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Abstract 

Driven by a desire to achieve reduced carbon emissions and maintenance costs, along 

with an increase in efficiency and performance, electrification has become a major trend in 

modern vehicles. This increase in electrification is accompanied by an increase in thermal 

power dissipated due to electrical inefficiencies. Consequently, temperature regulation 

becomes a greater challenge for these safety-critical systems.  

Electrified vehicles consist of systems of systems that operate over a wide span of 

energy domains and timescales. To ensure their safe, reliable, and efficient performance, a 

holistic system perspective for estimation is needed. Accurate dynamic state estimation is 

critical for two main reasons:  

1. Thermal management: This dissertation proposes a system perspective state 

estimation framework for complex multi-domain and multi-timescale 

dynamical systems. The framework consists of a multilevel hierarchical 

network of observers with each level having a unique update rate. To 

account for the significant interactions between subsystems, a novel 

bidirectional coordination strategy is developed. Sufficient conditions for 

the stability and convergence of the hierarchical network are derived.  

Experimental validation is conducted on a testbed representative of a fluid 

thermal management system of an electrified aircraft. Closed-loop 

simulation and experimental results confirm a reduction in computational 

cost compared to a conventional centralized observer and an increase in 

estimation accuracy compared to a decentralized observer which ignores 

coupling between subsystems. 



 iii  

2. Fault diagnosis: This dissertation proposes a robust system-perspective fault 

diagnosis framework for complex energy systems. Fault detection and 

isolation is derived from a set of structured residuals obtained from a bank 

of observers. Robustness is achieved by decoupling the unknown 

disturbances such as modeling error, linearization error, parameter 

variation, and noise from the residuals. The proposed approach is validated 

on a testbed representative of a fluid thermal management system of an 

electrified aircraft. Simulation and experimental results demonstrate 

successful fault detection and isolation with no false alarms or missed 

detections. 
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Chapter 1     

Introduction 

1.1 Motivation and Background 

Over the past few decades, electrification has become a major trend in modern vehicles. 

Electric systems are progressively replacing previously used mechanical, pneumatic, and 

hydraulic systems as a means of transferring power within a vehicle. In the aerospace industry, 

the more electric aircraft (MEA) has been recognized as the future of aviation [1]–[3] due to its 

increased efficiency. For instance, the electric generation capability of the commercial aircraft 

Boeing 787 and Airbus A380 are approximately an order of magnitude higher than previous 

aircraft [1]. In the automotive industry, global electric vehicle (EV) sales are rising rapidly [4], 

driven by consumer preference and governmental requirements, with many hybrid or fully 

electric models in the market. Furthermore, electrification has become increasingly popular for 

both commercial and military ship development [5]. 

Vehicle electrification offers many benefits like reduced emissions and maintenance cost, 

and increased performance and efficiency. However, these benefits come at the expense of an 

increased thermal power dissipation caused by the electrical inefficiencies (i.e. battery, power 

electronics, electric machine, etc.) which leads to an inevitable increase in temperature. High 

temperatures, or hot spots, decrease reliability and performance and increase cooling cost and 

leakage power [6]–[8]. For example, there is a positive feedback loop between temperature and 

power leakage [8]. Additionally, a range of 10℃-15℃ difference in the operating temperature of 

a power electronics system can change its lifespan by a factor of 2 [9]. Therefore, accurate online 

state estimation is crucial for two main tasks:  
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1. Real-time thermal management: To further the development of electrified vehicles, 

sophisticated thermal management systems that meet the increased thermal 

requirements must be designed [10]–[19]. [20] indicates that 50-90% of 

military electronics failures can be attributed to ineffective thermal 

management techniques. State estimation is necessary to provide the 

information needed to design controllers for thermal management systems. 

Specifically, using accurate state estimates, controllers can be designed to 

improve the capability, the safety, and the reliability of a thermal management 

system. A system’s capability represents its ability to meet mission objectives. 

A system’s safety and reliability can be achieved by forcing the states of the 

system to stay within their operating constraints. For example, hierarchical 

model predictive control (MPC) represents an effective approach to manage 

the multi-domain and multi-timescale dynamics of electrified vehicles [21]–

[23]. The main advantage of a hierarchical MPC approach compared to a 

centralized MPC approach is the ability of the controller to predict the 

performance of the vehicle far enough into the future at upper levels in the 

hierarchy as well as to respond quickly to unknown disturbances at lower 

levels with relatively low computational cost. Prior hierarchical control efforts 

[21]–[23] assumed full-state feedback. In practice, using sensors to measure 

every signal in a system is infeasible or prohibitively expensive in terms of 

sensor cost and installation. Furthermore, in some cases, sensors might affect 

the system’s behavior. For example, a thermocouple can interfere with the 

useful thermal transport that could occur in their absence. Instead, an 

estimation algorithm provides the information needed for the hierarchical 

controllers. Consequently, the success of the control design becomes highly 

dependent on the success of the estimator. This emphasizes the need for 

accurate multi-domain dynamic state estimation that provides the data needed 

to control electrified vehicle systems.  

2. Real-time fault diagnosis: State estimation is important to detect anomalies in the 

system performance. Careful online monitoring improves reliability of 
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electrified vehicles and allows lower safety factors and enhanced system 

performance. Moreover, since electrified vehicles are considered as safety-

critical systems, it is vital to detect and identify any kind of potential 

malfunctions and faults as early as possible to minimize performance 

degradation and prevent possible complete system failure [24]. Examples of 

such faults are the blocking of an actuator (e.g. pumps, valves), the failure of a 

sensor (e.g. a thermocouple that fails to read the actual temperatures), or the 

disconnection of a component. Thus, faults are often classified as sensor faults, 

actuator faults, or plant faults. These faults are typically detected and located 

using analytical (also called software) or physical (also called hardware) 

redundancy [24], [25] approaches. Hardware redundancy approaches use 

multiple components with the same input signals so that the duplicated output 

signals can be compared to generate a diagnostic decision using methods like 

majority voting or limit checking [26], [27]. The major problems of this 

technique are the increased cost, weight, and volume introduced by the extra 

hardware needed. Hardware redundancy is a reliable technique, and it might be 

necessary to duplicate some critical components, however it is infeasible to 

apply this approach to every component of the system due to cost, space, and 

weight constraints. The constraints are particularly severe for electrified 

vehicles where space and weight, in particular, are at a premium. This problem 

can be solved using an analytical redundancy approach in which a 

mathematical model of the system is used instead of the extra hardware [28]–

[30]. Observer-based FDI methods are one of the most well-known techniques 

based on analytical redundancy. The basic concept of observer-based FDI 

techniques is to compare the actual system behavior to the estimated system 

behavior obtained from an observer [30]–[35]. The residual generated from the 

difference between the actual response and the estimated response of the 

system is used to detect and isolate faults. The residual is zero in the fault-free 

case, and an increase in the value of the residual above zero indicates that a 

fault has occurred in the system. However, since perfect models do not exist in 
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practice, there will always be a discrepancy between the actual system’s 

measurements and the estimated measurements obtained from the observers 

even when there is no fault in the system. This discrepancy causes false alarms 

and interferes with the performance of the FDI approach. Hence, to avoid false 

alarms, observer based FDI approaches should be designed to be robust to 

modeling uncertainties (i.e. modeling errors, linearization error, parameter 

variations, or model order reduction errors). On the other hand, reduction in the 

sensitivity of the FDI approach to modeling errors should not reduce its 

sensitivity to actual faults in the systems. Robustness is particularly important 

for the detection of incipient faults (i.e. drift change) since their effect on the 

residual is minor compared to the effect of abrupt faults (i.e. step change). 

Robust residuals can be generated using Unknown Input Observers (UIOs) 

through disturbance decoupling [36]. Additionally, to maintain state awareness 

and acceptable performance of these safety-critical systems under unexpected 

faults resilient control approaches have been investigated [37].  

This dissertation proposes a system perspective estimation framework that is applicable 

to energy systems spanning multiple timescales and energy domains. Thus, it can be directly 

applied for thermal management systems of electrified vehicles. These systems consist of 

systems of systems interacting with each other over multiple time scales and multiple energy 

domains. MEA, EVs and all-electric ships (AES) have systems spanning the electrical, the 

thermal, the hydraulic, and the mechanical domains with dynamics operating at the sub-

milliseconds timescale in the electrical domain and the minutes timescale in the thermal domain 

[22]. As an example, Figure 1.1 shows a schematic of the different components of the powertrain 

of a Mitsubishi i-MiEV. Each of these components or subsystems requires a specific range of 

operating temperatures to function effectively, reliably, and safely. Moreover, the dynamics of 

each component or subsystem are directly coupled to many other components or subsystems in 

the vehicle. Therefore, to prevent thermal failure, a holistic system perspective for thermal 

management should be adopted [10].  



 5  

 

Figure 1.1 Mitsubishi i-MiEV System Schematic. [Modified from Wikipedia Commons]. 

EPS: Electric Power Steering 

ECU: Electronic Control Unit 
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As the system increases in complexity, it becomes more challenging to estimate its multi-

domain dynamics with high speed, low memory requirements, and high capability in detecting  

and localizing anomalies using a centralized estimation approach [38]. Centralized estimation is 

usually computationally expensive as it relies on a single observer that accounts for all system 

interactions. On the other hand, decentralized estimation is less computationally demanding as it 

relies on multiple independent local observers each estimating their own part of the system. 

However, decentralized estimation completely ignores system’s interactions which can lead to a 

reduced performance or even instability in highly coupled systems [39]. Hierarchical estimation 

combines the benefits of the two options by distributing the estimation problem among multiple 

local observers sharing information in a hierarchical framework. Hierarchical estimation is 

particularly useful when the overall system under control is characterized by dynamics of 

different timescales, e.g. slow and fast dynamics. Therefore, it is desirable to develop a 

hierarchical estimation approach for thermal management systems of electrified vehicles which 

must operate in transient mode and thereby require close observation and control. 

1.2 Research Objectives  

1.2.1 Problem Statement 

To ensure safe, reliable, and efficient performance of electrified vehicles, a holistic 

system perspective for state estimation is needed. The coordination framework of this approach 

must directly consider coupling between subsystems, systems, and energy domains. In addition 

to the reduction in the computational power requirements, the proposed estimation approach 

should have the following features. First, this approach should be flexible in terms of the 

estimation algorithm used by each observer in the hierarchy. Therefore, specific nonlinear 

elements could be handled with nonlinear observers (e.g. Extended Kalman filter, Unscented 

Kalman filter, etc.) while leaving the linear elements to be observed by simpler linear observers 

(e.g. linear Kalman filter). Furthermore, it must be suitable for the multiple energy domains and 

timescales present in electro-thermal systems. Moreover, the algorithm should be designed to be 

scalable and modular. Therefore, the same algorithm can be applicable to different architectures 

or different systems that can be modeled in a similar way.  
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Additionally, to prevent failure of electrified vehicles due to unexpected faults in the 

sensors, actuators, or components of the system a fault diagnosis approach is needed. Such an 

approach should be designed to be robust to disturbances such as modeling error, linearization 

error, and model order reduction error. Furthermore, this approach should be designed to be 

modular and scalable so that it can be applied to electro-thermal systems of various architectures 

and components.   

1.2.2 Dissertation Scope 

The main contributions of this dissertation are the following: 

1. Developing and experimentally validating a control-oriented hierarchical 

modeling framework that can capture coupling between components, 

subsystems, and energy domains. The resulting hierarchical models are 

simple enough for real-time implementation and detailed enough to 

accurately capture the dynamics of the systems. This approach relies on an 

aggregation-based model order reduction technique that preserves the 

correspondence between the reduced-order models and the physical 

systems. 

2. Developing and experimentally validating a multilevel model-based 

hierarchical estimation approach with a novel coordination framework. 

The proposed approach is applied in real-time on a testbed representative 

of a fluid-based thermal management system for electrified vehicles. This 

approach is also generalizable to different vehicle systems with different 

architectures or components. A comparison with a conventional 

centralized observer and a decentralized observer shows the tradeoff 

between computational complexity and estimation accuracy achieved by 

the proposed hierarchical estimation approach. 

3. Analyzing the stability of the proposed hierarchical estimation framework 

and deriving sufficient conditions for the convergence of the overall 

observer. 
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4. Analyzing the robustness of the proposed hierarchical estimation approach 

to faults at different levels in the hierarchy.  

5. Developing and experimentally validating a robust fault diagnosis 

framework to detect and locate faults in thermal management systems of 

electrified vehicles. This approach can also be applied to different vehicle 

systems of various architectures and components.   

Figure 1.2 provides a visual representation of the outline of the dissertation and the 

relations between the different contributions.  

 

 

Figure 1.2 Dissertation Outline. 

1.3 Organization of Dissertation 

Chapter 2 presents the tools used to develop hierarchical models for electro-thermal 

systems. These tools include a previously developed [40] modular and scalable graph-based 

modeling approach, several system decomposition techniques that can be used to generate 

hierarchical models for the proposed hierarchical observer, and an aggregation-based model 

order reduction technique that can be applied to reduce the complexity of the models. Chapter 3 
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presents the architecture, formulation, and stability analysis of the proposed hierarchical 

estimation approach. Simulation and experimental results for a multilevel hierarchical observer 

coupled to a multilevel hierarchical controller are presented in Chapter 4. Furthermore, 

comparisons between the hierarchical observer, centralized, and decentralized observers in terms 

of estimation accuracy and computational complexity are also presented in Chapter 4. Chapter 5 

investigates the robustness of the proposed hierarchical estimation approach to unexpected 

attacks or faults at different levels of the hierarchy. Chapter 6 presents the formulation of the 

fault diagnosis framework and the experimental validation of the approach on an example 

thermal management testbed. Chapter 7 concludes the main contributions of this dissertation and 

presents some topic for future research.  

1.4 Notation 

The symbol  denotes the set of real numbers. The symbol  denotes the set of non-

negative real numbers. The symbol I  denotes the identity matrix. ix  indicates a vector of i  

elements ix , 1:i N . 
ija  denotes a matrix 

N PA , with 1:i N , and 1:j P . 

Throughout the dissertation, lower-case subscripts and superscripts are used to name variables 

and upper-case superscripts are used to denote a mathematical function. For example, 
TA  

denotes the transpose of a matrix A , and 
tx  represents a vector of sink states. The operator | . |  

denotes the Euclidean norm of a vector and the operator .  denotes the Frobenius norm of a 

matrix. The symbol sup (.)  denotes the supremum of a set. A function :[0, ) [0, )  is said 

to be a class K  function if it is continuous, strictly increasing, and satisfies (0) 0 . A function 

:[0, ) [0, ) [0, )a  is said to be a class KL  function if (., )t  is of class K  for each fixed 

t  and ( , )r t  is decreasing to zero as t  for each fixed 0r .      
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Chapter 2     

Physics-based Lumped Parameter Dynamic Modeling 

2.1 Background 

To perform real-time model-based estimation, control, and fault diagnosis, appropriate 

models that balance between accuracy and computational complexity are needed. The chosen 

models should be simple enough for on-line implementation and detailed enough to simulate the 

dynamics at an acceptable level of accuracy. Dynamic models of energy systems can be 

developed using multiple simulation-based toolboxes such as the Thermal Management System 

(TMS) toolbox [41], Thermosys [42], and the Aerospace Power System (APS) toolbox [43], 

among many others. These toolboxes can be used to develop component-level models as well as 

system-level models by connecting individual component models according to a system 

topology. However, the models resulting from these toolboxes can not be directly represented by 

a set of equations needed for model-based estimation, control, and fault diagnosis. Furthermore, 

many of these simulation-based toolboxes do not directly consider the coupling between the 

different energy domains of an energy system. Bond graphs provide modular domain-

independent graphical representations of system dynamics that can be used to derive state-space 

models. Their physical concepts are based on energy and energy exchange. In a bond graph, 

component energy ports are connected by bonds which represent the transfer of energy between 

the components of a system. Power along each bond is the product of a flow variable and an 

effort variable [44]. For example, in the electrical domain, effort represents voltage potential and 

flow represents current. In the hydraulic domain, effort represents pressure difference while flow 

represents volumetric flow rate. A drawback of this modeling approach is that system-level 
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models formed by interconnecting general-purpose component bond graphs can be extremely 

complex [45]. 

