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Abstract 

The wide bandgap (WBG) characteristics of SiC play a significant and disruptive role in 

the power electronics industry. The same characteristics make this material a viable choice for 

high-temperature electronics systems. Leveraging the high-temperature capability of SiC is crucial 

to automotive, space exploration, aerospace, deep well drilling, and gas turbines. A significant 

issue with the high-temperature operation is the exponential increase in leakage current. The lower 

intrinsic carrier concentration of SiC (10-9 cm-3) compared to Si (1010 cm-3) leads to lower leakage 

over temperature. Several researchers have demonstrated analog and digital circuits designed in 

SiC. However, a memory module is required to realize a complete electronic system in SiC that 

bridges the gap between data processing and data storage. Designing memory that can process 

massive amounts of data in harsh environments while consuming low power opens doors for future 

electronics. 

A novel static random-access memory (SRAM) cell is designed and implemented in a SiC 

1 µm triple well CMOS process for high-temperature applications in this work. The prevalent 

issues encountered during SiC fabrication and the uncertainties in device performance led to 6T 

SRAM cell design modifications that enable adaptability to the worst and the best cases. However, 

design trade-offs are made in the design size, the number of transistors, number of I/Os, and the 

cell's power consumption. The novel SRAM cell design mitigates the effect of poor p-type contacts 

after the device fabrication by controlling the cell's drive strength via an additional pull-up network. 

The design also includes two parallel access transistors and separate wordlines that control both 

access transistors. This individual control enables post-fabrication tunability in the cell ratio (CR) 

and the pull-up (PR) ratio of the cell. It also allows tuning the access transistors' effective width 

during a data read operation, and a data write operation, independently. Along with the SRAM cell 



 

 

 

design, the conventional latch-based sense amplifier is also designed in the SiC CMOS process to 

realize the monolithic memory IC modules. 

The SRAM cell performance is evaluated on the basis of static noise margin (SNM), write 

SNM (WSNM), read SNM (RSNM), leakage current, and read access time over a wide 

temperature range (25ºC to 500ºC) on three uniquely processed wafers. The noise margins 

measured on Wafer #2 show a lower leakage current of ~500 nA at 500ºC with the supply voltage 

of 10 V. The SNM of 6.07 V is measured at 500ºC with a 10 V of power supply. The read access 

time at 400ºC is ~7.5 µs at a supply voltage of 10 V. 
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1 Introduction 

1.1 Background and Motivation 

Electronic systems capable of withstanding high temperature environments are in high 

demand in various applications such as logging-while-drilling (LWD) systems and embedded 

electronics which are in the core of gas turbine engine controls. Designing memory that can process 

massive amounts of data in harsh environments while consuming low power opens doors for next 

generation, smart, high temperature electronic systems. 

Decades of research and development of wide bandgap (WBG) semiconductors has paved 

the way for implementation of these materials in high temperature, high frequency, high voltage, 

and radiation hardened applications. Silicon carbide (SiC) and gallium nitride (GaN) are the two 

most commonly used and produced WBG semiconductor materials. SiC has emerged as the most 

mature of the WBG semiconductors with the release of commercial 6H-SiC bulk substrates in 

1991 and 4H-SiC substrates in 1994 [1]. 

Leveraging the high temperature capabilities of SiC ICs is crucial to automotive, aerospace, 

deep well drilling, and wireless telemetry systems [2]. Although building blocks for extreme 

environment data acquisition have been demonstrated in [3], a memory module is necessary to 

enable data storage and therefore a more robust electronic system. Therefore, this work highlights 

the design challenges of SiC CMOS monolithic ICs and the need of having a memory module that 

can operate at temperatures above 400°C along with its peripheral circuitry. The evolving nature 

of the SiC CMOS process and the resulting process variation encourages the design of a new 

memory cell. The Static Random Access Memory (SRAM) cell is designed by using a triple-well, 

1 µm single poly, single metal (1P1M) SiC CMOS process fabricated at Fraunhofer IISB in 
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Erlangen, Germany. In addition, various sense amplifier architectures are designed and will be the 

focus of this work. 

1.2 Literature Review 

The most prominent issue in conventional silicon based high temperature electronics is 

leakage current, which increases exponentially with temperature. SOI technology has been widely 

used for high temperature operation due to its lower leakage capability gained from the reduced 

junction area beneath the transistor as a result of the buried oxide layer, however, the maximum 

operating temperatures are limited to 300°C due to the same leakage problems. Therefore, high 

temperature electronics present a unique challenge to the design of CMOS logic and memory 

circuits. SRAM modules are the most important component in the modern high-performance 

System-on-Chips (SoCs) designed to operate at high temperatures. There is a strong market 

demand for such products. In 1996, Honeywell introduced the High Temperature Electronics 

products for commercial use, mainly targeting aerospace applications. They presented the world’s 

first commercially available 32 kB SRAM module to operate at 225°C. In competition with 

Honeywell, Texas Instruments (TI) also launched a commercial product line for High Reliability 

Components for Extreme Environments which was initially targeting oil-drilling applications. 

Later on, the products advanced with the radiation hardness capabilities and also was used for 

space exploration applications. TI introduced the world’s first 32 MB Flash memory module that 

can operate at 210°C. Commercially available products encourages the researchers to stretch the 

operating temperature range beyond 250°C. In [4], R. Cojbasic and Y. Leblebici showed the 

reliable operation for 6T SRAM up to 260°C. They realized 6T SRAM in 0.18 µm SOI CMOS 

process and proposed a D-Latch type 6T-SRAM cell. The proposed SRAM showed better 

operating frequency than the conventional SRAM over temperature with the tradeoff being the 



 

3 

 

extra transistors in the D-Latch. In 2013, Kim, et al. presented an 8T SRAM module operating at 

300°C [5]. They used a 1 µm SOI CMOS process to realize the design. Due to the high leakage 

currents at high temperatures, read operations failed because the bitlines could not sustain the 

charging voltage. In order to mitigate this, they added a sensing margin enhancement technique in 

the sense amplifiers by having a current source node on the bitlines. In [6] and [7], temperature-

aware low-voltage SRAM is demonstrated at 25°C to 300°C and realized in a 1 µm SOI CMOS 

process. Similar to [5], an increase in sensing margin is implemented with the dynamic control 

source node on the bitlines. Gogl, et al., [8] presented a 1kbit EEPROM to operate at 250°C, with 

the significance of this work being the integration of a floating gate process in the SOI technology, 

which the author called SIMOX technology. Tai-Hua, et al., [9] explained the leakage problems 

in a bulk silicon process and demonstrated a radiation-hardened SRAM design that can operate at 

225°C. The article published from this thesis [10] is the first implementation of SiC CMOS-based 

6T SRAM cell, the cell operated at 500°C. However, the fabrication challenges in SiC CMOS, 

especially low resistive ohmic contacts, have deteriorated the cell's performance. Table 1 compares 

the operating temperatures, maximum frequency, and total power consumption performances of 

the aforementioned high-temperature memory literature. 

Table 1. Si/SOI SRAM Cell Performance Comparison at High Temperatures 

 Honeywell TI [4] [4] [5] [6] [7] [8] [9] [10] 

Process   
SOI 

CMOS 
0.18µm 

SOI 
CMOS 
0.18µm 

1µm 
SOI 

1µm 
SOI 

1µm 
SOI 

1.6µm 
SIMOX 

Technology 

Bulk Si 
0.13µm 

SiC 
CMOS 
1µm 

SRAM 

Topology 
 Flash 

D-
Latch 

6T 8T 8T 8T EEPROM 6T 6T 

TjMAX 225°C 210°C 275°C 260°C 300°C 300°C 300°C 250°C 200°C 300°C 

fMAX 20MHz 12MHz 10MHz 5MHz 1MHz 1MHz 15MHz - - ~1kHz 

PTOT 100mW  410mW 
1120 
mW 

1mW 
35.5 
mW 

25.56 
mW 

- - 
4.52 mW 
@ 400°C 

Size   - - 560µm2 -  1200µm2  10792µm2 

        
Additional 

steps 

needed 
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The conventional silicon CMOS process is prone to leakage currents at high temperatures. 

Leakage currents are comprised of diode diffusion currents, which are proportional to intrinsic 

carrier concentration (ni). The thermally generated carrier concentration exceeds that due to 

dopants, and control of carriers in the device is lost at sufficiently high temperatures. In Si, the 

bandgap decreases by 0.083 eV between 25°C and 300°C. These factors combine to raise the 

intrinsic carrier concentration in Si to approximately 1016 cm-3 at 300°C [9]. Due to these 

considerations, high bandgap semiconductors such as SiC and GaN are more suited for high-

temperature operations. Research into SiC began with power electronics being the central focus. 

Power semiconductors made from silicon carbide are capable of withstanding voltages up to 10 

times higher than ordinary silicon. This, in turn, has several implications for system complexity 

and cost. The proliferation of electronic products throughout the world means many types of 

devices that must operate in variable or harsh conditions, such as higher temperatures. Silicon 

carbide shines here as well. There has been a growing demand for high-temperature capable 

circuitry in a multitude of other applications.  

SiC is particularly suited for these applications due to its intrinsic carrier concentration 

being approximately 19 orders of magnitude lower than silicon [11]. This leads to SiC transistors 

having lower leakage current than bulk silicon devices and is paramount in achieving high-

temperature operation. The maximum operating temperatures of bulk silicon and silicon-on-

insulator (SOI) are limited to approximately 150°C and 300°C, respectively [12], [13]. With SiC 

ICs, this boundary is extended to over 500°C for both analog and digital circuitry [14]-[16]. So far, 

there is no work other than [10] reported on the CMOS memory design and realization of SiC 

memory. However, literature surveys showed considerable interest in the SiC-based memory 

designs. An article published in Physics World in November 1992 [17] shows the promises that 
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SiC memory can make for the future of electronics. Another article [18] describes the potential of 

SiC as a memory material by demonstrating the electronically-passivated SiC-SiO2 interface. In 

2018, Elgebra, et al., [19] validates the potential of developing memory architectures in the 4H-

SiC BJT process. The authors proposed the 4T-SRAM cell and characterized the design with the 

help of models. Thus, no actual memory cell has been fabricated. 

In [20], SiC JFET process technology with two levels of metal interconnects demonstrated 

a 4x4 SRAM array and ÷2/÷4 clock generator. The successful test for two SRAM chips proves 

that the SiC JFET technology is reliable at 500ºC. However, the supply voltage requirements, 

including the positive voltage of 25 V and negative voltage of -25 V, make this technology less 

attractive. And, it is not easy to use this type of SRAM in existing electronic system approaches 

that are widely adopted and use CMOS technology. Similar to Table 1, a comparison of 

performance metrics is extracted from the SiC SRAM design literature as shown in Table 2.  

Table 2. SiC SRAM Cell Performance Comparison at High Temperatures 

 [19] [20] [10] This work 

Process SiC BJT SiC JFET SiC CMOS 1 µm SiC CMOS 1 µm 

SRAM 

Topology 
4T 6T with resistors 6T Novel 6T 

TjMAX 500°C 500°C 300°C 500°C 

fMAX 9.9 MHz *30 Hz ~1 kHz 133 kHz 

PTOT NA *12.125mW 4.52 mW @ 400°C Vdd=20 V 2200 µW @ VDD=10 V 

Size Simulated work *62128 µm2 10792 µm2 31320 µm2 

*Values are estimated from the given information & pictures in the article.  

1.3 Research Objective and Problem Definition 

Fabrication of low voltage SiC ICs is an ongoing challenge. Due to the stronger bonds of 

SiC between silicon and carbon atoms, diffusion rates are very low. Therefore, the only option to 

add dopants in the wafer is to use ion implantation. Annealing is required as a subsequent step to 

repair the damage that occurs during ion implantation. Recursive ion implantation followed by 
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annealing leads to permanent damage in parts of the SiC crystal structure that impacts the 

performance of a device. Processing of low resistance ohmic contacts is another challenge in SiC. 

Achieving high active p+-doping concentrations in 4H-SiC through ion implantation remains a 

challenge due to compensation with ion-implantation generated defects. The interface state 

between SiC/SiO2 generates trapped charges in the conduction band of SiC, and due to this 

intermediate trapped charge the threshold of the device shifts significantly at room temperature 

and as well as at high temperatures. Also, due to the high energy ion implantation, the polysilicon 

must be deposited after the implants eliminating the opportunity to make a self-aligned device. 

Designing a circuit in SiC to meet the certain specifications is difficult due to the 

fabrication challenges. Furthermore, the process characteristics changes from one fabrication run 

to another run given the lack of process control currently available in SiC. Threshold voltage 

variation that leads to unwanted transistor mismatch is a primary source for huge variation in 

voltage offsets in the differential pair of an operational amplifier, for example. Conventional 

silicon processes also deal with the threshold variation and other process related variations, but 

their impact is not as significant. Additionally, the process control and PDK support helps the 

designer to simulate the design over every possible corner with local and global variation 

parameters, along with Monte Carlo simulations. 

This research's prime focus is to develop an SRAM memory module that can operate at 

high temperatures (>400ºC) and consume low power. Due to the process variation and run-to-run 

changes in the SiC process, designing a circuit to meet the specifications is challenging. Therefore, 

an adaptable, robust SRAM cell is designed that can be tuned to particular performance metrics 

regardless of run-to-run changes and process variations. The SiC technology used in this work 

offers a high threshold PMOS (~7.5V), limiting the operating voltages to be higher than the 
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PMOS’s threshold, which resulted in higher power consumption than expected. However, as the 

operating temperature increases, the threshold voltage drops for both PMOS and NMOS. 

Therefore, the SRAM design leverages this intrinsic effect, and careful sizing of the transistors 

with an informed estimation is determined to operate the memory at lower voltages of ~6 V.  

1.4 Key Contributions 

The key contributions of this research as described in this dissertation are: 

• Developed the SiC PDK, tailored to Cadence Virtuoso suite 

• Developed physical design rule checks (DRC and LVS) codes, custom-built for 

Mentor Graphics CalibreDRC & CalibreLVS 

• Device characterization to enable the SiC IC design efforts 

• Design, implementation, and characterization of first SiC CMOS 6T SRAM cell 

• Design, implementation, and evaluation of various sense amplifiers 

• Design, implementation, and characterization of novel SiC SRAM cells to mitigate 

design challenges introduced by the SiC fabrication technology. 

