
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Theses and Dissertations 

12-2019 

Design and Optimization of a High Power Density Silicon Carbide Design and Optimization of a High Power Density Silicon Carbide 

Traction Inverter Traction Inverter 

Tyler Adamson 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Electrical and Electronics Commons, Electronic Devices and Semiconductor Manufacturing 

Commons, and the Power and Energy Commons 

Citation Citation 
Adamson, T. (2019). Design and Optimization of a High Power Density Silicon Carbide Traction Inverter. 
Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3557 

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please 
contact ccmiddle@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.uark.edu%2Fetd%2F3557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/272?utm_source=scholarworks.uark.edu%2Fetd%2F3557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/272?utm_source=scholarworks.uark.edu%2Fetd%2F3557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.uark.edu%2Fetd%2F3557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3557?utm_source=scholarworks.uark.edu%2Fetd%2F3557&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu


Design and Optimization of a High Power Density Silicon Carbide Traction Inverter 

 

 

 

A thesis submitted in partial fulfillment  

of the requirements for the degree of  

Master of Science in Electrical Engineering 

 

 

 

by 

 

 

 

Tyler Adamson 

University of Arkansas 

Bachelor of Science in Electrical Engineering, 2017 

 

 

 

December 2019 

University of Arkansas 

 

 

 

This thesis is approved for recommendation to the Graduate Council 

 

 

 

 

___________________________ 

Yue, Zhao, Ph.D. 

Thesis Director 

 

 

 

 

___________________________    ___________________________  

Juan Carlos Balda, Ph.D.     Mr. Robert Saunders, M.S. 

Committee Member      Committee Member 



ABSTRACT 

This project was initiated with the goal of demonstrating a 3-phase silicon carbide based 

150-kW 25 kW/L DC-AC power conversion unit capable of operation with coolant temperatures 

up to 90°C. The project goals were met and exceeded by first analyzing the established inverter 

topologies to find which one would yield the highest power density while still meeting electrical 

performance needs in the 150-kW range. Following topology selection, the smallest silicon carbide 

power module that met the electrical requirements of the system was found through experimental 

testing and simulation. After a power module selection was finalized, a DC link capacitor bank 

was designed by calculating the electrical requirements of the system and choosing the capacitor 

available that added the least volume to the overall system while still meeting the system’s 

electrical requirements. PCB-based bussing was designed around the power modules and 

capacitors in SolidWorks and then electrically optimized through simulations in Ansys.  A custom 

DSP-based controller built around the Texas Instruments 28379D control card was designed and 

created for the control basis of the power converter.  The complete system was constructed and 

tested at low power with great success, demonstrating the ability to operate at the desired full 

power of 150 kW, while achieving an overall volume of 1.35 L. 
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CHAPTER 1 

INTRODUCTION  

1.1 Motivations for Research   

The use of electric vehicles in the United States can be traced back to the 19th century, 

when William Morrison built the first functional electric powered “vehicle”. Although it was 

essentially an electric powered wagon with a top speed of 14 miles per hour, the next best method 

of personal transport was by horseback.  Not surprisingly, Morrison created an interest that would 

last well into the 21st century.   

Around 1890, when Morrison first introduced his electrified wagon, other modes of 

powered personal transport had already been demonstrated, namely steam engine-based vehicles 

and combustion engine-based vehicles. Initially, electric vehicles addressed the shortcomings of 

both other types transport.  Electric vehicles of the time were not held back by the excessive time 

required to start a steam engine, which could be up to 45 minutes. More than that, electric vehicles 

did not require the user to carry a supply of water. In comparison to combustion engine-based 

vehicles of the time, the electric vehicle was much more user friendly because gasoline engine cars 

required manual cranking at startup and changing gears required so much physical strength that 

some users were unable to operate them at all. Gasoline engines were also known for being 

extremely noisy.  

Because of these factors, electric vehicles were considered by many people—including 

Thomas Edison—to be the superior mode of transport. Although electric vehicles made up about 

a third of the vehicles on the road in 1900, the introduction of Henry Ford’s Model T in 1908 cut 

the electric vehicle’s success story short.  Not long after the Model T was introduced, Ford began 
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selling the vehicle with an electric starter and to add insult to injury, the cost of an electric vehicle 

was almost three times what a Model T could be obtained for.  

By 1935, electric vehicles had virtually disappeared. This can partly be attributed to the 

lack of electric power delivery to anyone who didn’t live in a city. Couple that with the fact that 

gasoline had become inexpensive to produce and could be easily delivered to almost any anyone 

and one can clearly understand the reason behind electric vehicles’ sharp decline. As combustion 

engine technology continued to improve, electric vehicles didn’t gather much attention again, that 

is until oil prices began to rise and the United States dependence on foreign oil was brought to 

showcase. In 1973, the Arab members of the Organization of Petroleum Exporting Countries 

placed an embargo on the United States, which resulted in enormous waiting times at the fuel 

pump, and a near 400% increase in the price of oil compared to the previous year.  

This prompted Congress to pass the Electric and Hybrid Vehicle Research, Development, 

and Demonstration Act of 1976.  At the same time, companies such as General Motors, American 

Motor Corporation (later acquired by Chrysler), and NASA began building prototype electric cars 

as alternative fuel vehicles. Although these vehicles were operational and did see some use—even 

by the United States Postal Service—they failed to gain market traction. This failure can largely 

be attributed to their performance issues, which included top speeds under 50 mph and a maximum 

range of around 40 miles. Again, interest in electric vehicles died down for a while. 

As a result of a great economy and low fuel prices during the 1990s, people in general were 

not concerned with fuel efficient vehicles. Congress, however, passed the Clean Air Amendment 

and the Energy Policy Act and continued to sponsor research in electric vehicle technology. At the 

same time, several states developed incentives to lower emissions.    
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In the early 2000s, the Toyota Prius gained huge success by becoming the very first mass 

produced hybrid electric vehicle. It was made possible by research supported by the Department 

of Energy. In 2006, just three years after it was founded, Tesla Motors announced that it would be 

releasing to the public an all-electric vehicle capable of 200 miles per charge. Because of its 

success, Tesla was awarded a $465 million loan from the Department of Energy. Naturally, other 

automakers became interested in the electric vehicle market and by the end of 2010, both Chevy 

and Nissan had brought their own electric vehicles to market. As more companies began bringing 

electric vehicles to market, it quickly became apparent that there were not enough places on the 

go to charge these vehicles. As a response to the shortage, in 2009 The Department of Energy 

invested $115 million to add to the nation-wide charging infrastructure that auto companies and 

private business had already started building. Since 2009, the Department of Energy has spent over 

$5 billion to get the United States electric vehicle market on its feet.  

Now, electric vehicles are again gaining popularity. This can be attributed to the wider 

selection of electric vehicles available, increased performance, lower prices, and public opinion.  

Transportation electrification has also found attention in other areas, such as ships, railways, and 

airplanes. This is a direct result of the massive amount of emissions released from the traditional 

conventional combustion engine-based transportation methods. It is well known that by 

electrifying transportation, the net amount of pollutants emitted into the atmosphere would be 

significantly reduced—even if the electricity used is generated from oil. That net savings is 

because consumer transportation accounts for around half of the urban pollution in the U.S. and 

combustion engine are much less efficient at converting the chemical energy in oil to mechanical 

energy for transportation than oil-based generation techniques are at converting the same chemical 

energy into electrical energy. Nonetheless, transportation electrification has not widely adopted 
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because of its performance limitations. Many of these performance limitations—including range, 

cargo space, and cost—can be addressed by increasing the power density (kW/l) and specific 

power (kW/kg) of the power electronic systems used in the transportation system.  

1.2 Electric Motor Drive 

As stated previously, the range, cargo space, and cost of electric vehicles are closely tied 

to the electrified drivetrain, especially the power electronics that power the electric motors which 

provide the propulsion for the vehicle. Most commonly, alternating current (AC) motors are used 

to power electric vehicles because they are more efficient and require less maintenance than direct 

current (DC) motors.   

For any type of electrified transportation system to operate with the user’s desired 

characteristics—which may include a certain speed, torque, acceleration and/or deceleration 

profile—the electric motor(s) providing propulsion must perform accordingly. To operate at the 

desired speed and torque, AC motors require an electric motor drive to supply the correct voltage, 

frequency, and current. The fundamental component of an electric drive is the inverter, which 

converts DC power into AC power. Whenever the drive is used in a vehicular application, it is 

usually referred to as a “traction” application. The following section will discuss the common 

topologies of traction inverters and explain their operation.     

1.3 Traction Inverter 

In general, an inverter is any device that converts electricity from the DC form to AC form.  

This would include devices that do not provide a variable voltage or frequency output, such the 

portable power inverters available today used to provide 60 Hz, 120 V power from a DC battery. 

As previously mentioned, to get the proper mechanical output from an AC motor, electricity with 
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proper characteristics—voltage, frequency, and current—must be supplied to the motor. Providing 

this power is the job of the inverter. A traction inverter’s job is much more complex than a basic 

portable power inverter because it must have the ability to regulate its output voltage, such that the 

motor can track its speed and torque references, which is usually changing in real time.   

Before discussing the topology of the inverter in vehicular applications, it is important to 

realize the role that the inverter fills in the vehicle to give context to the discussion. There are many 

different types of electric and hybrid electric vehicle configurations that share same fundamental 

components, i.e., the battery, electric motor, differential, combustion engine, and inverter. Some 

examples of these vehicle configurations are shown below in Figure 1. From these figures, it is 

shown that the inverter always serves as the link between the battery (a DC source) and the electric 

motor (an AC machine).   

