𝐿SHP = 0 (bare copper, 𝜃a
app/𝜃r

app
 ≈ 40.4 ± 

3.8° / 0°) exhibited water retention upon defrosting. The SHP surface (𝐿SHP = 30 mm) displayed 

water retention in the form of a melt water puddle (Figure 5.2a). Interestingly, biphilic surfaces 

with 𝐿SHP ≤ 4 mm exhibited complete cleaning during dynamic defrosting with no water residue 

remaining on the SHP areas. However, biphilic surfaces with 𝐿SHP > 4 mm showed satellite water 

droplet retention on SHP areas after defrosting (Figure 5.2c).  

Formation of satellite water droplets upon dynamic defrosting on superhydrophobic 

surfaces has been observed in the literature [176]. When a frost wave propagates on a 

superhydrophobic surface that exhibits coalescence induced droplet jumping, 1/3 of the condensate 

droplets freeze whereas 2/3 of the droplets evaporate [176]. The surface coverage of frozen 

droplets is thus minimum, and the frost dendrites that grow perpendicular to the surface on the 

frozen droplets are porous [176]. When a frost sheet of thickness < 2 mm defrosts, since the frost 

is porous and not well interconnected, it forms multiple droplets upon dewetting [176]. It was 

observed that during defrosting on biphilic surfaces, frost melts at the frost-solid interface. The 

melt water formed beneath the frost is continuously drained by the hydrophilic regions decreasing 

the thickness of the frost sheet. For biphilic surfaces with larger superhydrophobic regions (𝐿SHP 

> 4 mm) when a thin porous frost sheet melts, the neighboring hydrophilic regions pull the melt 
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water from the superhydrophobic region, however, the frost chunk that is not interconnected breaks 

up and form isolated satellite water droplets on the superhydrophobic regions. Moreover, 

increasing the superhydrophobic area on a biphilic surface allows for more water to build up in 

between hydrophilic region, increasing the possibility of formation of satellite droplets. For 

biphilic surfaces with thinner superhydrophobic regions (𝐿SHP ≤ 4 mm), draining of the melt water 

keep occurring until all the frost is melted with little chance of water building up on the 

superhydrophobic region. Plateau-Rayleigh instability might lead to melt water break up to form 

satellite water droplets for biphilic surfaces with larger superhydrophobic area [57]. However, with 

very low liquid flow velocities (< 1 mm/s) where inertial and viscous forces are comparable, and 

surfaces forces are dominant, Plateau-Rayleigh instability seems unlikely to occur.  

To further optimize the design of the biphilic surfaces, we studied branched bipihilic 

designs. The branched sample 1 (Branched 1) design was used from the banana leaf biphilic 

surface design [175]. Upon conducting dynamic defrosting on Branched 1, we observed that water 

droplets lodged between adjacent hydrophilic branches (inset of Figure 5.3a). 

The divergent channels generate a capillary force, 𝐹cx that is directly proportional to the 

angle subtended by the triangular branches, 𝛼 (𝐹cx ∝ 𝛼) [177,178]. To assist melt-water removal 

on the branched samples, the angle subtended by the triangular hydrophilic branches, 𝛼 was 

increased (from 𝛼 = 1.8° for Branched 1 to 3.6° for Branched 2) to enhance the differential surface 

force. Furthermore, the distance between two adjacent hydrophilic branches was increased to avoid 

lodging of water droplets between them. As a result, Branched 2 showed complete cleaning of the 

surface during dynamic defrosting (inset of Figure 5.3a). However, it was observed that the 

cleaning time, 𝑡cleaning of Branched 2 was higher than binary biphilic samples with 𝐿SHP ≤ 4 mm. 

The longer cleaning time could be explained by the analysis of slush motion. During dynamic 
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defrosting on branched biphilic surfaces, the frost-water slush has to first move in the direction of 

the hydrophilic branches and subsequently travel in the transverse direction to the main hydrophilic 

trunk. As the slush has to travel sequentially in two orthogonal directions prior to reaching the 

sink, 𝑡cleaning on the branched biphilic surfaces is higher compared to the binary biphilic surfaces 

where the melt water travels in one principal direction during defrosting.   

To understand the versatility of biphilic surfaces during different defrosting methods, we 

studied the effect of the surface heating rate. Two types of defrost methods were used to vary the 

surface heating rate: (i) heating the cold plate by setting the chiller at a higher temperature, and 

(ii) heating of the base by Joule heating. Figure 3(b) shows the temperature of the base (𝑇s) as a 

function of time for the two heating methods. The Joule heating method had a 3-4X higher surface 

heating rate than the chiller re-heat method. Figure 5.3(c) shows the cleaning time, 𝑡cleaning as a 

function of 𝐿SHP on horizontally oriented binary biphilic surfaces using the different heating rates. 

As expected, irrespective of the heating rate, water retention was observed for 𝐿SHP > 4 mm during 

defrosting whereas biphilic surfaces with 𝐿SHP ≤ 4 mm showed surface cleaning. The SHP and 

hydrophilic surfaces showed water retention. Thus, it can be concluded that for horizontally 

oriented surfaces, to achieve complete cleaning while dynamic defrosting, biphilic designs with 

1 mm ≤ 𝐿SHP ≤ 4 mm, and 1 mm ≤ 𝐿HL ≤ 2 mm should be used.  

During defrosting on the biphilic surfaces, water is retained at the hydrophilic regions. In 

certain settings, a dry surface is desired upon defrosting in order to eliminate the chance of re-

frosting on existing nucleation sites. To avoid the chance of melt water retention, defrosting is 

done by surface heating until all moisture is evaporated completely. To understand the effect of 

various biphilic surface designs on evaporation-mediated surface cleaning, we studied the 

evaporation dynamics of retained water on biphilic surfaces post-defrosting. During the defrosting 
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cycle, the surface was heated to 𝑇s = 49.4 ± 4.2°C using strip heaters. Figure 5.3(d) shows the time 

taken for complete evaporation of water during defrosting, 𝑡evaporation on horizontally oriented 

biphilic surfaces as a function of 𝐿SHP. The evaporation time, 𝑡evaporation was characterized as the 

time from 𝑇s = 𝑇melt = 0°C to the complete cleaning of the surface of water. We observed that for 

𝐿SHP ≤ 4 mm, 𝑡evaporation for 𝐿HL = 1 mm is 50% lower than 𝑡evaporation for 𝐿HL = 2 mm. For 

𝐿SHP ≤ 4 mm, satellite water droplets were not formed, and the melt water was present only at the 

hydrophilic sites of the biphilic surface. Assuming an equivalent receding contact angle, the 

amount of meltwater present in the hydrophilic areas with 𝐿HL = 2 mm was greater than for samples 

having 𝐿HL = 1 mm. Therefore, the thermal resistance to evaporation of the melt water for samples 

having 𝐿HL = 2 mm was greater than samples having 𝐿HL = 1 mm. The higher thermal resistance 

led to slower evaporation and longer evaporation times (𝑡evaporation). However, for samples 

having 𝐿SHP > 4 mm, satellite water droplets remained on the SHP areas that needed to be 

evaporated. The size of the retained satellite water droplets was random, irrespective of 𝐿SHP or 

𝐿HL. Thus, for 𝐿SHP > 4 mm, no relationship existed between 𝑡evaporation and 𝐿HL as the dominant 

limitation to full cleaning was the evaporation of superhydrophobic-state satellite droplets. Indeed, 

this result agrees with prior studies which show increasing sessile droplet evaporation time with 

increasing apparent contact angle in ambient (moist air) conditions [179-181].  