1.5 Overview of the Dissertation 

This dissertation is organized into seven chapters. Chapter 1 covers the motivation and the 

background of high-temperature memory design in SiC. This chapter also includes the literature 

review to give the readers insight into current technological development in high-temperature 

memory designs. The author concludes this chapter with the key contributions, problem statement, 

and research objective. Chapter 2 describes state-of-the-art SiC-based integrated circuit 

technologies, emphasizing the SiC integrated circuit process used in this work. Moreover, the 

design enablement in SiC, fabrication challenges, and the device characteristics are also 
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incorporated in this chapter. Following that, in Chapter 3, the first design of the SiC-based SRAM 

cell and various sense amplifier architectures are described. The shortcoming of the process 

technology used is addressed in Chapter 4 by developing the new SRAM cell that mitigates the 

fabrication challenges at the design level without going through another design cycle. Chapter 4 

also includes the RUN #2 sense amplifier designs and their results. Chapter 5 defines the DC and 

transient testing methodology of the new SRAM cell and its testplan with the sense amplifiers. 

Chapter 6 contains the measurement results from multiple samples under various test 

configurations to successfully demonstrate the SRAM cell's functionality. Finally, conclusions and 

future work are given in Chapter 7. An Appendix contains device characterization results, the 

MATLAB code, and a brief B1500 tutorial written in the course of completing this work. 
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2 State of the Art: SiC-based Integrated Circuit Technologies 

2.1 SiC Bipolar Integrated Circuit Technology 

A SiC bipolar process for low voltage designs is being developed at the Electrum Lab at 

KTH in Stockholm, Sweden [21]. The developed bipolar process is completely ion-implantation 

free and therefore suffers less from surface interface traps. Emitter, base, and collector mesas are 

created by dry etching of CVD-grown epitaxial layers. The silicidation of contacts to P-type and 

N-type regions are performed in separate steps due to difficulty in forming a good ohmic contact 

in P-type SiC. This process only has NPN devices and no PNP device. The NPN devices exhibit a 

room temperature gain of approximately 100. However, the gain drops as temperature increases. 

The process has shown working analog and digital circuits above 500°C. The main weaknesses of 

the SiC BJT process are the excess standby power consumption and the lack of PNP transistors to 

realize complementary circuit designs. KTH is also working on developing a CMOS process but 

the PMOS devices have a very high threshold (currently ~ 22 V at the time of this writing). KTH 

also developed the process module to integrate ferroelectric materials into their CMOS process, 

which in future can be the basis of a memory cell. 

2.2 SiC JFET Integrated Circuit Technology 

The SiC JFET technology reported in [22] and [23] has three primitive devices: the non-

planar depletion mode N-type JFET, a resistor (i.e., the N-type channel layer of a JFET), and a 

capacitor in between two metal layers. Circuits fabricated in this process are capable of operating 

at temperatures of up to 800°C and with reliable functionality for more than 1000 hours under bias 

at temperatures above 500°C [22], [23]. However, designing circuits in this technology specifically 

a memory cell, is challenging without the P-type device. Moreover, the need for a dual power 
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supply, meaning positive and negative voltage output rails, is undesirable or infeasible in many 

applications. Also, the fabrication turnaround time for this process is over 1 year. 

2.3 SiC CMOS Integrated Circuit Technology 

Cree began developing a 4H-SiC all-NMOS process as reported in [24]. Raytheon also 

started developing a CMOS process although it ultimately decided to close its foundry. As a result, 

SiC low power CMOS technology is still in the developmental phase and facing some daunting 

difficulties in the fabrication process. There are two main primary issues. First, the effective 

inversion-channel mobility is substantially lower than the theoretical value and secondly the 

thermally grown SiC-SiO2 interface exhibits a higher density of interface states than a traditional 

silicon process. Due to these issues, SiC low power MOSFETs are prone to threshold voltage shifts, 

gate leakage, and gate oxide failures. Nevertheless, there have been many reports demonstrating 

the potential and usefulness of SiC CMOS IC technology. In comparison to the bipolar and JFET 

processes previously discussed, the SiC CMOS process is superior since it offers low power 

consumption and a full rail-to-rail output swing. 

2.4 Fraunhofer’s SiC 1 µm CMOS 1P1M Process Technology 

The SiC integrated circuits designed for this research are fabricated at the Fraunhofer 

Institute for Integrated Systems and Device Technology (Fraunhofer-IISB) in Erlangen, Germany. 

Fraunhofer-IISB focuses on developing lateral P-type and N-type MOSFETs that can operate at 

high-temperature where the conventional silicon process cannot operate. They developed a 

technology computer-aided design (TCAD) model to achieve their goal, but did not develop the 

process design kit (PDK) that is necessary to realize a complex circuit topology or even a circuit 

design with many transistors. Consequently, during this thesis research, work to develop a SiC 
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PDK tailored to the Cadence Virtuoso platform and physical design verification rule checks for 

Mentor Graphics Calibre (DRC ad LVS) was required. As a result, two 20 mm  15 mm reticles, 

each for 100 mm wafers, were designed over three years using this PDK and design rule checker. 

The PDK development effort also helped in increasing the device portfolio of Fraunhofer’s 

technology. 

2.5 SiC Design Enablement 

2.5.1 PDK Development 

Generally, semiconductor foundries generate the transistor and passive component models 

for each process for use in the IC design tools such as Cadence Virtuoso. Circuit designers use 

these models to design integrated circuits. Before submitting the design layout to the foundry, the 

layouts are verified for the technology-specific Design Rule Checks (DRC), Layout Vs. 

Schematics (LVS) checks, and Parasitics Extraction (PEX) simulations. The PDK combines all 

the device models and physical verification checks into a set of files. Thus, the designer uses the 

PDK to design, simulate, layout, and verify the design before releasing the chip for fabrication. 

The accuracy of the PDK, particularly the design verification, is considered crucial and increases 

the chances of a successful first-pass tapeout. 

The design, simulation, and layout part of the Fraunhofer PDK is built for the Cadence 

Virtuoso platform. The physical design rule checks are tailored for Mentor Graphics tools: 

CalibreDRC and CalibreLVS. Cadence Virtuoso and Calibre tools allow interoperability; hence 

the PDK is set up to run Calibre tools under the Cadence Virtuoso environment. The design flow 

and the libraries and rules sets are created to support these two platforms. Following are the 

components of the PDK that were developed: 
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• A primitive design library (Cadence Virtuoso) 

o Device parameters 

o PCells 

o Symbols 

• Technology data (Cadence Virtuoso) 

o Layer definition files, layer names, layer and purpose pairs 

o Display attributes (Colors) 

o Process constraints 

• Physical Verification decks (Mentor Graphics: CalibreDRC and CalibreLVS) 

o DRC 

o LVS 

• Simulation models of primitive devices (HSPICE) 

o Transistors 

o Diodes. 

Fraunhofer provided the technology-specific design rules in an Excel sheet with the 

minimum dimensions and overlapping layer requirements for all seven layers of the process. The 

design rules translated into Standard Verification Rule Format (SVRF), a programming language 

for Mentor Graphics semiconductor design tools [25]. The technology file needed for Cadence 

Virtuoso to set up Fraunhofer technology's environment is created using a programming language 

called SKILL [26], [27]. The number of layers, display attributes, via layers, type of contacts, layer 

purpose, etc., are defined in the technology file.  

Developing the PDK also helped extend the portfolio of the primitive devices, as the 

foundry was only focused on developing MOSFETs. With the help of PDK, several passive 
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devices, different laterally-diffused metal oxide semiconductor (LDMOS) structures, bipolar 

transistors (BJT), diodes [28], optocoupler structures, and electrostatic discharge (ESD) devices 

[30] were designed and tested successfully after the tapeout. Hence, the PDK development 

contributed to elaborating the true potential of the SiC technology and the capability to have higher 

density circuits for various applications. 

2.5.2 Fabrication of 1 µm CMOS 1P1M Process Technology 

Fabrication of low voltage SiC devices is not as mature as conventional silicon technology. 

Due to the requirement of higher ionization levels for adding dopants, incomplete ionization at 

room temperature, and slow diffusion rates, SiC fabrication typically relies on ion implantation 

and annealing at a high temperature. “High-temperature annealing needs to be done after every 

implant that leads to unwanted crystal structure destruction in parts of the SiC wafer. In addition 

to these challenges, the existing manufacturing capabilities result in high wafer costs and a longer 

lead time for the delivery of fabricated SiC wafers. It should be noted that significant investments 

are being made to rapidly expand the manufacturing capacity.”[28] 

The fabrication started with the commercially available Cree N-type 4H-SiC wafers. At 

first, the P-type epitaxial layer is grown on the wafers. Subsequently, alignment marks were 

processed to align the subsequent masks with the wafer. A total of eleven masks were used to 

process the following layers: ALIGN, NWELL, PWELL, P+, N+, ACTIVE, POLY, POLYVIA, 

NOHM, POHM, and METAL. Wells and diffusion layers were deposited through ion 

implantation. After the implantation, the poly layer is patterned. Subsequently, the N+ and P+ 

ohmic contacts were formed on the wells to create a low resistance contact to the metallization 

layer. The P+ ohmic contact formation suffered from a high contact resistance; the foundry claimed 
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that it is due to the unintentional over-etching of the NWELL region. To provide a comparison, 

the measured resistivity of the N+ region is 0.0017 mΩcm2 whereas the P+ region has a resistivity 

of 44 mΩcm2, which is a significant increase for the same size contacts. This resulted in 

undesirable performance for the PMOS devices [28]. Thus, the foundation of this research was 

established to mitigate the impact of inadequately performing PMOS devices. 

2.5.3 SiC Circuit Design Approach for RUN #1 

The RUN #1 circuits were designed from old Raytheon process models [29] because, at the 

time of RUN #1 tapeout, Fraunhofer did not have any device models. Instead, they provided SiC 

sample MOSFET devices having channel lengths of 3 µm, 5 µm, and 10 µm with a fixed width of 

100 µm for each. To develop a basic MOSFET model, wide/long, narrow/long, wide/short, and 

narrow/short MOSFET dimensions are required [29]. The sample devices have an oxide thickness 

of 25 nm, and their processing modules are also different than the selected modules for RUN #1. 

Based on the sample die's measurement data, the PFET to NFET ratio is estimated to be 5:1. 

Coincidently, Raytheon’s process also used a 5:1 ratio for the inverter. Therefore, the circuits in 

RUN #1 were designed with Raytheon’s model. The intention of RUN #1 was primarily to 

characterize the Fraunhofer process and develop models for future fabrication tapeouts. It took 

Fraunhofer a year to return the fabricated wafers once the designs were delivered for fabrication. 

2.5.4 Characterization Results of SiC MOSFETs from RUN #1 

“The RUN #1 CMOS devices with varying widths and lengths were characterized over the 

temperature range of 25°C to 300°C. The Fraunhofer-IISB’s SiC CMOS technology supports a 

minimum channel length of 0.8 µm. However, the yield for smaller channel length devices was 
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heavily affected by the mask sets' misalignment. Therefore, the devices with smaller channel 

lengths (for example, 0.8 µm and 1 µm) were not characterized.  

The cross-sections of the NMOS and PMOS devices are shown in Fig. 1 and 2, 

respectively. The NMOS device can be isolated by forming a PWELL inside an NWELL, as shown 

in Fig. 1. This isolation gives a designer the flexibility to cascode several NMOS devices while 

still connecting each device’s body and source terminals. This eliminates the body effect and the 

corresponding threshold voltage increase. 

 

Fig. 1. Cross-section of a SiC NMOS device. The NWELL layer is an isolation layer 

between the PWELL and the P-type epitaxial layer. 

 

Fig. 2. Cross-section of a SiC PMOS device. 

A channel width of 20 µm is selected for representing the DC output characteristics and 

small-signal parameters of both the NMOS and PMOS transistors. Output characteristics of the 

SiC NMOS and PMOS devices are shown in Fig. 3 and 4, respectively. These devices have a 

channel length of 1.5 µm. The drain-source voltage (VDS) is swept from 0 V to 20 V with a step 

size of 0.5 V with a gate-source voltage (VGS) varying from 3 V to 19 V with a step size of 2 V. 
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The drain current increases over temperature for NMOS and PMOS devices, which is due to 

increasing channel mobility and intrinsic carrier concentration. As previously mentioned, the P+ 

regions of PMOS drain and source contacts were over-etched during fabrication. Instead of 

forming an ohmic contact, a diode contact was formed, which can be observed from the linear 

region of the output characteristics plot shown in Fig. 4 for a PMOS device. 

 

Fig. 3. Output characteristics of SiC NMOS at temperatures of (a) 25°C and (b) 300°C. 

 

Fig. 4. Output characteristics of SiC PMOS at temperatures of (a) 25°C and (b) 300°C. 
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The transconductance (gm) of NMOS and PMOS devices is shown in Fig. 5 (a) and (b), 

respectively. Measured results show the increase in gm with the increase in temperature, which 

contradicts the conventional silicon-based MOSFETs. This inconsistency is primarily due to the 

thermally grown SiC oxide, which is prone to higher levels of interface state densities, charge 

trapping, and other effects. These interface trapped charges release additional carriers at higher 

temperatures, which cause an increase in the drain current. The gm drops at higher VGS for both 

NMOS and PMOS due to reduced effective carrier mobility [31]. 

 

Fig. 5.(a)Transconductance variation over the temperature for NMOS 

(b)Transconductance variation over the temperature for PMOS. 

However, the drop in transconductance at higher VGS is sharper for the PMOS devices than 

for NMOS devices. To better understand this behavior, the ID vs. VGS (at VDS = 2 V) plot for the 

SiC PMOS are provided in Fig. 6. As VGS increases above 8 V in Fig. 6, the drain current starts to 

saturate. This behavior is a result of the previously mentioned poor P+ contact formation during 

fabrication that results in the PMOS drain/source contacts having high resistance and limiting the 

drain current as VGS increases.” [28] 
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Fig. 6. IDS vs VGS for PMOS with channel width = 20 µm and channel length = 1.5 µm.  

Due to the developing nature of Fraunhofer’s SiC CMOS technology, the RUN #1 efforts 

revealed several issues related to the fabrication of different modules in the process. The resulting 

PFET to NFET ratio was 25:1 at room temperature for a 1.5 µm channel length device. Table 3 

shows the PFET to NFET ratio with increasing channel lengths. The PFET to NFET ratio 

decreased for larger device sizes, indicating that the contacts were the primary source of this issue. 