 

Figure 1  Common Electric and Hybrid Electric Vehicle Configurations  

A common traction inverter topology is shown below in Figure 2, which consists of 3 

essential parts, i.e, the DC source, DC-link, and the inverter. The gate driver and controller are not 

part of the energy transfer from DC to AC but are still essential to operation, as they serve to 
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control the power electronics which handle the energy transfer. The DC-link, gate driver, and 

controller are shared with all traction inverter topologies, with the most prevalent topologies for 

vehicular applications being the voltage source inverter, the current source inverter, and soft 

switching inverters. Most commonly, the DC source is a battery bank, but in some cases, it may 

be connected to a type of synchronous or active-front-end AC to DC converter.   

 

Figure 2 Traction Inverter System Overview 

1.4 Traction Inverter Topologies 

1.4.1 Voltage Source Inverter 

The voltage source inverter (VSI), as shown in Figure 3, is the most popular topology for 

electric vehicle applications because electric vehicles use batteries to store energy and batteries 

provide a constant DC voltage. The natural constant DC voltage provided by batteries, which may 

be further stepped up by a boost converter, make the VSI very easy to implement when compared 

to other inverter types such as the current source inverter (CSI). In addition, the output voltage of 

a VSI is independent of the loading condition of the motor. This is noteworthy because for CSI, 

the output voltage is dependent on the load, which further complicates the control of the inverter.  
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In general, the VSI operates at higher efficiency than other topologies and is arguably reliable 

because it has fewer components than the alternatives.  

 

Figure 3  Voltage Source Inverter Topology 

The VSI does have a handful of inherent shortcomings. Its dependence on a constant DC 

voltage power supply usually requires that a large capacitance be connected across its input as 

shown in Figure 3 to overcome the output impedance of the DC source. This capacitance must be 

placed as close to the switches as possible to maximize the power quality, especially for inverters 

built by wide bandgap devices. The capacitors are required to be of very high quality so that they 

have the highest reliability possible—the capacitors are often the sole cause of inverter failure—

and the lowest equivalent resistance and inductance. This is a disadvantage because the DC link 

capacitors available that would fit this bill are often very expensive and large, accounting for 

almost a third of the inverter’s size. In addition, the output voltage of the VSI cannot exceed the 

DC link voltage. This effectively limits the constant power-speed range of the connected motor, 

because in the same given system, if a CSI were to be connected to the DC supply, the inverter 

output voltage would be able to exceed the DC link voltage.   
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Figure 4  Current Source Inverter Topology 

1.4.2 Current Source Inverter 

As presented in Figure 4, the CSI topology is sometimes selected to address the weaknesses 

of the VSI. At first glance, many would notice that the CSI does not utilize DC bus capacitors.  

Instead, its energy storage is through inductance. Even though there are no DC link capacitors 

required, the CSI typically necessitates the use of filter capacitors at its output to filter the inverter’s 

current pulses at its output. The CSI has some inherent benefits, being that it provides cleaner 

voltage with less dv/dt to the motor because of its output filter and that the shoot through short 

circuit possibility does not have to be considered. What may be considered the largest advantage 

of the CSI is its ability to allow operation with the output voltage of the inverter above the DC-

link voltage. Of course, another stage could be implemented with the VSI to boost the DC voltage 

up to the desired level, but the CSI negates that need, possibly allowing for higher power density.  

By allowing for a higher output voltage, the CSI extends the constant power-speed range of the 

connected motor.  

The CSI does have its own list of drawbacks. The CSI has been shown to be difficult to 

reliably control under light loading and slow speed conditions. Also, to date, the CSI has been 
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difficult to implement in many applications because the semiconductor switches used must be able 

to block both forward and reverse voltages. In many cases, there are no switches available that are 

rated to block forward and reverse voltages whose magnitudes are as large as the DC-link voltage.  

This means that diodes must be placed in series with the switches. Besides increasing cost and 

size, the diodes also increase losses, which is generally why the VSI is more efficient than the CSI.  

Furthermore, the CSI should have a converter at its front end to ensure that the DC source behaves 

as similarly to an ideal current source as possible, since the CSI depends on a near-constant current 

source.  It is also worth noting that generally, the inductor on the DC link is large compared to the 

whole inverter system—even larger than the DC link capacitors used in a VSI.   

1.4.3 Soft Switching Topologies 

Some consideration in industry has been paid to soft switching inverter topologies, which 

encompass many circuits that have one thing in common—they utilize zero voltage switching 

(ZVS) and/or zero current switching (ZCS). Theoretically, employing ZVS and ZCS eliminates 

switching losses. This is because power dissipation is given by 𝑝(𝑡) = 𝑖(𝑡) × 𝑣(𝑡), where p is 

power in watts, i is current in amps, and v is the applied voltage.  Switching losses occur when the 

switch switches states from open to closed or from closed to open. While switching, there is a 

voltage difference across the switch while it is simultaneously carrying current, as shown below 

in Figure 5. If either the voltage or the current were decreased to zero first, and then the switch 

changed states, no switching losses would occur, as illustrated in Figure 6. By using ZVS and ZCS, 

the inverter’s efficiency may be increased because a large portion of the inverter’s losses come 

from switching losses.  
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Figure 5  Typical Hard Switching Waveform  

 

Figure 6  An Example Waveform of Soft Switching 

Soft switching topologies have seen limited use in traction applications because of two 

primary reasons, the first being reliability. Soft switching topologies always have a much higher 

number of devices, which means that a failure of a single component within the complete system 

is more probable. The increased number of components also implies that the overall system will 

have a larger size. Secondly, the efficiency of the VSI and CSI typically are not low enough to 

justify the small efficiency gain yielded in exchange for lower reliability, higher cost and device 

count, lower power density, and much more complex control.   

1.4.4 Multilevel Inverters 

Multilevel inverters have seen widespread use in industry because of several attractive 

traits which make them suitable for medium and high-power applications. There are several major 
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multilevel inverter topologies being used today: the neutral point clamped (NPC) inverter, the 

capacitor clamped inverter, and the cascaded H bridge inverter. Since the output voltage (line-to-

line) generated by multilevel inverters usually has over 5 voltage levels—as opposed to the 2-level 

inverter’s 3 voltage levels—multilevel inverters generate outputs with lower dv/dt, which allows 

for significantly lower distortion in the output voltage and lends itself to a more practical high-

power system implementation. The reason for this increased power capability is that every 

switching device used in the real world will have some finite dv/dt limit that cannot be exceeded 

without device failure. If the system designer increases the output voltage levels—which is usually 

required for high power applications—without increasing the number of output voltage levels in 

the inverter, eventually the power level will become limited by the dv/dt that comes with increasing 

the voltage. This problem is solved by using a multilevel inverter. Furthermore, it is common for 

high power applications to require very clean output and input power, both of which multilevel 

inverters naturally satisfy by achieving lower harmonic content due to additional voltage levels.     

1.5 POETS Traction Inverter Goals 

This project was sponsored by the Center of Power Optimization of Thermo Electrical 

Systems (POETS), which is a National Science Foundation (NSF) Engineering Research Center 

that seeks to create optimized integrated thermo-electrical systems that push the achievable power 

densities by electrical systems beyond what is currently available. POETS initiated this project to 

explore what power densities they could achieve by a power converter designed for traction-based 

application by using silicon carbide power modules instead of the traditional silicon-based devices. 

This goal is desirable because silicon carbide-based power modules enable module designers to 

create smaller packages while simultaneously allowing system designers to operate at higher 

switching frequencies, which allows for smaller passive devices.   
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More specifically, major specifications for the designed POETS traction inverter include: 

a power conversion unit using SiC, capable of handling up to 150 kW with a maximum line-to-

line voltage 440 Vrms using a realistic-for-hybrid-electric-vehicles coolant, which may have a 

temperature up to 105 °C. Furthermore, the power density of the inverter system should be greater 

than 25 kW/L.    

Because the top priority of POETS is to reach the highest power density possible, the 2-

level inverter topology was chosen. Although it may not be practical for very high power or high 

voltage applications because of power quality and device rating issues, its output power quality is 

typically considered to be sufficient for the 150 kW motor drive goal of this project. More 

importantly, the 2-level inverter requires the least number of components, which means that the 

overall system can be reduced more easily than the other inverter topologies listed. 
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CHAPTER 2 

2-Level 3-Phase Inverter Theory of Operation 

2.1 Half Bridge Inverter 

2.1.1 Switching States 

Because a 2-level 3-phase inverter can be thought of as 3 half bridge inverters, its operation 

will begin with an overview of a single half bridge inverter.  A single-phase half bridge inverter—

which consists of two active devices, two capacitors, and a voltage source with an accessible 

neutral point—is presented below in Figure 7.   

 

Figure 7 Single Phase Half Bridge Inverter 

In this topology, if switches M1 and M2 are turned on and off at the correct time and in the 

correct sequence, the load will be subjected to an alternating positive and negative voltage level.  

To achieve a functioning inverter, M1 and M2 are always switched complementary to each other, 

ensuring that they can never be on at the same time—activating both switches at the same time 

would directly short the voltage source. When M1 is active, the load is subjected to Vsource/2 and 

when M2 is active, the load is subjected to -Vsource/2. The same half bridge topology with a 
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simplified gate driver model for M1 and M2 is presented below, along with relevant switching 

waveforms. 