5.5.2 Vertical Orientation  

In order to study the defrosting behavior in the presence of gravity, the cold plate was 

oriented vertically and experiments repeated. Figure 5.4(a) shows the cleaning time, 𝑡cleaning for 

vertically oriented biphilic surfaces as a function of 𝐿SHP. The hydrophilic stripes were parallel to 

the gravitational vector as shown in the inset of Figure 5.4(a). To represent the biphilic designs 

that failed to achieve surface cleaning and exhibited satellite water droplets or water retention, 
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𝑡cleaning = 140 s was arbitrarily assigned to them. Experiments revealed that the hydrophilic 

surface (𝐿SHP = 0) showed water retention. The SHP surface had the lowest 𝑡cleaning and best 

defrosting performance. During defrosting on the vertically oriented SHP surface, frost melted at 

the frost-surface interface, and the remaining slush fell instantaneously due to gravity, thereby 

reducing 𝑡cleaning. Although, 𝑡cleaning for the SHP surface was the lowest, 𝑡cleaning for biphilic 

surfaces was within 30% of that observed on the SHP surface. De-blooming (Fig. 2e, f) acted to 

accelerate defrosting for biphilic surfaces.  

To study the effect of the orientation of the hydrophilic stripes with respect to gravity, we 

re-oriented samples on the vertical setup by rotating them by 90°. Figure 5.4(b) shows the cleaning 

time, 𝑡cleaning for vertically oriented biphilic surfaces as a function of 𝐿SHP. Here, the hydrophilic 

stripes were perpendicular to the gravitational vector (Figure 5.4b, inset). We observed that the 

order of magnitude of 𝑡cleaning was similar (~ 50 s for defrosting using chiller, and ~ 20 s for 

defrosting using electric strip heaters) irrespective of the orientation of hydrophilic stripes with 

respect to gravity. Re-orientation of the hydrophilic stripes did not affect the dynamic defrosting 

performance of the biphilic surfaces. Although the SHP surface showed the best dynamic 

defrosting performance in the vertical configuration, biphilic surfaces showed similar results 

which were much better than unaltered surfaces.  

Analogous to experiments conducted in the horizontal configuration, dynamic defrosting 

on the vertically oriented biphilic surfaces resulted in water retention on the hydrophilic regions. 

To understand the effect of biphilic surface design on evaporation led surface cleaning, we studied 

evaporation-mediated defrosting of the complete surface (complete water removal). During the 

defrosting cycle, the surface was heated to 𝑇s = 49.4 ± 4.2°C using strip heaters. Figure  5.5 shows 

the time taken for complete evaporation of water, 𝑡evaporation from the vertically oriented biphilic 
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surface as a function of 𝐿SHP. The evaporation time, 𝑡evaporation was characterized as the time 

from 𝑇s = 𝑇melt = 0°C to the complete drying of the surface. In accordance with the horizontal 

orientation results, 𝑡evaporation for 𝐿HL = 1 mm was 25% lower than 𝐿HL = 2 mm due to the added 

thermal resistance of the retained water in the hydrophilic regions. Unlike the horizontal 

configuration, no satellite water droplet retention was observed when the samples were oriented 

vertically. The ultra-low adhesion on the SHP surface resulted in rapid gravitational shedding of 

the slush. Hence, 𝑡evaporation for 𝐿HL = 1 mm is lower than 𝐿HL = 2 mm for all 𝐿SHP as opposed 

to the horizontally oriented biphilic surfaces where the trend deviates for 𝐿SHP > 4 mm as shown 

in Figure 3(d).  

The dynamic defrosting experiments performed in this study for horizontally and vertically 

oriented SHP and biphilic surfaces with varying surface heating rates demonstrate that biphilic 

surfaces have the capability to clean the surface effectively during defrosting. Hydrophilic regions 

pull the melting slush from the SHP region during defrosting. Biphilic surfaces designed to avoid 

satellite droplet formation were more effective in surface cleaning. Our experiments suggest that 

the satellite droplet formation can be avoided by designing biphilic surfaces with 𝐿SHP < 4 mm. 

For applications wherein a completely dry surface is desired, biphilic surfaces with thinner 

hydrophilic areas are preferred (𝐿HL = 1 mm).  

In the future, the study of a complete cycle or multiple cycles: frosting, defrosting and 

refrosting, on biphilic surfaces will be critical to fully understand the overall cycle performance. 

Indeed, the experiments conducted here were done with a superhydrophilic base which acted as an 

ideal sink for slush and water. Real life implementation of biphilic surfaces for dynamic defrosting 

must consider this fact and implement water sinking features. Furthermore, the study of the 

defrosting performance for varying thicknesses is required to understand the limits of biphilic 
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surface designs. Dynamic defrosting on biphilic surfaces at oblique inclinations should be studied 

to mimic the defrosting in real life applications, where the orientation of the defrosting surface 

may not be ideally horizontal or vertical.  

Future work on frost-defrost cycling on real life heat exchangers coated with biphilic 

surfaces is needed in order to fully understand the feasibility of our approach at larger length scales. 

Furthermore, although quantified here for condensation frosting conditions, where the frost formed 

is porous and has a low density, future work is needed to better understand biphilic defrosting on 

surfaces which undergo ablimation frosting, common in refrigeration and heat pumping 

applications. In addition, the results reported here are for ideal single coupon samples with infinite 

room for frost growth and slush/melt-water dynamics. In real systems, the spacing between 

frosting surfaces rarely exceeds 2 mm, resulting in significant potential for interaction between 

surfaces. Indeed, although the defrosting performance on homogeneous superhydrophobic 

surfaces was shown to be best when compared to its unaltered and biphilic counterparts, the same 

cannot be concluded for cases where significant surface-surface interactions may act to block the 

motion of slush down the surface (e.g. louvered heat exchanger fins) which act to increase 

defrosting time when compared to unaltered heat exchangers [182]. It would be interesting to 

investigate the defrosting techniques outlined here in more realistic conditions with finite spatial 

constraints for dynamic defrosting as well as in gas shear conditions, both of which are prevalent 

in the HVAC&R industry. Furthermore, a detailed study on the economic impact in terms of the 

payback period for the input costs associated with biphilic surface fabrication should be done. 