In this dissertation, an alternative graph-based modeling approach that balances modeling 

and computational complexity versus modeling accuracy has been adopted to derive control-

oriented component-level and system-level dynamic models [40]. This modeling approach offers 

many benefits for the applications considered in this dissertation. First, it represents a modular 

and scalable modeling technique suitable for various systems of different complexities and 

architectures. For example, [46], [47] use this modeling technique to generate system-level 

electrified vehicles models, whereas in [48] it is used to generate a higher resolution component-

level model of an inverter.  Second, it is domain and timescale agnostic. Therefore, it can directly 

capture coupling between dynamics spanning multiple energy domains and timescales. For 

example, electrical and thermal graph-based models of electrified vehicles are derived in [43], 

[49]. These models capture the electro-thermal coupling of electrified air and land vehicles, 

respectively. Furthermore, hydraulic graph-based models for fluid-based thermal management 

systems of electrified vehicles are derived in [40] and [50]. Third, this graph-based modeling 

approach facilitates system decomposition which is vital for hierarchical estimation design. 

Example hierarchical graph-based models derived using this modeling approach can be found in 

[46], [47], [51]. 

The remainder of this chapter is organized as follows. Section 2.2 presents the general 

formulation of the graph-based modeling technique used in this dissertation. Graph-based 

modeling in the hydraulic and the thermal domains is presented in subsections 2.2.1 and 2.2.2, 

respectively. Various system decomposition approaches that can be used to generate hierarchical 

graph-based models are presented in section 2.3. Section 2.4 presents an aggregation-based 

model order reduction technique that can be used to reduce the computational complexity of the 

hierarchical models and, thus, the required computational time of the hierarchical observers. 

Concluding remarks are presented in section 2.5. 

2.2 Graph-based Modeling 

In this modeling technique, capacitive elements that store energy are represented by 

vertices, and the paths for energy transport between adjacent vertices are represented by edges 
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with each edge associated with a weight. The structure of the energy storage elements and the 

power flows throughout a system S  is represented as an oriented graph ( , )G v e= . v  denotes 

the set of vertices [ ]iv v= , for [1, ]vi N , where vN  represents the number of vertices of the 

graph ,G and e  denotes the set of edges [ ]je e= , for [1, ]ej N , where eN  represents the 

number of edges of the graph G . Each vertex iv  has an associated capacitance iC  and an 

associated dynamic state ix . Each power flow jP  along an edge je  is represented as a function 

of an associated edge input ju  and the head head
jx  and tail tail

jx  vertices it connects, 

 ( , , ).tail head
j j j j jP f x x u=   (2.1) 

To represent interactions with neighboring systems or the external environment, a graph 

G  also includes source edges [ ]in in
le e= , for [1, ]ll N , with associated inlet power flows 

[ ]in in
lP P= , and sink vertices [ ]t t

sv v= , for [1, ]ss N , with associated sink states   [ ]t t
sx x= . 

Inlet power flows and sink vertices are considered as disturbances to the graph G . That is, sink 

states are not considered as internal states and inlet power flows are not considered as internal 

power flows in the graph G . The orientation of each edge represents the direction of positive 

flow from the tail vertex tail
jv  to the head vertex head

jv . The interconnection between the edges 

and the vertices of the graph G  is described by an incidence matrix [ ]
N Nv e

ijM m


=  , where 

ijm  is defined as 

 

1,  is the tail of ,

1,  is the head of ,

0, .

i j

ij i j

v e

m v e

else




= −



  (2.2) 

These graph-based models are governed by conservation laws. For example, in the 

thermal domain, graph-dynamics satisfy conservation of energy and in the hydraulic domain they 

satisfy conservation of mass. Therefore, the rate of change of the energy stored in each vertex iv  
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of a graph G  is determined by the difference between power flow in to iv  and power flow out of  

iv  as follows. 

 

{ | } { | }

( ) ( ) ( ),i i j j
head tailj e j ej ji i

C x t P t P t

  

= −    (2.3) 

where { : }head head
i j j ie v v = =  and { : }tail tail

i j j ie v v = =  represent the sets of edges entering and 

leaving iv . 

By applying conservation of energy on each vertex in the graph, the dynamics of a 

system S  represented by a graph G  are given by  

 
( )

: ,
0( )

in

t

Cx t D
S MP P

x t

   
= − +   

  
  (2.4) 

where [ ]ix x=  is the state vector for the internal vertices of G , [ ]jP P=  is the vector of internal 

power flows along the edges, ([ ])iC diag C= , is a diagonal matrix of the capacitances 0iC  , 

and 
( )

[ ]
N N Nv s l

ijD d
− 

=   is given by  

 
1,  is the head of ,

0,    else.

in
i l

ij

v P
d


= 


  (2.5) 

The incidence matrix M  can be partitioned as  

 
( )

, .
N N Nv s e

M
M M

M

−  
=  
 

  (2.6) 

That is, M  represents a map from power flows P  to internal state vertices x  and M  

represents a map from power flows P  to sink vertices 
tx . Consequently, system dyanmics can 

be written as 

 .inCx M P DP= − +   (2.7) 
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Figure 2.1 shows an example graph-based model that includes 4 internal vertices, 5 

edges, 1 sink vertex 
tv  representing a surrounding system, and 2 source edges 1

ine  and 2
ine  

entering the system from the surrounding environment or a neighboring system. The inlet power 

flows 1
inP  and 2

inP  along the source edges are not included in the vector of internal power flows, 

P , of G . Similarly, the sink state 
tx  associated with the sink vertex 

tv  is not included in the 

internal state vector x  of G .  

 

 

Figure 2.1 An example graph-based model. 

2.2.1 Hydraulic Graph-based Models 

In the hydraulic domain, the associated state of each vertex represents a pressure state p  

and the power flow along each edge represents a mass flow rate m . Additionally, source power 

flows represent mass flow rates 
inm  entering the hydraulic graph from a neighboring system. 

Using this modeling technique, hydraulic graph-based models for single phase fluid-based 

thermal management systems of electrified vehicles  are derived and experimentally validated in 

[40], [50]. In these references, the system is assumed to be closed, i.e. fluid does not enter or 

leave the system. Therefore, the hydraulic dynamics can be represented by 

  .Cp Mm= −   (2.8) 

A hydraulic graph-based model of a system is obtained by applying the conservation of 

mass principle on every component in the system separately. Equation (2.8) is then derived by 

combining the component hydraulic graph-based models according to the system topology. 
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Typical components of fluid-based thermal management systems of electrified vehicles include 

reservoirs, centrifugal pumps, liquid-to-liquid brazed plate heat exchangers, cold plate heat 

exchangers, flow/split junctions, valves, and pipes. Detailed derivation of the hydraulic graph-

based model of each of these components shown in figure 2.2 can be found in [40]. For 

reservoirs, such as fuel tanks, the hydraulic capacitance is given by 

 ,cA
C

g
=   (2.9) 

where cA  is the effective cross-sectional area and g  is the gravitational constant. For all the 

other components, the hydraulic capacitance is given by  

 ,
V

C
E


=   (2.10) 

where V  is the volume of the fluid in the component,   is the density of the fluid, and E  is the 

bulk modulus. The mass flow rate ( , , )head tail
j j j jm f p p u=  along hydraulic edges of pumps is 

given by 

 , 2 ( ),

head tail
j j

j c j j

p p
m A g H

g




−
= −   (2.11) 

where H  is the pump head and is determined empirically as a linear function of the pump speed 

  and the pressure differential across the pump, 

 1, 2, 3,( ) .head tail
j j j j j j jH p p   = + − +   (2.12) 

1 , 2 , and 3  are constants. For all the other hydraulic edges, the mass flow rate is given by 

 ,

,

2( )
,

( )

tail head
j j j

j c j
j

j L j
j

p p g h
m A

L
f K

D






− + 
=

+

  (2.13) 

where jh  is the height difference between the inlet and the outlet flow, jf  is the friction 

factor, jL  is the fluid flow length, jD  is the fluid diameter, and ,L jK  is the minor loss 
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coefficient. As shown in figure 2.2, graph-based models are based on the assumption of lumped 

parameters. Thus, the hydraulic dynamics of each component are captured by a single vertex. 

However, depending on the application and the available computational resources, a higher 

model fidelity can be achieved by increasing the number of states per component. 

 

Figure 2.2 Hydraulic graph-based models for components typical of fluid-based thermal 

management systems of electrified vehicles. Modified from [40].  

2.2.2 Thermal Graph-based Models 

In the thermal domain, each dynamic state ix  represents a temperature iT  and each edge 

je  represents a thermal power jP . For example, fluid-based thermal management systems are 

mainly governed by convective and advective power flows. An advective thermal power flow 

( , , )tail head
j j j j jP f T T m=  is given by  
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 , ,tail
j j p j jP m c T=   (2.14) 

where jm  is the mass flow rate of the fluid entering the component, ,p jc  is the fluid specific 

heat capacitance, and tail
jT  is the temperature associated with the tail vertex. A thermal power 

flow due to convection is given by  

 ,( ) ( ),tail head
j j s j j jP h m A T T= −   (2.15) 

where jh  is the heat transfer coefficient, ,s jA  is the convective surface area, and head
jT  is the 

temperature associated with the head vertex. Thermal capacitances are given by  

 , ,i i p iC M c=   (2.16) 

where iM  is the mass of the heat exchanger wall for vertices associated with heat exchanger 

wall temperature wT  (in figure 2.3) or the fluid mass for vertices associated with fluid 

temperature (i.e. T , ,aT  or bT  in figure 2.3), and ,p ic  is the specific heat capacitance of the fluid 

or heat exchanger wall. For components with a varying fluid mass (e.g. reservoirs), the mass iM  

is modeled as a time varying parameter. Detailed derivation and experimental validation of the 

thermal graph-based models for the components shown in figure 2.3 can be found in [40]. 

Similarly to the hydraulic graph-based models presented in subsection 2.2.2, the graph-based 

models presented in figure 2.3  are based on the assumption of the lumped parameters. Thus, the 

rate of change of the thermal energy stored in a thermal mass is represented by a single vertex iv  

associated with a single dynamic state ix . However, when needed, higher resolution thermal 

graph-based models can be derived. For example, in [48], a 79 state resistor-capacitor dynamic 

thermal graph-based model of a high power density inverter is derived and experimentally 

validated using this modeling technique. The edges of the thermal graph-based model presented 

in [48] are designed to capture thermal power flows due to conduction and convection heat 

transfer. Additionally, thermal radiation could readily be included in this framework by modeling 

it as a heat source or disturbance. For instance, the dynamic thermal graph-based model of a 
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cabin thermal management system of an electrified vehicle presented in [49], [52] incorporates 

solar load, internal loads from humans, ground reflected loads, and ambient air infiltration.  

 

 

Figure 2.3 Thermal graph-based models for components typical of fluid-based thermal 

management systems of electrified vehicles. Modified from [40].  
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2.3 Hierarchical Graph-based Models 

To design a hierarchical observer, the system model must be decomposed into a hierarchy 

of interconnected systems and subsystems. There is a very rich literature on how to decompose a 

graph into multiple subgraphs or a hierarchy of subgraphs. An intuitive approach can be based on 

the spatial characteristics of the edges and the vertices of the graph. This can be related to the 

energy domain of the dynamics or the physical locations of the components. [53] proposes a 

partitioning algorithm derived from spatial considerations. 

A hierarchical graph can also be derived using hierarchical clustering approaches [54], 

[55]. The output of these methods is a hierarchical tree, also called a dendrogram, whose levels 

represent segmentations of data sets. The main objective of clustering is to group data points 

within groups or clusters such that points of a single cluster have analogous characteristics to 

each other and different characteristics from points in different groups. Two subsets of these 

approaches are agglomerative methods and divisive methods. In agglomerative methods, each 

vertex is defined as its own cluster and, as the level of the hierarchy increases, the closest 

clusters are gradually merged into larger clusters (i.e. subgraphs, subsystems) until the graph of 

the entire system is reconstructed at the top-level of the hierarchy. There are multiple well-

known hierarchical clustering methods [56], [57]. Additionally, [49] proposes a hierarchical 

clustering algorithm that focuses on minimizing coupling between the subsystems in the 

hierarchy. Divisive clustering approaches progress in an opposite direction. These approaches 

start with the entire system model at the top level of the hierarchy and as the level of the 

hierarchy decreases, edges of the graph are gradually cut to form smaller subgraphs (i.e. 

subsystems). A drawback of hierarchical clustering algorithms is the high time complexity 

resulting from gradually clustering datasets step-by-step [58]. 

Spectral graph partitioning is another popular tool that can be used to cluster vertices in a 

graph. These approaches are derived from graph theory with the goal of identifying communities 

of vertices in a graph based on the edges connecting them. Vertices of a community are highly 

coupled among themselves and weakly coupled to vertices of other communities. In these 

methods, clustering is performed using the eigenvalues and the eigenvectors of the Laplacian 

matrix of the graph [59], [60]. These methods can also result in a hierarchy of clusters (i.e. 

subsystems) [58], [61].  
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In this dissertation, the decomposition of the models is not unique, and the user can apply 

various decomposition approaches to derive a hierarchical graph-based model. For example, the 

hierarchical graph-based model used by the hierarchical observer in [51] and the hierarchical 

controller in [47] is based on the hierarchical clustering algorithm derived in [49]. Whereas, the 

hierarchical graph-based model used by the hierarchical controller in [62] and the hierarchical 

observer in [63] is derived based on spatial considerations.  

Figure 2.4 shows an example 2-level hierarchical graph-based model. The top-level of the 

hierarchy consists of a graph-based model capturing the dynamics of the entire system. The 

lowest-level of the hierarchy comprises two subgraphs or subsystems derived by disconnecting 

edge 9 of the system-level graph-based model. The connecting vertices, also called coupling 

vertices in this dissertation, are modeled as sink states in the lowest-level subgraphs. More 

specifically, vertex 5 of the system-level model is modeled as a heat sink (or disturbance) to 

Subsystem 1 and vertex 4 of the system-level model is modeled as a sink vertex to Subsystem 2. 

A detailed formulation of an N -level hierarchical graph-based model is presented in subsection 

3.5.1. 

 

 

Figure 2.4 An example 2-level hierarchical graph-based model.  
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2.4 Structure-Preserving Model Order Reduction  

2.4.1 Background 

Electrified vehicles can be regarded as systems-of-systems that include hundreds of 

components. The dynamics of each component of these systems can be represented by tens of 

states [64]. Consequently, a graph-based model that captures the dynamics of an electrified 

vehicle system can consist of a very large number of states. Moreover, to capture the coupling 

between the multi-domain dynamics of these systems, the models should be simulated and 

controlled over small timesteps leading to prohibitively high demands on computational 

resources. Therefore, to facilitate online estimation and fault diagnosis, reduced-order models 

that balance between accuracy and computational complexity are required.  