 

Figure 8  Single Phase Half Bridge with Gate Drive Model and Component Values 

To demonstrate the circuit behavior as it pertains to the state of M1 and M2, the above half 

bridge inverter circuit was simulated at a switching frequency of 500 Hz with M1 and M2 each 

having a duty cycle of approximately 50% minus a short time interval that was inserted between 

the switching states of both devices, referred to as dead time, that keeps the voltage source from 

being directly shorted. 
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Figure 9  Half Bridge Inverter Switching Waveforms 
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In the above figure, V(g2)-V(s2) refers to the gate-to-source voltage of device M2, and 

similarly, V(g1)-V(r1) refers to the gate-to-source voltage of device M1. When either device’s 

gate-source voltage is high, the device will turn on and it will conduct. As such, it is clear from the 

switching waveforms that when M1’s gate-source voltage is high, M1 is conducting, M2 is off, 

and the load current, I(r1) is positive which follows the positive load voltage that spawns from M1 

being on. Conversely, when M2’s gate-source is high, M2 is conducting, M1 is off, and the load 

current, I(r1) is negative because of the negative load voltage that is applied when M2 is activated.  

Because the load is purely resistive, the current has the exact same shape and phase as the applied 

load voltage.  

2.1.2 Control Method Selection   

There are several well-established high-performance control methods for the active devices 

used in inverters, however, because the goals of this work did not encompass an optimized high-

performance controller, a simpler and easier to deploy control method was desirable. With that in 

mind, along with the ability to test one phase at a time and then easily extend to a three-phase 

system, sinusoidal pulse-width-modulation (SPWM) was chosen as the method of control for the 

MOSFETS within the inverter.    

2.1.3 Sinusoidal Pulse Width Modulation for Half Bridge Inverter 

The following section will explain SPWM as it applies to the half bridge inverter. It can 

easily be extended to a 2-level 3-phase inverter and will be explained in further detail in a 

preceding section.   

SPWM consists of continuously comparing a sinusoidal reference signal, vr with a triangle 

carrier signal, vc, whose frequency is several orders higher than the reference signal.  The output 
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voltage from the inverter will have square edges because there are only two possible output 

voltages from the inverter, ±Vsource/2, however, if the square output voltage is connected to a filter 

or inductive load, the output voltage have a sinusoidal shape at the same frequency as the reference 

signal.  As such, the reference signal’s frequency is set to the user’s desired output voltage 

fundamental frequency.   The reference signal and triangle carrier may be scaled however the user 

desires, but generally for a half bridge inverter the reference and carrier signals span from -1 to 

+1, where -1 represents the minimum output voltage of the inverter, -Vsource/2, and +1 represents 

the maximum output of the inverter, +Vsource/2.  Whenever the reference signal, i.e., the scaled 

desired instantaneous magnitude of the output voltage, is greater than the carrier signal, M1 is 

turned on and the instantaneous output voltage of the inverter becomes Vsource/2.  Conversely, 

whenever the reference signal is less than the carrier signal, M2 is turned on and the instantaneous 

output voltage of the inverter becomes - Vsource/2.  

While the range of the carrier waveform will remain fixed—usually at -1 to +1—the 

reference signal’s range may be changed as necessary.  The relationship between the amplitude of 

the carrier signal and the amplitude of the reference signal is called the modulation index, m, and 

is given as  

𝑚 =
𝑣𝑟

𝑣𝑐
.                                                          (1)                          

If m is regulated 0≤m≤1, the output voltage maximum will be given as 

𝑉𝑜 = 𝑚 ×
𝑉𝑠𝑜𝑢𝑟𝑐𝑒

2
      (2) 

SPWM simulation results are now presented to present a simple implantation of an SPWM half 

bridge inverter. 
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Figure 10  SPWM Half Bridge Inverter Simulation Circuit 

In the above figure for simulating SPWM, the two gate signals, S1 and S2, are generated inside 

the “Sinusoidal PWM” block, which is shown below.  The block labeled “m” multiplies the 

instantaneous value of the sine generator by a factor, the modulation index, which will modify the 

output voltage as described in equation 2. 

 

Figure 11  Sine and Carrier Wave Generation 

In the simulation, the sine generator was used to create the sinusoidal reference signal, with the 

following parameters, spawning a fundamental output frequency of 60 Hz.   
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Figure 12  Sine Generator Parameters 

Similarly, the carrier waveform was generated using the carrier generation block with the 

parameters following parameters, for a switching frequency of 20kHz.  

 

Figure 13  Carrier Waveform Generator Parameters 
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The circuit shown in Figure 10 was simulated with a modulation index of 0.9 to generate the 

relevant waveforms, which are presented below.  To make the waveforms easier to read, the 

frequency the sine, carrier, comparator, and gating signals were reduced by a factor of 10.  The 

output fundamental frequency was not changed, as its frequency of 60Hz is much lower than the 

original switching frequency of 20kHz. 

 

 

Figure 14  SPWM Sine, Carrier, and Comparator Waveform Full Period 
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Figure 15  SPWM Sine, Carrier, and Comparator Waveforms with Half Bridge Gating Signals 

 

Figure 16  SPWM Half Bridge Gating Signals with Output Current 
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Figure 17  SPWM Half Bridge Inverter Reference Waveform vs Output Current and Voltage 

2.2 2-Level 3-Phase Inverter 

2.2.1 Switching States 

Depicted below in Figure 18 is the 2-level 3-phase inverter topology, which consists of a 

voltage source, 6 active devices, and their gate drivers.  Although there are control methods which 

treat the complete inverter as one control system, the SPWM controlled 2-level inverter may be 

thought of as 3 single-phase half bridge inverters—called poles—operating separately, where the 

3 phase voltages are taken between each of poles, just as the load is connected in the figure.  The 

phase-to-neutral voltage is given by the voltage difference between the output an inverter phase 

and the phase neutral point, which is where all three phases are tied together.  Just as with any 

three-phase wye system, the phase-to-phase voltage is given as 1.73 (√3) times the phase-to-

neutral voltage.   
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Figure 18   3-Phase 2-Level Inverter 

As stated previously, there are many control methods for the 2-level inverter, however, all 

control methods must utilize the finite number of switching state possibilities, which are presented 

in Table 1, where the pole formed by M1 and M4 is denoted as SA, the pole formed M2 and M5 is 

SB, the pole formed by M3 and M6 is SC, and the top position of each pole is taken as that pole’s 

state—either 0 or 1.  Just as with the half bridge inverter, the two switches in each pole are activated 

complementary to each other.  Because there are 6 devices that each have 2 possible states, the 

total number of switching states for the topology is given as 23 states.  The values in Table 1 are 

normalized to the source voltage. 
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Table 1  2-Level Inverter Switching States 

Switch 

State 

 
Pole State 

 
Line Voltage 

 
Phase Voltage 

  
SA SB SC 

 
VAB VBC VCA 

 
VaN VbN VcN 

1 
 

0 0 0 
 

0 0 0 
 

0 0 0 

2 
 

0 0 1 
 

- 1/3 - 1/3 2/3 
 

0 -1 1 

3 
 

0 1 0 
 

- 1/3 2/3 - 1/3 
 

-1 1 0 

4 
 

0 1 1 
 

- 2/3 1/3 1/3 
 

-1 0 1 

5 
 

1 0 0 
 

2/3 - 1/3 1/3 
 

-1 0 1 

6 
 

1 0 1 
 

2/3 - 1/3 - 1/3 
 

1 0 -1 

7 
 

1 1 0 
 

1/3 1/3 - 2/3 
 

0 1 -1 

8 
 

1 1 1 
 

0 0 0 
 

0 0 0 

 

To help visualize each pole’s role in generating a three phase output and produce a 

graphical presentation of the information of the data contained in Table 1, the circuit presented in 

Figure 18 was simulated with a source voltage of 800 VDC while the phase-phase and phase-

neutral voltages were measured.  The same gating method used in the half bridge inverter 

simulation of Figure 10 was used for each pole, however, each of the 3 poles’ output were offset 

120° from each other.  The results are presented below.   
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Figure 19  2-Level Inverter Line-Line Voltages 
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Figure 20  2-Level Inverter Phase Voltages 
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2.2.2 Sinusoidal Pulse Width Modulation for 2-Level Inverter 

SPWM for 2-level inverters follows very straightforward from SPWM for half-bridge 

inverters.  The primary difference is that instead of a single sinusoidal reference waveform, there 

are three sinusoidal waveforms that are displaced 120° from each other.  Each waveform is used 

as a reference for a single phase of the inverter.  Conversely, the controller designer may instead 

use a single sinusoidal reference waveform and 3 carrier waveforms that are displaced 120° from 

each other.  

For the controller used in this project, three reference waveforms and a single carrier 

waveform were used.  Just as with the half bridge inverter, the value of the sinusoidal reference 

waveform is continuously compared with the value of the carrier waveform and the result of the 

comparison is used to control the gating for each switch.  For a three-phase inverter, each pole’s 

reference waveform is used to control its respective pole’s switches.   

The RMS value of the phase output voltage at the fundamental output frequency is given 

by  

𝑉𝐿−𝑛 = 𝑚 ×
𝑉𝑑

2√2
= 0.354𝑚 × 𝑉𝑑,    (3) 

where m is the modulation index as described previously and Vd is the DC-link voltage.  The RMS 

value of the line-line output voltage at the fundamental output frequency is given by 

𝑉𝐿−𝐿 = 𝑚 ×
√3𝑉𝑑

2√2
= 0.612𝑚 × 𝑉𝑑.    (4) 

With the 440 VL-L output voltage target and the equation for the output voltage of a two-level 

inverter operating under SPWM, the DC link of the inverter must be no less than 800V—that is if 

the modulation index is kept at below 0.9. 
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To further investigate the operation of a SPWM controlled 2-level inverter, the simulation 

presented in Figures 10 and 11 was extended to 3 phases as shown below.  

 

Figure 21  SPWM 2-Level Inverter Simulation 

The gating signals, S1-S6, are generated inside the “Sinusoidal PWM” block which is expanded 

below. 