Lastly, the durability of the biphilic surfaces under repeated frosting-defrosting cycles must be 

tested to meet the requirements of the HVAC industry.  
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5.6 Conclusions  

We rigorously studied the defrosting behavior on hydrophilic, superhydrophobic, and 

biphilic (hydrophilic/superhydrophobic) surfaces. Using tip and side view optical imaging, we 

showed that superhydrophobic regions undergo dynamic defrosting, where the frost layer initiates 

spontaneous motion via the formation of highly mobile slush. Due to the difference in the surface 

forces on biphilic surfaces, the hydrophilic regions acted to ‘pull’ the mobile slush prior to 

complete frost melting, even in the absence of forces such as gravity or vapor shear. Horizontally 

oriented biphilic surfaces having SHP regions of thickness 𝐿SHP ≤ 4 mm showed enhanced 

defrosting behavior when compared to unaltered or fully SHP surfaces. For biphilic surfaces with 

𝐿SHP > 4 mm, satellite water droplets remained on the SHP areas. The formation of satellite 

droplets was observed irrespective of the surface heating rate. To understand the effect of pattern 

heterogeneity, we studied banana-leaf-inspired branched biphilic patterns optimized to minimize 

cleaning time. We observed that binary biphilic designs were simpler to manufacture when 

compared to branched designs, and offered better surface cleaning performance during defrosting. 

Defrosting utilizing full evaporation showed that designs with hydrophilic regions of thickness, 

𝐿HL = 1 mm performed better than 𝐿HL = 2 mm for 𝐿SHP ≤ 4 mm, due to lower thermal resistance 

of retained water. During dynamic defrosting on vertically oriented surfaces (with gravity), SHP 

samples exhibited the best cleaning performance, with biphilic surfaces within 30% of the 

minimum cleaning time. Our work not only provides the fundamental understanding required for 

the design of heterogeneous defrosting coatings, but also elucidates the role of wettability gradients 

on defrosting dynamics. 
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5.7 Figures 

 

Figure 5.1. (a) Schematic of the experimental setup. The temperature of the biphilic surface was 

maintained at 𝑇s = -15 ± 0.9°C with ambient temperature and relative humidity of 𝑇air = 20 ± 

0.9°C and 𝜙 = 50 ± 3%, respectively. (b) Picture of the actual experimental setup. (c) Schematic 

and top view optical photograph of copper-based biphilic surfaces. The black regions represent 

CuO superhydrophobic (SHP) areas (𝜃a
app

 = 170.5 ± 7.2°) and gray region represents laser ablated 

hydrophilic (HL) areas (𝜃a = 78 ± 8.1°). To explore the effect of pattern heterogeneity, various 

binary and branched biphilic patterns were fabricated. (d) Scanning electron micrograph of the 

biphilic surface shown in (c) at the SHP-hydrophilic interface (black-gray interface). The region 

on the left is the SHP area while the region on the right is the HL area. The laser ablates the CuO 

structures and HTMS coating leading to the formation of a hydrophilic domain. 
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Figure 5.2. Time-lapse images of dynamic defrosting on a horizontally-oriented (a) SHP surface 

wherein water retention after defrosting was observed, (b) binary biphilic surface (𝐿SHP = 1 mm 

and 𝐿HL = 1 mm) wherein complete surface cleaning was observed, (c) binary biphilic surface 

(𝐿SHP = 6 mm and 𝐿HL = 1 mm) wherein water retention in the form of satellite water droplets was 

observed, and (d) branched biphilic surface wherein complete surface cleaning was observed. (e) 

Top view and (f) side view time-lapse images of defrosting on a vertically-oriented binary biphilic 

(𝐿SHP = 6 mm and 𝐿HL = 2 mm) surface. The results of (f) show the de-blooming effect, wherein 

frost lifts off the SHP area and is pulled by the coalescing water droplets in the hydrophilic area. 

The scale bar for all images is 9 mm.  
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Figure 5.3. (a) Cleaning time, 𝑡cleaning as a function of 𝐿SHP on a horizontally oriented binary 

biphilic surface. Defrosting was achieved by changing the set point temperature on the chiller to 

20°C. The data points corresponding to 𝑡cleaning = 350 s denote cases where water retention was 

observed and the surface was not completely cleaned. For 𝐿SHP > 4 mm, satellite water droplets 

were left in the SHP areas after defrosting, leading to water retention on the surface. Inset: Optical 

top-view images of the branched biphilic samples 1 and 2 after dynamic defrosting 

(b) Temperature of the biphilic surface as a function of time for the two different heating methods. 

In order to achieve quicker heating, electric strip heaters underneath the biphilic surface were used. 

(c) Cleaning time, 𝑡cleaning as a function of 𝐿SHP on a horizontally oriented binary biphilic surface 

for different heating rates. Irrespective of the heating rate, water retention was observed for 

𝐿SHP > 4 mm during defrosting. Inset: Schematic of a binary biphilic sample. (d) Time taken for 

complete evaporation of water from the horizontally oriented biphilic surface during defrosting, 

𝑡evaporation as a function of 𝐿SHP. The biphilic surface was heated using electric strip heaters. 

Boxes represent the standard deviation in the experiment data, whereas the whiskers represent the 

minimum and maximum of the measured values.  
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Figure 5.4. Cleaning time, 𝑡cleaning as a function of 𝐿SHP on a vertically oriented binary biphilic 

surface for different heating rates with hydrophilic stripes (a) parallel and (b) perpendicular to the 

gravitational vector. Inset: schematics of the orientation of the biphilic surface with respect to the 

gravitational vector. The SHP surface (𝐿SHP = 30 mm) showed the fastest cleaning for vertically 

oriented surfaces. The order of magnitude of 𝑡cleaning was similar irrespective of the orientation of 

hydrophilic stripes with respect to gravity. The boxes represent the standard deviation in the 

experiment data, whereas whiskers represent the minimum and maximum of the measured values. 
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Figure 5.5. Time taken for complete evaporation of water from the vertically oriented biphilic 

surface during defrosting, 𝑡evaporation as a function of 𝐿SHP. The biphilic surface was heated using 

electric strip heaters. The boxes represent the standard deviation in the experiment data, whereas 

whiskers represent the minimum and maximum of the measured values.   
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CHAPTER 6: PULSE INTERFACIAL DEFROSTING 