Table 3. The PFET to NFET Ratios for Various Channel Lengths and a Fixed Width of    

20 µm 

Temperature (oC) Size (W/L) (µm) PFET (µA) NFET (µA) Ratio 

25 
20/1.5 

50 1250 25 

200 174 1960 11.15 

25 
20/2 

41.6 690 16.6 

200 136 1250 19.19 

25 
20/4 

25 235 9.4 

200 77 512 6.65 

25 
20/6 

18.4 141 7.69 

200 54.2 322 5.94 

25 
20/10 

13.5 78.3 5.80 

200 36 185 5.13 

Additional results from RUN #1 and RUN #2 are added in Appendix A. It includes the 

wafer maps for RUN #1 MOSFETs for 1.5 µm and 2 µm channel length devices. It also shows the 

playback for BSIM 4.7.0 compact model with the measured data. The exercise of compact model 
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fitting was accomplished to support the circuit design efforts for RUN #2. Unfortunately, the 

circuit's performance did not match with the simulated performance because the several process 

changes were made between RUN #1 and RUN #2 to attempt to correct problems. The comparison 

between RUN #1 and RUN #2 devices is also shown in Appendix A. 
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3 Design of an SRAM in RUN #1 

3.1 Introduction to SRAM and Sense Amplifiers 

Static random-access memory (SRAM) is a type of semiconductor memory. It stores each 

bit by adopting bistable latching circuitry (such as a flip-flop). It retains data remanence, but in the 

traditional sense, it is still volatile. When the memory is not powered on, the data will eventually 

be lost. Because of positive feedback in an SRAM cell design, it does not need periodic data 

refreshing. The data from SRAM can be read/written faster, but it requires more area and its 

dynamic power can be significant depending on the memory size and frequency. It is usually used 

for the CPU cache. There are some advantages and disadvantages of SRAM memory, which have 

been listed below: 

• Advantages: simplicity (without performing a refresh circuit), performance, 

reliability, low idle power consumption. 

• Disadvantages: price, density, high operational power consumption. 

On the other hand, SRAM used at a slightly slower speed, such as in applications with 

moderately clocked microprocessors, consumes very little power and consumes almost negligible 

power at idle, around a few microwatts. 

The SRAM IP block is divided into four main sub-blocks: Memory/bit Cell, Sense 

Amplifier, Row Decoder, and Column Decoder. In RUN #1, bit cells and sense amplifiers were 

implemented. There are a couple of topologies for designing SRAM bit cells, such as 6 transistor 

(i.e., 6T), 7 transistor, 8 transistor, and 9 transistor topologies. For RUN #1, the 6T SRAM bit cell 

topology was chosen because it has fewer transistors and utilizes less area than other topologies. 

The schematic of the 6T SRAM cell is shown in Fig. 7. It consists of two CMOS inverters (M1 & 

M2, M3 & M4) and two NMOS access transistors (M5 & M6). The CMOS inverters are connected 
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in a cross-coupled fashion (i.e., a latch) and form a bistable circuit, and the access transistors form 

a “make or break” path between storage latch outputs and read-write circuits by connecting it to 

bitlines. The SRAM cell has two bitlines that control both the input and output of data from the 

cell. 

 

Fig. 7. 6T SRAM bit cell. 

The SRAM cell operates in three modes: standby, read, and write modes. In standby mode, 

access transistors are turned off by grounding the Wordline (WL), so the latch retains its stored 

value for an indefinite time as long as the power supply is there. The WL selects the cell and allows 

values to be read from or written to the cell. In read mode, the sense amplifier is used to measure 

the differential voltage between the two bitlines. These bitlines are pre-charged to the supply 

voltage. When access transistors turn on, one of the bitlines starts to discharge through the pull-

down transistor of the inverter that is latched to zero potential. There are two main categories of 

sense amplifiers Differential Mode sense amplifiers (also known as voltage sense amplifiers) and 

Non-Differential Mode sense amplifiers (also known as current sense amplifiers). Generally, 

voltage sense amplifiers are used because they are reliable and straightforward. Furthermore, they 
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are more area efficient than current-mode sense amplifiers. The performance of voltage sense 

amplifiers is dependent on the bitlines’ capacitance. Larger bitline capacitance makes large RC 

time delays for the system, and because of this delay, the time taken by the bitlines to generate 

differential voltage is also high. Typically, a 300 mV to 500 mV differential voltage is enough for 

the sense amplifier to detect the value and latch the output. 

A variety of differential voltage sense amplifiers are in use, such as the Simple Differential 

Voltage Amplifier and Full Complementary Positive Feedback Voltage Sense Amplifier. A 

schematic for the Full Complementary Positive Feedback Voltage Sense Amplifier is shown in 

Fig. 8. It is selected for implementation in RUN #1 and consists of two cross-coupled inverters 

(M4 & M7, M3 & M6), which use positive feedback to cause latching behavior. The Pre-Charge 

circuitry includes M1, M2, and M0, which charge the bitlines before the read operation. The read 

enable transistors (M5 and M8) are used to isolate the cross-coupled inverters when the SRAM 

cell is in the hold state. In addition to that, it does not require active current mirrors and a biasing 

circuit, which makes this sense amplifier a better choice for high-temperature environments. There 

are other amplifier variations, but this one is the most straightforward and reliable choice. 
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Fig. 8. Full complementary positive feedback sense amplifier. 

3.2 SRAM Test Structures in RUN #1 

“Stability and cell area are the two important aspects for SRAM cell design. Cell stability 

is usually defined using static noise margin (SNM), which is the maximum DC noise voltage that 

can be tolerated by the cell without having any effects on the stored bit. The bit cell is most 

vulnerable to static noise voltage when it is in the read mode. This is due to pre-charged bit lines 

being connected to the storage nodes that can increase the potential of the storage nodes with a 

logic ‘0’ value and cause a stored bit to flip to a logic ‘1’. To perform a nondestructive read 

operation, the ratio of current driving strength for the access transistor as compared to the pull-

down transistor must be carefully selected. This is critical to avoid unintentionally increasing the 
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voltage of the storage node when it ideally has a logic ‘0’. The ratio between the access transistor 

and pull-down transistor is termed cell ratio (CR), which is expressed below. 

𝐶𝑒𝑙𝑙 𝑅𝑎𝑡𝑖𝑜 =
𝑊𝑃𝐷 𝐿𝑃𝐷⁄

𝑊𝐴𝐷 𝐿𝐴𝐷⁄
 

WPD, LPD, WAD, LAD are the widths and lengths of the pull-down and access transistors, 

respectively. 

Like CR, there is another sizing parameter referred to as the pull-up ratio (PR). This term 

refers to the ratio of the pull-up transistor to the access transistor. The restoring strength (current 

driving capability) of the pull-up transistor must be higher than the strength of access transistors 

for a cell to perform a write operation. An expression for the PR is provided below. WPU and LPU 

are the width and length of the pull up transistors, respectively. 

𝑃𝑢𝑙𝑙 𝑈𝑝 𝑅𝑎𝑡𝑖𝑜 =
𝑊𝑃𝑈 𝐿𝑃𝑈⁄

𝑊𝐴𝐷 𝐿𝐴𝐷⁄
 

Due to the nature of the fabrication process and the early development phase of SiC 

integrated technology, multiple variants of SiC SRAM cells have been implemented for fabrication 

in RUN #1. Different values of CR (0.5, 1, 1.5, 2, 2.5) and PR (1, 2, 3, 4, 5, 6) are selected in order 

to determine the optimal cell size from the various performance parameters measured over 

temperature for each cell. SNM values for the different combinations of CR and PR are calculated 

using the model developed by Seevinck, et. al. [32]. Each cell variant is designed using minimum 

length NMOS and PMOS transistors (L = 1 µm). Fixed width NMOS (W = 4 µm) is used in the 

cross-coupled inverters, where the width of the PMOS increases to increase the pull-up ratio from 

2:1 to 12:1. 

Layouts for the cells are optimized for this process, but are affected by the limitation of the 

availability of only a single metal layer for routing. Thus, poly has been used as a second routing 
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layer. Poly is a more resistive routing layer (Rsh = 15 Ω/□.) and an effort was made to minimize 

its use in the various layouts. Two different layouts are designed to have reduced dimensions. Fig. 

9 shows both the layouts with their dimensions. The shown SRAM cells have a CR = 0.5 and PR 

= 6.0. In order to make bitline routing less resistive, only the metal layer is used. The downside to 

these layout decisions is that the power rails of a cell are routed on poly wherever bitline is 

crossing.”[10] 

 

Fig. 9. SRAM cell layouts. 

3.3 DC & Transient Measurements 

In all the combinations of CR and PR, the pull-down network always dominates, and the 

pull-up network cannot pull the node to VDD. In the implemented cell designs, the minimum CR 

is equal to 0.5, which means the pull-down network is at its lowest drive strength, and the 

maximum PR is set to 6.0. A PR of 6.0 indicates that the pull-up network is the strongest. CR and 

PR values are selected based on the PMOS to NMOS ratio of 5:1 and 6:1. However, due to the 
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unexpected drive strength ratios of fabricated PMOS and NMOS being 23:1 at 25°C and 10:1 at 

300°C, the pull-up strength is lower for all the implemented CR and PR combinations. The CR of 

0.5 means the pull-down transistor (M1 and M3 in Fig. 7) is at it’s minimum size (4 µm / 1 µm) 

and the access transistor (M5 and M6 in Fig. 7) is two times the size (8 µm / 1 µm) of pull-down 

transistor. The PR of 1 means that the pull-up transistor (M2 and M4 in Fig. 7) is at the same size 

(8 µm / 1 µm) as access transistor. The increase in the size of the pull-up transistor, increases the 

PR. For the PR of 2 the pull-up transistor is two times the size (16 µm / 1 µm) of the access 

transistor. Likewise, for PR of 3 it is three times (24 µm / 1 µm) and so on. Fig. 10 shows the SNM 

results for the CR of 0.5 with varying PR at 25°C and 300°C. The V1 is the voltage that is swept 

from 0 V to 20 V at the gate of the inverter (M3 and M4) of the SRAM cell shown in Fig. 7. The 

V2 is the voltage measured at the output of the inverter (M3 and M4). The result captured from 

the voltage sweep is the voltage transfer characteristics (VTC) of the first inverter (M3 and M4). 

The SNM for the SRAM is measured from the two back-to-back inverters. The VTC is plotted as 

V2 vs. V1, where V2 is on the vertical axis, and V1 is on the horizontal axis. The second inverter 

(M1 and M2) is identical to the first inverter, therefore first inverter VTC is used again but the 

axes are swapped. Now, the V2 is on the horizontal axis, and V1 is on the vertical axis. The back-

to-back VTC of the inverters is called butterfly plot and the diagonal of the largest square that fits 

within the back-to-back DC characteristics is the value of the SNM. The MATLAB code is 

developed (see Appendix C) to extract the value of the SNM from the butterfly curve. At high 

temperatures, the device performance gets better. Therefore, a minor increase in the pull-up 

network’s performance can be noticed in Fig. 10. Also as the PR is increasing the eye of the 

butterfly plot is also increasing, resulting in higher SNM values. 
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Fig. 10. SNM at 25°C and 300°C. 

All the measurements are performed on a Signatone probe station. A Keysight B1500 DC 

curve tracer has been used for sweeping the input voltages. Room temperature measurements were 

performed on all the SRAM cells, and then high-temperature measurements were subsequently 

performed. At temperatures above 300°C, the threshold voltage of NFETs dropped below 1 V, and 

the threshold of PFETs lowered down to -4 V from -8 V (at room temperature), which results in 
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lower SNM for the cells. A lower threshold for NFETs leads to the storage node being pulled down 

stronger than the PFETs can pull it up. 

An SNM of 4.71 V at 25°C and 4.65 V at 300°C demonstrates that the cell is capable to 

sustain this much of noise voltage at the supply voltage of 20 V. The noise can be triggered from 

the read or write operation. From Fig. 10, it can be seen that the implemented cells have the 

capability to hold the stored data at high temperatures, and the cross-coupled inverters are retaining 

their bistable states. An RSNM of 1.94 V at 25°C and 1.90 V at 300°C for CR=0.5 and PR=6.0 

shows some robustness against the noise generated from precharged bitlines during the read 

operation. But the RSNM values are not sufficient, and there is a room for improvement to 

guarantee a proper read operation without disrupting the stored bits. The WSNM cannot be 

evaluated because of the unanticipated poor drive strength of PFETs. The performance of the 

SRAM cell is expected to improve significantly with the improvement in the SiC CMOS process. 

Table 4. The SNM and RSNM at CR=0.5 

PR 
SNM(V) RSNM(V) 

25°C 300°C 25°C 300°C 

1 4.31 4.28 1.58 1.51 

2 4.39 4.27 1.65 1.62 

3 4.46 4.3 1.77 1.72 

4 4.51 4.42 1.83 1.79 

5 4.57 4.53 1.85 1.82 

6 4.71 4.65 1.94 1.90 

The test structure used for transient analysis has the CR = 0.5 and PR = 6.0. The test 

structure schematic is shown in Fig. 11. This analysis aims to check the operation of access 

transistors and the storing capability of the SRAM cell at elevated temperatures. Measurements 

were conducted on a high-temperature probe station from room temperature to 500°C. 
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Fig. 11. Half SRAM cell structure. 

During the initial test setup, the stored bit flips whenever the wordline was asserted. This 

was due to the 13 pF load of the oscilloscope on the V2 pad of the test structure. Later, a pico-

probe was connected at the output because it has only 0.1 pF of load. To see the functionality of 

the access transistors, four equal width pulses were triggered onto the wordline. During the first 

pulse, the V1 node was set to logic 0, resulting in logic 1 at V2. When the wordline triggers, the 

bitline copies the signal from the V2 node. Similarly, the second pulse of wordline V1 was set to 

1, which resulted in logic 0 at V2. At this instance, the bitline is already discharged to 0 V before 

the wordline triggers, and it stays logic 0 when the wordline triggers. The bitline signal is 

connected to a cell through the access transistors, and whenever that transistor turns on, it passes 

the signal from the cell to the bitline. Due to the poor PMOS drive strength, the bitline node cannot 

be pulled to the VDD rail. However, as the temperature increases, the rail voltage of the bitline 
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also increases. The V2 signal showed an offset with the increase in temperature due to the pico-

probe amplifier DC offset. Fig. 12 shows the captured results at probe station with temperatures 

between 25°C to 500°C. 

 

Fig. 12. Transient analysis of an SRAM Cell on the probe station at various temperatures. 
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4 The Novel SiC SRAM Cell Design in RUN #2 

4.1 Process Module change from RUN #1 to RUN #2 

RUN #1 measurement results revealed several issues related to the fabrication of different 

modules in the process. The lessons learned from RUN #1 were considered to improve the 

fabrication process of RUN #2. For the RUN #2 fabrication, foundry personnel decided to start 

with NWELL implants as the first ion implantation module in order to avoid P+ implants over-

etching. They also optimized the hard mask etching sequence. Additional process control modules 

are added in RUN #2 to avoid oxide residual during the formation of gate vias and also to monitor 

the formation of the ohmic contacts. 