There are many methods available in the field of model order reduction (e.g. Truncated 

Balanced Realization, Hankel-norm reduction, etc. [65]). However, these approaches fail to 

retain the physical structure or the network topology of the reduced-order model. That is, the 

states of the resulting reduced-order model have no physical meaning. Nevertheless, preserving 

the physical correspondence between the reduced-order model and the physical system offers 

many benefits: 

1. Physical intuition: A reduced-order model that preserves the physical meaning of its 

states is important for providing physical insights in large-scale dynamical 

systems. This results in easier model calibrations, and a better understanding of 

the complex interactions between the dynamics of the various subsystems 

through accurate, yet simple dynamical models.  

2. Multi-timescale dynamics: Preserving the spatial structure of the model is directly 

related to preserving its temporal structure. This is very useful for designing 

the update rates of the observers and the controllers of multi-timescale 

dynamical systems (e.g. [66]).  

3. Sensor placement: Preserving the structure of the network facilitates sensor 

placement which is a ctritical step in observer design. For example, [67] 

develops an optimal sensor placement approach for dynamic thermal 
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estimation of power electronic systems enabled by the experimentally validated 

structure-preserving reduced-order graph-based model developed in [48].  

4. Control design: Tuning a model-based controller of a complex dynamical system 

(e.g. a model predictive controller) or a model-based observer (e.g. a Kalman 

filter) is simpler and more intuitive when a reduced-order model that preserves 

the physical structure of the full-order model is available (e.g. [68]).     

5. Fault diagnosis: Electrified vehicle systems are considered as safety critical systems. 

Therefore, early detection and isolation of any fault that might occur in a 

sensor, an actuator, or a component of these systems is a high necessity. Fault 

diagnosis can be achieved by comparing the estimated states obtained from an 

online observer to the actual measured states obtained from the physical 

sensors of a system. That is, fast running models that can be implemented in 

real-time, and the ability to map measured signals to their corresponding 

estimated states are two major requirements for online model-based fault 

diagnosis (e.g. [48]). To achieve these two requirements, structure-preserving 

model order reduction techniques are needed.  

2.4.2 Aggregation-based Model Order Reduction 

Several structure-preserving model order reduction techniques can be found in the 

literature [69]–[72]. In this dissertation, low-order graph-based models are developed using an 

aggregation-based model order reduction technique derived from the timescale separation of the 

graph dynamics. Timescales can be identified by the eigenvalues or by the magnitude of the 

capacitances of a graph. For example, fast dynamics are associated with large eigenvalues and 

slow dynamics are associated with small eigenvalues [72]. Alternatively, vertices with large 

capacitances correspond to slow dynamics and vertices with small capacitances correspond to 

fast dynamics [68].  

In the proposed approach, model order reduction is achieved by aggregating adjacent 

vertices belonging to the same dynamic group (e.g. slow, medium, or fast dynamics) into larger 

vertices, called “super-vertices”. Two vertices are defined as adjacent vertices if they are 
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connected to each other through an edge. Each super-vertex zv  is associated with a super-state 

zx  and a super-capacitance zC  given by 

     
{1,2,..., }

.z i

i Nv

C C


=    (2.17) 

Similarly, a super-power flow 
in
zP  entering a super-vertex zv  is given by 

     
{1,2,..., }

.in in
z i

i Nv

P P


=    (2.18) 

Internal edges je   in a super-vertex zv   are neglected. A graph-based model can be reduced from 

vN  dynamic vertices in the full-order model to vM   dynamic vertices in the reduced-order 

model by following steps 1-7 of Algorithm 1. The resulting dynamics of the reduced-order 

graph-based model can be represented by equation (2.7).  

 

 

Step 8 of Algorithm 1 can be applied to design a hierarchical reduced-oder graph-based 

model needed for hierarchical estimation design. Specifically, in the proposed hierarchical 

Algorithm 1: Aggregation-based Model Order Reduction Technique  

1. Partition v  into xN  dynamics groups ( 1, 2,..., )k xD k N=  such that for each k :  

( , ) , ( ),m n k m nv v D m n C C   . ( xN is defined by the user).  

2. for 1, 2,..., xk N=  do    

3.  Aggregate adjacent (i.e. connected) vertices into wN   super-vertices ( 1,2,..., )z wv z N= . 

( wN  is defined by the user).                                              

4.        for 1,2,..., wz N=  do 

5.                 
{1,2,..., }

z i

i Nv

C C


=         

                
{1,2,..., }

in in
z l

l Nl

P P


=    

6.          end for 

7. end for 

8. At the next level of the hierarchy, repeat steps 1-7 (until the top level is reached), such 

that for each kD  additional vertices are aggregated into larger super-vertices zv .   
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estimation framework (refer to section 3.3), high-level observers (and controllers) manage 

decisions at the system-level, whereas low-level observers (and controllers) manage 

component/subsystem dynamics. To reduce computational load, high-level observers can use 

low-resolution representations of the models used by low-level observers. However, high-level 

models should be accurate enough not to create large model mismatches and possibly lead to 

closed-loop instability. Consequently, the aggregation procedure presented in 1 (i.e. steps 1-7)  

can be repeated at each level of the hierarchy, such that as the level of the hierarchy increases the 

order of the model decreases. Additionally, at high levels of the hierarchy (e.g. the top level), 

higher reduction can be achieved by relaxing  step 3 of Algorithm 1 to allow aggregation of 

adjacent vertices belonging to two dynamic groups. This is illustrated in the example reduced-

order graph-based model presented in figure 2.5. In this example, the vertices of a graph-based 

model representing a subsystem of an electrified vehicle are divided into three dynamics groups 

(i.e. 3xN = ) based on the magnitude of their capacitances. Vertices with large capacitances 

belong to the slow dynamics group 1D  (i.e. red vertices in figure 2.5), vertices with small 

capacitances belong to the fast dynamics group 3D  (i.e. green vertices in figure 2.5), and the 

remaining vertices are grouped in the medium dynamics group 2D  (i.e. blue vertices in figure 

2.5). At the 1st level (i.e. lowest level) of the hierarchy, the subsystem is represented by its full-

order graph-based model to provide an accurate representation of the subsystem dynamics at the 

component level. At the 2nd level, a reduced-order model is designed by aggregating the 

adjacent vertices 2v , 6v , and 7v  of the lowest-level model into a single super-vertex 2v , and 

adjacent vertices 4v , 8v , and 9v  into another super-vertex 4v . At the highest level of the hierarchy 

(i.e. Level 3 ), super-vertices 3v  and 5v  of the second-level model are aggregated into super-

vertex 3v . That is, step 3 of the algorithm is relaxed to allow a higher model order reduction by 

only capturing low resolution dynamics at the system-level. Experimentally validated reduced-

order models for fluid-based thermal management systems of electrified vehicles derived using 

this approach are presented in section 4.4. 

Compared to conventional methods, this model order reduction technique offers many 

benefits. First, it maintains the structure of the graph. As a result, it preserves the physical 

correspondence between full-order and reduced-order models. Additionally, this technique 
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retains the timescale separation of the dynamics of the reduced-order model, which is valuable 

for hierarchical estimation and control design.  

 

 

Figure 2.5 An example that illustrates the aggregation-based model order reduction 

technique used in this dissertation applied on a subsystem graph-based model in a 3-level 

hierarchy.  

2.5 Conclusions 

This chapter presented a physics-based lumped parameter modeling approach for multi-

domain dynamical systems. The technique consists of representing lumped parameter models as 

graphs composed of vertices connected by edges. The resulting models can be simulated in real-

time and can capture component-level and system-level dynamics. This modeling technique is 

energy domain and timescale agnostic. Consequently, it can directly account for the dynamic 

interactions that naturally occur in a multi-domain dynamical system. Additionally, the modeling 

approach is modular and scalable. Thus, it is suitable for various systems of different 

architectures. The general formulation of this graph-based modeling technique was presented in 

section 2.2. In subsections 2.2.1 and 2.2.2, it was used to derive physics-based models in the 

hydraulic and the thermal domains, respectively.  
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To design hierarchical observers, the graph-based model must be decomposed into a 

hierarchy of interconnected systems and subsystems. In this dissertation, the decomposition of 

the models is not unique, and section 2.3 presented several system decomposition approaches 

that can be used to generate hierarchical graph-based models. Section 2.4 presented an 

aggregation-based model order reduction technique that can be used to reduce the required 

computational time of hierarchical observers. The proposed technique is based on the timescale 

separation of the graph dynamics and maintains the physical correspondence between full-order 

and reduced-order models. Experimental validation of the lumped parameter modeling approach 

presented in section 2.2, one of the hierarchical system decomposition approaches presented in 

section 2.3, and the model order reduction approach described in section 2.4 are presented in 

Chapters 4 and 6 (refer to sections 4.6 and 6.5). 
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Chapter 3     

Multi-level Model-based Hierarchical Estimation 

3.1 Background and Motivation 

Centralized and decentralized estimation represent two design options for estimating the 

states of a dynamical systems. Centralized estimation [73] provides high estimation accuracy, but 

it is usually computationally expensive as it relies on a single observer that accounts for all 

system’s interactions. Decentralized estimation is less computationally demanding and relies on 

multiple independent local observers each estimating their own part of the system. However, the 

lack of communication between the observers of a decentralized framework negatively affects 

estimation accuracy and stability, especially in highly coupled systems.  

Distributed estimation is an alternative approach that creates a tradeoff between 

centralized and decentralized estimation algorithms. This framework consists of a network of 

observers that exchange information among each other according to a network topology. In a 

distributed approach, each observer in the network relies on their local measurements and 

neighboring interactions to estimate the states of the system. Various methods for distributed 

estimation have been proposed in the literature (e.g. consensus-based algorithms [74], diffusion-

based algorithms [75], etc.). However, in these approaches, each observer in the network is 

required to store and estimate the entire system model leading to large computational 

requirements. Furthermore, these approaches are not suitable for systems with multiple timescale 

dynamics since the observers of a distributed network are designed to update at a single update 

rate.   
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Hierarchical estimation is another approach that creates a tradeoff between centralized 

and decentralized estimation algorithms. In this approach, estimation is achieved by a 

hierarchical network of local observers sharing information among each other. Each local 

observer estimates the states of their own part of the system by relying on their local 

meaurements and information received from neighboring observers in the network. Hierarchical 

observers allow parallel processing, and thus are less computationally demanding than 

centralized observers. Furthermore, hierarchical observers account for subsystem’s interactions, 

and thus can reach higher estimation accuracy and better stability than decentralized observers. 

Moreover, these observers are designed to update at different timescales at each level of the 

hierarchy which makes them suitable for systems characterized with multiple dynamic behaviors 

(e.g. slow and fast dynamics).  

Most works on hierarchical estimation rely on the weighted least square (WLS) algorithm 

[76]–[83]. [84] presents a simple two-level Kalman filter-based hierarchical estimation algorithm 

for an ethylene-propylene-diene polymer (EPDM) reactor designed by decomposing the system 

model into two subsystems. The dynamics of the low-level subsystem are completely 

independent of the top-level subsystem. Therefore, only an upward flow of information was 

sufficient for the design of the hierarchical observer. [85] presents a two-level Kalman filter-

based hierarchical estimation algorithm with a unidirectional flow of information to estimate the 

dynamics of power systems. Coupling among subsystems is ignored at the lowest level and only 

accounted for by a global observer at the top level of the hierarchy. [51] extends this algorithm to 

a multi-level hierarchical estimation approach. However, as shown in [85], the loss of 

information caused by ignoring subsystems interactions at low levels in the hierarchy can lead to 

a reduction in the estimation accuracy, and possibly affect stability, especially in highly coupled 

systems.  

This chapter develops a multi-level hierarchical estimation algorithm with a novel 

coordination framework for multi-domain dynamical systems. In the proposed framework, 

subsystem’s interactions are considered at all levels of the hierarchy through a bidirectional flow 

of information among the observers.  

The remainder of this chapter is organized as follows. Section 3.2 presents the 

formulation of a benchmark centralized observer. The architecture of the proposed hierarchical 
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observer is presented in section 3.3. The advanatges of the proposed framework compared to 

conventional and current practices are presented in section 3.4. Section 3.5 presents the 

formulation, stability analysis and sufficient conditions for the convergence of the proposed 

hierarchical observer. Section 3.6 presents two case studies that demonstrate the boundedness 

and convergence of the proposed estimation framework. A conclusion for this chapter is 

presented in section 3.7. 

3.2 Centralized Observer Formulation 

 This section presents two formulations for a benchmark centralized observer that can be 

used to estimate the dynamics of multi-domain dynamical systems modeled by the graph-based 

modeling approach presented in Chapter 2. The first formulation is based on representing the 

graph by a discrete linear time-varying model. This is enabled by assuming a state-affine form 

for the power flows along the edges of the graph. The second formulation is based on 

representing the system by a switched linear model. 

The remainder of this section is organized as follows. A linear time-varying system 

representation is presented in subsection 3.2.1. The formulation of a conventional centralized 

discrete Kalman filter is presented in subsection 3.2.2. A switched linear system representation is 

presented in subsection 3.2.3. Finally, the formulation of a switched Kalman filter that can be 

used to capture switching dynamics of discrete actuators is presented in subsection 3.2.4. 

3.2.1 Discrete Linear Time-Varying Model 

By applying conservation of energy on each vertex, the dynamics of the internal states of 

a graph G  are given by (see Chapter 2) 

   inCx M P DP= − +  (3.1) 

where ([ ]),iC diag C=  is a diagonal matrix of the capacitances 0iC  , x  is a vector of the 

internal states, M  is an incidence matrix that maps power flows 
jP P =  

 to the internal states 

,x and D  maps source power flows inP  to x . To facilitate a linear representation of the graph 

dynamics, it is assumed that the power flows along the edges of a graph can be represented by a 

state-affine form as follows. 
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   ( ) ( ) ,tail tail head head
j j j j j j jP f u x f u x= −   (3.2) 

where  :tail
jf +→  and :head

jf +→  are scalar functions, tail
jx  and head

jx  are the states 

associated with the head head
jv  and tail head

jv  vertices connected by edge je , and ju  is the 

actuator input along that edge. This assumption can be satisfied for many energy systems. For 

example, this assumption holds for thermal power flows of fluid-based thermal management 

systems (i.e. advective and convective power flows) as shown by equations (2.14) and (2.15). 

Specifically, advective power flows are modeled as 
,

tail
j j p j jP m c T= , where jm  is the fluid 

mass flow rate, ,p jc  is the fluid specific heat capacitance, and tail
jT  is the temperature associated 

with the tail vertex (i.e. the temperature of the upstream flow). Therefore, for advective power 

flows, 
,( )tail

j j j p jf u m c=  and ( ) 0head
j jf u = . Similarly, convective power flows are modeled as 

,( ) ( ),tail head
j j s j j jP h m A T T= −  where ( )jh m  is the convective heat transfer coefficient, 

,s jA  is 

the convective surface area, and head
jT  is the temperature associate with the head vertex. 

Therefore, for convective power flows, 
,( ) ( ) ( )tail head

j j j j j s jf u f u h m A= = .  