6.1 Overview 

Frost formation and ice accretion is a major problem for a plethora of industries. Common 

defrosting and deicing techniques utilize energy-intensive mechanical actuation to dislodge or 

heating methods to melt ice/frost from the surface. Here, we study an ultra-efficient method to 

defrost a surface covered with ice/frost by focusing energy at the substrate-ice interface. To remove 

ice/frost efficiently, it is beneficial only to melt the interfacial layer adhering the ice/frost to the 

solid surface by using a localized ‘pulse’ of heat, allowing gravity or gas shear in conjunction with 

the ultra-thin lubricating melt water layer to remove the ice/frost. To probe the physics of the pulse 

defrosting process, we developed a transient numerical heat transfer model of interfacial pulse-

defrosting. Experimental validation of the model was achieved via pulse (≈100 ms) Joule heating 

of indium tin oxide (ITO) coated on glass samples. Utilizing transient heat fluxes ranging from 10 

to 100 W/cm2, spontaneous melting of the interfacial ice/frost layer was achieved leading to rapid 

ice removal. We employed the model to outline design guidelines for interfacial pulse-defrosting 

applications, showing that pulse defrosting uses 0.56% energy and 0.0032% defrosting time, when 

compared to conventional defrosting methods. This study not only provides a fundamental 

knowledge base for the design of ultra-efficient defrosting and deicing surfaces but also elucidates 

the role of transient energy and hydrodynamic effects during interfacial defrosting. 

6.2 Introduction  

Understanding the mechanisms of frost formation is essential to a variety of industrial 

applications including refrigeration [9,10,82], aviation [11], wind energy generation [12], and 

power transmission [13]. Ice accretion and frost formation are multi-billion dollar problems in the 
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United States alone [113]. To delay frost formation, researchers have proposed the use of suitably 

designed superhydrophobic surfaces [15-17,81,118] to delay the heterogeneous nucleation of ice 

[18,19,90] as well as condensation frosting [20,170]. Although relying on surface wettability to 

delay frosting is passive, given enough time, frost formation during condensation frosting ensues 

due to the propagation of an inter-droplet frost wave from neighboring edge defects [23,183]. In 

building energy applications, methods to remove frost from the surfaces of thermal components 

use electric heaters or hot-gas from the compressor to melt frost, which results in a further increase 

in energy consumption, and downtime. The most common approach reverses the cycle direction 

and inefficiently heats the working fluid to melt the frost. Of the energy input for defrost [28], and 

up to 75% goes into heating the refrigeration system instead of the frost/ice [29]. 

A need exists for defrosting approaches that are more energy efficient and quicker. Past 

studies have investigated electro-thermal Joule heating for de-icing applications [32-35], 

demonstrating a high energy requirement to achieve thermal de-icing. In order to mitigate high 

energy consumption, pulse electro-thermal defrosting has been proposed in the past [36,37], 

wherein melting of the interfacial layer adhering the ice to the solid surface allows gravity in 

conjunction with the ultra-thin lubricating meltwater layer to remove the ice/frost. However, 

accurate transient phase change heat transfer models of the pulse-defrosting process are currently 

not available. Furthermore, the coupling of transient lubricating film physics with the transient 

thermally driven phase change processes has not been explored. 

In this Chapter, we developed a one-dimensional transient numerical heat transfer model 

to study interfacial pulse-defrosting physics. We employed the enthalpy method to solve the phase-

change problem. For a given defrosting problem and available power input the duration of the 
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pulse required for spontaneous interfacial defrosting of ice at an arbitrary temperature is predicted 

using appropriate time-dependent boundary conditions. To validate the model experimentally, we 

performed pulse-defrosting experiments by Joule heating of indium tin oxide (ITO) coated on glass 

samples in the vertical orientation with gravity parallel to the sample face. To study the effects of 

initial substrate conditions conducive to building energy applications as well as aerospace icing, 

pulse defrosting was studied using substrate temperatures of 𝑇s = -15.1 ± 1.2℃ and -71 ± 4.6℃, 

respectively. With heat fluxes ranging from 10 to 100 W/cm2, spontaneous melting of the 

interfacial ice layer was achieved leading to rapid ice removal from the surface due to interfacial 

lubrication and gravitational shedding. The defrost time using thin film ITO heaters in conjunction 

with energy pulses was significantly lower (0.0032%) than for conventional steady heating 

methods. The experimental results showed excellent agreement with our developed model. Due to 

the high durability of ITO, the heater thickness was limited to less than 10 µm, limiting added 

parasitic thermal resistance for heat exchanger applications. We employ our model to outline 

design guidelines for interfacial pulse-defrosting applications. This study not only provides a 

fundamental knowledge base for the design of efficient defrosting surfaces, but also elucidates the 

key and coupled roles of energy and hydrodynamic effects at the interface during pulse defrosting. 

6.3 Numerical Model  

In the solution of the phase change problem, the enthalpy form of the energy equation (Eq. 

6.1) [184], is equivalent to the usual temperature form in which the heat equation is written 

separately for the liquid and solid regions and coupled by an energy balance at the solid-frost/ice 

interface. Hence, the governing equations for solid and liquid phases need not be separated, and 

can be represented as:  
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𝜌
𝜕ℎ

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
+ 𝑞̇ , (6.1) 

where 𝜌, ℎ, and 𝑘 are the are the density, enthalpy, and thermal conductivity, respectively, 𝑡 is 

time, 𝑇 is local temperature, and 𝑥 is the distance in the domain as defined in Figure 6.1(a). To 

solve Eq. (6.1), we use the finite difference approximation in space and time using the implicit 

scheme [185]: 

𝜌
ℎ𝑖
𝑛+1 − ℎ𝑖

𝑛

Δ𝑡
= 𝑘

𝑇𝑖−1
𝑛+1 − 2𝑇𝑖

𝑛+1 + 𝑇𝑖+1
𝑛+1

Δ𝑥2
+ 𝑞̇ , (6.2) 

where the subscript 𝑖 denotes spatial discretization and the superscript 𝑛 denotes time 

discretization. At every time step, we assumed a guess temperature, 𝑇∗(𝑥, 𝑡𝑛+1), equal to the 

temperature solution obtained from the previous time step, 𝑇∗(𝑥, 𝑡𝑛+1) = 𝑇(𝑥, 𝑡𝑛). We used the 

Taylor series approximation of enthalpy as a function of temperature at the current time step 

(𝑡𝑛+1):  

ℎ(𝑇𝑖
𝑛+1) = ℎ∗ + (

𝜕ℎ

𝜕𝑇
)
∗

(𝑇𝑖
𝑛+1 − 𝑇𝑖

∗), (6.3) 

where ‘∗’ indicates a parameter evaluated based on the best guess for temperature. Substituting 