The RUN #2 processing started with twelve wafers with various wafer splits, as shown in 

Table 5. After the completion of all the ion implantation modules, six wafers were set aside as a 

backup. Four wafers received a lower NWELL doping of 3E15 cm-3 that is expected to decrease 

the threshold voltage of PFETs. In RUN #1, the NWELL doping concentration was set to            

5E15 cm-3. P-doped polysilicon is selected for four wafers, and of these four wafers, two received 

the RUN #1 doping, and the other two received the adjusted NWELL doping. 

In RUN #1, an N-doped polysilicon was used. Changing to P-doped polysilicon type was 

estimated to increase the VTHN of NFETs by 1 V and decrease the VTHP magnitude of PFETs by 1 

V. Altering to P-doped poly resulted in higher interconnect resistance due to its larger sheet 

resistance value of 40 Ω/□ compared to 15 Ω/□ for n-doped poly. For P-doped poly wafers, local 

polycided interconnections were used to minimize the interconnect trace resistance. Aluminum 

and platinum metallization options were added in an effort to evaluate the high-temperature 

characteristics of each. 
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Table 5. Wafer Split for 12 100 mm SiC Wafers for RUN #2 

Wafer 1 2 3 4 5 6 7 8 9 10 11 12 

Isolation Type field oxide 

Gate Oxide 50 nm 

PASS0 Doping Reference X X     

These wafers are in processing 

Adjusted NWELL Doping   X X X X 

Polycided (TiSi) Local 

Interconnection 
X  X  X  

P-doped Polysilicon X X X X   

1 Layer Al and 1 Layer 

PolySi 
 X  X X X 

1 Layer Pt and 1 Layer 

PolySi 
X  X    

Passivation X X X X   

4.2 Proposed SiC SRAM Cell for RUN #2 

Given the significant changes from RUN #1 to RUN #2, new cell designs with additional 

pull-up strength and access transistors were created. The schematic for a novel SRAM cell is 

shown in Fig. 13. The issues encountered in RUN #1 and the uncertainty in the device performance 

of RUN #2 encouraged the design of an SRAM cell that is adaptable to the worst and the best 

cases. However, the tradeoff is made in the design size, number of I/Os, and the power 

consumption of the cell.  
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Fig. 13. Novel SiC SRAM cell for RUN #2. 
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The designed cell consists of an additional PFET in the inverters of the standard 6T SRAM 

cell, labeled as Q3 L and Q3 R in Fig. 13. These two transistors are connected to a separate supply, 

VDD2, offering flexibility to tune the drive strength for the pull-up network of the SRAM cell. 

Since the performance of the PFETs in RUN #2 was unknown, this design approach supports both 

worst and best cases in terms of PFET’s performance. The pull-up and pull-down networks must 

be precisely scaled to retain the stored bit in the SRAM cell. In addition to that, the access 

transistors are the key to perform the read and write operations. Due to unknown PFET behavior, 

parallel access transistors are added in the design (Q4 R, Q5 R, Q4 L, and Q5 L) controlled from 

two separate wordlines (WL1 and WL2). This allows for additional flexibility in the read and write 

operations without going through another design iteration. Two test structures are designed with 

different access transistor sizing; Table 6 shows the transistor sizing of the designed cell. 

Table 6. Novel SRAM Cell Transistor Sizes 

Transistor Q1 L Q2 L Q3 L Q4 L Q5 L Q1 R Q2 R Q3 R Q4 R Q5 R 

TS1 Widths 

(µm) 
5 50 50 8 8 5 50 50 8 8 

TS2 Widths 

(µm) 
5 50 50 5 5 5 50 50 5 5 

The layout of the cell designed in RUN #2 is shown in Fig. 14. The trade-off is made in 

the cell area, and it is at least two times larger than RUN #1 SRAM cell. The availability of only 

one metal layer in the process made the layout a challenge. Therefore, to keep the cell density 

smaller, the poly layer is used as a second routing layer. Even though the poly layer has higher 

resistance, it is used to route the power nets. The metal layer is used to route the bitlines because 

they need to be less resistive to perform read and write operations faster. 
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Fig. 14. Novel SiC SRAM cell layout in RUN #2. 

4.3 High-Temperature Sense Amplifier Architectures 

Voltage sense amplifier architectures are designed in RUN #2. A conventional CMOS latch 

type sense amplifier (shown in Fig. 8) and an improved latch type sense amplifier (shown in Fig. 

15) were designed and characterized at high temperatures using a probe station.  

The improved latch type voltage sense amplifier (Fig. 15) operates in two phases, charging 

and intentional discharging. In the first phase, the bitlines that are connected to SRAM cells are 

charged to VDD through Qp1, Qp2 and Qp3. In the second phase, the bitlines discharge through 

the SRAM cell depending on the data bit stored in that SRAM cell. The difference in the bitline 



 

35 

 

voltages is detected by the cross coupled connected inverters Qp8-Qn3 and Qp9-Qn4. The bitlines 

connected to Qp4 and Qp5 disconnect once the Qn5 transistor switches on. In a conventional sense 

amplifier, the bitlines completely discharge through the sense amplifier which result in long read 

times. However, in an improved latch type architecture the read times are lower because the 

bitlines does not discharge through the sense amplifier. The results measured at probe level for the 

improved latch type sense amplifier are shown in Fig. 16. The design is characterized from room 

temperature to 500°C. The pre-charge signal is asserted low for 30 µs to charge the bitlines to 

VDD. At room temperature the bitlines charging time is around 20 µs. As the temperature increases 

to 500°C the significant reduction in charging time is evident. The bitlines are connected to the 13 

pF load of an oscilloscope that mimics the load of the bitlines when connected with the SRAM 

array. If the sense amplifier is connected with the SRAM cell the wordline signal should be 

triggered after the bitlines are charged to VDD. After the pre-charge cycle is completed, the Enable 

Signal (SE) is triggered high and the difference in the bitlines is detected by the cross-coupled 

inverter. The difference between the two bitlines is not visible in the presented data. But the 

decrease in BL signal over time indicated that the BL signal is lower than the BLB signal. Hence 

the OUT signal switched low when the SE signal goes high, OUTN is the complementary of OUT 

so it stays high.  
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Fig. 15. Improved latch type sense amplifier. 
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Fig. 16. Probe level measurements of an improved latch type sense amplifier. 
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5 Test-plan for SRAM & Sense Amplifiers 

The testplan for the designed SRAM is of utmost importance. Therefore, a considerable 

amount of time was spent in the development of the testplans. Noise margin is the SRAM cell's 

most essential characteristic and is widely accepted as the Figure-of-Merit (FOM) across all the 

conventional and non-conventional process technologies. Hence, the SRAM cell design in RUN 

#2 is characterized for noise margins and data retention voltages (DRV). The RUN #2 wafers are 

comprised of multiple wafer splits, and an SRAM cell is characterized on all the splits except those 

deposited with platinum metallization. The cell is evaluated by three different noise margins, 

namely, Static Noise Margin (SNM), Read Static Noise Margin (RSNM), and Write Static Noise 

Margin (WSNM). The testplans are developed to characterize the SRAM cell and provide an in-

depth understanding of the wafer splits and qualify the SiC process for the memory's design and 

development. Another vital piece of the testplan is understanding the cell's characteristics at high 

temperatures (500°C). 

The test setup includes a probe station that has the capability of high-temperature 

measurements, Keysight’s B1500 DC Curve tracer, and power supply. The high-temperature probe 

station is rated to operate from room temperature to 600°C. There is also a chiller connected with 

the probe station that helps regulate the set temperature, and it is also used for the rapid cooldown 

of the chuck. The test setup is shown in Fig. 17. The Device Under Test (DUT) is placed on the 

chuck and via manipulators connected to different equipment pieces. At high-temperatures, the 

manipulator’s probe tip tends to increase in resistance because of oxidation; hence in this test setup, 

the resistance of the probe tips is checked every time the temperature is increased. The probe tips 

are replaced whenever their resistance increases above 0.5 Ω. At and above 200°C, the probe tips 

extend due to thermal expansion. Due to that, the probe positions that worked at room temperature 
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do not work and extend into the die, destroys the pads, and the die is not useful anymore. Therefore, 

before probing the die at high-temperature, probe tips are left floating for approximately ~ 20 

minutes at 500°C to go through the thermal expansion process. The Keithley’s B1500 DC curve 

tracer comprises six Source Measurement Units (SMU) and a Capacitance Measurement Unit 

(CMU). The SMU connected to the DUT inputs is configured as a voltage source while the SMU 

connected to the DUT output is configured as a current source to measure the voltage. A detailed 

and concise tutorial was also developed on how to use the B1500 DC curve tracer for this work 

and is included in Appendix B. This tutorial may help a new user understand the key features of 

the B1500 DC curve tracer's testing capabilities without going through the manufacturer's 

extensive manual.  

 

Fig. 17. High temperature probe level test setup. 
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5.1 Testplan for DC Characterization of the Memory Cell  

As the proposed SRAM cell has two supply voltages, and two wordline signals (WL1 and 

WL2), the testplan is different than the usual SRAM testplan. For SNM, six testplans were 

developed. In testplan #1, VDD1 and VDD2 are set to a DC voltage of 20 V (later on 15 V and 10 

V) and V1 is swept from zero to VDD as the output voltage is measured on V2. The rest of the I/O 

pins are shorted with VSS or set to zero volts. During testplan #1, the transistors and nets not 

contributing electrically in the SNM are gray, as shown in Fig. 18. The SRAM schematic during 

testplan #2 is shown in Fig. 19. V2 is swept from zero to VDD as the output voltage is measured 

on V1. The SNM parameter is extracted from the Voltage Transfer Characteristics (VTC) of an 

inverter. Since the SRAM cell has two inverters connected in a cross-coupled configuration, it is 

typically unnecessary to measure both the inverters separately in conventional process technology, 

allowing only one VTC curve to produce the SNM value. However, in the SiC process, it is 

essential to measure both inverter’s VTC because of a single metal layer and process variability. 
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Fig. 18. SNM testplan #1, VTC of the right side inverter. 
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Fig. 19. SNM testplan #2, VTC of the left side inverter. 

Testplan #3 and testplan # 4 are depicted in Fig. 20 and Fig. 21, respectively. Like testplan 

#1 and testplan #2, wordline I/Os and bitline I/Os are grounded. In addition to that, VDD2 is also 

set to ground which disables one PMOS in the schematic. It is expressed in Fig. 20 by setting the 

color to the gray of Q3 R. Similarly, in Fig. 21, Q3 L is not effective during the test. 
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Fig. 20. SNM testplan #3, VTC of the right side inverter with only VDD1. 
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Fig. 21. SNM testplan #4, VTC of the left side inverter with only VDD1. 

In testplan #5 and testplan #6, only VDD1 is set to ground along with the wordline and 

bitline nodes. VDD2 is connected with the voltage source that enables the PMOS that was disabled 

in testplan #3 and #4. Fig. 22 and Fig. 23 shows the schematic during testplan #5 and testplan #6, 

respectively. The SNM testplans are configured so that DRV can also be measured. The DC curve 

tracer is programmed to run the tests sequentially; first, it runs the test with a VDD of 20 V, 

followed by tests at 15 V, and 10 V. The measured data then post-processed to capture the DRV 

plots for SNM. 



 

43 

 

Q1 R

Q2 R Q3 R

VDD1

VDD2

VSS

Q5 R

Q6 R

BLB

V2

Q1 L

Q2 LQ3 L
Q5 L

Q6 L

BL

V1

WL2

WL1

SMU (V)
SMU (I)

SMU (V)

 

Fig. 22. SNM testplan #5, VTC of the right side inverter with only VDD2. 
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Fig. 23. SNM testplan #6, VTC of the left side inverter with only VDD2. 

For the RSNM measurement of the right side of an SRAM, BLB is set to logic ‘1’ via SMU 

5 and, BL is swept from ‘0’ to ‘1’ logic by SMU 4. The output voltage is measured at V2 by 

configuring SMU 4 as a current source. The current is set to zero, which acts as an infinite 

resistance on V2. The test setup to measure RSNM on the right side of the designed SRAM and 

all the possible configurations during the read mode are illustrated from Fig. 24 to Fig. 32. A 

similar test setup is implemented to measure the RSNM parameter from the left side of the SRAM. 
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Similarly, to the SNM testplans, the RSNM testplans are also configured to do DRV by 

programming the DC curve tracer. The measured data are then post-processed to capture the DRV 

plots for RSNM. 
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Fig. 24. RSNM testplan #1, right side with both wordlines active. 
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Fig. 25. RSNM testplan #2, right side with only VDD1, both wordlines are active. 
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Fig. 26. RSNM testplan #3, right side with only VDD2, both wordlines are active. 
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Fig. 27. RSNM testplan #4, right side with only WL1 active. 
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Fig. 28. RSNM testplan #5, right side with only WL1 and VDD1 active. 
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Fig. 29. RSNM testplan #6, right side with only WL1 and VDD2 active. 
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Fig. 30. RSNM testplan #7, right side with only WL2 active. 

Q1 R

Q2 R Q3 R

VDD1

VDD2

VSS

Q5 R

Q6 R

BLB

V2

Q1 L

Q2 LQ3 L
Q5 L

Q6 L

BL

V1

WL2

WL1

SMU3 (V)

SMU4 (I)

SMU2 (V)

SMU5 (V)

 

Fig. 31. RSNM testplan #8, right side with only WL2 and VDD1 active. 
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Fig. 32. RSNM testplan #9, right side with only WL2 and VDD2 active. 

The WSNM test setup is similar to the RSNM test setup; except that BLB is tied to logic 

‘0’ when measuring the write margin of the right side of the cell, as shown in Fig. 33. BL is also 

swept from logic ‘0’ to ‘1’ via SMU 3, and the output is measured at V2. All the other possible 

test setups and configurations are similar to RSNM testplans, and therefore, they are omitted here. 

The DC curve tracer is also programmed in WSNM testplans to capture the DRV data, and later 

post-processed to obtain DRV for WSNM. 
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Fig. 33. WSNM testplan #1, right side with both wordlines active. 
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5.2 Test-plan for the Sense Amplifiers 

To check the functionality of two different types of sense amplifiers, two testplans are 

created. The testplan for the first architecture is shown in Fig. 34, along with the test setup. The 

test is performed on the high-temperature probe station; other pieces of equipment used in the test 

setup are the function generator, power supply, and oscilloscope. The function generator has two 

channels; channel 1 is used to generate a pre-charge (PC) signal, a 30 µs active low pulse, and 

channel 2 generates a short 5 µs active high pulse for sense enable (SE) port. The function 

generator is programmed to assert PC pulse first and then adds a delay of 10 µs, afterward assert 

a SE pulse. The delay of 10 µs between the two pulses is enough to generate a difference in the 

voltages at BL and BLB nodes, latching the cross-coupled inverters. 
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Fig. 34. Test setup for conventional sense amplifier. 