 

Figure 22 3-Phase Sine and Carrier Wave Generation 
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Figure 23  VAn and VBn vs VAB 

 

Figure 24  3 Phase Sinusoidal Reference Waveforms with High Side Gating Signals 
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Figure 25  3 Phase Line-Line Voltages 

 

Figure 26  3-Phase Output Current 

The above figures were obtained with a very low switching frequency to make the sinusoidal PWM 

output voltage clear.  To demonstrate an output current waveform obtained from a realistic 
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switching frequency of 15k, the simulation was repeated, and the following waveform was 

generated.  

 

Figure 27  3-Phase Output Current 
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CHAPTER 3 

The Traction Inverter System Design and Optimization 

3.1 Power Module Selection  

3.1.1 Inverter Output Current Requirement 

Given the maximum power target of 150 kW with a 3-phase output voltage of 440VL-L, the 

required rms output current at unity power factor is 180 amps, given by  

𝑃3∅ = √3 × 𝑉𝐿−𝐿 × 𝐼𝐿.                        (5) 

 

Considering that the inverter is designed for traction applications, the power factor of an induction 

motor must be considered. According Motor Challenge [1], a Program of the U.S. Department of 

Energy, the typical power factor for a fully loaded induction motor is 0.9, as shown below.  

Additionally, the induction motor will draw the highest current value when it is fully loaded. 

 

Figure 28  Induction Motor Power, Current, and Power Factor Relationship  
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Considering the 0.9 power factor at full load, the inverter should be rated for a continuous 

current of 200 amps, given by   

𝑃3∅ = √3 × 𝑉𝐿−𝐿 × 𝐼𝐿 𝑐𝑜𝑠 𝜃,     (6) 

where 𝜃 is the phase difference between the current and voltage. The phase angle between the 

current and voltage can be converted to the power factor using  

𝑃𝑜𝑤𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 =  𝑐𝑜𝑠−1(𝜃).     (7) 

With the output the current requirement in mind, an early assessment based on current ratings was 

conducted to see what silicon carbide power modules were available that may possibly meet the 

electrical requirements without being over-sized. Of the possibilities, the Wolfspeed HT-4321 half 

bridge SiC power module which is in HT-4000 package and rated for a drain current of 264 amps, 

was selected because it was the smallest power module that may have allowed for the electrical 

performance targets of the system to be reached.  As an added benefit, the HT-4000 series modules 

are designed to be used with a PCB, which grants the system designer much more design flexibility 

than traditional bussing compatible power modules. The design flexibility offered by a PCB 

compatible power module may allow for an increase in power density over a system governed by 

the limitations of routing copper busbars. Following the early qualification based on current 

capability, a much more rigorous process was initiated to complete the power module selection 

process.  

When designing power electronic systems, it is common for designers to use the target 

output power and voltage level to calculate the required current to achieve that power, as was 

completed above. Following that, a power module is selected based on output current requirement 

by choosing a module whose datasheet current rating satisfies the calculated current requirement.  

Although that is a common and convenient approach, it is not the best approach to power module 
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selection. In fact, doing so and pushing the system to its maximum output power may lead to power 

module failure. Conversely, it may also lead to a system whose power modules are significantly 

oversized. 

3.1.2 Power Module Selection Criteria 

In a datasheet provided by the power module manufacturer, the module’s maximum 

continuous current, ID and maximum power dissipation PD are usually provided. The reason that a 

system designer should not directly use those numbers lies within the thermal aspects of the 

system, in this case the ability to remove the heat generated within the power module as a result 

of switching and conduction losses. The maximum continuous current and power dissipation rating 

from the manufacturer is given under very specific conditions, as shown below where a section of 

the datasheet for the module used in this project is presented.   

 

Figure 29 Maximum Ratings of A Wolfspeed 1200V HT-4000 Power Modules 

As shown in Figure 29, the maximum continuous drain current is given under two test 

conditions, at 175 °C junction temperature with 25 °C case and at 175 °C junction temperature 

with 90 °C case. Similarly, the maximum power dissipation of the power module is rated at 175°C 



36 

junction temperature with 25°C case. Additionally, the continuous drain current rating applies to 

DC only, while no real continuous AC current rating is provided. If the system designer were 

seeking to create a system that only used the power module to conduct continuous DC current, the 

drain current rating may be a fairly suitable number to use, however, when the power module is 

used to conduct AC or a switching current, the drain current rating becomes much more complex.   

It is important to note that neither the amount of current going through the power module 

nor the amount of power that the power module dissipates are what will cause the module to fail.  

What will cause the module to fail is operating the module at a point that causes the junction 

temperature of the MOSFETs within the module exceed their temperature rating (typically 175°C 

for SiC), at which point the die within the module will start to de-attach from the substrate that 

they are bonded to or the wire bonds will de-attach from the die and the module will fail. Power 

dissipation, or power losses, within the module are the sole source of heat within the module.  

Power losses are unavoidable when a power module is use to conduct any current, and as such, to 

appropriately select a power module for an AC or switching application, it is imperative to select 

a power module that will be able to dissipate the amount of power that will be required by the 

system that the power module will be used in without exceeding the junction temperature rating 

of the device.   

This requirement raises two questions: how much power is the module able dissipate 

without exceeding the rated junction temperature, and how much power will the system require 

that the power module dissipate? The power module must be able to dissipate the maximum 

amount of power that the system requires. To address the first question, theoretically, the system 

designer could design the system around the power dissipation rating given by the datasheet, in 

this case 909 W, but there are a couple problems with that approach. The higher the temperature 
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of the baseplate (case) becomes, the less power the module can dissipate before reaching 175°C at 

its junction. With that in mind, the power dissipation rating provided in the datasheet is typically 

given at a case temperature that the system will never operate at, in this case 25°C, which is likely 

to be very far from where the system designer intends for their system to operate—automotive 

coolant temperature loops typically operate anywhere from 90°C to 105°C and the module 

baseplate may reach 30° to 40°C above the coolant temperature. Adding to the coolant temperature 

dilemma, there is also a significant amount of variability introduced by the type of cooling system 

used. Because the junction is the source of heat and the coolant in the cold plate or air around the 

heat sink is what removes the heat from the module, it is desirable to have the highest thermal 

conductivity from the junction of the module to the liquid or air used in the heat exchanger. As 

already stated, power module manufacturers give the maximum ratings for their devices based on 

a given baseplate temperature, typically 25°C. However, because different cooling systems all 

have varying thermal conductivity, different cooling systems will be able to remove different 

amounts of heat from the power module even with the coolant or ambient air temperature held 

constant at say, 25°C. This means that a power module will actually be able to achieve varying 

amounts of power dissipation from its rating depending on what type of cooling system is used, 

even when the case is at the temperature specified in the module datasheet.   

Furthermore, the thermal interface material (TIM) that is used to minimize the thermal 

resistance introduced at the interface between the module baseplate and heat exchanger that the 

baseplate is attached to introduces more variability in the amount of power that a module can 

dissipate, as different TIMs will also have different thermal conductivities and will therefore allow 

for varying amounts of heat to be removed from the module. Generally, the datasheet for a power 

module does not specify which TIM or more importantly, which heat exchanging system—



38 

whether a heat sink, tubed cold plate, gun-drilled cold plate, channeled cold plate, brazed internal 

fin cold plate, or even a sintered copper pipe—was used. Because cold plates are the most common 

type of liquid cooling for power electronics in traction applications, the typical thermal impedance 

of the common types of cold plates is presented below. 

Table 2  Typical Cold Plate Thermal Impedances 

Type of Cold Plate Thermal Impedance 

Pressed Tube >0.15°C/(W/in2) 

Gun-Drilled >0.12°C/(W/in2) 

Channeled  >0.10°C/(W/in2) 

Brazed with internal fin  >0.06°C/(W/in2) 

 

These figures are significant because the rate that thermal energy can transferred from the junction 

of the module to the liquid flowing through a cold plate, P, is controlled by the thermal impedance 

from the junction of the module to the liquid of the cold plate, Rjl, and the temperature differential 

between the two, as shown in Equation 8. There is a factor of 2.5 between the thermal impedance 

of a typical brazed internal fin cold plate and a typical pressed tube cold plate. 

𝑅𝑗𝑙 =
𝑇𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛−𝑇𝑙𝑖𝑞𝑢𝑖𝑑

𝑃
     (8) 

With Equation 8 in mind, one may ask why they should not simply calculate the maximum possible 

power transfer achievable from the module junction to the liquid from the start, using a simplified 

thermal stack up of a power module and its heat exchanger, which is modeled below. In short, it 

is because the Rjl in every real-life system will be different. 

While that approach would yield some accuracy, it is well known that each of the impedances in 

the model—RJC, RTIM, and RSL—are all values advertised by manufacturers but still may not align 
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with what the end users see in their system. In addition, it is not uncommon for power module 

manufacturers to circumvent an actual measurement of Rjl and simply simulate it.  

 

Figure 30  Power Module and Cold Plate Simplified Thermal Stack Up 

Considering the unclarity that is introduced by both power module datasheet ratings for 

continuous current and power dissipation has been discussed, the most accurate way to find the 

maximum possible power dissipation that the module can achieve in the actual system—which is 

comprised of its TIM, cold plate, and cold plate coolant temperature—will be presented.  