Eq. (6.3) into Eq. (6.2) results in a discrete equation for the interior cells:  

[(
𝜕ℎ

𝜕𝑇
)
∗

+
2𝑘Δ𝑡

𝜌Δ𝑥2
] 𝑇𝑖

𝑛+1 =
𝑘Δ𝑡

𝜌Δ𝑥2
(𝑇𝑖−1
𝑛+1 + 𝑇𝑖+1

𝑛+1) + ℎ𝑖
𝑛 + (

𝜕ℎ

𝜕𝑇
)
∗

𝑇𝑖
∗ − ℎ∗ +

Δ𝑡𝑞̇

𝜌
. (6.4) 
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Equation (6.4) was solved iteratively to obtain the temperature at the current time step, 

𝑇𝑖
𝑛+1. At every time step, the guess temperature was updated until the maximum relative error 

reached a value less than 10-4. Figure 6.1(a) represents the model domain for which Eq. (6.4) was 

solved having an ice/frost thickness 𝑙i on a substrate with thickness 𝑙s. The pulse heating element 

of thickness 𝑙he is sandwiched between the substrate and ice/frost. Note, for every spatial cell 𝑖, 

the physical properties (𝜌, 𝑘, ℎ) are determined based on the material in that cell: substrate for 0 < 

𝑥 ≤ 𝑙s, pulse heater for 𝑙s < 𝑥 ≤ 𝑙s + 𝑙he, and water/ice/frost for 𝑙s + 𝑙he < 𝑥 ≤ 𝑙s + 𝑙he + 𝑙i. For the 

water/ice/frost domain, the cell was assumed to be ice/frost if the guess temperature of the cell was 

𝑇𝑖
∗ < 𝑇m, and liquid water if 𝑇𝑖

∗ > 𝑇m, where 𝑇m = 0°C. Initially, at time 𝑡 = 0, the substrate and 

ice block are maintained at temperature, 𝑇s. When the heating element is supplied by a pulse of 

Joule heating, a volumetric heat generation, 𝑞̇ is released into the heating element (𝑙s < 𝑥 ≤ 𝑙s + 

𝑙he) for a finite time defined by the pulse width 𝜏. The heat released into the heating element is 

allowed to diffuse into the substrate and ice/frost domain and results in the melting of a transient 

and finite water layer at the interface having thickness 𝑙w. The creation of a thin lubricating water 

layer at the ice/substrate interface initiates sliding of the ice/frost. The transient velocity of the 

sliding ice/frost layer is governed by a force balance between the gravitational body force 𝐹g on 

the ice/frost bulk, and the transient and velocity-mediated shear force 𝐹shear in the lubrication layer 

retarding the motion. For simplicity, we assumed that the lubricating layer develop into a stable 

Couette flow. In order to determine the critical thickness of the melt water layer, 𝑙w,c needed for 

complete removal of the ice/frost block, we equated 𝐹g = 𝐹shear, and obtained:  

𝑙w,c =
𝜇w𝑣

𝑙i𝜌i𝑔
 , (6.5) 
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where 𝜇w is the temperature-dependent melt-water dynamic viscosity, 𝑣 is the sliding velocity, 

and 𝑔 is the gravitational constant. The initial condition applied to the ice slab was, 𝑇(𝑥, 𝑡 = 0) =

𝑇s. The boundary conditions applied to the domain were:  

−𝑘
𝜕𝑇

𝜕𝑥
|
x=0

= 0 , (6.6) 

−𝑘
𝜕𝑇

𝜕𝑥
|
x=𝑙s+𝑙he+𝑙i

= ℎ𝑖[𝑇(𝑙i, 𝑡) − 𝑇a] . (6.7) 

Equation (6.6) represents the symmetric boundary condition applied at 𝑥 = 0. For time 0 < 

𝑡 ≤ 𝑡pulse, the heating element is Joule heated with volumetric heat generation of 𝑞̇. For time, 𝑡 > 

𝑡pulse, Joule heating is arrested resulting in zero energy input (𝑞̇ = 0) in the heating element (𝑙s < 

𝑥 ≤ 𝑙s + 𝑙he). During 𝑡 > 𝑡pulse, the water melt layer refreezes due to cooling by the adjacent ice 

block at 𝑥 > 𝑙w. To solve Eq. (6.4), the derivative of the enthalpy with respect to temperature was 

required (Fig. 6.1b), which is ill-defined at the melting temperature 𝑇m = 0ºC. In order to resolve 

the numerical discrepancy, the approximate enthalpy of water was calculated for a mushy zone 

with solidus temperature, 𝑇sol = -0.5ºC and liquidus, 𝑇liq = 0.5ºC:  

ℎ =

{
 
 

 
 

𝐶p,i𝑇                               𝑇 ≤ 𝑇sol

(
𝑇liq − 𝑇

𝑇liq − 𝑇sol
)𝐶p,i𝑇 + (

𝑇 − 𝑇sol
𝑇liq − 𝑇sol

)𝐶p,w𝑇 + (
𝑇 − 𝑇sol
𝑇liq − 𝑇sol

)𝐿   𝑇sol < 𝑇 < 𝑇liq

𝐿 + 𝐶p,w𝑇                             𝑇 ≥ 𝑇liq

. (6.8) 

At the interface of two dissimilar materials (𝑥 = 𝑙s, 𝑥 = 𝑙s + 𝑙he, and at the ice/frost-water 

interface), the thermal conductivity was calculated by taking the harmonic mean of the two 
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dissimilar materials, 𝑘interface = 2𝑘1𝑘2/(𝑘1 + 𝑘2). Equation (6.4) was solved to obtain the 

transient temperature profile 𝑇(𝑥, 𝑡) subject to boundary conditions given by Eq. (6.6) and (6.7), 

and enthalpy defined by Eq. (6.8). A glass substrate, 𝑙s = 1 mm with an ITO coating, 𝑙he = 50 µm 

which acts as the pulse-heating element was used in the simulation domain. Glass was chosen as 

the substrate material in order to obtain results that can be verified with experiments, and ITO was 

chosen as the heating element due to its prevalent use in steady heating applications for current 

airframe systems. The input parameters used to compute model results covering different regimes 

of frosting and defrosting were: 𝑇s = -15°C (building energy applications), and -70°C (aerospace 

applications); 𝑡pulse = 0.1, 0.2, 0.3, 0.4, and 0.5 s; heat flux at the ITO coating, 𝑞"in = 𝑞̇𝑙he = 93, 

62, 31, and 15.5 W/cm2. The thickness of the ice block, 𝑙i is taken to be 5 mm, which results in 

𝑙w,c = 28.3 µm. 