The second architecture is the improved variant for the conventional sense amplifier. In its 

test setup, active probes are used at the output ports because they are connected to the cross-

coupled inverters. The rest of the equipment and their settings are the same as mentioned in the 
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previous testplan. The test setup for the improved conventional sense amplifier is shown in Fig. 

35. 
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Fig. 35. Test setup for improved conventional sense amplifier. 

5.3 Test-plan for the Transient Characterization of the Memory Cell 

Generally, the SRAM cell's transient characteristics are performed with the sense amplifier, 

and the data write buffers. The data write buffers are used to set complementary logic ‘1’ or ‘0’ on 

the two bitlines; e.g., if the user wants to write ‘1’, the data write buffer assert logic ‘1’ on BL and 

logic ‘0’ on BLB; vice versa if the user wants to write ‘0’. The data write buffer circuit is not 

implemented in this work; instead, a power supply is used to toggle the bitlines that perform the 

write operation. The write operation is straightforward and does not impose any difficulty and 

challenge in the design and implementation. On the contrary, the read operation is challenging 

because there is a possibility of flipping the data. Hence, care must be given to the read operation.  

The read operation is performed through the sense amplifier. The improved variant of the 

sense amplifier is used with the SRAM cell to test the read operation. The SRAM cell and sense 

amplifiers are die attached and wirebonded on two different 68-pin quad flat package (QFP) leaded 
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chip carriers (LDCC). Afterward, these packages are soldered to the Rogers board. The hotplate is 

used to characterize the system at high temperatures. The targeted temperature is 500ºC, but the 

Rogers board and the solder cannot sustain this high temperature. A cutout is made in the center 

of the Rogers board, and heat is applied directly to the chip carrier through a copper finger that is 

placed on the hotplate. 

The electrical test setup includes the power supply, two function generators, oscilloscope, 

multimeter, and a computer. The power supply is used to apply DC voltage to the cell and the 

amplifier. The two wordline signals for the SRAM cell are generated from the function generator. 

Both channels of the function generator are set to trigger 2 µs active high pulse at the same instance. 

The signal enable, and pre-charge signals are generated the same way as mentioned in section 5.2. 

The trigger option in the function generators is used to synchronize these four signals. The pre-

charge signal asserts first for 25 µs, the wordline signals assert after a delay of 5.05 µs and in the 

last signal enable goes high for 10 µs after a delay of 1 µs. The timing sequence to execute the 

read operation is shown in Fig. 36. 
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Fig. 36. The timing sequence of the signals required for the read operation. 

The SRAM and sense amplifier signals such as two wordlines, pre-charge, signal enable, 

bitlines, and output signals are monitored on the oscilloscope. The oscilloscope used in this test 

setup has four analog channels and 16 digital channels. Therefore, to see all the signals, both analog 

and digital ports are used. The signals generated from function generators are monitored on the 

digital ports, and the bitlines and output signals are monitored on the analog channels. This test 

setup requires many jumper wires and connections; thus, a multimeter is used to check the 

connectivity and voltage levels at different test setup points to ensure that the connections are fine. 

The desired parameters from this test setup are the read access time and the output voltage levels. 

The illustration of the test setup is shown in Fig. 37. And the actual test setup is shown in Fig. 38. 
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Fig. 37. The illustration of test setup for transient characterization. 

 

Fig. 38. The actual test setup for transient characterization. 
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6 Results and Analysis 

The results obtained from the testplans explained in the previous chapter are presented in 

this chapter. This chapter includes the DC and transient characteristics for the proposed SRAM 

design. The sense amplifier performance influences the SRAM's transient characteristics; hence, 

it is the memory module performance evaluation and not only the SRAM.  

6.1 Static Noise Margin 

The discussion of SNM testplans included in chapter 6 is summarized in Table 7. The SNM 

is measured for three uniquely processed wafers, with voltage levels of 20 V, 15 V, and 10 V. 

Furthermore, each voltage level is further evaluated at 25°C, 250°C, and 500°C for all three wafers. 

Table 7. The Summary of the SNM Testplans 

 VDD1 VDD2 V1 V2 WL1,WL2,BL,BLB 

Testplan #1 (TP1) ON ON V sweep V Out NC 

Testplan #2 (TP2) ON ON V Out V sweep  NC 

Testplan #3 (TP3) ON OFF V sweep V Out NC 

Testplan #4 (TP4) ON OFF V Out V sweep NC 

Testplan #5 (TP5) OFF ON V sweep V Out NC 

Testplan #6 (TP6) OFF ON V Out V sweep NC 
NC=No connection 

SNM plots are very well adopted for graphical analysis of the SRAM. It shows the 

tolerance of an SRAM cell to noise before it risks losing the memorized bit. SNM is a 

straightforward measurement that can be represented with just one number, which means that it 

does not identify any dynamic noise that may have flipped the bit. But, since it is just one number, 

it is easy to compare values and get a feel when the SNM operating conditions might cause trouble 

to the stored bit. The SNM for the SRAM is measured from the two back-to-back inverters. Both 

the inverters are characterized for their Voltage Transfer Characteristics (VTC). The VTC from 

the first inverter is plotted as VOUT vs. VIN, where VOUT is on the y-axis, and VIN is on the x-
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axis. The axes are swapped for the VTC of the second inverter; VOUT is on the x-axis, and VIN 

is on the y-axis. The diagonal of the largest square that fits within the back-to-back DC 

characteristics is the value of the SNM. Since the SRAM design reported in this work is in an 

emerging process, it is significantly more prone to Process Voltage Temperature (PVT) variations. 

Also, the harsh conditions such as 500°C operating temperatures are beyond the SRAM cell's 

capability that is achievable in a conventional silicon process. Therefore, the VTC of the two 

inverters are not symmetric. The SNM value is measured from the smallest of the two possible 

squares (one on each side of the cross-over point). 

The SNM plot shown in Fig. 39 compares the results between wafer 2, wafer 4, and wafer 

6 at room temperature with a VDD of 20 V. The plot is created from the TP1 and TP2 data. Ideally, 

the cross-over point is at the mid-level of the supply voltage. Wafer 6 SNM is very close to the 

ideal plot since it is the closest wafer split to the PASS0 wafers. Furthermore, the device models 

used for the PASS1 tapeout were developed from the PASS0 devices. Wafer 4 and Wafer 2 were 

deposited with P-type poly to increase the NMOS threshold and decrease the magnitude of the 

PMOS threshold. Hence, the shift in the cross-over point due to the threshold is prominent in Fig. 

39. The center point for the SNM of wafer 2 and wafer 4 shifts towards VDD, which means the 

PMOS threshold has decreased and the NMOS threshold increased. The NWELL doping between 

wafer 2 and wafer 4 is slightly different, which created a minor change in the center point between 

the two wafers. Based on the results shown, the PMOS threshold on wafer 2 is lower than the 

PMOS threshold on wafer 4, and the NMOS threshold is similar for both wafer 2 and wafer 4 

because there was no change in the PWELL doping concentration. 
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Fig. 39. SNM plots from TP1 and TP2. 

The value of the SNM is calculated by rotating the plot (i.e., Fig. 39) 45° counterclockwise. 

The data is converted to the polar coordinates by using Eq. (1); and to rotate the data, 45° is added 

to the converted theta. Finally, the data is converted back to Cartesian coordinates by using Eq. 

(2). The 45° rotated data is shown in Fig. 40. The difference between the minima and maxima is 

the value of the SNM [32]. MATLAB is used to automate the data rotation, and the code is shown 

in the Appendix C. 

𝑟 = √𝑥2 + 𝑦2 

𝜃 = tan−1
𝑦

𝑥
 

(1) 

𝑥 = 𝑟 ∗ 𝑐𝑜𝑠𝜃 

𝑦 = 𝑟 ∗ 𝑠𝑖𝑛𝜃 
(2) 
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Fig. 40. 45° rotated SNM plot. 

The data captured from TP1 and TP2 at 250°C and 500°C with a VDD of 20V are shown 

in Fig. 41. The SNM plots at 500°C have never been reported in the literature. The high-

temperature data is measured at 500°C first and then at 250°C. For wafer 6, the cross-over point 

moves upwards with the increasing temperature. However, the cross-over point for wafer 2 and 

wafer 4 does not follow a similar trend, even though these wafers encounter a similar threshold 

shift as seen in wafer 6. The test conditions are the same as the sample die from each wafer are 

placed side-by-side and tested together. 
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Fig. 41. SNM plot at 250°C and 500°C. 

The difference in the trend is due to the failure of wafer 2 and wafer 4 devices at 250°C. 

All three wafers worked at 500°C for at least 3 hours, but wafer 2 and wafer 4 stopped working 

after temperature cycling. Hence, at 250°C new die from wafer 2 and wafer 4 were used for the 

characterization. This failure's potential cause is the poly module because this is the first time the 

foundry processed a P-type poly in their SiC process. Wafer 6 was deposited with an N-type poly 

module, and the foundry is using it widely in its SiC processes. Thus, after temperature cycling, 

wafer 6 did not show any signs of failure. The high-temperature SNM data from TP1 and TP2 is 

shown in Table 8, analyzed from the MATLAB code. 

Table 8. Temperature Dependency on SNM at VDD =20 V 

 25°C 250°C 500°C 

Wafer 2 11.35 10.46 10.16 

Wafer 4 10.91 10.21 9.21 

Wafer 6 10.99 10.54 10.42 

The SNM data from TP3 and TP4, at a VDD of 20 V for Wafer 6 are shown in Fig. 42. 

The region of interest highlighted in the figure is due to the poor P-type contacts. If the P-type 

contacts are ohmic, then the SNM plot in Fig. 42 must look like the SNM plot shown in Fig. 39. 
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In this process, the P-type MOSFETs performance is significantly impacted by the non-ohmic 

contacts. Due to this, a significant voltage drop across the PMOS’s source to drain is evident. 

Therefore, to overcome the contacts' non-ohmic behavior, an additional PMOS transistor is added 

in the SRAM cell, which makes this cell unique and adds the flexibility to control the SNM of the 

cell. 
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Fig. 42. SNM plot from Wafer 6 at a wide range of temperatures. 

Interestingly, the voltage drop in the region of interest is reducing with the increase in V1 

voltage. The general understanding is that the voltage drop due to non-ohmic contacts are constant; 

however, the results shown in Fig. 42 contradicts this assumption. One way to investigate this 

change is to use MOSFET square law equations but deriving these equations to account for the 
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poor p-type contacts is tedious and not worthy of an effort. The second option is to use the device 

models that can incorporate the non-ohmic contacts of the PMOS. The foundry provided the 

SPICE models generated through TCAD; this model's general approach is described in [33]. The 

output curve of the PMOS from the model is shown in Fig. 43. The model can show the Schottky 

behavior in the cut-off and linear region of the PMOS. Since these models are generated from 

TCAD, they are good for observing different fabrication effects such as doping concentrations on 

the MOSFET’s I-V characteristics. The other known limitations of this model are that there is no 

model for the body diode, the subthreshold region is overestimated, and there is no model for the 

gate leakage current. Furthermore, no noise characterization is modeled, and no dynamic 

characteristics such as gate-drain and gate-source are modeled either. In addition to that, these 

models are developed for 6 µm channel length devices. Hence, these models are not much use for 

circuit-level simulations. Regardless of all the limitations in the models, an LTspice simulation for 

the SRAM cell is created to reproduce the measured results. The channel length used in the 

simulation is 6 µm, but the transistors' width is increased to reflect the same PMOS to the NMOS 

ratio in the fabricated cell. The simulation results are shown in Fig. 44. The V2 voltage is the VTC 

of an SRAM cell and as expected, due to the model limitations, results similar to the measured 

data could not be reproduced; as the voltage drop is only evident at a V1 of 3 V up to the cross-

over point. 
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Fig. 43. PMOS Output curve at 25°C from foundry provided model. 

 

Fig. 44. Testbench and VTC results from foundry provided SPICE models. 

To explain the voltage drop in the SNM plots, the graphical method to generate the VTC 

is adopted [34]. The nature of the VTC can be deduced by superimposing the PMOS and NMOS 

I-V characteristics. Such representation is called a load-line plot. The I-V characteristics of the 

PMOS is transformed onto the NMOS coordinates. The input voltage V1 and the output voltage 

V2 and NMOS drain current ID are selected as the variables. The PMOS I-V can be translated into 

these variables by following the set of equations mentioned below: 
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𝐼𝐷(𝑃𝑀𝑂𝑆) = −𝐼𝐷(𝑁𝑀𝑂𝑆) 

𝑉𝐺𝑆(𝑁𝑀𝑂𝑆) = 𝑉1 ; 𝑉𝐺𝑆(𝑃𝑀𝑂𝑆) = 𝑉1 − 𝑉𝐷𝐷 

𝑉𝐷𝑆(𝑁𝑀𝑂𝑆) = 𝑉2 ; 𝑉𝐷𝑆(𝑃𝑀𝑂𝑆) = 𝑉2 − 𝑉𝐷𝐷 

 

The load-line curve for the PMOS is obtained by mirroring about the x-axis and by a 

horizontal shift over VDD. This procedure is outlined in Fig. 45. 

 

Fig. 45. Transformation of PMOS I-V to common coordinate set [34]. 

After superimposing PMOS I-V data to the common coordinates to NMOS, the obtained 

plot is shown in Fig. 46. The PMOS and NMOS data is adjusted to fit the transistor size used in 

the SRAM cell. The PMOS size is 50 µm / 2 µm and NMOS size is 5 µm / 2 µm in the cell. The 

test structures for PMOS and NMOS measured for this analysis have the size of 20 µm / 2 µm. 

Therefore, the 20 µm / 2 µm data is scaled to match the transistors size of the cell. The PMOS data 

is multiplied by 2.5 and the NMOS data is divided by 4 with the consideration that the device 

characteristics scale linearly with the width of the transistor. 
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Fig. 46. Load curves for NMOS and PMOS transistors. The yellow region represents the 

effect of poor p-type contacts in PMOS. 