Since the real limiting factor to a power module is the ability to keep its junction 

temperature under its maximum rating and the ability to remove heat from the power module 

depends on many variables which can be simplified to the TIM selection and heat exchanger 

selection, it is highly desirable to thermally characterize the potential power module selection in 

the real system that it will be used in. This thermal characterization consists of assembling the 

prospective system, with the prospective power module, TIM, and heat exchanger. Following the 
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assembly, DC current is pushed through one of the switch positions in the module and increased 

until the junction temperature of the module reaches its maximum rating. At the time that the 

maximum junction temperature is reached, the power dissipation of the module is measured. This 

power measurement is the maximum achievable power dissipation of the module in the constructed 

system with the given TIM, cold plate, and coolant temperature.   

Although this test is strictly DC, this maximum power dissipation measurement is a system 

property that can be directly used for AC applications as well because the temperature rise of the 

module does not depend on whether the power dissipation in the module results from purely DC 

conduction losses or a combination of AC conduction and switching losses. Likewise, the power 

transfer in Equation 8 does not depend on whether the power dissipation results from only DC 

conduction losses or AC conduction and switching losses.  

3.1.3 Power Module Maximum Power Characterization 

In this work, a 1200 V HT-4321 module sample was considered and for the same reasons 

mentioned above, a test setup was built to find the maximum power dissipation achievable in the 

system being designed. To accomplish this, the required data to create a virtual junction 

temperature plot was recorded using a curve tracer, a cold plate was selected, and a custom PCB 

for the HT-4000 module was made. The test requires a hole to be present in the cold plate to place 

a thermocouple probe through to enable probing of the module baseplate. In this work, a pressed 

tube cold plate was obtained and modified to allow the module under test to be mounted to it and 

have its baseplate probed. This approach was much more cost effective because the liquid in the 

cold plate only travels through the pipes so there are no issues with simply drilling a hole in the 

cold plate body. The cold plate shown below was modified by tapping mounting holes for the 
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module and drilling holes to allow for probing of the baseplate. Next, a fixture was 3d printed to 

hold the thermocouple probe on the module baseplate.   

 

Figure 31  A Picture of the Cold Plate (Ohmite CP4A-114B-108E) Used in This Work  

 

Figure 32  Thermal Characterization Test Setup (Bottom View) 
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Figure 33   Thermal Characterization Test Setup (Top View) 

 

Figure 34 HT-4321 Virtual Junction Temperature Plot 

Following the test setup assembly, the PCB was connected to a DC power supply, the cold 

plate pipes were connected to a recirculating cooler, the module gate connections were connected 

to a 15V supply, a power analyzer was connected across the module to monitor its drain current 
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and drain-source voltage (Vds), and the test was commenced. The DC supply was placed in current 

control mode and the drain current was increased while Vds  was monitored. When Vds reached the 

value that corresponded to a 175°C junction temperature on the virtual junction plot, the power 

dissipation of the module was recorded. This process was repeated for several different coolant 

temperatures and the results are presented in Table 3 and Figure 35.   

Table 3  HT-4321 Thermal Testing Results 

SW1 Tliquid (°C) Pmax (W)  VDS (V) ID (A) Tcase (°C) Tjunction (°C) Rjc (°C/W) 

 25 640 2.75 244 76 175 0.155 

 40 620 2.65 234 84 175 0.147 

 47 595 2.50 230 86 175 0.150 

 61 560 2.56 219 98 175 0.138 

 70 510 2.41 212 103 175 0.141 

 80 473 2.31 205 110 175 0.137 

        

SW2 Tliquid (°C) Pmax (W)  VDS (V) ID (A) Tcase (°C) Tjunction (°C) Rjc (°C/W) 

 25 645 2.80 230 76 175 0.153 

 40 623 2.67 233 84 175 0.146 

 47 590 2.55 231 86 175 0.151 

 61 555 2.50 222 98 175 0.139 

 70 515 2.43 212 103 175 0.140 

 80 470 2.30 204 110 175 0.138 
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Figure 35  HT-4321 Coolant Temperature vs Maximum Power Results 

Based on testing, it is shown that with 25 °C coolant the maximum power dissipation the 

module can achieve without exceeding its rated junction temperature is 640 watts, which is 30% 

lower than the datasheet rating of 909 W, when the baseplate is 25°C. Although the design target 

of the traction inverter is 90°-105°C operation, the highest temperature coolant that the test was 

conducted with was 80°C because of safety concerns in the lab. It is reasonable to expect the power 

module to be able to handle around 450 watts with 90°C coolant and 400 watts with 105°C coolant, 

based on the linearity of Figure 35. 

The results from both switch positions being similar means that the thermal impedance 

from each switch position’s die to the baseplate is very similar, however, the maximum power 

measurement taken should be considered the maximum power dissipation of the complete module 

as the sum of both positions. In other words, the 909 W datasheet rating is the maximum sum of 

dissipation by both positions. It does not mean that the module can safely handle 909 W per 
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position. Similarly, the maximum power test conducted yields the maximum capability of the 

complete module, but not the simultaneous maximum capability of each switch position.  The sum 

of the power dissipation by both switch positions must not exceed the complete module’s rating. 

3.2.4 Power Module Loss Calculation 

To address the second question, which is how much power will the system require the 

power module to dissipate, the system designer must calculate the amount of electrical losses that 

the power module will have in the envisioned system. The electrical losses will be directly 

converted into thermal energy which is what will cause the module to heat up. With any 

semiconductor switch, there are two types of losses—conduction losses and switching losses.  The 

total amount electrical power loss associated with a semiconductor switch is equal to 

𝑃𝐿𝑜𝑠𝑠,𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑃𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔.   (9) 

Conduction losses occur whenever the semiconductor carries current and is equal to  

𝑃 = 𝐼2 × 𝑅𝑜𝑛      (10) 

where I is the rms of the current going through the switch and R is the on-state resistance of the 

device.  If the device is not in the on state, the conduction losses are zero because the device is not 

conducting.    

Switching losses occur whenever a semiconductor switch changes states resulting in the 

switch’s instantaneous current and voltage being nonzero, as shown by the time periods ton and toff 

in Figure 36. In a MOSFET, this occurs because the device’s unavoidable parasitic capacitance 

stores energy and then releases it whenever the device transitions between states. Because a 

MOSFET dissipates energy both when it turns on and when it turns off, its switching losses may 

be broken down into two components, Pon and Poff, which are the power dissipations associated 
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with turning on and turning off, respectively. Pon only occurs during ton, and similarly, Poff only 

occurs during toff.   

 

Figure 36  Simplified Waveform of MOSFET Turn-On and Turn-Off Transitions 

From the switching waveform figure, it is clear that the switching loss during each 

transition period is simply the time integral of the voltage and current waveforms multiplied by 

each other over the switching period, that is, 

𝑃𝑠𝑤 = 𝑃𝑜𝑛 + 𝑃𝑜𝑓𝑓 =
1

𝑇𝑝
(∫ 𝑖𝑑(𝑡) × 𝑣𝑑𝑠(𝑡)

𝑡𝑜𝑛+

𝑡𝑜𝑛−
𝑑𝑡 + ∫ 𝑖𝑑(𝑡) × 𝑣𝑑𝑠(𝑡)

𝑡𝑜𝑓𝑓+

𝑡𝑜𝑓𝑓−
)  (11) 

where: 

 Tp = switching period, 

 𝑡𝑜𝑛−= the beginning of the turn-on transition, 

𝑡𝑜𝑛+= the end of the turn-on transition, 

𝑡𝑜𝑓𝑓− = the beginning of the turn-off transition, 

𝑡𝑜𝑓𝑓+= the end of the turn-off transition, 

Id = the drain current of the MOSFET, and 

Vds = the drain-source voltage of the MOSFET. 
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For a MOSFET, the losses that occur in the anti-parallel body diode must be considered as 

well because they are in the same package as the MOSFET. The MOSFET body diode will 

generally conduct for a short time when compared to the MOSFET, but it may still contribute 

significant losses during its turn-off process, which occurs during the “reverse recovery” time, or 

the time it takes for the forward current carrying diode to switch states to open. During this time, 

the voltage and current waveforms are both above zero and the switching power dissipation may 

be calculated in a similar method to a MOSFET, by integrating the product of the voltage and 

current waveforms of the diode. Considering the diode, the total MOSFET losses are given as  

𝑃𝐿𝑜𝑠𝑠,𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑃𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔+𝑃𝑅𝑅    (12) 

where PRR is the reverse recovery losses from the anti-parallel diode.  

With respect to a two-level inverter, the above equations still apply, however, the system 

designer much consider that an inverter is used to process time-varying voltage and current levels.  

Because of the varying voltage and current levels, the calculations become much more complicated 

because as shown above, both the conduction and switching loss of the power module directly 

depend on the current and voltage level at the time of the switching action. By using the 

information from the datasheet of the power module, one may estimate the power dissipated by a 

half bridge (2 positions) power module as the sum of the following: 

          𝑃𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝐼𝑅𝑀𝑆

2 ×𝑅𝑂𝑁

8
      (13) 

𝑃𝑂𝑁 =
𝑓𝑠𝑤

𝜋
×

𝐼𝑚

2
× 𝑉𝐷𝐶 ×

𝐸𝑂𝑁𝑡𝑒𝑠𝑡

𝑉𝐷𝑆𝑡𝑒𝑠𝑡𝐼𝐷𝑡𝑒𝑠𝑡

     (14) 

𝑃𝑂𝐹𝐹 =
𝑓𝑠𝑤

𝜋
×

𝐼𝑚

2
× 𝑉𝐷𝐶 ×

𝐸𝑂𝐹𝐹𝑡𝑒𝑠𝑡

𝑉𝐷𝑆𝑡𝑒𝑠𝑡
𝐼𝐷𝑡𝑒𝑠𝑡

     (15) 

    𝑃𝑅𝑅 =
𝑓𝑠𝑤

12
× 𝑡𝑏 × 𝐼𝑅𝑅 × 𝑉𝐷𝐶     (16) 

where: 
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𝐼𝑅𝑀𝑆= the RMS of the output current, 

𝑅𝑂𝑁= the on-state resistance of the MOSFET, 

𝑓𝑠𝑤= the switching frequency, 

𝐼𝑚 = the magnitude of the output current, 

𝑉𝐷𝐶= the DC Link Voltage, 

EON = the turn on energy of MOSFET, and 

EON = the turn off energy of the MOSFET. 