Consequently, the power flow vector P  of a graph G  can be written as 

   ( ) ,
t

x
P F u

x

 
=  

 
  (3.3) 

where tx  is the sink state vector, and ( ) [ ( )]
N Ne v

ji jF u f u


=   is given by 

   

( )  is the tail of ,

( ) ( )  is the head of ,

0 else.

tail
j j i j

head
ji j j j i j

f u v e

f u f u v e





= −



  (3.4) 

Furthermore, similarly to the incidence matrix M  in equation (2.6), ( )F u  can be partitioned 

into  

   ( ) ( ) ( )F u F u F u =  
 (3.5) 
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where ( )
( ) [ ( )]

N N Ne v s
ji jF u f u

 −
=   and ( ) [ ( )]

N Ne s
ji jF u f u


=  . Subsequently, by 

substituting equations (3.3) and (3.5) into (3.1), the dynamics of the graph-based model can be 

represented by a linear time-varying state space model as follows.  

   
( ) ( ) ,

,

in tx A u x BP E u x

y Hx 

 = + +


= +
  (3.6) 

where 

   1( ) ( ),A u C M F u−= −   (3.7) 

   1 ,B C D−=   (3.8) 

   1( ) ( ),E u C M F u−= −   (3.9) 

H  is a mapping from the true states x  to the measured states y , and   is the measurement 

noise. 

Finally, by assuming a zero-order hold for the edge inputs u , the source power flows 

,inP  and the sink states tx , a discrete representation of the model dynamics can be written as 

   1 ,in t
k k k k k k k

k k k

x A x B P E x

y Hx 

+
 = + +


= +
  (3.10) 

where  

   ,
sA

kA e =   (3.11) 

   1( ) ,k kB A A I B−= −   (3.12) 

   1( ) ,k kE A A I E−= −   (3.13) 

s  is the sample time,  I  is the identity matrix, and k  is the time index. 

This class of systems can be proven open-loop stable under appropriate conditions on the 

connectivity of the graph and the current form of the equations governing power flow along its 

edges (i.e. equation (3.2)). For a detailed proof of the open loop stability of this class of system 
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the reader is referred to [62].  From the open loop stability of the system dynamics, it follows 

that the pair ( , )kA H  is detectable and an asymptotic observer exists.  

3.2.2 Centralized Discrete Kalman filter 

The system dynamics represented by equations (3.10)-(3.13) can be estimated by a 

centralized discrete Kalman filter described by the following prediction and correction steps. 

Measurement update (correction step) 

   

| 1

1
| | 1 | 1 | 1

1
| | 1 | 1 | 1

:

ˆ ˆ ˆ( )

T
k k k k

T
k k k k k k k k k k

T T
k k k k k k k k k

M HP H R

x x P H M y Hx

P P P H M HP

−

−
− − −

−
− − −

 = +



= + −


= −

  (3.14) 

Time update (prediction step) 

   
1| |

1| |

ˆ ˆ in t
k k k k k k k k k

T
k k k k k k k

x A x B P E x

P A P A Q

+

+

 = + +


= +

  (3.15) 

1|ˆk kx +
 and 

|ˆk kx  represent the state estimates of kx  at times 1k +  and k , respectively, given 

observations up to time k . 
|k kP  and 

1|k kP +
 are the measurement update and time update error 

covariance matrices, respectively. 0P , the initial condition for 
1| 1k kP − −

, is given by  

   
0 0 0 0 0ˆ ˆ[( )( ) ],TP E x x x x= − −   (3.16) 

where 0 0ˆ [ ]x E x= , and [.]E  represents the expected value. kQ  and kR  represent the covariance 

matrices of the process noise and the observation noise, respectively. The correction and 

prediction steps (i.e. equations (3.14) and (3.15)) can be combined into a single step resulting in 

the following set of equations 

   

| 1

1
| 1

1| | 1 | 1

1
1| | 1 | 1 | 1

:

,

ˆ ˆ ˆ( ),

( ) ,

T
k k k k

T
k k k k k

in t
k k k k k k k k k k k k k

T T T
k k k k k k k k k k k k

M HP H R

K A P H M

x A x B P E x K y Hx

P A P P H M HP A Q

−

−
−

+ − −

−
+ − − −

 = +

 =


= + + + −


= − +

  (3.17) 
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 where kK  is the Kalman gain matrix of the observer. 

3.2.3 Switched Linear System 

Some systems comprise switching actuators that represent discrete events. In particular, 

several of the physical systems to be considered later in this dissertation fall into this class.  For 

example, thermal management systems typically include valves opening and closing. 

Continuous-time systems with discrete switching events are called hybrid or switched systems 

[86]. To capture the discrete behavior of such actuators, u  in equation (3.6) can be replaced by 

( )tu , where ( ) :[0, ) [1: ]mt N  →  is a switching signal that specifies the active mode of 

operation and mN  is the finite number of modes. Consequently, equation (3.6) can be represented 

as  

   ( ) ( ) ,in t
t tx A x BP E x = + +   (3.18) 

where  

   
( ) ( )( )t tA A u =   (3.19) 

   
( ) ( )( )t tE E u =   (3.20) 

A discrete representation of equation (3.18) can be derived by assuming a zero-order hold for the 

edge inputs u , the source inputs inP , the sink states tx , and switching signal   as follows. 

   1

,

,d d in d t
k k k kk k k

k k

x A x B P E x

y Cx

  +
 = + +


=

  (3.21) 

where  

   ,
sAd k

k
A e


 =   (3.22) 

   1 ( ) ,d d

k k k k
B A A I B   

−= −   (3.23) 

   1 ( ) .d d

k k k k
E A A I E   

−= −   (3.24) 
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3.2.4 Switched Centralized Kalman filter 

The system dynamics represented by equations (3.21) - (3.24) can be estimated by a 

switching Kalman filter that applies the correction and prediction steps described by equations 

(3.14) and (3.15), or equation (3.17),  for each mode m, {1, 2,..., }k k N  . Specifically, for each 

,k  the following correction and prediction steps are applied. 

Measurement update (correction step) 

   

| 1

1
| | 1 | 1 | 1

1
| | 1 | 1 | 1

:

ˆ ˆ ˆ( )

T
k k k k

T
k k k k k k k k k k

T T
k k k k k k k k k

M HP H R

x x P H M y Hx

P P P H M HP

−

−
− − −

−
− − −

 = +



= + −


= −

  (3.25) 

Time update (prediction step) 

   
1| |

1| |

ˆ ˆ

.

d d in d t
k k k k k kk k k

d d
k k k kk k k

x A x B P E x

P A P A Q

  

  

+

+

 = + +


= +

  (3.26) 

That is, 
|ˆk kx  and 

|k kP  are used to estimate 1kx +  regradless of whether the subgraph dynamics have 

switched from k  to 1k + . Alternatively, the prediction and correction steps can be combined 

into a single step as follows. 

   

| 1

1
| 1

1| | 1 | 1

1
1| | 1 | 1 | 1

:

,

ˆ ˆ ˆ( ),

( ) ,

T
k k k k

d T
k k k kk

d d in d t
k k k k k k k k k kk k k

d T T d
k k k k k k k k kk k k

M HP H R

K A P H M

x A x B P E x K y Hx

P A P P H M HP A Q



  

  

−

−
−

+ − −

−
+ − − −

 = +

 =


= + + + −


= − +

  (3.27) 

 Stability and convergence of such an observer are investigated in [87]. 

3.3 Hierarchical Observer Architecture 

The proposed multilevel hierarchical observer consists of multiple local observers 

connected in a hierarchy to a global observer at the top level. Each observer estimates the 

dynamics of its corresponding part of the system (i.e. its own subgraph) using its own estimation 
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algorithm. Low-level observers estimate dynamics at the component/subsystem-level and high-

level observers estimate dynamics at the system-level. More specifically, as the level of the 

hierarchy increases, the part of the system estimated by each local observer increases and only 

the global observer at top level captures the dynamics of the entire system. Additionally, to 

reduce the overall computational load, high-level observers use low resolution representations of 

the models used by low-levels observers such that as the level of the hierarchy increases the 

orders of the models decrease.  

The hierarchy described here is delineated by time scale. That is, as the level of the 

hierarchy increases the time step of the observers increases such that low-level observers update 

fast enough to capture the fast dynamics at the component-level and high-level observers update 

slowly with the dynamics of the system-level models. Local observers operating at the same 

level in the hierarchy update at the same rate and do not share information. Restricting the flow 

of information between observers to be only upwards and downwards in the hierarchy can 

significantly reduce the total communication cost.  

Three types of information are shared in the hierarchical observer proposed in this 

dissertation: sensor measurements, local state estimates, and coupling information estimates (also 

called disturbance estimates or sink state estimates). At the lowest level of the hierarchy, local 

observers receive sensor measurements from the physical system and disturbance estimates from 

next-level observers. At all upper levels in the hierarchy, observers do not have direct access to 

physical sensor measurements. Instead, they treat local state estimates received from lower-level 

observers as pseudo-measurements. Coupling information is received from upper-level observers 

since more interactions are naturally included in the model as the level of the hierarchy increases. 

An example 4-level hierarchical observer is shown in Figure 3.1. The update rates of the 

observers at Level 1, Level 2, Level 3, and Level 4 are 100s, 10s, 1s, and 0.1s, respectively.  

 



 36  

 

Figure 3.1 An example hierarchical observer of 4 levels. Each local observer estimates its 

own part of the system using its own estimation algorithm. Observers operating at the same 

level update at the same rate and do not share information. 

3.4 Advantages of Hierarchical Estimation 

Compared to the conventional centralized estimation approach which relies on a single 

observer that accounts for all system’s interactions, the proposed hierarchical estimation 

approach provides the following advantages: 

1. Lower computational complexity: A centralized estimation approach relies on a single 

observer to estimate the dynamics of a system. Whereas, a hierarchical 

observer runs multiple smaller observers in parallel allowing a reduction in the 

computational cost. This reduction is further enabled by applying appropriate 

model order reduction at upper levels in the hierarchy such that as the level of 

the hierarchy increases the orders of the models used decrease.  

2. Flexibility: The proposed hierarchical estimation framework is flexible in terms of the 

estimation algorithm used by each observer in the hierarchy. For example, 

specific nonlinear elements could be handled with nonlinear estimation 

algorithms (e.g. Extended Kalman filter (EKF), Unscented Kalman filter 

(UKF), etc.) while leaving the linear elements to be observed by simpler linear 

estimation algorithms (e.g. Luenberger observer, Kalman filter (KF), etc.). 

3. Robustness: A hierarchical framework does not suffer from a single point of failure 

associated with a centralized estimator. Therefore, compared to a centralized 
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observer, a hierarchical observer can be more robust to failure (e.g. sensor 

failures).   

4. Modularity: Adding, removing, or modifying a subsystem can be easily handled in 

the proposed hierarchical observer. Whereas, these alterations require a 

complete redesign of the observer in a centralized estimation framework.  

5. Scalability: The proposed hierarchical estimation approach can be applied to estimate 

the dynamics of small-scale systems or can be extended to estimate the 

dynamics of large-scale complex systems. As a result, the proposed 

hierarchical estimation framework can be directly applied to different systems 

with various architectures.  

6. Suitable for multiple timescale dynamics: A centralized observer is designed using a 

single time step. However, the proposed hierarchical observer consists of a 

network of local observers updating at different timescales. As a result, the 

proposed hierarchical observer can be applied to estimate the dynamics of 

multi-domain dynamical systems.  

On the other hand, compared to decentralized estimation [88] and Kalman-filter based 

hierarchical estimation algorithms [51], [84], [85] where subsystem’s interactions are ignored, 

the proposed hierarchical estimation approach can achieve higher estimation accuracy. This is 

enabled by a bi-directional flow of information that propagates coupling information between the 

local observers at all levels of the hierarchy.  

3.5 Hierarchical Observer Formulation 

This section presents the formulation of the proposed hierarchical estimation approach. 

As mentioned in section 3.3, the proposed framework is independent of the choice of the 

estimation algorithm used by each observer in the hierarchy. That is, each observer in the 

hierarchy can use its own nonlinear estimation algorithm to estimate the nonlinear dynamics of 

its subgraph given in the form of equation (2.7); or the subgraph dynamics can be linearized and 

estimated using linear estimation algorithms. The formulation presented in this section is based 

on the linear Kalman filter algorithm. This is facilitated by the assumption given by equation 

(3.2).  
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The remainder of this section is organized as follows. Subsection 3.5.1 presents the 

formulation of an N -level hierarchical dynamic model derived from the graph-based modeling 

approach described in Chapter 2. Subsection 3.5.2 presents the formulation of a Kalman filter-

based hierarchical estimation algorithm and describes how to modify the hierarchical observer to 

include different types of observers in the hierarchy. 

3.5.1 N -Level Hierarchical Dynamic Model 

To design a hierarchical observer, there must be a hierarchical model of the system 

dynamics. A hierarchical model can be designed by applying the following steps: 

1. Design a graph-based model that accurately captures the dynamics of the physical 

system. To derive the graph dynamics, apply conservation laws on each vertex of 

the graph as shown in section 2.2. The dynamics of the graph can then be 

represented by a set of first order differential equations given in the form of 

equation (2.7). In general, a graph is represented by nonlinear dynamics. However, 

a linear form can be obtained by individually linearizing each edge of the graph. 

For example, this can be done by considering a state-affine form for the power 

flows as shown in equation (3.2). 

2. Decompose the graph into a hierarchy of interconnected systems and subsystems. 

An N -level hierarchical model is defined by a top-level model, 2N −  

intermediate-levels with several models each, and the lowest-level models. This 

step can be achieved using several system decomposition techniques. For 

example, section 2.3 describes various methods that can be used to derive a 

hierarchy from a graph-based model.   

3. At all levels of the hierarchy, except for the lowest level, apply the structure-

preserving model order reduction technique presented in Chapter 2 (i.e. Algorithm 

1 in section 2.4). This step allows a reduction in the computational complexity of 

the observer.  

The formulation of the top-level, intermediate-levels, and lowest-level models is 

described in 3.5.1.1, 3.5.1.2, and 3.5.1.3, respectively.  
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3.5.1.1 Top-level Model 

The top-level of the hierarchy consists of a single reduced-order graph-based model that 

represents the dynamics of the entire physical system, and hence it inherently captures all 

subsystem’s interactions. Following steps 1-3 from section 3.5.1, and assuming a state-affine 

form for the power flows (i.e. equation (3.2)), the top-level model can be represented by  

   
( ) ( ) ,

,

in t
p p p p p p p p p

p p p p

x A u x B P E u x

y H x 

 = + +


= +

  (3.28) 

where   

   1( ) ( ),p pp p p pA u C M F u−= −   (3.29) 

   1 ,p p pB C D−=   (3.30) 

   1( ) ( ).pp p p ppE u C M F u−= −   (3.31) 

The subscript p  refers to the top-level of the hierarchy. By assuming a zero-order hold for the 

edge inputs pu , the source power flows in
pP , and the sink states t

px , a discrete representation of 

the top-level model (3.28) can be written as 

   1, , , , , , ,

, , ,

,in t
k p k p k p k p k p k p k p

k p p k p k p

x A x B P E x

y H x 

+
 = + +


= +

  (3.32) 

where  

   , ,
sAp p

k pA e


=   (3.33) 

   1
, ,( ) ,k p p k p pB A A I B−= −   (3.34) 

   1
, ,( ) ,k p p k p pE A A I E−= −   (3.35) 

and  s
p  is the sample time of the top-level model. At this level of the hierarchy, the sink states 

t
px  represent distrubances that are external to the entire system (e.g. the external environment).  