6.4 Model Results and Discussions  

Figure 6.2(a) shows the temperature profile inside the melting ice block as a function of 

location for ascending time intervals for 𝑇s = -70°C, Δ𝑡pulse = 0.5 s, 𝑞"in = 62 W/cm2. For 𝑡 ≤ 0.5 

s, the temperature of the glass substrate and ice/frost layer rises due to the rapid heat generation at 

the ITO coating at x = 1 mm. After 𝑡 > Δ𝑡pulse, the heat generation at the ITO coating ceases, while 

the temperature of the melted ice layer decreases, which results in refreezing with concurrent 

heating of the adjacent ice block on the right side due to heat diffusion. For effective pulse-

defrosting, the critical thickness of the melt water layer, 𝑙w,c must remain liquid long enough to 

enable the adjacent ice block to slide off completely from the surface due to gravity. In order to 

determine the duration of pulse-heating required for spontaneous de-frosting, we plotted the 

temperature at the melt layer, 𝑇ml at 𝑥 = 𝑙w,c (Fig. 6.1a) as a function of time for various pulse 
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durations and 𝑇s = -70°C, and 𝑞"in = 62 W/cm2 (Fig. 6.2b). For spontaneous defrosting, 𝑇ml should 

be greater than the liquidus temperature, 𝑇ml > 𝑇liq. Figure 6.2(b) reveals that for a pulse duration 

of Δ𝑡pulse ≥ 0.3 s, successful pulse defrosting is achieved for samples that are 50 cm tall. For 

shorter pulse durations, the chance of re-freezing and sticking to the substrate prior to ice/frost 

removal becomes a greater concern.  

In order to understand the effect of pulse width or energy input on defrosting dynamics, we 

varied the input heat flux in our simulations for a substrate temperature, 𝑇s = - 70°C. Figure 6.2(c) 

shows 𝑇ml as a function of time for various input heat fluxes for input conditions 𝑇s = -70°C, and 

∆𝑡pulse = 0.2 s. The results show that for input heat fluxes, 𝑞"in < 62 W/cm2, the ice at 𝑥 = 𝑙w,c 

does not melt (𝑇ml < 𝑇sol) for the pulse duration of 0.2 s. With further increase in the input heat 

flux to 𝑞"in = 93 W/cm2, melting of the ice at 𝑥 = 𝑙w,c commenced. For low substrate temperatures 

(𝑇s < -50℃) and pulse durations (< 0.2 s), high input heat fluxes 𝑞"in > 90 W/cm2 are required to 

achieve spontaneous pulse-defrosting. To better understand the role of substrate temperature 

during pulse defrosting, we studied the variation of 𝑇ml during pulse-heating for different substrate 

temperatures. Figure 6.2(d) shows 𝑇ml as a function of time for various initial temperatures, which 

is equal to the substrate temperature (𝑇in =  𝑇s). The input conditions were 𝑞"in = 31 W/cm2, and 

∆𝑡pulse = 0.5 s. As expected, the results show that for 𝑇s = - 15ºC, lower input heat fluxes (15 

W/cm2 < 𝑞"in < 30 W/cm2) enable spontaneous defrosting as compared to higher input fluxes 

required (𝑞"in > 50 W/cm2) for 𝑇s = - 70ºC. 
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6.5 Experimental Validation  

6.5.1 Experiment Methods  

To validate the model experimentally for the low temperature (𝑇s < -50℃) and high 

temperature regimes (-20℃ < 𝑇s < -10℃), we constructed two independent experimental setups. 

Figure 6.3(a) shows a schematic of the experimental setup used for the low temperature regime 

wherein liquid Nitrogen (LN2) was used as the cooling fluid. A solid L-shaped copper block was 

submerged into an LN2 bath. A glass substrate (Sigma Aldrich, 25 mm × 25 mm × 1.1 mm, 7.5 Ω 

electrical resistance) coated with a thin layer (≈ 550 nm) of ITO was used as the test substrate. In 

order to establish a firm electrical contact, two busbars were attached to the substrate using silver 

epoxy resin (Epo-Tek H20E) as shown on the right and left hand sides of the inset image of Fig. 

6.3(c). The substrate was attached to the copper block using a thin layer (≈50 µm) of thermal paste 

(Apiezon N Grease). At steady state, the temperature of the substrate, measured using a 

thermocouple (Omega, K type, ± 0.5℃ accuracy), was 𝑇s = -71 ± 4.6ºC.  

Figure 6.3(b) shows a schematic of the high temperature (𝑇s = -15ºC) experimental setup. 

A vertical cold plate (CP10, Lytron) connected to a chiller (PolyScience, Model: N0772046) set 

at -15ºC was used to cool the substrate attached with a thin layer (≈ 50 µm) of thermal paste 

(Apiezon N Grease). At steady state, the temperature of the substrate was 𝑇s = -15.1 ± 1.2ºC. The 

ITO sample was connected in series with a transistor. Pulses of varying lengths were supplied to 

the transistor gate driver with a waveform generator (Agilent 33522A) in order to control the 

amount of time that current would conduct through the ITO sample. The amplitude of the current 

pulse was controlled by setting the current limit of the dc power supply (Kenwood PD56-10D). 

Since the circuit has inductance from the long connection cables, the pulse waveform contained 

ringing and was non-ideal. A gate resistance of 20 mΩ was employed so that the ringing would be 
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minimized and the energy from the pulse could be estimated using the ideal waveform 

approximation. During the de-icing/frosting process, optical videos were recorded in the normal 

direction of the substrate as shown in Fig. 6.3(a) and (b) using a DSLR camera (Canon Rebel T3i). 

Ice blocks having 5 mm thicknesses were frozen to the substrate by surface melting/refreezing 

[37]. For a detailed schematic of the pulse-defrosting circuit, as well as experimental setup photos, 

please see Section SX of the Supporting Information.  

6.5.2 Experiment Results and Discussions  

Figure 6.3(c) shows the pulse duration required for complete de-icing of the substrate for 

two different substrate temperatures, 𝑇s = -70ºC and -15ºC as a function of input heat flux at the 

ITO coating. The numerical model and experiments are in good agreement, denoting that the heat-

pulse required for spontaneous deicing (𝑡pulse < 0.5 s) of the substrate is 𝑞"in > 15 W/cm2 for 𝑇s = 

-15ºC, and 𝑞"in > 50 W/cm2 for 𝑇s = -70ºC. The area above the curves denote the regimes where 

spontaneous deicing can be achieved for a given pulse duration, 𝑡pulse and input heat flux, 𝑞"in. 