In both MOSFET equations, the parameters with the “test” subscript are parameters that 

were measured at the same instant. In other words, for the PON equation, the EON value was 

recorded when switching with a certain recorded VDS and ID value. As established before, the 

switching energy will vary depending on VDS and ID. While certainly possible, the above 

calculations become very complicated—especially if the system designer uses the turn-on and 

turn-off vs VDS, ID, and temperature data provided by the manufacturer.  It is much more practical 

to use a simulation to obtain the estimated switching losses a power module in a 2-level inverter 

will see.  The simulation presented below which operates based on the preceding equations is what 

was used in this project to find the anticipated power losses in the power module.    

 

Figure 37  2-Level Inverter Schematic for Loss Simulation 
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The loss simulation hardware and control circuit are the same as the circuits presented in 

the theory of operation circuit presented before, with the addition that data from one pole of the 

inverter is used to calculate the switching losses of that pole. The data stream from MOSFETs S1 

and S4, labeled “mQ1” and “mQ2,” contains the instantaneous device current and voltage and is 

sent to a separate simulation block which calculates the losses based on the “m” block of each 

device.  The loss calculation simulation block is hereby presented and summarized as follows.  

        

Figure 38  2-Level Inverter Loss Calculation for A Single Pole 
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The simulation consists of 6 main modules, which are Edge detection, MOSFET turn-on 

losses, MOSFET turn-off losses, MOSFET conduction losses, Diode conduction losses, and Diode 

switching losses—each module calculates the parameter that it is named after. The edge detection 

module is responsible for detecting each switching action and triggering a loss calculation. Each 

of the other modules is conceptually the same and follows the reasoning previously discussed by 

calculating each relevant integral while simultaneously looking up the correct Eon and Eoff value.   

For example, in the MOSFET turn-on section of the simulation, presented below, “Q1U” is the 

drain-source voltage of MOSFET S1 and “QI1” is the drain current of MOSFET S1. Eon contains 

a lookup table of the manufacturer provided Eon vs drain current and drain-source voltage data.  

The correct value of Eon—which varies depending on the device current, voltage, and rise time—

is looked up and interpolated based on the manufacturer provided data. Similarly, the MOSFET 

conduction losses section calculates the conduction losses of the device by multiplying the voltage 

across the device, Q1U, by the current through device, Q1I. 

 

Figure 39  MOSFET Turn-On Losses Simulation Section 
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Figure 40  HT-4321 Eon & Eoff Switching Data 

 

Figure 41  MOSFET Conduction Losses Simulation Section 
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The preceding section only considered one switch position, S1. The loss simulation 

procedure for S2 is identical to S1, but because the module under consideration is a half bridge 

module with two switch positions, the power maximum power rating is for the total module.  

Therefore, the losses obtained from the simulations for S1 and S2 must be added together.  

Simulation results are now presented. 

 

Figure 42  Single Pole Loss Simulation for Proposed HT-4321 2-Level Inverter with fsw = 15 kHz 

 

Figure 43  Single Pole Loss Simulation for Proposed HT-4321 2-Level Inverter with fsw = 10 kHz 
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According to the power loss simulation that includes the switching data specific to the 

HT-4321 power module sample, under the full load of 150 kW with a power factor of 0.9 and 

utilizing SPWM, the module power dissipation average is 480 W if switching at 15 kHz and 380 

W if switching at 10 kHz. These average values follow directly from calculating the average of 

the total module losses in Figures 42 and 43. When compared to the data collected during the 

thermal characterization of the system, it is clear that the power module meats the power 

dissipation requirements of the system at full load, however, to achieve 150 kW with 105°C 

coolant, the switching frequency must be decreased to 10 kHz. This follows from the predicted 

achievable module power dissipation being only 400 W at 105°C, while the calculated power 

dissipation for the system is 480 W at 15 kHz and 380 W at 10 kHz. Considering that the system 

is traction driven, 10 kHz or slightly below to allow a larger safety margin is still a reasonable 

switching frequency.  Typical AC motors are operated with a switching frequency range of 

anywhere from 4-16 kHz.  

Table 4  System Power Module Requirements and Realistic Power Module Capability 

 

It is worth noting that the actual system that the power module is used in should allow the 

module to handle more power because the cold plate that the module was characterized with has 

higher thermal impedance than the cold plate that the system was to be constructed with. With the 

anticipated system power module dissipation requirements, power module power dissipation 

System 

Requirement (W) TL=25C TL=40C TL=47C TL=61C TL=70C TL=80C TL=90C TL=105C

fsw = 10 kHz 340

fsw = 15 kHz 440

TL=90C TL=105C

Module Capability (Predicted) (W)

450 400

Module Capability (Predicted) (W)

450 400

Module Capability (W)

642.5 621.5 592.5 557.5 512.5 471.5
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capability across different coolant temperatures, and overall system volume with the power module 

and cold plate selection in mind, the 1200 V HT-4321 module from Wolfspeed met all the 

requirements and thus was selected.   

 

Figure 44  Wolfspeed HT-4000 Power Module 

3.2 Cold Plate Selection 

A cold plate build by Wieland Microcool was selected for the project. The cold plate is a 

channeled cold plate that offers very low thermal impedance without sacrificing much in terms of 

volume. It was custom made specifically for the HT-4000 series mounting footprint with the goal 

of being as compact as possible while still yielding high performance.  

 

Figure 45  Microcool Custom Channeled Cold Plate for HT-4000 Series Power Modules 
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3.3  DC Link Capacitor Selection  

The DC-link capacitors of an inverter typically account for a large amount of the volume 

in the system. To achieve high power density, special consideration was given to the selection of 

the capacitors. Although power density was the focus of the project, functionality was given top 

priority—the power density could be significantly increased if the DC-link were electrically 

undersized for the system, but the system would have no value because it would not be functional.   

For a 2-level inverter, calculations for finding the electrical requirements of the DC-link 

capacitor(s) are straightforward and allow for some variability depending on user requirements.  

In practice, user requirements that directly affect the DC-link capacitance sizing are the allowable 

ripple voltage across the DC-link, the voltage of the DC-link, and the desirable dynamic response 

of the inverter.  The minimum allowable DC-link capacitance can be calculated as  

𝐶𝑙𝑖𝑛𝑘,   𝑚𝑖𝑛 ≥
Δ𝑃𝑚𝑎𝑥 ∙ 𝑇𝑑

2∙𝑉𝑑𝑐 ∙Δ𝑉𝑑𝑐
 ,     (17) 

where Δ𝑃𝑚𝑎𝑥 is the desired maximum change in output power, Td is the number of switching cycles 

that the designer desires the Δ𝑃𝑚𝑎𝑥 to occur within, 𝑉𝑑𝑐 is the DC-link voltage, and ΔVdc is the 

allowable voltage ripple on the DC-link.  In this work, Δ𝑃𝑚𝑎𝑥  was set to change 20% within 10 

switching cycles with an allowable voltage ripple of 15%.  This means that the DC-link was chosen 

to allow the inverter to ramp up 20%, or 30 kW, within 10 switching cycles, or 70 μs.   

In addition to maintaining the allowable ripple voltage in the system, the DC-link 

capacitors must be able to supply the required ripple current of the system under any rated loading 

condition.  The RMS input current to the inverter is given by  

𝐼𝑅𝑀𝑆 =  
𝐼𝑀

√2
√2√3

𝜋
𝑀(

1

4
+ 𝑐𝑜𝑠2𝛷),    (18) 
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where 𝐼𝑀 is the magnitude of the phase current, M is the modulation index, and 𝛷 is the lagging 

phase angle of the phase current.  The DC component of the RMS input current to the inverter is 

given by  

𝐼𝐴𝑉𝐺 =  
3

4
𝐼𝑀 𝑀 𝑐𝑜𝑠 𝛷 .       (19) 

With the RMS and DC component of the input current known, the AC component of the inverter 

input current, or ripple current, with the given power factor and phase current is given by 

𝐼𝑐𝑎𝑝, 𝑅𝑀𝑆 =  √𝐼𝑅𝑀𝑆
2 − 𝐼𝐴𝑉𝐺

2  .     (20) 

Based on Δ𝑃𝑚𝑎𝑥  being set to 20% within 10 switching cycles, an allowable DC-link ripple of 15%, 

phase current of 260 amps, and power factor of 0.9, the DC-link capacitor must be at least 78μF 

and be rated to at least 85 amps RMS ripple current capacity.   

 

Figure 46  Capacitance vs Temperature for Vishay MKP Capacitors [14] 

Moreover, given the target of 90°C-105°C operation, additional requirements must be met 

by the capacitor selection. The DC-link capacitor selection must be rated to withstand the DC bus 

voltage plus some safety margin of 20-30%, depending on the voltage overshoot experienced 

under switching.  Generally, the voltage rating of power capacitors is significantly reduced as their 
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temperature increases. Additionally, the capacitance decreases as ambient temperature increases, 

as demonstrated by the capacitance vs. temperature plot of Vishay’s MKP series capacitors.   