 40  

3.5.1.2 Intermediate-levels Models 

An N -level hierarchical model consists of 2N −  intermediate-levels with several 

subsystem models each. Each of these models is a reduced order representation of models used at 

lower levels in the hierarchy. By applying steps 1-3 from section 3.5.1, and assuming a state-

affine form for the power flows (i.e. equation (3.2)), each susbsytem m  of every intermediate 

level can be represented by 

   , , , , , , , , , , , ,

, , , ,

( ) ( ) ( ) ,

,

in t coup coup
n m n m n m n m n m n m n m n m n m n m n m n m

n m n m n m n m

x A u x B P E u x E u x

y H x 

 = + + +


= +

  (3.36) 

where the subscript n  refers to the level of the hierarchy, and ,
coup
n mx  is a vector of the coupling 

states. Specifically, the vector ,
t
n mx  represents variables that capture the interactions of subsystem 

m  with entities that are external to the entire system not only susbsystem m  (e.g. the external 

environment). Whereas, the vector ,
coup
n mx  represents states that capture the interactions of 

susbsystem m  with the neighboring subsystems. Matrices 
, ,( )n m n mA u , 

,n mB , 
, ,( )n m n mE u , and 

, ,( )coup
n m n mE u  are given by  

   1
, ,, , , ,( ) ( ),n m n mn m n m n m n mA u C M F u−= −   (3.37) 

   1
, , , ,n m n m n mB C D−=   (3.38) 

   1
,, , , ,,( ) ( ),n mn m n m n m n mn mE u C M F u−= −   (3.39) 

   1
,, , , ,,( ) ( ),

coupcoup
n mn m n m n m n mn mE u C M F u−= −   (3.40) 

by decomposing the power flow vector 
,n mP  of each intermediate level subsystem m  into  

   

,

,, , , , ,, ,

,

( ) ( ) ( ) ,

n m

coup t
n mn m n m n m n m n mn m n m

coup
n m

x

P F u F u F u x

x

 
 

 =   
 
  

  (3.41) 
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where ( ), , , , , , , ,
, ,( )

N N N Ne n m v n m s n m coup n m
n m n mF u

 − −
  is a map for the internal states 

,n mx , 

, , , ,
,, ( )

N Ne n m s n m
n mn mF u


  is a map for the external sink states ,

t
n mx , and 

, , , ,
,, ( )

N Ncoup e n m coup n m
n mn mF u


  is a map for the coupling states ,

coup
n mx . 

, ,e n mN  is the number of 

edges (i.e. 
,n me ), 

, ,v n mN  is the number of vertices (i.e. , , ,, , andt coup
n m n m n mx x x ), 

, ,s n mN  is the 

number of external sink vertices (i.e. ,
t
n mx ), and 

, ,coup n mN  is the number of coupling vertices 

(i.e. ,
coup
n mx ) of subsystem m  at intermediate level n . 

By assuming a zero-order hold for the edge inputs 
,n mu , the source power flows ,

in
n mP , the 

coupling states ,
coup
n mx , and the external sink states ,

t
n mx , a discrete representation of each 

subsystem model m  given by (3.36) can be written as 

   1, , , , , , , , , , , , , , , , , ,

, , , , , , ,

,
coup coupin t

k n m k n m k n m k n m k n m k n m k n m k n m k n m

k n m n m k n m k n m

x A x B P E x E x

y H x 

+
 = + + +


= +

  (3.42) 

where  

   
, ,

, , ,
sAn m n m

k n mA e


=   (3.43) 

   1
, , , , , ,( ) ,k n m n m k n m n mB A A I B−= −   (3.44) 

   1
, , , , , ,( ) ,k n m n m k n m n mE A A I E−= −   (3.45) 

   1
, , , ,, , ( ) .

coup coup
n m k n m n mk n mE A A I E−= −   (3.46) 

3.5.1.3 Low-level Models 

Following steps 1-3 from section 3.5.1, and assuming a state-affine form for the power 

flows (i.e. equation (3.2)), each subsystem w   at the lowest level of the hierarchy is given by 

   
( ) ( ) ( ) ,

,

in t coup coup
w w w w w w w w w w w w

w w w w

x A u x B P E u x E u x

y H x 

 = + + +


= +
  (3.47) 
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where t
wx  captures the coupling of subsystem w  with entities that are external to the entire 

system (e.g. the environment), and coup
wx  captures the interactions of subsystem w  with the 

neighboring subsystems. As described in section 3.3, model order reduction is not applied at the 

lowest level of the hierarchy. That is, each subsystem w  is represented by a full order graph-

based model. Matrices ( )w wA u , wB , ( )w wE u , and ( )coup
w wE u  are given by  

   1( ) ( ),w ww w w wA u C M F u−= −   (3.48) 

   1 ,w w wB C D−=   (3.49) 

   1( ) ( ),ww w w wwE u C M F u−= −   (3.50) 

   1( ) ( ),
coupcoup

ww w w wwE u C M F u−= −   (3.51) 

by decomposing the power flow vector wP  of each subsystem w  into  

   ( ) ( ) ( ) ,

w

coup t
ww w w w ww w

coup
w

x

P F u F u F u x

x

 
 

 =   
 
 

  (3.52) 

where 
( ), , , ,( )

N N N Ne w v w s w coup w
wF u

 − −
  is a map for the internal states wx , 

, ,( )
N Ne w s w

wwF u


  is a map for the external sink states t
wx , and , ,( )

N Ncoup e w coup w
wwF u


  

is a map for the coupling states coup
wx . 

,e wN , 
,v wN , 

,s wN , and 
,coup wN  are the  numbers of edges 

(i.e. we ), vertices (i.e. , ,t
w wx x and coup

wx ), external sink vertices (i.e. t
wx ), and coupling 

vertices (i.e. coup
wx )  of subsystem w , respectively. 

By assuming a zero-order hold for the edge inputs wu , the source power flows in
wP , the 

coupling states coup
wx , and the sink states t

wx , a discrete representation of each lowest-level 

subsystem model can be written as 
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1, , , , , , , , ,

, , ,

,
coup coupin t

k w k w k w k w k w k w k w k w k w

k w w k w k w

x A x B P E x E x

y H x 

+
 = + + +


= +
  (3.53) 

where  

   , ,
sAw w

k wA e


=   (3.54) 

   1
, ,( ) ,k w w k w wB A A I B−= −   (3.55) 

   1
, ,( ) ,k w w k w wE A A I E−= −   (3.56) 

   1
,, ( ) .

coup coup
w k w wk wE A A I E−= −   (3.57) 

Remarks: 

a) The top-level model (i.e. equation (3.28)) does not include a term that explicitly 

accounts for coupling between subsystems since all subsystem interactions are 

inherently captured in this model. 

b) Except for the models at the lowest level of the hierarchy, each model in the 

hierarchical network is a reduced order comibation of models at the immediate 

lower level in the hierarchy  

3.5.2 KF-Based Hierarchical Estimation Algorithm 

 This section presents the formulation of a Kalman filter-based hierarchical estimation 

algorithm. That is, at each level of the hierarchy, each observer is designed as a Kalman filter.  

3.5.2.1 Top-level Observer 

 Using the top-level graph-based model described in 3.5.1.1, the top-level observer can be 

designed as 
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, | 1, ,

1
, , | 1, ,

1| , , | 1, , , , , , , | 1,

1
1| , , | 1, | 1, , | 1, , ,

: ,

,

ˆ ˆ ˆ ˆ( ),

( ) .

T
k p p k k p p k p

T
k p k p k k p p k p

in t l
k k p k p k k p k p k p k p k p k p p k p p k k p

T T T
k k p k p k k p k k p p k p p k k p k p k p

M H P H R

K A P H M

x A x B P E x K H x H x

P A P P H M H P A Q

−

−
−

+ − −

−
+ − − −

 = +

 =


= + + + −


= − +

  (3.58) 

Since the top-level observer does not have access to physical sensor measurements, y , and treats 

local state estimates received from lower level observers as pseudo-measurements, the 

innovation term 
| 1ˆk k ky Hx −−  from equation (3.17) is replaced by 

, | 1,ˆ ˆl
p k p p k k pH x H x −− , where 

,ˆl
k px  represents the local state estimates at time k  sent to the top-level observer from local 

observers at the immediate lower level in the hierarchy. 

3.5.2.2 Intermediate-levels Observers 

Using the intermediate-levels models described in 3.5.1.2, each observer of subsystem 

m   at intermediate level n  can be designed as  

   

, , , | 1, , , , ,

1
, , , , | 1, , , , ,

1| , , , , | 1, , , , , , , , , ,

, , , , , , | 1, , , , , ,

1| , ,

:

,

ˆ ˆ

ˆ ˆ ˆ( ) ,

T
k n m n m k k n m n m k n m

T
k n m k n m k k n m n m k n m

in t
k k n m k n m k k n m k n m k n m k n m k n m

coup coupl
k n m n m k n m n m k k n m k n m k n m

k k n m

M H P H R

K A P H M

x A x B P E x

K H x H x E x

P

−

−
−

+ −

−

+

= +

=

= + +

+ − +

= 1
, , | 1, , | 1, , , , , , | 1, , , , , ,( ) .T T T

k n m k k n m k k n m n m k n m n m k k n m k n m k n mA P P H M H P A Q−
− − −











− +

  (3.59) 

That is, similarly to the top-level observer (i.e. equation (3.58)), intermediate-levels observers do 

not have access to physical sensor measurements. Instead, they receive pseudo-measurements 

(i.e. local state estimates) from lower-level observers. Consequently, the innovation term 

| 1ˆk k ky Hx −−  from (3.17) is replaced by , , , , | 1, ,ˆ ˆl
n m k n m n m k k n mH x H x −−  in equation (3.59), where 

, ,ˆl
k n mx  represents local state estimates at time k  sent to intermediate-level observer m  from 

local observers at the immediate lower level in the hierarchy. Additionally, the term 
, , , ,

ˆcoup coup
k n m k n mE x   

represents the coupling state estimate vector received by observer m  from observers at the 

immediate upper level in the hierarchy. 
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3.5.2.3 Lowest-level Observers 

Using the lowest-level models described in section 3.5.1.3, each observer at the lowest 

level of the hierarchy can be designed as   

   

, | 1, ,

1
, , | 1, ,

1| , , | 1, , , , ,

, , | 1, , ,

1
1| , , | 1, | 1, , | 1, , ,

:

,

ˆ ˆ

ˆ ˆ( ) ,

( ) ,

T
k w w k k w w k w

T
k w k w k k w w k w

in t
k k w k w k k w k w k w k w k w

coup coup
k w k w w k k w k w k w

T T T
k k w k w k k w k k w w k w w k k w k w k w

M H P H R

K A P H M

x A x B P E x

K y H x E x

P A P P H M H P A Q

−

−
−

+ −

−

−
+ − − −

= +

=

= + +

+ − +

= − +












  (3.60) 

where 
, ,

ˆcoup coup
k w k wE x   represents the coupling state estimates vector received by observer w  from 

upper-level observers. As shown by the innovation term, 
, | 1,ˆk w w k k wy H x −− , the lowest-level 

observers have direct access to physical sensor measurements, .ky  

Remarks: 

1) 1 2 ...s s s s
p n n w       , i.e. the update rates of the observers increase as the level of 

the hierarchy decreases. The subscripts 1, 2n n , refers to two different 

intermediate levels with level 1n  being higher than level 2n . Additionally, 

observers at the same level update at the same rate. 

2) At instances when observers at different levels are due to update, it is assumed that 

lower level observers update first. This can be achieved by delaying the update 

of upper level observers until after lower level observers update. 

3) The process and measurement noise covariance matrices, kQ  and kR , can be used as 

tuning parameters. 

4) It is assumed that the source power flows, ,
in

k pP , , ,
in
k n mP , and ,

in
k wP , and the sink states 

,
t
k px , , ,

t
k n mx , and ,

t
k wx  are known (i.e. measurable) variables and the coupling 

terms 
, ,

coup
k n mx  and 

,
coup
k wx  are unknown but estimated by , ,

ˆcoup
k n mx  and ,

ˆcoup
k wx  via 

observers at the immediate upper level in the hierarchy. 
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5) Top-level and intermediate-level observers estimate reduced-order representations of 

the full-order graph-based models used at the lowest level of the hierarchy. The 

main goal of these observers is to estimate the complex dynamic interactions 

between the different susbsystems by capturing system-level dynamics.  

3.5.2.4 Hierarchical Observer with Several Estimation Algorithms 

 The proposed estimation framework is modular and flexible in terms of the estimation 

algorithm used by each observer in the hierarchy. Therefore, depending on the class of systems 

estimated by each observer in the hierarchy, the hierarchical observer can be designed as a 

combination of several estimation algorithms (e.g. linear, nonlinear, switching, non-switching, 

etc.). For example, discrete actuators such as valves and switches are essential components in 

electrified vehicles. To capture switching dynamics of discrete actuators, a switching observer is 

needed. This can be directly captured in the hierarchy by simply designing the local observer 

responsible for estimating switching dynamics as a switching observer (e.g. equation (3.27)). 

However, that switching observer should be designed to receive coupling information from 

upper level observers and pseudo-measurements or measurements from lower-level observers or 

physical sensors, depending on its level in the hierarchy.  

3.5.3 Stability Analysis 

 The stability properties of the proposed hierarchical estimation framework are explored 

in this section. The authors in [88] investigate the boundedness and convergence of a distributed 

estimation framework designed by connecting a set of decentralized observers together via a 

communication network. The distributed estimation framework proposed in [88] is independent 

of the estimation algorithm used by each observer in the network, and thus the stability analysis 

presented in [88] can provide a basis for the stability and convergence of the framework 

proposed in this dissertation. Nevertheless, there are several major differences between the two 

approaches that should be considered in the derivation of the stability bounds of the proposed 

hierarchical observer: 

1) Coupling information: the distributed estimation framework presented in [88] is based 

on the assumption that a decentralized estimation network that ignores 

coupling between subsystems already exists. To account for the coupling, each 
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decentralized observer in the network is connected to a compensator. The 

combination of a decentralized observer and a compensator is called an 

augmented observer. Distributed estimation is then achieved by a network of 

augmented observers that communicate with each other through their 

compensators. Additionally, each compensator requires the evaluation of a 

pseudo-inverse at every sampling time. However, depending on the available 

measurements for each observer, the pseudo-inverse may lead to ill-

conditioned matrices. To overcome ill-conditioning, the sample time of the 

observers needs to be sufficiently small. These constraints do not exist in the 

proposed hierarchical estimation framework since coupling information is 

directly shared between the observers at all levels of the hierarchy. In other 

words, the bidirectional flow of information designed in the proposed 

hierarchical estimation framework eliminates the need for compensators. As a 

result, the proposed hierarchical estimation framework is less restrictive in 

terms of the choice of the update rates of the observers in the hierarchy. This 

allows the user to design large update rates for high-level observers in the 

hierarchy without creating ill-conditioned matrices.  

2) Single versus multiple update rates: The distributed estimation framework presented 

in [88] is designed to update at a single rate. That is, all observers in the 

network send and receive information at the same rate. In contrast, the 

proposed hierarchical estimation framework includes observers updating at 

different rates. As a result, the stability analysis of the proposed hierarchical 

estimation framework should consider the errors introduced by sharing and 

receiving information between the observers at multiple update rates.  