The discrepancy between the experiment and the numerical model at low input heat fluxes, 

𝑞"in < 20 W/cm2 for 𝑇s = -15℃ can be attributed to the 1D nature of the numerical model. For low 

input heat fluxes, the time required for thermal penetration of Joule heating from the busbars on 

the edges of the ITO sample (inset Figure 6.3(c)) towards its interior might be significant, which 

is not taken into account in the current study. To minimize the energy consumption, 𝐸in during 

spontaneous pulse deicing, the function 𝐸in = 𝑞"in ∙ 𝑡pulse is optimized. It was observed that 𝑡pulse 

is the significant parameter and decreasing 𝑡𝑝𝑢𝑙𝑠𝑒 leads to a decrease in 𝐸in. Although, it is evident 

in Figure 6.3(c) that decreasing 𝑡𝑝𝑢𝑙𝑠𝑒 leads to an increase in 𝑞"in, the overall energy consumption 

decreases. Thus, it is inferred that for minimizing the energy consumption during instantaneous 
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pulse defrosting, the least pulse duration is preferred. In the future, a 3 Dimensional model needs 

to be developed to account for the non-symmetries related to Joule heating by supplying electric 

current via busbars to the ITO coating. Furthermore, modeling of time varying melt layer thickness 

and time varying shear stress at the ice-solid interface needs to be developed. Modeling of the 

dynamics of the ice block as it slides down the surface with a varying shear will be needed to 

accurately design high fidelity pulse defrosting systems. The decoupled nature of the 

hydrodynamic forces and ice kinematics from the energy equation facilitate the integration of this 

shear stress dynamic with our numerical model and propose a good avenue for future work. 

Moreover, in the future, modeling of frost on the substrate should be done to accurately simulate 

the amount of energy required to defrost instantaneously, as compared to ice modeled in this study. 

Indeed, although the work considered here presents a starting point for engineers to develop pulse 

defrosting systems for arbitrarily long vertical surfaces, more work is needed in the future on 

optimization and economics of pulse defrosting in order to minimize energy input.  

6.6 Conclusions  

In this chapter, we discussed the most efficient way of supplying the defrosting energy to 

a surface covered with ice, at the solid-ice interface. To remove the ice efficiently, it is beneficial 

only to melt the interfacial layer adhering the ice to the solid surface, and allow gravity in 

conjunction with the ultra-thin lubricating meltwater layer to remove the ice. To better understand 

the physics, we developed a heat transfer model for transient interfacial pulse-defrosting. During 

pulse heating for spontaneous defrosting, the temperature at the critical thickness of melt layer, 

𝑇ml should be greater than the liquidus temperature, 𝑇ml > 𝑇liq so that the adjacent ice block slides 

off the substrate due to gravity. We observed that for very low substrate temperatures (𝑇𝑠 < -50℃), 

in order to achieve spontaneous pulse-defrosting, high input heat fluxes at the ice-solid interface 
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(𝑞"𝑖𝑛 > 50 W/cm2) are required. Whereas, for substrates with higher temperatures (𝑇𝑠 > -15℃), 

lower input heat fluxes (10 W/cm2 < 𝑞"𝑖𝑛 < 30 W/cm2) enable spontaneous defrosting. We did 

experimental validation of the model by Joule heating of indium tin oxide (ITO) coated on glass 

samples to melt the interfacial ice layer. With heat fluxes ranging from 10 to 100 W/cm2, 

spontaneous melting of the interfacial ice layer was achieved leading to rapid ice removal. The 

defrost time (≤ 0.5 s) for thin film ITO heaters was significantly lower than for the conventional 

heating methods. The experimental results showed excellent agreement with the numerical model. 

It was observed that for minimum energy consumption, lower pulse time is preferred. Design 

guidelines for interfacial pulse-defrosting applications were outlined based on the model 

developed in this work. This study not only provides a fundamental knowledge base for the design 

of efficient defrosting surfaces, but also highlights the benefits of interfacial heating on defrosting 

dynamics. 
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6.7 Figures 

 

 

Figure 6.1. (a) Schematic drawing of the model. (b) Water enthalpy, ℎ as a function of temperature 

used in the numerical model as compared to the actual enthalpy.  
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Figure 6.2. (a) Temperature profile with ascending time intervals for 𝑇𝑠 = -70°C, 𝑡𝑝𝑢𝑙𝑠𝑒 = 0.5 s, 

𝑞"𝑖𝑛 = 62 W/cm2. The time interval between two adjacent profiles is 0.1 s. (b) 𝑇𝑚𝑙 as a function of 

time for various pulse-heating durations with 𝑇𝑠 = -70°C, 𝑞"𝑖𝑛 = 62 W/cm2. (c) 𝑇𝑚𝑙 as a function 

of time for various input heat fluxes with 𝑇𝑠 = -70°C, 𝑡𝑝𝑢𝑙𝑠𝑒 = 0.2 s. (d) 𝑇𝑚𝑙 as a function of time 

for various initial conditions with 𝑞"𝑖𝑛 = 31 W/cm2, 𝑡𝑝𝑢𝑙𝑠𝑒 = 0.5 s. For all the cases, 𝑙𝑖 = 5 mm. 
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Figure 6.3. Schematic of the experimental setup for (a) 𝑇𝑠 = -70℃, and (b) 𝑇𝑠 = -15℃. (c) Duration 

of pulse required for complete de-icing as a function of input heat flux for 𝑇𝑠 = -70℃ and -15℃ 

(Inset: Vertically oriented ITO coated glass substrate with ice block frozen on it).  
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CHAPTER 7: CONCLUSIONS 

7.1 Condensation on Biphilic Surfaces 

We coupled the individual droplet growth and condensation heat transfer with droplet 

jumping dynamics to optimize the design of a biphilic surface for maximum heat flux. We show 

that a biphilic surface has higher droplet growth rate during condensation than a superhydrophobic 

surface. In contrast to the previously used strategy of highly wetting droplet growth spots to 

achieve ordered droplet growth, we explored an alternative strategy of promoting a large droplet 

growth rate contrast. By promoting significantly faster droplet growth rates on the defined growth 

spots, a locally hydrophobic (large receding angle) surface wetting state can be used. This leads to 

a significant reduction in droplet adhesion to extend the range of pattern geometries and droplet 

Oh where droplet jumping is possible. Furthermore, the biphilic surface exhibits 10X higher heat 

transfer coefficient in comparison to a SHP surface. Biphilic surfaces with lower maximum droplet 

sizes (higher Oh) and lower contact angles during coalescence are preferred for higher heat flux. 