Lastly, the reliability and safety of the capacitor selection was of interest because of the 

reliability requirements of traction applications. At the cost of power density, the decision was 

made to select a film capacitor over a ceramic capacitor because of the failure modes of the two 

technologies.  Though ceramic capacitors are typically available with comparable electrical ratings 

to film caps but in significantly reduced package sizes, they are also known short circuit when they 

fail.  On the other hand, film capacitors fail as an open circuit. A film capacitor short circuit across 

the DC-link of a traction inverter would pose a tremendous safety risk to the user while also taking 

the inverter offline. On the other hand, a failure of a film capacitor on the DC-link would only 

result in a slight decrease in the available capacitance connected across the DC-link and the system 

could continue to operate. Traction applications require high reliability, and as such, at the time of 

this project ceramic capacitors were not a practical choice even though using them would allow 

for higher power density.   

With the reliability, overall system volume, capacitance rating, ripple current requirement, 

voltage rating at high temperature, and capacitance rating at high temperature in mind, an array of 

8 Vishay MKP1848C61012JP4 capacitors in parallel was chosen as the DC-link capacitor.  Each 

capacitor is rated for 1440 V at 70 °C, 850 V at 105 °C, 10 μF, and 11 ARMS. Combined, the 

capacitor array yields a total DC-link capacitance of 80 μF and ripple current capability of 88 ARMS, 

which satisfies the minimum electrical characteristics calculated using “worst case” parameters 

for ΔP, 𝐼𝑀,  and 𝑇𝑑. 
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Figure 47  Vishay MKP1848C61012JP4 Capacitor 

3.4 Gate Driver Selection 

The gate driver controls the power module which is connected to a high power supply. The 

gate driver should be thoroughly tested before use in a live high power system. Aside from reliable 

operation, gate drivers should have several protections built in to prevent catastrophic failures.  In 

this work, a custom PCB mounted gate driver for the Wolfspeed HT-4000 series was selected.  

The gate driver was a great option because it had all the necessary protections such as undervoltage 

lockout, reverse polarity, and fault indicators with lockout built in. As an added benefit, it has 

roughly the same size footprint as the HT-4000 power module.  

 

Figure 48  Wolfspeed HT-4000 Series Gate Driver. 
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3.5 Bussing Design 

The goal of the PCB design was to maximize electrical performance while minimizing 

system size. Being that the power module selection was designed to be mounted to a PCB, the 

bussing design for the system was flexible. This flexibility allowed for minimizing the size that 

the bussing added to the system as well as distances between the system components, which helped 

minimize electrical parasitics. To achieve the size and performance goals, all components were 

modeled in SolidWorks and arranged in the most compact fashion possible. Making use of the 

PCB layout flexibility, the decision was made to rout all power connections away from the 

connectors to the cold plate to minimize any risks of the power terminals becoming wet in the 

event that the piping to the cold plate developed a leak. Following the arrangement of the 

components, a PCB outline was drawn around the arrangement of the components.    

 

Figure 49  Desired PCB Outline to Minimize System Volume 
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After the desired PCB outline was drawn, the location of each electrical connection given 

the physical location of each device was noted.  From Figure 49 each component’s position and 

electrical connections may be deduced.  With the HT-4000 module, added convenience is given 

to the user because the DC connections are on one side of the module while the midpoint of the 

half-bridge is on the other side of the module.    

Next, the board outline was imported into Allegro PCB Editor to route the traces. In 

designing the inner workings of the PCB, the goals were reliability and electrical performance.  

Regarding reliability, special attention has to be given to the trace width and copper weight when 

dealing with systems that may carry large currents.  If the traces in a PCB are not sufficiently wide 

or the copper is not thick enough, the current carrying copper in the PCB will reach its glass 

transition temperature—typically rated around 175°C—and begin to delaminate, causing the PCB 

to come apart and fail.  Apart from that, attention must be given to the spacing between the different 

traces within a PCB because different voltage potential traces within a PCB can arc inside the 

PCB, causing catastrophic failure. Generally, the spacing between the external layers of a PCB 

require greater spacing than the internal layers. 

Both the copper width/weight and trace spacing in PCBs have industry recommended 

specifications according to IPC-2221A and IPC-2221B.  IPC-221A outlines the minimum copper 

weight and thickness required for a given current level and desired temperature rise to avoid 

overheating the PCB and IPC-2221B outlines the minimum clearance between different PCB 

traces to avoid short circuits between traces. Several online calculators that simplify the calculation 

of copper weight, trace width, and trace spacing by pulling data from IPC-2221A and IPC-2221B 

exist and simplify the application of the standards.   
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Parasitic inductance minimization with even current density between phases was the top 

priority in the layout aside from following the listed IPC standards. To minimize the parasitic 

inductance and make the current density throughout the bussing as even as possible, several 

simulations using Ansys were conducted to optimize the location and number of DC power 

terminals to the inverter, orientation of the DC-link capacitors, and shape of the DC traces.  Ansys 

was especially useful for extracting the DC current density of the inverter bussing. The DC-link 

bussing was made as wide as possible to minimize its inductance as much as possible. 

Regarding the PCB performance in the inverter system, it is very advantageous to have the 

least inductance possible in the power loop, which consists of the DC supply, bussing, power 

module, and DC-link caps. Excessive inductance in the power loop can lead to voltage ringing, 

instability, large amounts of EMI, and excessive voltage and current overshoots—all of which can 

destroy system components, the most vulnerable generally being the power module. Balanced 

impedance from the input to each power module is also important because if the impedance from 

the input to each module is significantly different, the loop inductance to each module will be 

different, which will result in dissimilar switching performance between different phases of the 

inverter. To help minimize the power loop inductance, the DC-link bussing was split into four 

layers, consisting of alternating identical positive and negative layers, as shown by the PCB stack 

up in the top of Figure 52. In addition, the DC-link bussing was made as wide as possible to 

minimize its inductance as much as possible. 

A current density simulation in Ansys of an early proposed PCB design for this project, 

presented in Figure 50, demonstrates the impedance balance between each phase. 
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Figure 50  Current Distribution of 2-Terminal Design 

From the simulation, it is very evident that with a two DC terminal design, the impedance 

from the input to each power module was very imbalanced, resulting in more current sinking to 

the power module on the left than any other devices. Furthermore, the current at the single input 

tab resulted in a current density above 35A/mm2, which exceeds the maximum safe current density 

for a PCB. Together, those facts pointed toward a multiple input tab design. Contrary to the two-

terminal design, the 6 terminal design, shown in Figure 51, exhibits relatively even current 

distribution from the DC+ tabs to the drain of the high side position of each power module—

especially considering that there are several holes in the DC plane because of the capacitor array.   

Also clear from the simulation presented in Figure 51 is that the DC current distribution 

does not cross the midpoint of the modules, above the middle output tab of the inverter. This means 

the space above the midpoint of the modules is essentially wasted space.  Recalling that the this 

was the desired board outline if all connections could be made and the IPC standards could be 



63 

satisfied, the AC traces were routed in the leftover space above the midpoint of the power modules 

as shown in the final layout, presented in Figure 52. 

 

Figure 51  Current Distribution Simulation of Multiple Tab Design (DC+ Layer) 

 

 

Figure 52  Inverter Final PCB Layout 
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Figure 53  Inverter Final PCB Layout 

Based on the IPC-2221A and IPC-2221B standards, 200 amps with a realistic ambient 

temperature of 32°C (90°F), an allowable PCB temperature rise to 175°C, and 4 oz. copper, the 

minimum copper trace width was calculated as 51.3 mm. The required spacing between the high 

voltage traces to achieve electrical insulation up to 1000V is 1.5 mm for internal PCB layers and 

2.33 mm for coated external PCB layers. The PCB was designed using these parameters. The 

51.3mm minimum trace width was divided by four and split between the four layers to avoid 

increasing the size of the PCB past the edges of the cold plate which would result in an increase in 

size for the overall system.    

3.6 System Assembly 

The proposed system which consists of the selected components, being the Wolfspeed HT-

4000 modules and their gate drivers, 8 Vishay MKP1848C61012JP4 capacitors, the custom 
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Microcool cold plate, and the PCB was modeled to assemble as shown below. The overall system 

dimensions are 6.88” × 4.80” × 2.49,” for a total volume of 1.35 L, yielding an overall maximum 

power density of 111 kW/L. 

 

Figure 55  Final Inverter System Design 

 

 

 

 

 

 

 

 
Figure 54  Final Inverter System Design (Exploded) 
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Figure 56  System Dimensions 

3.7 Controller Hardware Design 

To add further value to the project as a whole and make it more of a standalone unit, a 

custom controller for the inverter was designed, constructed, and tested. The main objectives of 

the controller included interfacing the with three gate drivers and enabling control of an AC motor.  

To adequately control an AC motor, the instantaneous phase currents must be known, and if the 

motor is a permanent magnet AC motor (PMAC), the instantaneous rotor position must also be 

known. PMAC motors are commonplace in traction applications because they may achieve higher 
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power density than traditional induction motors. To achieve these goals, at minimum the control 

board was required to provide the required signals for each of the 3 gate drivers, listed in the gate 

driver datasheet and shown in Figure 57, and read the output signals from the current sensors used 

to monitor the output phase currents.    

 

Figure 57  HT-4000 Gate Driver Signals 

To accomplish standalone functionality, the controller needed to be powered directly from 

the high-voltage DC-bus, provide power to all the controller circuitry, and provide power to the 

gate drivers. Without the ability to be powered from the DC-bus, the controller would require a 

separate low voltage DC supply, which may be undesirable in some applications. In addition to 

the minimum features, it was highly desirable for the controller to be able to function with a wide 
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range of analog and digital hardware enhance the adaptability. The minimum number required by 

the proposed system which requires two three analog input channels to read the signals from the 

current sensors and where each of the three gate drivers requires two PWM channels, one I/O for 

the fault signal, one I/O for the RTD, one I/O for the power supply disable, one I/O for the over 

current protection. Additional desirable features included bipolar wide range voltage reading, LED 

outputs, and CAN interfacing ability.  