3) Sensor measurements versus pseudo-measurements: In the distributed estimation 

framework presented in [88], every local observer has direct access to physical 

sensor measurements. Whereas, in the proposed framework, only local 

observers at the lowest level of the hierarchy have direct access to sensor 

readings, and every other observer in the network receives pseudo-

measurements from local observers at the level in the hierarchy that is 
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immediately below. Therefore, the stability analysis of the proposed 

hierarchical estimation framework should consider the errors introduced by 

replacing sensor readings by local state estimates (i.e. pseudo-measurements) 

at upper levels in the hierarchy.  

 

 To prove the stability of the proposed hierarchical observer, the following assumptions 

are used. 

Assumption 1: states x , source inputs 
inP , sink states 

tx , edge inputs u , unknown disturbances 

d  introduced from the model order reduction errors, and sensor noise   of each graph at each 

level of the hierarchy are assumed to be bounded. That is, in equations (3.32), (3.42), and (3.53),  

   , ,

,

,

,

p p

n m n m

w w

x

x

x







  (3.61) 
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  (3.62) 
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



  (3.63) 
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p p
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

  (3.64) 
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p p
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





  (3.65) 
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, ,

,

,

p p

n m n m

d

d




  (3.66) 

where  

   ,
, , , , ,

: { . . , 0},

: { . . , 0},

: { . . , 0},

Nlin in in in inp
p p p p p

Nlin in in in inn m
n m n m n m n m n m

Nlin in in in inw
w w w w w

P s t P P P

P s t P P P

P s t P P P

=   

=   

=   

  (3.67) 

   ,
, , , , ,

: { . . , 0},

: { . . , 0},

: { . . , 0},

Nup
p p p p p

Nun m
n m n m n m n m n m

Nuw
w w w w w

u s t u u u

u s t u u u

u s t u u u

=   

=   

=   

  (3.68) 

   ,
, , , , ,

: { . . , 0},

: { . . , 0},

: { . . , 0},

N yp
p p p p p

N yn m
n m n m n m n m n m

N yw
w w w w w

s t

s t

s t

   

   

   

=   

=   

=   

  (3.69) 

   
,

, , , , ,

: { . . , 0},

: { . . , 0},

Nvp
p p p p p

Nvn m
n m n m n m n m n m

d s t d d d

d s t d d d

=   

=   

  (3.70) 

, ,, , , , , andt t t
p n m w p n m w  are compact sets, 

,
, ,l lp n m

N N  and lw
N  are the numbers of 

source inputs, 
,

, ,u up n m
N N and uw

N  are the numbers of edge inputs, and 
,

, ,y yp n m
N N  and yw

N

are the numbers of sensors of top-level, intermediate-levels, and lowest-level observers, 

respectively. ,vp
N  and 

,vn m
N  are the number of vertices of the top-level and intermediate-level 

models. The bounds in
pP , ,

in
n mP , 

in
wP , pu , ,n mu , wu , p , ,n m , w ,  pd , and ,n md  are 

known scalars. The unknown disturbance vectors (i.e. pd  and ,n md ) represent model order 

reduction errors. Since full-order models are used at the lowest level, these disturbances only 
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affect intermediate and top levels of the hierarchy. Assumption 1 implies that the systems 

considered are stable. A shown in [62], the open-loop stablity of the class of system considered 

in this chapter can be proved under appropriate conditions on the connectivity of the graph-based 

model and the current form of the equations governing power flow along its edges (i.e. equation 

(3.2)). 

Definition 1: let | 1ˆ( , , , )in t
k k k k kG x P x y−  be defined as  

   | 1 | 1ˆ ˆ( , , , ) : ( ),in t
k k k k k k k k k kG x P x y D K y Hx− −= + −   (3.71) 

where  

   | 1ˆ: .in t
k k k k k k k kD A x B P E x−= + +   (3.72) 

In other words, | 1ˆ( , , , )in t
k k k k kG x P x y−  is a compact form of a discrete-time Kalman filter, where  

kK  is the Kalman gain matrix.  

Definition 2: (.) : (., )d  =  is a class K  function. ( )f u  is a constant function representing an 

upper bound on the Frobenius norm of coup
kE  (i.e. 

, ( )
coup

p pk pE f u ). The estimation error of 

an observer i  is defined as 1, 1| , 1,ˆ:k i k k i k ie x x+ + += − . u
i  and l

i  are the set of upper-level and 

lower-level observer indices with which observer i  interacts, respectively. For example, if 

observer i  receives coupling state estimates from observers 2  and 3  at the upper level and 

pseudo-measurements (i.e. local state estimates) from observers 1 and 3  at the lower level in the 

hierarchy, then {2,3}u
i =  and {1,3}l

i = .  

 

Assumption 2: For the top-level observer, the following inequality holds, 

     

( )| 1, , , , 1, 0, 0, 0ˆ( , , , ) , max ( )

max ( ) .

in t
p k k p k p k p k p k p p p p k p

p p

G x P x y x z x t t

d





   

 

− +
 −  − − +  
 

 +  
 

  (3.73) 

Assumption 3: For each intermediate-level observer, the following holds, 



 51  

     

( )

, | 1, , , , , , , , 1, ,, , , ,

, 0, , 0, , 0 , , ,

ˆ( , , , )

, max ( ) max ( ) .

coup coupin t
n m k k n m k n m k n m k n m k n mk n m k n m

n m n m n m k n m n m n m

G x P x y E x x

z x t t d
 

     

− ++ − 

   − − + +   
   

  (3.74) 

Assumption 4: For each lowest-level observer, the following holds, 

     

( )

| 1, , , , 1,, ,

0, 0, 0

ˆ( , , , )

, max ( ) .

coup coupin t
w k k w k w k w k w k wk w k w

w w w k w

G x P x y E x x

z x t t


   

− ++ − 

 − − +  
 

  (3.75) 

p , ,n m , and w  are class KL  functions and p , ,n m , w , p , and ,n m  are class K  

functions. Equations (3.73)-(3.75) characterize the boundedness and convergence of each 

observer in the hierarchy when actual coupling information , ,
coup coup
k i k iE x  and physical sensor 

measurements ,k iy  are available. Assumptions 2-4 can be easily satisfied since when actual 

coupling information and actual sensor measurements are available, each observer in the 

hierarchy will be equivalent to a centralized observer (i.e. centralized Kalman filter) and thus 

asymptotic convergence can be achieved under appropriate detectability (or observability) 

conditions.  

Assumption 5: 

   

,

, , ,

,

,

,

,

k p p

k n m n m

k w w

K

K

K







  (3.76) 

where p , ,n m , and w  are positive constants. 

Proposition 1: If assumptions 1-5 are satisfied, then the estimation error of 

a) the top-level observer is bounded by 

    

( )1, ,

,

max ( ) max ( )

,

k p p k p p p p

p k l
ll p

e e d

e

 
     +



    + +   
   

+ 
  (3.77) 

b) each intermediate-level observer is bounded by 
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( )1, , , , , , , ,

, , , , ,

,,

max ( ) max ( )

( ) ,

k n m n m k n m n m n m n m

n m k l n m n m k u
l ul h n mn b

e e d

e f u e

 
     +

 

    + +   
   

+ + 
  (3.78) 

c) each observer at the lowest level of the hierarchy is bounded by 

    ( )1, , ,max ( ) ( ) .k w w k w w w w k u
uh w

e e f u e


   +



  + + 
 

   (3.79) 

Proof 

Equation (3.77) is derived as follows. Using Definition 1, Definition 2, and equation (3.58), the 

estimation error of the top-level observer can be written as  

   

1, 1| , 1,

, , , | 1, 1,

| 1, , , , 1, , , ,

ˆ

ˆ ˆ( )

ˆ ˆ( , , , ) ( ),

k p k k p k p

l
k p k p p k p p k k p k p

in t l
p k k p k p k p k p k p k p k p p k p

e x x

D K H x H x x

G x P x y x K y H x

+ + +

− +

− +

= −

= + − −

= − − −

  (3.80) 

Using the triangular inequality, equation (3.80) can be bounded by 

   1, | 1, , , , 1, , , ,ˆ ˆ( , , , ) ( )in t l
k p p k k p k p k p k p k p k p k p p k pe G x P x y x K y H x+ − + − + −   (3.81) 

Using Assumptions 1,2, and 5 in addition to the triangular inequality, equation (3.81) can be 

bounded by  

   

( )1, 0, 0, 0

,

, max ( )

max ( )

k p p p p k p p

p p p k l
ll p

e z x t t

d e





   

 

+



  − − +  
 

 + + 
 


  (3.82) 

Therefore, over one sample time s
p , and if kt  and ,k pe  are considered as the initial time and 

the initial condition for the estimation error, equation (3.82) can be written as  
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( )1, ,

,

max ( )

max ( ) .

k p p k p p p

p p p k l
ll p

e e

d e





   

 

+



  +  
 

 + + 
 


  (3.83) 

Similarly, using Assumptions 1, 3, and 5, the upper bound of equation (3.78) is calculated as 

follows. 

   

1, , 1| , , 1

, , | 1, , , , , , , , 1

, , , , , , , , , , ,

ˆ

ˆ( , , , )

ˆ ˆ( ) ,

k n m k k n m k
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k n m k k n m k n m k n m k n m k

coup coupl
k n m k n m n m k n m k n m k n m

e x x

G x P x y x

K y H x E x

+ + +

− +

= −

= −

− − +

  (3.84) 

Assumption 1 implies that ,
coup
n mx  is bounded since the states x  of each subsystem at each level of 

the hierarchy are bounded. Therefore, the term , , , ,
coup coup
k n m k n mE x  can be added to and subtracted from 

equation (3.84) as follows. 
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+ + +

− +

= −
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− − +

+ −

  (3.85) 

Next, following the same procedure used to derive the upper bound of equation (3.77), the 

following upper bound can be derived for equation (3.78).  

   
1, , , , | 1, , , , , , , , 1, , , ,

, , , , , , ,, , , , , , , ,

ˆ( , , , )

ˆ ˆ( ) ,

coup coupin t
k n m k n m k k n m k n m k n m k n m kk n m k n m

coup coup coup coup l
k n m k n m n m k n mk n m k n m k n m k n m

e G x P x y E x x

E x E x K y H x

+ − + + −

+ − + −
  (3.86) 

   
( )1, , , 0, , 0, , 0 , , ,

, , , , , , ,, , , , , ,
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e z x t t d

E x x K y H x
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   

+ − + −

  (3.87) 
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    + +   
   
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  (3.89) 

Finally, using Assumptions 1, 4, and 5, the upper bound of equation (3.79) is derived as follows.  
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   ( )1, , ,max ( ) ( ) .k w w k w w w w k u
uh w

e e f u e


   +



  + + 
 

   (3.94) 

Proposition 1 describes the open-loop evolution (i.e. over one timestep) of the estimation error of 

each observer in the hierarchy. Sufficient conditions for the stability of the hierarchical observer 

designed according to equations (3.58) - (3.60) are provided in Theorem 1 and Theorem 2. 
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Theorem 1: If Assumptions 1-5 are satisfied, and there exist positive scalars i  and i   where 

0 i i    and positive constants 0i   such that the following holds, 

a) for the top-level observer, 0, p pe   , and 

  

( ) max ( ) max ( )

,

p p p p p p p

p l p
ll p

Q d
 

      

 



   − − −   
   

− 
  (3.95) 

b) for each intermediate-level observer, 0, , ,n m n me  , and 

    

( ), , , , , , ,

, , , ,

, ,

max ( ) max ( )

( ) ,
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  

 

   − − −   
   

− −  
  (3.96) 

c) and for each lowest-level observer, 0,w we  , and  

    ( ) max ( ) ( ) ,w w w w w w w u w
uh w

Q f u


      



 − − −  
 

   (3.97) 

where ( )i iQ   is a class K  function satisfying ( ) ( )i i i iQ e e , then the estimation error, 

ˆi i ie x x= − , of each observer in the hierarchy is a decreasing sequence and uniformly 

ultimately bounded for  i i ie   .  

Proof 

Convergence of the top-level observer is proved as follows. If there exist positive scalars p  and 

p  satisfying inequality (3.95), then for p p pe   , the following holds  

( ) max ( ) max ( ) .p p p p p p p p l p
ll p

e Q e d e
 

     



   − − − −    
   

   (3.98) 
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By comparing inequality (3.98) to (3.77) and taking into account that ( ) ( )p p p pQ e e  for  

p pe  , it can be deduced that  

 1, , .k p k p pe e +  −   (3.99) 

Therefore, for 0 q kt t t  , if p pe  , then pe  can be described by the following decreasing 

sequence, 

 , 0, .q p p pe e q −   (3.100) 

When p pe   is reached (i.e. p p pe    is not satisfied anymore), it can be deduced that 

pe  is upper bounded by min
p pe   (i.e. min

,lim sup k p p
k

e 
→

 ), where 

min
,,

: max :p s k p pk pp
e e


 

+

 
=  

 

.                                                                                             

                                                                        

Convergence of each intermediate-level observer is proved as follows. If there exist positive 

scalars ,n m  and ,n m   satisfying inequality (3.96), then for , , ,n m n m n me   , the following 

holds  

    

( ), , , , , , ,

, , , ,

, ,

max ( ) max ( )

( ) .

n m n m n m n m n m n m n m

n m l n m n m u n m
l ul hn m n m

e Q e d

e f u e

 
    



 

   − − −   
   

− −  
  (3.101) 

By comparing inequality (3.101) to (3.78) and taking into account that 

( ) ( ), , , ,n m n m n m n mQ e e  for  , ,n m n me  , it can be deduced that  

 1, , , , , .k n m k n m n me e +  −   (3.102) 

Therefore, for 0 q kt t t  , if , ,n m n me  , then ,n me  can be described by the following 

decreasing sequence, 
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 , , 0, , , .q n m n m n me e q −   (3.103) 

When , ,n m n me   is reached (i.e. , , ,n m n m n me    is not satisfied anymore), it can be 

deduced that ,n me  is upper bounded by 
min

, ,n m n me   (i.e. min
, , ,lim sup k n m n m

k
e 

→
 ), where 

min
, , , ,, ,,

: max :n m s k n m n mk n mn m
e e


 

+

 
=  

 
.                                                                                              

Finally, convergence of each lowest-level observer is proved as follows.  If there exist positive 

scalars w  and w   satisfying inequality (3.97), then for w w we   , the following holds  

    ( ) max ( ) ( ) ,w w w w w w w u w
uh w

e Q e f u e


   



 − − −  
 

   (3.104) 

By comparing inequality (3.104) to (3.79) and taking into account that ( ) ( )w w w wQ e e  for  

w we  , it can be deduced that  

 1, , .k w k w we e +  −   (3.105) 

Therefore, for 0 q kt t t  , if w we  , then we  can be described by the following decreasing 

sequence, 

 , 0, .q w w we e q −   (3.106) 

When w we   is reached (i.e. w w we    is not satisfied anymore), it can be deduced that 

we  is upper bounded by 
min

w we   (i.e. min
,lim sup k w w

k
e 

→
 ), where 

min
,,

: max :w s k w wk ww
e e


 

+

 
=  

 
.                                                                                       

The convergence of the hierarchical observer is presented in Theorem 2. 

Theorem 2: The ultimate boundedness of each observer in the hierarchy implies that the state 

estimation error of the hierarchical observer is ultimately bounded.  