For the DC operating points to be valid, the currents through the NMOS and PMOS devices 

must be equal. This means that the dc points must be located at the intersection of corresponding 

load lines. As can be observed in the highlighted region in Fig. 46, the PMOS cut-off region is at 

zero current for about 2 V due to the non-ohmic contacts. The intersection points in the highlighted 

region for Vg = 0, 2, and 4 of an NMOS are occurring at almost zero currents, and the current 

conduction in PMOS is starting around 18 V. Although the I-V data is adjusted to the size of the 

cell, it is sufficient to show the reason of the voltage drop in the measured data. Graphically, all 

the observations extracted from the load-line plot are translated into the VTC, shown in Fig. 47. 

The extracted data does not have the similar voltage drop due to the scaling of I-V data. However, 

the decrease in voltage drop with the increase in V1 phenomena matches with the measured data. 
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The drop in V2 voltage is due to the increase in source-drain saturation voltage (VDS,Sat). Due to 

the soft transition from the linear to saturation region the change in VDS,Sat is not very prominent. 
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Fig. 47. Measured vs. Extracted VTC. 

The SNM results from TP5 and TP6 exhibit similar characteristics as seen from TP3 and 

TP4. Therefore, they are omitted here. 

6.2 Read Static Noise Margin 

Read operation is the most vulnerable to noise, and the degradation in RSNM results in a 

destructive read operation. The designed cell has a pair of access transistors (TxAccess) connected 

on each bitline, allowing different cell configurations. The cell is characterized using all the 

configurations mentioned in the testplans covered in Chapter 4. In order to get accurate 

measurements similar to SNM, both right and left inverters are measured for RSNM. Table 9 
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shows the testplans for the right side of the inverter; the same testplans are used to measure the 

RSNM for the left side of the inverter. 

Table 9. Summary of the RSNM Testplans 

 VDD1 VDD2 V1 V2 WL1, WL2, BL, BLB 

Testplan #1 

(TP1) 
ON ON NC V Out ON ON V sweep ON 

Testplan #2 

(TP2) 
ON OFF NC V Out  ON ON V sweep ON 

Testplan #3 

(TP3) 
OFF ON NC V Out  ON ON V sweep ON 

Testplan #4 

(TP4) 
ON ON NC V Out ON OFF V sweep ON 

Testplan #5 

(TP5) 
ON OFF NC V Out ON OFF V sweep ON 

Testplan #6 

(TP6) 
OFF ON NC V Out ON OFF V sweep ON 

Testplan #7 

(TP7) 
ON ON NC V Out OFF ON V sweep ON 

Testplan #8 

(TP8) 
ON OFF NC V Out OFF ON V sweep ON 

Testplan #9 

(TP9) 
OFF ON NC V Out OFF ON V sweep ON 

NC=No connection 

The RSNM data is measured on all the testplans, but only TP1 and TP4 (or TP7) data are 

discussed here; TP4 and TP7 have identical results. The data from VDD1 or VDD2 (i.e., TP2, TP3, 

TP5, TP6, TP8, and TP9) are ignored because with a single VDD; the PMOS drive strength is 

weak due to the poor P-type contacts. With the help of illustration (Fig. 48), the effect on RSNM 

from two parallel access transistors (TxAccess) is shown. Consider that the right side of the SRAM 

is holding a logic ‘0’ stored bit, the bitlines are charged to logic ‘1’, and the wordlines are asserted 

for both Q4 R and Q5 R. Subsequently, the bitline (BLB) potential drops because of the ISink 

through Q1 R and will create a potential at node V2. The discharge rate dictates the amount of 

potential at node V2; a slow discharge lowers the voltage at node V2, and a faster discharge drops 

the voltage rapidly. Both fast and slow discharge can cause the destructive read; hence, the access 
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transistors' proper sizing is essential in the SRAM design. It is important to have multiple design 

iterations, followed by tapeouts, for SRAM cell design, even in mature process technologies.  
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Fig. 48. RSNM illustration. 

The RSNM plots at 25°C and 500°C from Wafer 6 are shown in Fig. 49. As the width of 

the TxAccess is increasing, the area of the eye in the plot is decreasing. The data is measured for two 

different test structures to see the effect of the TxAccess width. The width of the TxAccess in the first 

test structure (TS1) is 8 µm; if only one wordline is active (WL1 or WL2), the effective width is  

8 µm, and if both wordlines are active, then the width becomes 16 µm. The second test structure 

(TS2) has a width of 5 µm for the TxAccess. And when both wordlines are active, then the width is 

10 µm. The highest RSNM value is observed at TS2, when only one wordline is active, which 

corresponds to a width of 5 µm. The data at 500ºC shows erratic behavior between left and right 

inverters, the effect of an increase in the width is not following the same trend as it is on the left 

side of the inverter. One of the potential causes of this behavior is the temperature cycling that 

occurred while conducting these measurements, causing the devices to deteriorate. 
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Table 10 summarizes RSNM across all three wafers and shows the dependency of RSNM 

on temperature and the changing width of TxAccess. The value of RSNM is extracted via the 

MATLAB code, and all three wafers depicted that the highest RSNM value is with the smallest 

TxAccess.  
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Fig. 49. RSNM plots (a) At 25°C (b) At 500°C. 

Table 10. RSNM for Wafers 2, 4, and 6 at 20V with Varying Temperatures 

  
 25ºC 250ºC 500ºC 

Wafer 2 

TS1 W=8um 6.6213 V 6.448 V 6.6796 V 

TS1 W=16um 6.1436 V 5.9965 V NA 

TS2 W=5um 7.6817 V 7.3016 V 6.6018 V 

TS2 W=10um 6.6915 V 5.7867 V 6.2143 V 

Wafer 4 

TS1 W=8um 6.5351 V 6.0608 V 5.8707 V 

TS1 W=16um 6.0427 V 5.3307 V 5.6373 V 

TS2 W=5um 7.57 V 6.0308 V 6.702 V 

TS2 W=10um 6.8442 V 5.5403 V 6.3128 V 

Wafer 6 

TS1 W=8um 5.9869 V 6.2522 V 5.4501 V 

TS1 W=16um 5.247 V 5.4603 V 5.2182 V 

TS2 W=5um 7.26 V 6.89 V 6.2197 V 

TS2 W=10um 5.7126 V 5.8693 V 6.0192 V 
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6.3 Write Static Noise Margin 

In write mode, the cell needs to flip the stored bit from ‘0’ to ‘1’ and ‘1’ to ‘0’. It is 

contradictory to the read mode. The goal is to avoid the flipping of a stored bit in the read mode, 

and therefore the TxAccess are sized accordingly. Based on the RSNM results, the best size is the 

smallest TxAccess. However, the smallest transistor limits the write operation. Hence, the size of the 

TxAccess needs to be adjusted for the proper write operation. Generally, this is the reason for having 

multiple iterations for the SRAM cell design. Table 11 shows all the testplans developed to 

measure WSNM, but only TP1 and TP4 (or TP7) results are discussed here. The data is 

characterized for different TxAccess widths; the WSNM plots from wafer 6 at room temperature and 

500ºC are shown in Fig. 50. Similar to RSNM, the width of TxAccess has a significant impact on the 

WSNM. The WSNM decreases with the decrease in the width of TxAccess.  

Table 11. Summary of the WSNM Testplans 

 VDD1 VDD2 V1 V2 WL1, WL2, BL, BLB 

Testplan #1 

(TP1) 
ON ON NC V Out ON ON V sweep OFF 

Testplan #2 

(TP2) 
ON OFF NC V Out  ON ON V sweep OFF 

Testplan #3 

(TP3) 
OFF ON NC V Out  ON ON V sweep OFF 

Testplan #4 

(TP4) 
ON ON NC V Out ON OFF V sweep OFF 

Testplan #5 

(TP5) 
ON OFF NC V Out ON OFF V sweep OFF 

Testplan #6 

(TP6) 
OFF ON NC V Out ON OFF V sweep OFF 

Testplan #7 

(TP7) 
ON ON NC V Out OFF ON V sweep OFF 

Testplan #8 

(TP8) 
ON OFF NC V Out OFF ON V sweep OFF 

Testplan #9 

(TP9) 
OFF ON NC V Out OFF ON V sweep OFF 

NC=No connection 
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Fig. 50. WSNM plots (a) At 25°C (b) At 500°C. 

As mentioned in the testplans section, the right inverter output is connected to the logic ‘1’ 

via TxAccess; therefore, it is the same configuration as in the RSNM testplan. The left inverter is 

connected to logic ‘0’ through TxAccess, which means it tries to keep the inverter output to logic ‘0’ 

while the left side inverter's input is sweeping from logic ‘0’ to logic ‘1’. Thus, the left inverter 

plots in Fig. 50 depict this behavior. The WSNM from all three wafers at varying temperatures is 

listed in Table 12. All three wafers show better WSNM with a larger width of TxAccess; wafer 6 

results are better compared to wafer 2 & 4. Wafer 2 and Wafer 4 show a negative WSNM, which 

means the write operation cannot be performed on the cell with a smaller width of TxAccess. Based 

on the results achieved from WSNM and RSNM, the better cell configuration for high temperature 

and at low temperature is TS2 when both wordlines are active. Due to the SRAM cell's design 

flexibility, another possible configuration is where the read operation can be performed with only 

one wordline active. And for a write operation, both wordlines are used. 
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Table 12. WSNM for Wafer 2, 4, and 6 at 20 V with Varying Temperatures 

  25ºC 250ºC 500ºC 

Wafer 2 

TS1 W=8um 2.5578 V 2.9749 V 2.1615 V 

TS1 W=16um 7.1937 V 7.1301 V 5.9865 V 

TS2 W=5um -0.9222 V -0.1524 V 0.2826 V 

TS2 W=10um 3.7551 V 3.9543 V 3.3309 V 

Wafer 4 

TS1 W=8um 2.3422 V 1.4735 V 0.8266 V 

TS1 W=16um 7.2708 V 6.3353 V 6.0216 V 

TS2 W=5um -0.6907 V -1.7803 V -3.7002 V 

TS2 W=10um 4.0499 V 2.499 V 3.2371 V 

Wafer 6 

TS1 W=8um 4.9358 V 2.7198 V 4.8334 V 

TS1 W=16um 9.2204 V 7.4266 V 7.1955 V 

TS2 W=5um 1.422 V -0.161 V 1.1629 V 

TS2 W=10um 5.6351 V 3.6647 V 3.9679 V 

6.4 Data Retention Voltage 

The data retention voltage (DRV) of an SRAM is the minimum supply voltage at which its 

cell can retain its state. The characterization of DRV is vital, and from its minimum value, the 

SRAM array's power consumption in hold state can be estimated. For the designed cell, SNM is 

measured at 20 V, 15 V, and 10 V at different temperatures for all three wafers. The DRV results 

at room temperature and 500ºC from wafer 6 are shown in Fig. 51. Similar to SNM data discussed 

in Section 6.1, the increase in temperature shifts the metastable point or crossover point towards 

the right, which is due to the lowering of the PMOS threshold magnitude and lowering of the 

threshold of NMOS. Table 13 shows the DRV for all the three wafers at varying temperatures; 

with the increase in temperature the SNM decreases on all the different supply voltages. 
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Fig. 51. DRV (a) At 25°C (b) At 500°C. 

Table 13. DRV (SNM) at Varying Temperatures 

  25ºC 250ºC 500ºC 

Wafer 2 

10 V 6.4962 V 6.2426 V 6.0708 V 

15 V 8.8524 V 8.4709 V 8.1563 V 

20 V 11.35 V 10.46 V 10.16 V 

Wafer 4 

10 V 6.3621 V 5.9606 V 5.3229 V 

15 V 8.735 V 8.0534 V 7.3066 V 

20 V 10.91 V 10.21 V 9.21 V 

Wafer 6 

10 V 6.4563 V 6.1543 V 5.8831 V 

15 V 8.5005 V 8.3179 V 8.634 V 

20 V 10.99 V 10.54 V 10.42 V 

From the DRV data, the quiescent current and the peak current of the bit cell are also 

extracted. The quiescent current (IDDQ) is relatively low compared to the peak current (IPEAK); 

because the quiescent current is during the steady-state when there is no transition on the stored 

bit and either NMOS or PMOS in the bit cell’s inverter is ON. The peak current is when the 

transition from logic ‘1’ to ‘0’ or ‘0’ to ‘1’ occurs; both NMOS and PMOS are in saturation during 

this transition. 
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The dependency of IPEAK and IDDQ on temperature is shown in Fig. 52. The y-axis is 

changed to a log scale to represent the current values better. As expected, the minimum IPEAK and 

IDDQ for each wafer is at 10 V and 25ºC. And as the temperature increases the currents also increase. 

The IPEAK comparison between Wafer 2, Wafer 4, and Wafer 6 are very close to each other, and 

are shown in Fig. 52(a). On the other hand, the IDDQ shows subtle differences across three wafers. 

The highest leakage current is observed on Wafer 6, as shown in Fig. 52(b); this is due to the lower 

threshold voltage of the NMOS transistors. The minimum IDDQ of 300 pA at 10 V is also noticed 

on Wafer 6, but this result is an outlier. Because the test setup (particularly the probe station and 

its peripheral components) thermal and chuck vibration contributed to the current noise, the noise 

floor was found to be ~7 nA. Based on the IDDQ data, Wafer 2 is selected for further DC and all the 

transient analyses. The W2 shows the smallest IDDQ at 10 V and 500°C. Another representation of 

IPEAK and IDDQ with respect to supply voltage is shown in Fig. 53. 
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Fig. 52. W2, W4, and W6 comparison between (a) IPEAK vs. Temperature and (b) IDDQ vs. 

Temperature. 
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Fig. 53. W2, W4, and W6 comparison between (a) IPEAK vs. VDD and (b) IDDQ vs.VDD. 

The probe station's test setup has a significant noise due to the vibration from the 

compressor, thermal controller, vacuum pump, and other peripherals connected during the test for 

high-temperature measurements. Therefore, the minimum supply voltage for DRV tests was 

restricted to 10 V on the probe station. However, due to the decrease in the PMOS threshold's 

magnitude at high temperatures, the supply voltage can be lowered. This is one of the SRAM 

design goals; so that the power consumption can be minimized. Unfortunately, the probe station 

could not support this test; therefore, a different test setup was built. In this test setup, W2 samples 

are die attached and wirebonded onto a 68-pin quad flat pack (QFP) leaded chip carriers (LDCC). 

At room temperature, the SNM is measured at 7.5 V and is shown in Fig. 54. Compared to SNM 

at 10 V and 25ºC (Table 13), the SNM is reduced by 74.5 % at a 7.5 V supply voltage. The cell 

still holds its positive feedback characteristics with a voltage drop (VDROP) of ~500 mV when V1 

is between 0 V and 725 mV, as shown as regions of interest in Fig. 54. And the IPEAK and IDDQ at 

7.5 V are 3 µA and 1.9 nA, respectively. Hence, a considerable reduction in current consumption 

is evident in comparison to the 10 V supply voltage. 
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Fig. 54. SNM from Wafer 2 at 7.5 V and 25°C. 