The Texas Instruments (TI) 28379D control card was chosen as the basis of the controller 

based on ease of use and performance. This control card is a high component density layout board 

that is built around the dual core 200 MHz TMS320C28x DSP from TI. The board enables rapid 

prototyping by preconfiguring and making the most used features—ADC, DAC, PWM, and 

GPIOs—of the DSP core easily accessible to the end user.  

 

Figure 58  Texas Instruments 28379D Control Card 

Major sections of the controller schematic are presented and described as follows. 
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Figure 59  Bus Voltage to Low Voltage Conversion 

Following power entry through a PCB-mounted terminal block connector, the high-voltage 

DC link is routed to two DC-DC converters which step the voltage down to two separately 

grounded 15 V buses, which serve power to the rest of the board. Both converters are isolated, 

which serves as a protection but more importantly isolates the analog and digital signals grounding 

loops from each other. Keeping the analog and digital ground return paths separate from each other 

in a mixed-signal PCB helps prevent the high-frequency digital signals from polluting the sensitive 

low-frequency analog signals which are generally produced with the intent to be read with high 

accuracy. If the grounds are not kept separate, the high frequency switching of the digital 

circuitry—in this case, 6 pairs of differential 15 kHz PWM signals—will occur on the same ground 

plane that the ADC uses to reference its readings, resulting in inaccurate analog signal samples.  

Throughout the rest of the schematic, the analog signals are referenced to the analog ground plane 

and the digital signals are referenced to the digital ground plane. Observing best PCB design 

practices, the grounds are only connected inside the ADC of the DSP itself.  The 15 V buses created 

by the high-voltage DC-DC converters are connected to four power supplies which create the 
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commonly used 5 V and 3.3 V references throughout schematic. Two of the power supplies create 

the references to the digital ground plane while two of the power supplies reference the analog 

ground plane.   

 

 

Figure 60  Digital and Analog 5 V and 3.3 V Bus Creation 

The selected 28379D control card operates at 3.3 V logic, while the HT-4000 gate drivers 

require differential ±5 V signals. To make the two compatible with each other, a 3.3 V to 5 V 

bidirectional level shifter and a differential driver/receiver was placed between each gate driver 

and the DSP. With regard to  the output signals of the DSP that are sent to the gate drivers, the use 

of these two components first changes the level of the 0 to 3.3 V single ended signals to 0 to 5 V 

signals and then converts the 0 to 5 V single ended signals to ±5 V differential signals.  With regard 

to the differential status signals that the gate driver generates and sends back to the controller, the 

signal flow works in reverse, resulting in a single ended signal being sent to the DSP. 
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Figure 61  DSP to Gate Driver Interface Stage 

12 low pass filtering circuits were included in the controller design to allow the DSP to 

sample analog 0 to 5 V unipolar signals. The circuit uses a 5 V OPA4322 op amp and the low pass 

filter topology to apply a low pass filter to the sampled signal before its 0 ~ 5 V output is changed 

to a 0 ~ 3.3 V output with a resister divider. For the 28379 to correctly read a signal that ranges 

outside of 0 V to 3.3 V, the signal must be level shifted prior to reaching the ADC of the DSP. 
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Figure 62  Low Pass Filtering and Level Shifting 

Six of the depicted differential amplifiers circuits were placed on the controller layout to 

allow the controller to read bipolar analog signals ranging from -10 V to +10 V. 

 

Figure 63  Differential Amplifier 

An isolated CAN interface was included on the board to allow the controller to 

communicate with other control units using a standard protocol.   
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Figure 64  CAN Interface 

Aside from meeting functionality requirements, the controller was designed to fit onto the 

power conversion unit without increasing its overall volume by fitting into space that was 

previously unoccupied in the system. 



74 

 

Figure 65  Initial System Design with Placement and Targeted Dimensions of Controller 

3.8 Controller Assembly 

Two layouts of the controller design were fabricated—the first for ease of debugging and 

the second specifically for fitting into the overall system as designed 

 

Figure 66  Controller Layout V1 Top View 
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Figure 67  Controller Layout V1 Bottom View 

 

Figure 68  Controller Layout V2 Top View 
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Figure 69  Controller Layout V2 Bottom View 
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CHAPTER 4 

Experimental Studies and Performance Verification 

4.1 Complete System Assembly 

All components were assembled into the system, which is presented below. The complete 

converter had a volume of 1.35 L, as expected.   

 

Figure 70  Complete 150 kW DC-AC Power Conversion System 
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Figure 71  150 kW Power Conversion Unit at POETS Poster Presentation 

4.2 Test Setup for Controller Performance Validation  

The controller was assembled and tested on a bench top dynamometer that had a PMAC 

and DC motor coupled to each other. The controller was programmed using Simulink embedded 

coder and successfully demonstrated the ability to maintain closed loop speed control on either 

motor while the other motor was operated as a generator.  
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Figure 72  Controller Verification Test Setup 

4.3 Inverter Electrical Performance Results 

Following assembly, the parasitic inductance of the power loop—from the midpoint of the 

power module to the drain of the high-side MOSFET—was measured for each of the 3 phases 

using a Keysight E4990 impedance analyzer.  Each phase’s inductance measured in the range of 

6.8 nH to 7.0 nH, which is a relatively low value that should yield good switching performance.    



81 

 

Figure 73  Single Phase of Inverter Measured Impedance Plot 

Prior to 3-phase testing, double pulse testing with an 800V DC-link and the module rated 

current of 264 amps was completed on each of the inverter’s three phases. As predicted by the 

relatively symmetrical phase impedance simulation in Ansys and very similar phase impedance 

measurements, the switching results of each phase were nearly identical, as shown below in the 

full current and voltage double pulse results from each phase. Because of its rapid prototyping 

capability, flexibility, and ability to monitor internal signals using Control Desk, a dSPACE 

Microlabox was used to control the inverter during initial testing. The double pulse test results also 

demonstrate that the inverter’s switching overshoot voltage at full power is less than 900 V, which 

means the inverter could be operated with a higher DC-link voltage if desired, leading to even 

higher power output capability without destroying the 1.2 kV rated power modules. 
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Figure 74  Double Pulse Test Setup 

 

Figure 75  Phase A Double Pulse Test 
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Figure 76  Phase A Double Pulse Test (Zoomed In) 

 

Figure 77  Phase B Double Pulse Test 
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Figure 78  Phase B Double Pulse Test (Zoomed In) 

 

Figure 79  Phase C Double Pulse Test 
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Figure 80  Phase C Double Pulse Test (Zoomed In) 

Multiple pulse testing was also completed for each phase prior to 3 phase testing to show 

the ability of each phase of the inverter to withstand the full current and voltage required to achieve 

150 kW. 
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Figure 81  Phase A 8-Pulse Test 

 

Figure 82  Phase B 8-Pulse Test 
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Figure 83  Phase C 8-Pulse Test 

 

Several low-power 3-phase tests have been completed, but because of lack of access to a 

high-power test facility capable of providing 150 kW continuous through a DC supply, 3-phase 

high power testing has not been completed yet at the time of this writing.  The previously presented 

tests show the ability of each phase to handle what the inverter would require of them when 

operating at 150 kW. These tests were able to be conducted without a 150 kW supply by only 

operating each phase for several switching periods at most while operating at full voltage and 

current. The last test performed demonstrates the ability of the inverter to produce a 3-phase 

sinusoidal output current. 
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Figure 84  Successful 3-Phase Testing 
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CHAPTER 5 

Conclusion and Future works 

5.1 Conclusion 

The main goal of this work was to build a 150 kW 25 kW/L DC-AC silicon-carbide based 

inverter system that is capable of operation while using a practical 90°C-105°C coolant 

temperature that is typically seen in the engine coolant loop on a hybrid electric vehicle. To 

accomplish this goal, several inverter topologies were reviewed and weighed against the goals of 

the project. After choosing the 2-level inverter due to its lower component number requirement, a 

power module was selected based on results gathered by experimentally finding the maximum 

power dissipation achievable by the module candidate and comparing that value to the power 

dissipation requirement of the system at full load that was found through simulation. Following 

power module selection, the minimum suitable electrical characteristics of the DC-link capacitors 

were calculated and the smallest volume capacitor bank that met the requirement was selected.  

Then, a PCB was designed to form the required bussing between the electrical components while 

minimizing overall system size. The PCB was analyzed in Ansys to maximize electrical 

performance through current density and parasitic simulations.  The inverter along with its custom 

DSP-based control platform was assembled to allow the commencement of double pulse and 

multiple pulse testing.  Lastly, successful 3-phase testing was completed to show the ability of the 

inverter to create a sinusoidal 3-phase output. The overall volume of the constructed inverter 

measures 1.35L, has a continuous power rating of 150 kW, and has an overall power density of 

111 kW/L, which far surpasses the 25 kW/L target.  
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5.2 Future Works 

Depending on the specific application that is targeted, it may be highly desirable to include 

a front-end AC-DC converter that connects to the DC-link of this converter. The AC side of the 

complete system would be used to rectify AC power generated from a motor within a hybrid 

electric vehicle into a stiff enough DC-link to support this inverter’s operation. Through 

synchronizing the switching of the AC-DC converter and the DC-AC converter, the required DC-

link capacitance could be significantly reduced, leading to an optimized complete AC-AC 

conversion unit. 
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