Proof: 
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The total estimation error of the hierarchical observer total
ke  is upper bounded as follows. 

          
min

1
lim sup ,

Ntotal total
k iik

e 
=→

   (3.107) 

where totalN  is the total number of observers in the hierarchy and 
min
i  associated with 

observer i  is defined as 
min

,,
: max : .i s k i ik ii

e e


 
+

 
=  

 
.                                                                      

Theorem 1 characterizes the effects of the initial estimation error, the magnitude of sensor noise, 

the model order reduction error, and the estimation accuracy of upper and lower level observers 

on the estimation accuracy of each observer in the hierarchy. In particular, equations (3.95) - 

(3.97) are achieved if the initial estimation error, the upper bound on the sensor noise, and the 

upper bound on the model order reduction error are sufficiently small, and the estimation 

accuracy of upper and lower observers is sufficiently high. Theorem 1 provides insights on the 

choice of the various parameters that affect the convergence and stability of the hierarchical 

observer and thus can be a very useful tool during its design process. 

Note: The upper bounds in Proposition 1 (i.e. equations (3.77)-(3.79)) are derived in a 

conservative way. For example, this can be seen in the terms representing the effect of the 

estimation accuracy of upper-level and lower-level observers on the stability and convergence of 

each observer i  in the hierarchy. For instance, in the proof of Proposition 1, the term 

, ,ˆ( )l
k p p k py H x−  in equation (3.81) is upper bounded by ,k l

ll p

e



  (i.e. the sum of the norm of 

the estimation error of every lower-level observer with which the top level observer 

communicates). This conservatism can be relaxed by just considering the estimation error of the 

local state estimates used as pseudo-measurements by the top-level observer. However, the case 

study presented in section 3.6 demonstrates that, in practice, the derived error bounds of the 

proposed hierarchical obsever are not too conservative.  
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3.6 Case Study  

3.6.1 Example 1 

In this example, a 2-level hierarchical observer is designed for the 2-state system shown 

in Figure 3.2. At the lowest level of the hierarchy, each state is considered as a subsystem and is 

estimated by a Kalman filter. At the top level of the hierarchy, the 2 states are aggregated into a 

single super-state (Figure 3.3) that is estimated by a third Kalman filter. The super-capacitance of 

the super-state is equal to the sum of the capacitances of the 2 states. The estimate of the super-

state is passed to each lowest-level observer to account for the coupling information needed. The 

profiles of the control inputs iu  along the green edges are shown in Figure 3.4. 1 20sT = , 

2 40sT = , , 3500p ic = , and 2916B = . The capacitances of the vertices are 1 350C = , 2 300C = , 

and 650uC = . By applying conservation of energy on each vertex, the dynamics of 1hT  (i.e. the 

first subsystem at the lowest level of the hierarchy) are given by  

          1 1 1 ,1 2 1 1 1( )h p s h h p hC T u c T B T T u c T= + − − ,  (3.108) 

the dynamics of the 2hT  (i.e. the second subsystem at the lowest level of the hierarchy) are given by 

          2 2 2 ,2 2 1 2 2( )h p s h h p hC T u c T B T T u c T= − − − ,  (3.109) 

and the dynamics of the super-state 
u
hT  at the top level of the hierarchy are given by 

          1 ,1 2 ,2 1 2
u u u u
h h p s p s p h p hC T u c T u c T u c T u c T= + − − .  (3.110) 

 

 

Figure 3.2 Graph-based model of a 2-state system. 
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Figure 3.3 Graph-based model of the super-state obtained by aggregating the 2-state 

system. 

 

 

 

Figure 3.4 Control inputs of the 2-state system.  
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Figure 3.5 shows the discretized dynamics of the 2 subsystems at the lowest level and the 

super-state at top level of the hierarchy. This figure shows that the super-state is roughly an 

average of the 2 states. 

 

 

Figure 3.5 Dynamics of the 2 states versus the super-state.  

The Kalman filter of each state at the lowest level of the hierarchy receives noisy measurements 

of its own state disturbed by additive white noise and the coupling information needed from the 

top-level observer. Specifically, in equation (3.108), 2hT  is an unmeasured coupling state with 

respect to 1hT . Similarly, in equation (3.109), 1hT  is an unmeasured coupling state with respect to 

2hT . To account for this unmeasured coupling information, each observer at the lowest level of 

the hierarchy receives an estimate of the super-state 
u
hT  from the top-level observer. At the 

lowest level of the hierarchy, each observer updates every 1s and the top-level observer updates 

every 10s. The performance of each observer at the lowest level of the hierarchy is presented in 

Figure 3.6. Figure 3.7 shows the performance of the top-level Kalman filter. These results show 

that the hierarchical observer converged using coupling information passed down in the 

hierarchy.  
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Figure 3.6 Estimated versus actual values of the two subsystems at the lowest level of the 

hierarchy. 

 

Figure 3.7 Estimated versus actual values of the super-state at the top level of the 

hierarchy. 
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3.6.2 Example 2 

The goal of this case study is to derive the error bounds of an example hierarchical 

observer designed to estimate the dynamic thermal behavior of a simple fluid-based thermal 

management system (FTMS). A schematic of the FTMS is presented in Figure 3.8. The system is 

composed of 2 fluid loops (i.e. FL1 and FL2) connected through a pump and a valve. Each fluid 

loop consists of a fluid reservoir, a pump, a cold plate heat exchanger, and several fluid-to-fluid 

heat exchangers. Heat enters to the system through the walls of the cold plate heat exchangers 

and gets transferred to the 4 heat sinks referred to in Figure 3.8 through the fluid driven by the 

pumps.  

Experimentally validated thermal graph-based models for these components can be found 

in [40]. Figure 3.9 shows a thermal graph-based model for the entire system (i.e. FL1 and FL2). 

The model consists of 21 states representing the temperature of the fluids, the cold plate walls, 

and the heat exchanger walls. In addition, the model includes 4 external sink vertices that capture 

the interactions of the system with the external environment. 

A hierarchy of two levels is then obtained as shown in Figure 3.10. The top-level model is 

a reduced-order graph-based model that consists of 11 states that capture the thermal dynamics 

of the entire system. This model is designed by applying the aggregation-based model order 

reduction technique presented in section 2.4. The lowest-level models are designed by 

decomposing the full-order graph-based model of the entire system into two subsystems, each 

representing one fluid loop. This is achieved by cutting the edge connecting the temperature of 

the secondary sides of heat exchangers 1 and 5 in Figure 3.9. Consequently, in Figure 3.10, the 

vertex representing the temperature of the secondary side of heat exchanger 5 is modeled as a 

coupling vertex in the graph-based model of fluid loop 1 (i.e. FL1). Similarly, the vertex 

representing the temperature of the secondary side of heat exchanger 1 is modeled as a coupling 

vertex to the graph-based model of fluid loop 2 (i.e. FL2). 

As demonstrated in section 3.2.1, thermal power flows of a FTMS satisfy equation (3.2). 

Therefore, the thermal dynamics of the hierarchical model shown in Figure 3.10 can be 

represented by a linear time varying system. The dynamic thermal behavior of the system is then 

estimated by a two-level hierarchical observer comprised of two local Kalman filters at the 

lowest level and a global Kalman filter at the top level of the hierarchy. The observer 
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architecture is shown in Figure 3.11.  Oi refers to the observer of subsystem i (e.g. OFL1 refers to 

the observer of fluid loop FL1). At the lowest level, the observers update every 1s  and the top-

level observer updates every 10s .  

 

Figure 3.8 Schematic of an example fluid-based thermal management system (FTMS). 

 

 

Figure 3.9 Thermal graph-based model of the FTMS in Figure 3.8.  
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Figure 3.10 A two-level hierarchical model of the system shown in Figure 3.8.  
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The 2-norm of the estimation error of each observer in the hierarchy is shown in Figure 

3.12. The bounds on the estimation errors are calculated according to equations (3.77) and (3.79) 

using the following parameters. , 1 , 2max ( ) max ( ) max ( ) 0.75p w FL w FL C
  

     = = = , 

max ( ) 1.5pd C


 = , 2.14p = , 
, 1 , 1( ) 0.586w FL w FLf u = , and 

, 2 , 2( ) 0.576w FL w FLf u = . Figure 

3.12 shows that, at all levels of the hierarchy, the estimation errors stay within the calculated set 

of bounds.  

 

 

Figure 3.11 A two-level hierarchical observer.   

3.7 Conclusion 

This chapter presented a multilevel hierarchical estimation algorithm with a novel 

coordination framework that directly accounts for coupling between subsystems. The proposed 

algorithm creates a tradeoff between centralized and decentralized estimation. Section 3.2 

presented the formulation of a centralized observer used as a benchmark for the proposed 

hierarchical estimation framework. The architecture of the proposed hierarchical observer was 

presented in section 3.3. The advantages of the proposed framework compared to conventional 
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and current practices were presented in section 3.4. Section 3.5 presented the formulation, 

stability analysis and sufficient conditions for the convergence of the proposed hierarchical 

observer. Finally, Section 3.6 presented two case studies that investigated the stability properties 

of a two-level hierarchical observer. Experimental validation of the proposed hierarchical 

estimation approach will be provided in Chapter 4. Furthermore, the performance of the 

hierarchical observer will be compared to conventional centralized and decentralized observers 

in terms of accuracy and computational complexity. 

 

 

 

Figure 3.12 Convergence of the hierarchical observer. 
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Chapter 4     

Experimental Validation of a Hierarchical Observer 

for a Fluid-based Thermal Management System 

4.1 Introduction  

This chapter experimentally validates the hierarchical estimation framework presented in 

Chapter 3. For this purpose, a modular and scalable fluid thermal management system testbed 

has been developed. The testbed can be easily reconfigured to represent various system 

architectures with different sets of components. Several architectures designed using this testbed 

are presented in [23], [48], [62]. A comparison between the proposed hierarchical estimation 

framework, a decentralized observer, and a benchmark centralized observer is also presented in 

this chapter. It is found that the proposed hierarchical estimation approach provides a beneficial 

tradeoff between accuracy and computational complexity. Specifically, compared to a 

conventional centralized framework, the proposed estimation approach significantly reduces the 

computational complexity required to run the observer at the expense of a mild reduction in 

estimation accuracy. Compared to a decentralized observer, the proposed estimation framework 

offers an increase in the estimation accuracy at the expense of some increase in the 

computational complexity.  

The remainder of this chapter is organized as follows. The testbed used for experimental 

validation is presented in section 4.2. A hierarchical graph-based model of the system is 

presented in section 4.3. A multi-level hierarchical observer is presented in section 4.4. Closed-

loop simulation results of the hierarchical observer coupled to a hierarchical controller are 

presented in section 4.5. Experimental closed-loop performance is demonstrated in section 4.6. 
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Section 4.7 provides a comparison between the hierarchical observer and a conventional 

centralized observer. Section 4.8 provides a comparison between the hierarchical observer and a 

decentralized observer. A conclusion for this chapter is presented in section 4.9.  

 

Figure 4.1 A fluid-based thermal management system testbed using to experimentally 

validate the proposed hierarchical estimation approach. 

4.2 System Description 

The fluid-based thermal management system testbed used to experimentally validate the 

proposed hierarchical estimation approach is shown in Figure 4.1. A schematic of the testbed is 

presented in Figure 4.2. The current configuration is intended to replicate the power flows that 

occur in a fuel thermal management system of an electrified aircraft without representing any 

specific platform. The testbed consists of 4 main fluid loops. Each loop contains a fluid reservoir, 

a pump, a cold plate heat exchanger, and fluid-to-fluid heat exchangers. Additional pumps and 

valves are used throughout the system to control the flow of the fluid between the loops. In this 
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configuration, valves can only be open or closed. In addition, the testbed includes temperature 

sensors, pressure sensors, mass flow rate sensors, and two chillers (i.e. heat sinks). Chiller 1 is 

connected to fluid loop 1 and chiller 2 is connected to fluid loop 4 as shown in Figure 4.2. 

Detailed descriptions of these components can be found in [40].  

Thermal energy dissipated by the associated electrical components (i.e. battery, power 

electronics, electric machine, etc.) is represented by heat loads applied to the walls of the 4 cold 

plate heat exchangers. The main goal is to absorb that heat and transfer it through the fluid to the 

two heat sinks to keep the temperature of the electrical components within specific limits. The 

heat sinks can represent the ambient environment or a vapor compression system (VCS), for 

example.  Throughout the remaining sections of this chapter, cold plate heat exchangers are 

referred to as cold plates and fluid-to-fluid heat exchangers are referred to as heat exchangers. 

 

 

Figure 4.2 Schematic of the fluid-based thermal management system testbed. 
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4.3 Hierarchical Graph-based Model 

Figure 4.3 shows the full-order thermal graph-based model of the entire testbed shown in 

Figure 4.1. The model consists of 39 states (i.e. vertices) representing the temperature of the 

fluids, the cold plate walls, and the heat exchanger walls. Heat enters the system through the 

source power flows applied to the cold plate walls (blue edges in Figure 4.3) and gets transferred 

to the thermal sinks through advection (i.e. green arrows) and convection (i.e. red arrows). The 

temperatures of the two heat sinks are modeled as known bounded exogeneous disturbances to 

the system.  

A hierarchy of 3 levels is then obtained by spatially decomposing the full-order graph-

based model into a set of interconnected subgraphs as done in [62]. The hierarchical graph-based 

model is shown in Figure 4.4. At the lowest level of the hierarchy, 4 subgraphs (SS1, SS2, SS3, 

and SS4), each representing one of the 4 fluid loops, are obtained by cutting 4 edges in the full- 

order graph-based model presented in Figure 4.3. Coupling vertices are represented as sink 

vertices in the resulting subgraphs. For example, subgraph 1 is obtained by cutting the advection 

edge connecting the temperatures of the secondary sides of heat exchangers 1 and 9. The vertex 

corresponding to the temperature of the secondary side of heat exchanger 9 is modeled as a sink 

vertex (i.e. disturbance) to subgraph 1. Similarly, the vertex corresponding to the temperature of 

the secondary side of heat exchanger 1 is modeled as a sink vertex to subgraph 4. At the second 

level of the hierarchy, two subgraphs (SS5 and SS6) are derived. The first subgraph (i.e. SS5) is 

a reduced-order graph-based model that captures the dynamics of SS1 and SS4. The second 

subgraph (i.e. SS6) is a reduced-order graph-based model that captures the dynamics of SS2 and 

SS3. At the highest level of the hierarchy, a reduced-order graph-based model of 17 states that 

capture the dynamics of SS5 and SS6 is derived. The top-level model is a low-resolution 

representation of the full-order model presented in Figure 4.3. Model order reduction is achieved 

by applying the aggregation-based approach presented in section 2.4.  
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Figure 4.3 Full-order thermal graph-based model of the entire system shown in Figure 4.1. 

4.4 A Multi-level Hierarchical Observer 

The thermal dynamics of the fluid-based thermal management system are estimated by a 

3-level hierarchical observer. To test the closed loop performance, the observer is connected to a 

previously developed hierarchical controller. The architecture of the hierarchical observer-

controller is shown in Figure 4.5. Each controller of the hierarchical controller communicates 

with an observer of the hierarchical observer operating at the same level of the hierarchy to 

manage the dynamics of a subsystem. To capture the switching behavior of the valves, each 
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observer is designed as a switching Kalman filter (see Chapter 3) and each controller is designed 

as a switching model predictive controller (MPC). The reader is referred to [62] for a detailed 

design procedure of the hierarchical controller. 