To determine the droplet jumping dynamics in this regime, we performed VOF numerical 

simulations of coalescence induced droplet jumping. The numerical simulations show that for 

hydrophilic spots, higher pitch ratios (high contact angle) and lower Oh are required to observe 

coalescence induced droplet jumping, whereas hydrophobic spots exhibit jumping at higher Oh 

and lower contact angle, enhancing the heat flux. The characteristic velocity of jumping droplets 

on a biphilic surface with hydrophobic spots was higher than a surface with no adhesion. The 

results of the numerical model are superimposed on the condensation heat transfer model to 

optimize the design of a biphilic surface for maximum condensation heat flux. This study not only 

provides a more accurate framework for predicting the jumping-droplet condensation heat transfer 
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on biphilic surfaces, it offers insights into biphilic surface design methodologies to achieve 

maximum condensation heat flux.  

7.2 Bulk Water Freezing Dynamics 

We have demonstrated that the use of nanoscale superhydrophobic surfaces does not result 

in the anomalous heat-transfer mediated delay of water freezing. Instead, classical heat transfer 

effects govern the freezing process irrespective of wettability, indicating that the required liquid 

length scales must approach the length scale of the coating in order to observe an appreciable 

effect. Transient freezing FEM simulations revealed that the overall heat transfer coefficient at the 

column base for freezing on nanoscale superhydrophobic surfaces approaches 2 kW/m2K, 

irrespective of wettability or column length scale, and reduces monotonically with increased 

coating thickness. The results shown here suggest that in order to delay the frost wave front 

propagation inside the liquid at larger length scales, one must use thicker superhydrophobic 

coatings on the surface, where the coating resistance is comparable to the liquid conduction 

resistance. For applications involving air side heat transfer, this translates to a 5% overall heat 

transfer decrease for a 45% delay in total freezing time.  

7.3 Individual Droplet Freezing and Frost Wave Propagation 

We have demonstrated that latent heat released into the substrate during freezing of 

individual droplets does not affect frost wave propagation or frost halo formation. Furthermore, 

we showed that the ice bridge velocities are independent of the substrate thermal conductivity. Ice 

bridge formation during frost wave propagation is governed solely by the vapor pressure gradient 

caused by the difference in saturation pressure of the water vapor surrounding the liquid droplet 

and the frozen droplet. We showed that at length scales tested here, the individual droplet freezing 
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time depends on the substrate wettability, since it governs the droplet thermal resistance (which is 

the most dominant thermal resistance), increasing with higher intrinsic and apparent advancing 

contact angles. By characterizing the individual droplet freezing (~1ms) and frost wave 

propagation (~1s) timescales, we show that delay in individual droplet freezing (due to wettability 

effects) does not affect the overall frosting speed due to the disparate timescales of the two 

processes. This study not only elucidates the role of latent heat released into the substrate during 

frost wave propagation but also explains the effect of substrate thermal conductivity and 

wettability during ice bridge formation and individual droplet freezing. 

7.4 Dynamic Defrosting on Superhydrophobic and Biphilic Surfaces 

We rigorously studied the defrosting behavior on hydrophilic, superhydrophobic, and 

biphilic (hydrophilic/superhydrophobic) surfaces. Using tip and side view optical imaging, we 

showed that superhydrophobic regions undergo dynamic defrosting, where the frost layer initiates 

spontaneous motion via the formation of highly mobile slush. Due to the difference in the surface 

forces on biphilic surfaces, the hydrophilic regions acted to ‘pull’ the mobile slush prior to 

complete frost melting, even in the absence of forces such as gravity or vapor shear. Horizontally 

oriented biphilic surfaces having SHP regions of thickness 𝐿SHP ≤ 4 mm showed enhanced 

defrosting behavior when compared to unaltered or fully SHP surfaces. For biphilic surfaces with 

𝐿SHP > 4 mm, satellite water droplets remained on the SHP areas due to the Plateau-Rayleigh 

instability. The limit of the Plateau-Rayleigh instability at 𝐿SHP = 4 mm was observed irrespective 

of the surface heating rate. To understand the effect of pattern heterogeneity, we studied banana-

leaf-inspired branched biphilic patterns optimized to minimize cleaning time. We observed that 

binary biphilic designs were simpler to manufacture when compared to branched designs, and 

offered better surface cleaning performance during defrosting. Defrosting utilizing full evaporation 
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showed that designs with hydrophilic regions of thickness, 𝐿HL = 1 mm performed better than 𝐿HL 

= 2 mm for 𝐿SHP ≤ 4 mm, due to lower thermal resistance of retained water. During dynamic 

defrosting on vertically oriented surfaces (with gravity), SHP samples exhibited the best cleaning 

performance, with biphilic surfaces within 30% of the minimum cleaning time. Our work not only 

provides the fundamental understanding required for the design of heterogeneous defrosting 

coatings, but also elucidates the role of wettability gradients on defrosting dynamics. 

7.5 Pulse Interfacial Defrosting  

We discussed the most efficient way of supplying the defrosting energy to a surface 

covered with ice, at the solid-ice interface. To remove the ice efficiently, it is beneficial only to 

melt the interfacial layer adhering the ice to the solid surface, and allow gravity in conjunction 

with the ultra-thin lubricating meltwater layer to remove the ice. To better understand the physics, 

we developed a heat transfer model for transient interfacial pulse-defrosting. During pulse heating 

for spontaneous defrosting, the temperature at the critical thickness of melt layer, 𝑇ml should be 

greater than the liquidus temperature, 𝑇ml > 𝑇liq so that the adjacent ice block slides off the 

substrate due to gravity. We observed that for very low substrate temperatures (𝑇𝑠 < -50℃), in 

order to achieve spontaneous pulse-defrosting, high input heat fluxes at the ice-solid interface (𝑞"𝑖𝑛 

> 50 W/cm2) are required. Whereas, for substrates with higher temperatures (𝑇𝑠 > -15℃), lower 

input heat fluxes (10 W/cm2 < 𝑞"𝑖𝑛 < 30 W/cm2) enable spontaneous defrosting. We did 

experimental validation of the model by Joule heating of indium tin oxide (ITO) coated on glass 

samples to melt the interfacial ice layer. With heat fluxes ranging from 10 to 100 W/cm2, 

spontaneous melting of the interfacial ice layer was achieved leading to rapid ice removal. The 

defrost time (≤ 0.5 s) for thin film ITO heaters was significantly lower than for the conventional 

heating methods. The experimental results showed excellent agreement with the numerical model. 
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It was observed that for minimum energy consumption, lower pulse time is preferred. Design 

guidelines for interfacial pulse-defrosting applications were outlined based on the model 

developed in this work. This study not only provides a fundamental knowledge base for the design 

of efficient defrosting surfaces, but also highlights the benefits of interfacial heating on defrosting 

dynamics. 
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