An attempt to reduce the supply voltage below 7.5 V is performed, but the VDROP  of ~500 

mV increases with the decrease in supply voltage. In Table 14, the VDROP at different supply 

voltage is listed, along with the measured voltage (VMEAS) at V2 when V1 is set to 0 V. Two factors 

are contributing to the VDROP; the first one is the threshold voltage of the PFET, which is ~6.5 V 

for W2 wafer. Secondly, the poor p-type contacts. The room temperature data shows that the 

SRAM cell retains its positive feedback behavior up to 7 V of the supply voltage. And it is not 

operational below 7 V and lost its feedback characteristics. However, the high-temperature data 

collected on the packaged part shows that the SRAM cell works at the supply voltage of 6.5 V. 

Unfortunately, the IPEAK and IDDQ during high-temperature measurements could not be captured 
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due to the minimum current resolution of the power supply (0.01 A). Still, it can be calculated 

based on the currents' exponential trend shown in Fig. 52 and Fig. 53.  

Table 14. Voltage Drop with Varying Supply Voltage 

Supply Voltage (V) 
25ºC 200ºC 450ºC 

VMEAS (V) VDROP (V) VMEAS (V) VDROP (V) VMEAS (V) VDROP (V) 

5.5 0.05387 5.44613 NA NA 0.0291 5.4709 

6 1.2251 4.7749 2.675 3.325 3.481 2.519 

6.5 4.95 1.55 5.896 0.604 6.135 0.365 

7 6.418 0.582 6.87 0.13 6.913 0.087 

7.5 6.988 0.512 7.241 0.259 7.305 0.195 

10 9.976 0.024 9.987 0.013 9.909 0.091 

6.5 Transient Analysis 

The detailed testplan and procedure of transient measurements are explained in Section 5.3. 

In this section, high-temperature transient waveforms during the read operation are shown, with 

varying supply voltages. Fig. 55 shows the read operation when the stored bit is at logic ‘0’, OUT 

and OUTN are the sense amplifier's outputs. BL and BLB are connected between SRAM and sense 

amplifier. These bitlines (BL and BLB) act as an input/output net; during the read operation, the 

voltage difference generated on the bitlines is detected by the sense amplifier. The sequence of 

digital signals' assertion (WL1, WL2, PC, and SE) is the key to do a correct read operation. 

Typically, an embedded circuit (the firing circuit) that takes care of these digital signals is designed 

along with the SRAM cells/array. The firing circuit includes several buffers and digital logic to 

generate precise pulses of different durations. The firing circuit's design complexity is not tricky, 

but the design requires very well-fitted device models to control the delay chain precisely. The 

urge to design this circuit was discouraged because of the suitable models' unavailability and the 

significant shifts in the process technology. 
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Fig. 55 to Fig. 60 shows the read operation for logic ‘0’ and logic ‘1’ at supply voltages of 

10 V, 7.5 V, and 6 V. In all the figures, the SRAM read operation window is marked as the white 

arrow. Before and after this region, the sense amplifier's output is undefined and shaded in gray. 

The read operation starts with charging the bitlines that occur by asserting a pulse on the PC node 

of the sense amplifier. Once the bitlines are charged, the access transistors are switched on for a 

short while to generate the potential difference between the two bitlines. The bitline connected to 

the stored bit ‘0’ discharges and the other bitline retains its voltage because it is connected to the 

stored bit ‘1’. The sense amplifier SE node is switched on to detect this voltage difference and 

latch the cross-coupled inverter, and the output is measured at the OUT and OUTN of the sense 

amplifier. 

 

Fig. 55. Reading logic '0' at VDD=10 V and Temperature=400ºC. 
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Fig. 56. Reading logic '1' at VDD=10 V and Temperature=400ºC. 

 

Fig. 57. Reading logic '0' at VDD=7.5 V and Temperature=400ºC. 
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Fig. 58. Reading logic '1' at VDD=7.5 V and Temperature=400ºC. 

 

Fig. 59. Reading logic '0' at VDD=6 V and Temperature=400ºC. 
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Fig. 60. Reading logic '1' at VDD=6 V and Temperature=400ºC. 

The transient data shown above has a fixed read access time of ~45 µs at all temperatures 

and voltage supplies because the function generator's digital signals are kept the same for all the 

measurements. The above tests intend to check the functionality of the SRAM cell and the sense 

amplifier. Therefore, no optimization has been done to the digital signals. However, the actual read 

access time for the memory differs with varying supply voltage and temperatures. And, it is 

calculated from the measured data. The equation generated to calculate the access time is 

determined by considering the time required to charge the bitlines (BitlinesCHARGE TIME), the time 

required to generate enough potential difference between the bitlines (BitlinesTIME TO VD), and the 

time required to latch the sense amplifier (LatchTIME). 

𝐴𝑐𝑐𝑒𝑠𝑠 𝑇𝑖𝑚𝑒 = 𝐵𝑖𝑡𝑙𝑖𝑛𝑒𝑠𝐶𝐻𝐴𝑅𝐺𝐸 𝑇𝐼𝑀𝐸 + 𝐵𝑖𝑡𝑙𝑖𝑛𝑒𝑠𝑇𝐼𝑀𝐸 𝑇𝑂 𝑉𝐷 + 𝐿𝑎𝑡𝑐ℎ𝑇𝐼𝑀𝐸  (3) 
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Table 15. Read Access Time at Varying Supply Voltage and Temperature 

Supply Voltage 25ºC 250ºC 400ºC 

10 V ~10 µs ~6.5 µs ~7 µs 

7.5 V ~10.2 µs ~6.9 µs ~7.5 µs 

6 V NA NA ~7.4 µs 

The reliability of the SRAM cell is another very important FOM. Typically, memory 

manufacturer follows memory reliability standards defined by the Joint Electron Device 

Engineering Council (JEDEC) [35], etc. The manufacturer performs very rigorous reliability 

testing for their memory products by conducting more than a thousand read and write cycles. To 

perform multiple read and write cycles, the industry uses automatic testing equipment (ATE). 

Since this work is implemented on an unmatured technology, therefore a less rigorous reliability 

test was conducted. 

At 400ºC, the 100 read cycles are executed continuously at supply voltages of 7.5 V, 6.5 

V, and 6 V, shown in Fig. 61, Fig. 62, and Fig. 63, respectively. The amplitude of the 

complementary outputs of the sense amplifier is captured via data logging software. For the supply 

voltage of 7.5 V and 6.5 V, the read operation was 100% successful with no data read error. 

However, with the supply voltage of 6 V, a few of the data read cycles produced the wrong data. 

Also, the output voltage levels are not close to the VDD and VSS. The data read error observed at 

6 V of supply voltage is due to the combined effect of poor p-type contacts and the threshold 

voltage of PFET. In conclusion, the designed cell is reliable at the supply voltage of 6.5 V or above.  
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Fig. 61. At VDD=7.5 V and temperature=400ºC. 

0 20 40 60 80 100

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

S
en

se
 A

m
p

li
fi

er
 o

u
tp

u
t 

v
o

lt
ag

e 
am

p
li

tu
d

es
 (

V
)

No. of Read operations

 

Fig. 62. At VDD=6.5 V and temperature=400ºC. 
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Fig. 63. At VDD=6 V and temperature=400ºC. 
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7 Conclusions and Future Work 

7.1 Conclusions 

This research presents an SRAM memory cell design and test that enables SiC CMOS 

technology to realize a complete and high-density electronic system for high-temperature 

applications. This work introduces the first SiC CMOS SRAM cell capable of operating at 500ºC 

with nano ampere current consumption and supply voltage of 6.5 V. The SRAM cell designed in 

this research is a novel SRAM architecture that is capable of reducing the effect of the inadequate 

SiC low voltage lateral MOSFET characteristics, which occurs due to the prevalent challenges in 

the SiC CMOS fabrication process. 

The SRAM cell's DC characteristics at 500ºC reported in this work have never been 

reported in the literature. Also, the transient analysis of the SRAM cell and the sense amplifier at 

400ºC established a new mark for high-temperature memory design. The SRAM cell's adaptability 

helps mitigate the SiC process challenges and the unexpected process variations with the expense 

of a few extra transistors and pins. The reliability analysis of the SRAM and sense amplifier shows 

that the data stored in a cell retains its state at high-temperature (400ºC) during hold state and data 

read operations. The read access time of ~7.5 µs at 400ºC is calculated from the transient data. 

This read time translates into maximum operating frequency of 133 kHz for this SRAM. 

Other contributions noted in this work are the development of the SiC PDK, including the 

physical design rule checks for CalibreDRC and CalibreLVS. SiC device characterization for the 

IC design effort. This work also reported the first implementation and characterization of sense 

amplifier designs in SiC CMOS technology which performs at 500ºC and outperforms the existing 

sense amplifiers implemented in traditional silicon/silicon-on-insulator processes. 
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7.2 Future Work 

The SiC CMOS technology can disrupt the high-temperature electronics domain, but it the 

fabrication challenges need to be overcome. The work presented in this thesis proves that the 

technology can operate at 500ºC; however, new design approaches must be considered. The 

SRAM cell and the sense amplifier results obtained during this research encourage implementing 

a complete 1 kB or more SRAM array along with all the peripheral circuitry. The memories are 

very high-density circuit blocks; therefore, more than one metal routing layer would help 

implement the SRAM array. The SiC CMOS technology also needs a promising attempt to lower 

the threshold voltage magnitude for PFET so that the memory can be operated at low voltages to 

reduce power consumption.  
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Appendix A 

I. RUN #1 Results and their Curve Fitting to Compact Model BSIM 4.7.0 

This section contains the measured device characteristics from RUN #1. The width of each 

measuring device is 20 µm unless stated otherwise. Measured and playback values from extracted 

parameters are shown for the IDS vs. VDS, IDS vs. VGS, and C-V characteristics. 

• Threshold voltage (VTH) wafer maps of NFETs and PFETs 

o Shown for 25ºC and 200ºC as well as for channel lengths of 1.5 µm and 2 µm 

• IDS vs. VDS characteristics of NFETs and PFETs for channel lengths of 2 µm and            

20 µm 

• IDS vs. VGS characteristics of NFETs and PFETs for channel lengths of 2 µm and            

20 µm 

• The C-V characteristics of NFETs and PFETs with a channel length of 1 µm, a width 

of 300 µm per finger, and a total of 74 fingers. The effective width of the device tested 

is, therefore, 22,200 µm. 

The VTH maps of NFETs for channel length of 1.5 µm and 2 µm are shown in Fig. 64 and 

Fig. 65. A constant current technique is used to measure the threshold voltage. Specifically, the 

threshold voltage is measured from the ID vs. VGS characteristics when ID = 100 nA and VDS = 500 

mV. The results show that as temperature increases, threshold voltage decreases. Similarly, the 

threshold voltage increases with increasing channel lengths. The observation of threshold voltage 

increasing with increasing channel lengths is also made in [1], [2]. The VTH maps of PFETs for 

channel length of 1.5 µm and 2 µm are subsequently shown in Fig. 66 and Fig. 67. As with the 

NFETs, the magnitude of the VTH of the PFETs decreases with increasing temperature. 
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Fig. 64. The NFET VTH wafer map at room temperature and for channel lengths of 1.5 µm 

and 2 µm. The width of each device tested is 20 µm. 

 

Fig. 65. The NFET VTH wafer map at 200 ºC and for channel lengths of 1.5 µm and 2 µm. 

The width of each device tested is 20 µm. 
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Fig. 66. The PFET VTH wafer map at room temperature and for channel lengths of 1.5 µm 

and 20 µm. The width of each device tested is 20 µm. 

 

Fig. 67. The PFET VTH wafer map at 200 ºC and for channel lengths of 1.5 µm and 20 µm. 

The width of each device tested is 20 µm. 
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The wafer maps shown in Fig. 64 to Fig. 67 indicate that yield issues are present. The yield 

percentage for a single transistor does improve with an increasing channel length as expected. A 

total of six 1.5 µm channel length NFETs failed whereas two failed for a channel length of 2 µm. 

The device failures observed included gate-source shorts, no gate connection, or high leakage.  

The output (ID vs. VDS) and transfer (ID vs. VGS) characteristics of an NFET with a channel 

length of 2 µm are shown in Fig. 68 and Fig. 69, respectively. The output and transfer 

characteristics for an NFET with a channel length of 20 µm are also shown in Fig. 70 and Fig. 71. 

The room temperature C-V characteristics of a 22,200 µm by 1 µm NFET are shown in Fig. 72. 

The compact model playbacks are shown by the solid line while the measured parameters are 

indicated by either squares or dots. 

 

Fig. 68. The output characteristics of a 20 µm / 2 µm NFET at (a) room temperature and 

(b) 200ºC. The VG is swept from 3 V to 19 V at each temperature. 
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Fig. 69. The transfer characteristics of a 20 µm / 2 µm NFET at (a) room temperature and 

(b) 200ºC. The VD is swept from 100 mV to 15 V at each temperature. 

 

Fig. 70.The output characteristics of a 20 µm / 20 µm NFET at (a) room temperature and 

(b) 200ºC. The VG is swept from 3 V to 19 V at each temperature. 
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Fig. 71. The transfer characteristics of a 20 µm / 20 µm NFET at (a) room temperature and 

(b) 200ºC. The VD is swept from 100 mV to 15 V at each temperature. 

 

Fig. 72. The total gate capacitance (Cg-dsb vs. Vg-dsb) of a 22,200 µm / 1 µm NFET measured 

at room temperature. 

The output and transfer characteristics of a 20 µm by 2 µm PFET are provided in Fig. 73 

and Fig. 74. Similar to the NFETs, the PFET measurement results show an increase in drive 

strength with increasing temperature. The output and transfer characteristics of a 20 µm by 20 µm 

PFET are subsequently in shown in Fig. 75 and Fig. 76. As demonstrated by the NFET 
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measurement results, the output resistance of the PFET is improves significantly with the increased 

channel length. The C-V characteristics of the PFET measured at room temperature are shown in 

Fig. 77. 

 

Fig. 73. The output characteristics of a 20 µm / 2 µm PFET at (a) room temperature and 

(b) 200 ºC. The VG is swept from -3 V to -19 V at each temperature. 

 

Fig. 74. The transfer characteristics of a 20 µm / 2 µm PFET at (a) room temperature and 

(b) 200ºC. The VD is swept from -3 V to -15 V at each temperature. 
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Fig. 75. The output characteristics of a 20 µm / 20 µm PFET at (a) room temperature and 

(b) 200ºC. The VG is swept from -3 V to -19 V at each temperature. 

 

Fig. 76. The transfer characteristics of a 20 µm / 20 µm PFET at (a) room temperature and 

(b) 200ºC. The VD is swept from -3 V to -15 V at each temperature. 
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Fig. 77. The total gate capacitance (Cg-dsb vs. Vg-dsb) of a 22,200 µm / 1 µm PFET measured 

at room temperature. 

II. RUN #2 results and their comparison with RUN #1 

Results captured through probe level testing involved DC characterization of the 

NFET/PFET structures and TLM structures to find the sheet resistance and contact resistances. 

The output and transfer characteristics from the NFET are almost the same as in RUN #1. However, 

the PFET showed improvements in the current drive capability of at least 2 times than RUN #1. 

Unfortunately, the P-type ohmic contact showed the same Schottky type behavior noticeable in 

the triode region of the PFET. 

TLM measurements showed lower sheet resistance for PPLUS and NPLUS regions, and based 

on the foundry; they are close to the expected value. Hence, the over-etching of the PPLUS region 

is avoided in this run with the help of additional process control monitoring. Table 16 and Table 

17 shows the TLM measurements comparison from RUN #1 and RUN #2 for sheet resistances and 

contact resistances, respectively. As the comparison shows that the sheet resistances are better in 

RUN #2, but contact resistances for both PPLUS and NPLUS regions are higher. Higher NPLUS 
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contact resistance did not affect the device behavior as it is still in the micro-ohms range. However, 

the increase in PPLUS contact resistance showed Schottky behavior. 

Table 16 Sheet Resistances Comparison from RUN #1 and RUN #2 

 
Sheet Resistance (Ω) at room temperature 

RUN #1 RUN #2 

PPLUS region 83.2x103 65.9 x103 

PPLUS region 76.3x103 52.9 x103 

NPLUS region 1.17x103 0.916 x103 

NPLUS region 1.12x103 0.942 x103 

Table 17 Contact Resistances Comparison from RUN #1 and RUN #2 

 
Contact Resistance (Ωcm2) at room temperature 

RUN #1 RUN #2 

PPLUS region 0.0892 2.40 

PPLUS region 0.0868 1.50 

NPLUS region 4.27x10-6 26.9x10-6 

NPLUS region 4.22x10-6 17.4x10-6 

For the DC characteristics of the MOSFETs, the devices with a width of 20 µm with 

varying lengths from 1 µm to 20 µm are characterized at room temperature. Fig. 78. and Fig. 79. 

shows the output characteristics of PFET and NFET, respectively. Fig. 78(h). and Fig. 79(h). 

shows the variation of threshold voltage with varying lengths for PFET and NFET, respectively. 

The threshold voltage is measured with the constant current method. In RUN #2, adjusted NWELL 

doping was used to lower the magnitude of the PFET threshold. The NWELL implantation 

modification did not yield any significant shift of threshold voltage for the PFET. Foundry claimed 

that this is due to the difficulty to control low doping concentrations with the implantation tool 

they have available. 
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Fig. 78. Output characteristics of the PFET for the width of 20 µm and lengths of (a) 1 µm 

(b) 1.5 µm (c) 2 µm (d) 4 µm (e) 6 µm (f) 10 µm (g) 20 µm. (h) is the threshold voltage 

variation for varying lengths. 

 

Fig. 79. Output characteristics of the NFET for the width of 20 µm and lengths of (a) 1 µm 

(b) 1.5 µm (c) 2 µm (d) 4 µm (e) 6 µm (f) 10 µm (g) 20 µm. (h) is the threshold voltage 

variation for varying lengths. 

For the DC characterization of the MOSFETs at high temperature, W/L = 20 µm/2 µm sized 

devices are selected. Data is collected at 200°C and 500°C on the high-temperature capable probe 

station. Measured data is compared with RUN #1 results. Fig. 80 shows the output characteristics 

comparison between RUN #1 and RUN #2 at room temperature, at 200°C, and at 500°C for the 

PFET. The lower sheet resistance of PPLUS shows an increase in the PFET current drive in RUN 

#1. Fig. 81 shows the NFET output characteristics comparison between RUN #1 and RUN #2. 
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NFET also shows an improvement in the current drive at room temperature, at 200°C, and 500°C 

due to lower sheet resistance, as seen from Table 16. 

 

Fig. 80. RUN #1 and RUN #2 comparison for the PFET device of 20 µm / 2 µm at (a), (b) 

25°C and (c), (d) 200°C and (e), (f) 500°C. 
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Fig. 81. RUN #1 and RUN #2 comparison for the NFET device of 20 µm / 2 µm at (a), (b) 

25°C and (c), (d) 200°C and (e), (f) 500°C. 
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Appendix B 

 

Keysight B1500A Tutorial 
1 B1500A Semiconductor Device Analyzer 

In B1500A, we have 6 SMU’s and 1 Multi-frequency capacitance measurement unit 

(MFCMU). B1500A can accommodate 10 SMU’s; among them, 1 slot is reserved for Ground Unit 

(GNDU), and 1 slot is reserved for MFCMU. 

• 2 High Power SMU’s (HPSMU), each covers 2 slots. 

• 2 High-Resolution SMU’s (HRSMU), each covers 1 slot. 

• 2 Medium Power SMU’s (MPSMU), each covers 1 slot. 

• 1 Multi-frequency Capacitance Measurement Unit (MFCMU). It covers 1 slot. 

HPSMU goes up to 200V/1A with the 4-quadrant operation, and the minimum 

measurement resolution is 10fA/2µV. 

HRSMU goes up to 100V/0.1A with the 4-quadrant operation, and its minimum 

measurement resolution is 1fA/0.5µV. 

MPSMU goes up to 100V/0.1A with the 4-quadrant operation, and its minimum 

measurement resolution is 10fA/0.5µV. 

MFCMU is used for AC impedance measurement such as C-V, C-f, C-t. Its frequency 

range is between 1kHz to 5Mhz with a minimum resolution 1mHz. 

See the Data Sheet manual for their complete specifications. 
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2 Connection Guide 

B1500A modules have triaxial output connectors except for the MFCMU unit, and it has 

BNC output connectors. All the grey cables are triaxial, and they came with B1500A, use them 

carefully. 

• There is one ground cable, it has a label on it that says GROUND, and this cable is only 

meant to connect with GNDU, not with any other SMU, and DO NOT connect any other 

triaxial cable with GNDU. The GNDU cable can handle the maximum GNDU current of 

4.2 A, but standard triaxial cables are only rated to 1 A. (See Configuration and Connection 

Guide page 3-3). 

• Never connect the Guard terminal to any output, including circuit common, chassis ground, 

or any other guard terminal. Doing so will damage the SMU (See Configuration and 

Connection Guide page 3-5). 

We have three Probe Stations, Cascade Microtech with triaxial connectors, SemiProbe, 

which has BNC connectors, and Signtatone with RCA connectors. In order to connect B1500A 

with cascade, you can simply use grey wires and make the connection between the two. If the 

Design Under Test (DUT) has 4 or less terminals and testing temperatures will be between -55C 

to 125C, use Cascade. If DUT has more I/O than SemiProbe, use triaxial to BNC adaptors to make 

a connection between Semiprobe and B1500A.  

3 EasyEXPERT 

EasyEXPERT is the user interface for B1500A (see EasyEXPERT documents for complete 

understanding). EasyEXPERT main window is shown in Fig. 82. On the left side, Application Test 

(Red) and Classic Test (Yellow) are highlighted. Application Test has almost all the device 
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characterization test already defined; Keysight called them Test Definitions. But in the Classic 

Test, you need to set all the parameters manually. 

3.1 Application Test 

In Application Test, different devices are categorized by their technology name, such as 

CMOS, BJT, etc. (see User’s Guide Volume 2, pg 9-3 for a complete list of categories). The green 

box in Fig. 82 shows the Category area. Each category has a set of libraries where Test Definitions 

are defined for that particular technology, and the orange box shows the Libraries. In Fig. 82, the 

Id-Vd library is selected, which is in the CMOS category. 

The blue box highlights Device ID and Count on the top right side. EasyEXPERT uses 

these two for naming the data files. The number of count increase with every measurement. Set 

Device ID as Die_*_C*R*_<Type of Characterization>, it’s just an example. Change it as per your 

requirement. The device Parameter area has Polarity, it is set to Nch for NFET device, and it can 

be set to Pch for PFET device. Setting it to Pch EasyEXPERT changes the polarities for the Gate 

terminal and flips the Y-axis. 

In Fig. 82, the Vd-Id Test definition is selected for NFET (for PFET change NCH to PCH 

in Device Parameters area → Polarity). Four SMU’s are used in this test definition; Drain of the 

NFET is connected to SMU6:MP (Medium Power), which is set as Primary Sweep. Sub is 

connected to SMU5:MP, which is a constant at 0V. Gate is connected to SMU4:HR (High 

Resolution), which is a Secondary sweep. And Source is connected to SMU3:HR, which is 

common to all. In this example, the Drain terminal of the device is connected to SMU6 on the back 

side of Keysight and that is why SMU6 is selected here, but if the Drain terminal is connected to 

SMU4 and SMU4 needs to be selected here instead of SMU6. The same scenario is valid for all 

other terminals of NFET. 
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Fig. 82. Main window. 

3.2 Edit Test Definition 

By default, the voltage values set in Test Definitions are between 0V and 5V, but some 

processes like the SiC process need 12V or 15V to operate. So it needs some editing in the test 

definitions. Following are the steps to open and change the test definitions: 

a. Select the Test Definition that you need to edit and click on Library. 

b. Click Open (as shown in Fig. 83) 

c. You will see a similar window, as shown in Fig. 84. The Id-Vd Test Definition is opened in 

this figure, and VgStart is selected (bottom red box). In properties, Min and Max's values are 
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defined, Max is set to 5V to get higher voltage than 5V set this to your required Max value. 

For example, for the Raytheon SiC process, we can set it to 15V. 

 

Fig. 83. Edit test definition. 
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Fig. 84. Id-Vd test definition. 

3.3 Classic Test 

In the Classic Test, all the parameters need to be set manually, unlike the Application Test. 

In Classic Test, there are several categories based on the type of characterization, such as I/V 

Sweep, C-V Sweep, etc. (see EasyEXPERT User’s Guide Volume 1 for complete detail). 

Fig. 85 shows the I/V Sweep classic test window. Channel tab is selected in this figure; 

here user adds and deletes the SMUs based on the requirement, adds labels for voltage and current, 

which is useful to read logged data, select the mode for each SMU and select the function for each 

SMU. Here mode for SMU2 is selected as COMMON, which means it is GND/COMMON to all 

other SMUs. SMU6 is selected as VAR1, which means that the user can set this SMU for sweeping. 

SMU’s with the function set as CONST means constant value they can not be used for sweeping, 

user need to specify the constant value to them. 
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Fig. 85. I/V sweep classic test. 

Fig. 86 shows the measurement tab where the user set the sweeping and constant values. 

The highlighted area in orange shows the VAR1 (Primary) and VAR2 (Secondary); sweeping 

parameters are needed to be defined here. In this figure, VAR1 is sweeping from 0 to 250mV with 

a step size of 2.5mV (i.e., 101 steps), and VAR2 is sweeping from 0 to 250mV with a voltage step 

of 50mV (i.e., 6 steps). The Green highlighted area shows the area where constants need to be 

defined. Compliance value is the maximum amount of current or voltage that can be drawn through 

that particular SMU. These values should be set according to DUT if your device is capable of 

drawing 1mA max. So set this value to 1mA; this will avoid damaging the device in case of some 

mishap. 
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Fig. 86. I/V sweep measurement tab. 
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4 Export Data 

Measured data can be automatically saved through EasyEXPERT. It’s a nice feature when 

a massive amount of data needs to be captured. Users can save data in CSV form by enabling data 

export in EasyEXPERT. Waveform images can also be saved in png, BMP, etc., by enabling image 

capture. 

To enable automatic data export, follow these steps: 

a. Goto EasyEXPERT main window 

b. Click File → Export → Data → Options → Auto Export (Fig. 87) 

c. A new window will open (“Test Results Data Auto Export” as shown in Fig. 88); 

check Enable Automatic Data Export and set the folder where the data needs to be 

saved. 

d. Select File type as CSV. 

e. In the same window, check Enable automatic data export as an image file and set 

the folder. Images can be saved in the same data folder that is selected in step c. 

f. Sometimes an image does not capture completely (no idea why), so check the 

captured image every time you run a test. And if it does not capture, then save it 

manually by going to File in Graph Window (as shown in Fig. 89) and then click 

on Save Image. 
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Fig. 87. To enable automatic data export. 
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Fig. 88. Test results data auto export. 
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Fig. 89. Graph window. 
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Appendix C 

Matlab codes for extracting SNM, RSNM, WSNM from the measured data. 

SNM 

[th1, r1] = cart2pol(V1_L, V2_R); 

[x1, y1] = pol2cart(th1+pi/4, r1); 

[th2, r2] = cart2pol(V2_L, V1_R); 

[x2, y2] = pol2cart(th2+pi/4, r2); 

Min_1=min(y1);Max_1=max(y1);Min_2=min(y2);Max_2=max(y2); 

hold on;plot(x1,y1);plot(x2,y2); 

SNM1=Max_2-Min_1 

SNM2=Max_1-Min_2 

RSNM 

[th1, r1] = cart2pol(V1_L, V2_R); 

[x1, y1] = pol2cart(th1+pi/4, r1); 

[th2, r2] = cart2pol(V2_L, V1_R); 

[x2, y2] = pol2cart(th2+pi/4, r2); 

[Min_y1,Idx]=min(y1); 

Min_x1=x1(Idx); 

Min_y2=interp1(x2,y2,Min_x1); 

hold on; 

plot(x1,y1); 

plot(x2,y2); 

plot([Min_x1,Min_x1],[0,20],'k--'); 

WSNM 

[th1, r1] = cart2pol(V1_L, V2_R); 

[x1, y1] = pol2cart(th1+pi/4, r1); 

[th2, r2] = cart2pol(V2_L, V1_R); 

[x2, y2] = pol2cart(th2+pi/4,r2); 
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a=y1(30:101,:); 

[Min_y1,Idx]=min(a(:)); 

Min_x1=x1(Idx+29); 

Min_y2=interp1(x2,y2,Min_x1); 

hold on;plot(x1,y1);plot(x2,y2); 

plot([Min_x1,Min_x1],[0,20],'k--'); 

SNM1=Min_y1-Min_y2 
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