The control inputs of the thermal management system are defined by the mass flow rates 

(i.e. edge inputs of the thermal graph) controlled by the pumps and the valves of the testbed. The 

goal of the hierarchical observer is to communicate accurate dynamic thermal state estimates to 

the hierarchical controller at each level of the hierarchy. The goal of the hierarchical controller is 

to achieve high capability and to ensure the safety of the thermal management system. High 

capability represents the ability of the controller to track a reference thermal power profile 

corresponding to a desired operation of the electrical system. Safety corresponds to the ability of 

the controller to track the desired reference thermal trajectories without violating thermal 

constraints. As detailed in [62], when the fluid thermal management system does not have 

enough cooling capacity to track the thermal reference trajectories without violating temperature 

constraints, the controller performs selective electrical load shedding as necessary  to guarantee 

the safety of the system. However, the controller is required to guarantee that loads that are 

critical to the mission can always be applied (i.e. load shedding is not allowed for critical loads). 

As shown in Figure 4.5, observers and controllers update every 2s at the lowest level of 

the hierarchy, every 10s at the second level, and every 60s at the highest level. 9 temperature 

sensors are used by lowest-level observers to measure states 1, 5, and 7 of SS1, states 1, and 5 of 

SS2 and SS3, and states 1, and 8 of SS4. The observer of SS5 receives 5 pseudo-measurements 

from the observer of SS1 and 6 pseudo-measurements from the observer of SS4. The observer of 

SS6 receives 5 pseudo-measurements from the observer of SS2 and 5 pseudo-measurements 

from the observer of SS3. The global observer receives 9 pseudo-measurements from the 

observer of SS5 and 8 pseudo-measurements from the observer of SS6. Throughout the 

hierarchy, coupling state estimates are passed down by observers at the level above and internal 

state estimates are passed up by observers at the level below in the hierarchy and treated as 

pseudo-measurements.  
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Figure 4.4 A hierarchical thermal graph-based model of the system shown in Figure 4.1. 
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Figure 4.5 A 3-level hierarchical observer-controller designed to manage the dynamics of 

the system presented in Figure 4.1. 

4.5 Simulation Results 

Simulation results of the closed-loop performance of the hierarchical observer-controller 

are presented in this section. The hierarchical observer and the hierarchical controller are 

simulated on a desktop computer with 16 GB of RAM and 3.40 GHz Intel i7 processor. Figure 

4.6 shows the performance of the hierarchical observer at all levels of the hierarchy. The 

simulated values of state 7 from SS2 (i.e. the state representing the temperature of the secondary 

side of HX3), state 2 from SS6, and state 6 from the top-level model are compared to their 

estimated values obtained from the hierarchical observer at the first (i.e. lowest), second, and top 

level of the hierarchy. Figure 4.6 demonstrates that the hierarchical observer achieves good 

estimation accuracy for component-level and system-level state estimation. The closed-loop 

performance of the hierarchical controller is presented in Figure 4.7 and Figure 4.8. The grey 

profiles in Figure 4.7 represent the desired reference thermal power trajectories that the 

hierarchical controller of the thermal management system is required to track. Light grey profiles 

represent sheddable loads and dark grey profiles represent critical loads that cannot be shed. As 

shown Figure 4.7, the applied loads (i.e. red profiles) track most of the desired profiles. The 

controller performed load shedding when necessary. However, all critical loads are applied 

throughout the mission. Figure 4.8 shows the states representing the fluid and wall temperatures 

of the 4 cold plates. These states correspond to the hottest states in the system as heat enters the 
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system through the cold plate walls. Dashed lines represent thermal constraints chosen to be 

15℃ and 40℃ for the states representing fluid temperatures and 15℃ and 45℃ for the states 

representing wall temperatures. Figure 4.8 demonstrates that the controller maintained the safety 

of the system by keeping the hottest states within their constraints. By analyzing the results 

presented in Figure 4.7 and Figure 4.8, it can be noticed that the controller performed load 

shedding when the states reached their upper constraints. For example, the controller shed some 

of the loads applied to the wall of cold plate 1 (i.e. cold plate 1 plot in Figure 4.7) when the wall 

temperature of this cold plate (i.e. CP1 wall plot in Figure 4.8) reached its upper constraint. 

Additionally, it can be noticed that, throughout the entire mission, the temperatures are operating 

closer to their upper constraints which demonstrates that the controller is maximizing the system 

capability by pushing the system to its upper limits. This simulation case study shows that the 

hierarchical observer achieves good estimation accuracy that enables successful control design. 

 

  

Figure 4.6 Actual vs estimated value of the state representing the temperature of the 

secondary side of heat exchanger 3 at all levels of the hierarchy – in simulation.  
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Figure 4.7 Desired versus applied loads – in simulation.  

 

Figure 4.8 Fluid and wall temperature of the 4 cold plates – in simulation.   
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4.6 Experimental Results 

The performance of the hierarchical observer-controller is experimentally validated on 

the testbed shown in Figure 4.1. The controllers are solved in parallel in this case to allow for 

real-time implementation. The same desktop computer used to run the simulation case study is 

used in the experimental validation. To experimentally validate the performance of the 

hierarchical observer, additional temperature sensors used as validation sensors are added to the 

testbed. Readings of the validation sensors are not fed to the observers at the lowest level of the 

hierarchy (i.e. wH  matrices from equation (3.47) are the same in the simulation and 

experimental case studies).  

 

 

Figure 4.9 Actual vs estimated value of the state representing the temperature of the 

secondary side of heat exchanger 3 at all levels of the hierarchy – experimental results. 

Figure 4.9 shows the experimentally estimated values of the states shown in Figure 4.6. 

Specifically, Figure 4.9 shows the estimated versus the actual value of the state representing the 

temperature of the secondary side of HX3, at all levels of the hierarchy. In this case, the 
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experimentally estimated values are compared to measurements obtained from a validation 

sensor (i.e. the same sensor reading is compared to the experimentally estimated value of the 

state at all levels of the hierarchy). Figure 4.9 shows that the hierarchical observer achieves good 

estimation accuracy when applied in real-time on an experimental system. The experimental 

closed-loop performance of the hierarchical controller is presented in Figure 4.10 and Figure 

4.11. The experimental results and the simulation results of the controller are similar. However, 

constraints were slightly violated (i.e. less than 1℃) in the experiment (i.e. Figure 4.11) due to 

slack variables introduced in the controller, modeling errros or unknown disturbances. 

 

Figure 4.10 Desired versus applied loads – experimental results. 

4.7 Comparison to a Centralized Observer 

This section presents a comparison between the hierarchical observer and a benchmark 

centralized observer. In the centralized observer case, the states of the full-order thermal graph-

based model of the entire testbed shown in Figure 4.1 are estimated by a single switching 

Kalman filter updating every 2s and receiving temperature measurements from 9 sensors. That 

is, the centralized observer updates at the same rate as the lowest-level observers of the 

hierarchical observer. Furthermore, the centralized observer uses the same number and 
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placement of temperature sensors used by the lowest-level observers of the hierarchical observer. 

The same desktop computer used to simulate the hierarchical observer is also used to simulate 

the centralized observer. 

To compare the overall estimation accuracies of the proposed hierarchical observer and 

the centralized observer, the following error is calculated for every state estimated by each 

observer 

   |1
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where N  is the total number of time steps of the simulation. In other words, equation (4.1) 

represents the average of the normalized estimation error. Figure 4.12 shows these errors for the 

39 states estimated by the centralized observer. The dashed line represents the average of these 

errors over all states. As shown in Figure 4.12, this value is 0.0126 for the centralized observer. 

Figure 4.13 shows these errors for the 77 states estimated by the hierarchical observer at all 

levels of the hierarchy. Thus, the errors of the first 39 states correspond to the errors of the 4 

local observers at the lowest level of the hierarchy. The errors corresponding to state 40 until 

state 60 represent the errors of the states estimated by the second-level observers (i.e. the 

observers of SS5 and SS6 in Figure 4.5). And the errors of the last 17 states correspond to the 

errors of the states estimated by the top-level observer. 

As shown in Table 4.1, the mean error  and max error  of the centralized observer are 

44% and 75.4% lower than the overall mean error  and max error  of the hierarchical observer, 

respectively. Table 4.2 provides a comparison between the overall estimation accuracy of the 

centralized observer and the estimation accuracy of the hierarchical observer at each level of the 

hierarchy. It can be seen that, on average, the estimation accuracy of the hierarchical observer at 

the first level of the hierarchy is higher than the overall estimation accuracy of the centralized 

observer. This might be due to the higher number of measured data per number of estimated 

states for the lowest-level observers of the hierarchical observer. For example, the observer of 

SS1 estimates 9 states using 3 sensors to measure the internal states of the subsystem, whereas 

the centralized observer uses 9 sensors to estimate 39 states. A higher estimation accuracy can be 

achieved by increasing the number of sensors. However, this case study shows that, for the same 

relatively low total number of sensors used by each observer, the hierarchical observer can reach 
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a higher estimation accuracy at the lowest level of the hierarchy compared to a centralized 

observer. Furthermore, as shown in Figure 4.13, as the level of the hierarchy increases, the 

estimation accuracy of the hierarchical observer decreases since the update rates of local 

observers decrease. Whereas, in the centralized observer, the errors are more homogeneous as 

shown in Figure 4.12.  

 

Figure 4.11 Fluid and wall temperature of the 4 cold plates – experimental results. 

However, the higher estimation accuracy achieved by the centralized framework comes at 

the expense of an increase in the computational power required to run the observer. A Kalman 

filter algorithm has a complexity order of 
3(4 )n  where n  is the number of the estimated 

states. A detailed analysis of the complexity of each step of the algorithm can be found in [89]. 

Therefore, in the centralized Kalman filter case where n  is 39, the complexity of the algorithm is 
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of order (237276) . However, in the hierarchical estimation case, the overall complexity drops 

to (44636)  as shown in equation (4.2), which results in 5.3 times complexity reduction. 
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Consequently, even though the hottest states in the system did not violate their constraints when 

estimated by a centralized observer as shown in Figure 4.14, the controller failed to compute an 

input to the system in the sample time allotted for several instances highlighted in Figure 4.15. In 

these instances, the applied loads are set to zero for safety. 

4.8 Comparison to a Decentralized Observer 

This section compares the hierarchical observer designed in this chapter to a conventional 

decentralized observer that completely ignores coupling information between subsystems. To 

perform this comparison, a decentralized observer of 4 independent local Kalman filters is 

designed. Each local observer estimates the dynamics of 1 fluid loop of the testbed presented in 

Figure 4.1 and Figure 4.2 using a full-order graph-based model of that loop. That is, each local 

Kalman filter uses 1 of the 4 graph-based models from the lowest level of the hierarchical model 

presented in Figure 4.4. Constant values of zero are used to compensate for subsystem 

interactions (i.e. sink states of each subsystem graph-based model). All 4 local observers are 

designed to update every 2s (i.e. the same update rate of the lowest-level observers of the 

hierarchical observer and the update rate of the centralized observer designed in previous 

sections). Additionally, the local observers are designed using the same number and placement 

of temperature sensors used by the hierarchical observer and the centralized observer. That is, the 

local observer of FL1 (i.e. SS1) uses 3 temperature sensors to measure states 1, 5, and 7. The 

local observers of FL2 and FL3 uses 2 sensors each to measure states 1 and 5 of their 

subsystems. Finally, the local observer of FL4 uses 2 sensors to measure states 1 and 8 of its 

subsystem.  
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Figure 4.12 Mean of the normalized error of each state estimated by the centralized 

observer. 

 

 

Figure 4.13 Mean of the normalized error of each state estimated by the hierarchical 

observer. 
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Table 4.1 Comparison between the overall estimation accuracies of the hierarchical 

observer and the centralized observer. 

 Hierarchical Centralized Percent Decrease 

Mean error  0.0225 0.0126 44% 

Max error  0.113 0.0278 75.4% 

 

 

 

Figure 4.14 Fluid and wall temperatures of the 4 cold plates – simulation (centralized 

observer). 
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Table 4.2 Comparison between the overall estimation accuracy of the centralized observer 

and the estimation accuracy of the hierarchical observer at each level of the hierarchy. 

 Hierarchical Centralized Percent Decrease 

Mean error  

Level 

1 
0.0064 

0.0126 

-96.88% 

Level 

2 
0.0324 61.11% 

Top 

Level 
0.0471 73.25% 

Max error  

Level 

1 
0.0161 

0.0278 

-72.67% 

Level 

2 
0.0787 64.68% 

Top 

Level 
0.113 75.4% 

 

 

 

Figure 4.15 Desired versus applied loads using a centralized observer – simulation. 
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Figure 4.16 shows the normalized estimation errors of the 39 states of the full-order 

graph-based model estimated by the 4 independent local Kalman filters of the decentralized 

observer. The average of these errors over all states is 0.4532  as shown by the dashed red line in 

the figure. Table 4.3 compares the overall mean and max error  of the decentralized and the 

hierarchical observers. Table 4.4 compares the overall mean and max error  of the decentralized 

observer to the mean and max error  of the hierarchical observer at each level of the hierarchy. 

The results presented in Figure 4.16 and Tables 4.3 and 4.4 show the significant reduction in the 

estimation accuracy of the decentralized observer compared to the hierarchical observer. This 

reduction is a result of ignoring subsystem interactions. Finally, the overall computational 

complexity of the decentralized obsevrer (i.e.
3 3(4 9 ) 3 (4 12 ) (15660)  +  = ) is 2.85 

times smaller than the overall estimation accuracy of the hierarchical observer designed in this 

chapter. However, this reduction in computational complexity is accompanied by a much bigger 

reduction in estimation accuracy that prohibits successful control desgin. 

 

 

Figure 4.16 Mean of the normalized error of each state estimated by the decentralized 

observer. 
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Table 4.3 Comparison between the overall estimation accuracies of the hierarchical 

observer and the decentralized observer. 

 Hierarchical Decentralized Percent Decrease 

Mean error  0.0225 0.4532 -1914% 

Max error  0.113 1 -784.96% 

 

Table 4.4 Comparison between the overall estimation accuracy of the decentralized 

observer and the estimation accuracy of the hierarchical observer at each level of the 

hierarchy. 

 Hierarchical Decentralized Percent Decrease 

Mean error  

Level 

1 
0.0064 

0.4532 

-6981% 

Level 

2 
0.0324 -1299% 

Top 

Level 
0.0471 -862.2% 

Max error  

Level 

1 
0.0161 

1 

-6111% 

Level 

2 
0.0787 -1171% 

Top 

Level 
0.113 -784.96% 

 

4.9 Conclusion 

This chapter presented a case study in which a Kalman filter-based hierarchical observer 

is connected to a hierarchical model predictive controller designed to manage the dynamics of a 

candidate fluid-thermal management system for electrified vehicles. Simulation and real-time 

experimental results showed that the hierarchical observer can be used to accurately estimate 

both component-level and system-level dynamics. Furthermore, a comparison between the 

proposed hierarchical observer and a centralized Kalman filter showed that, as expected, a better 

estimation accuracy can be achieved using a centralized observer. However, the computational 

complexity of the centralized observer was more than 5 times bigger than that of a hierarchical 
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observer designed according to the framework proposed in this dissertation. This increase in the 

computational load can be a constraint in many practical implementations. Finally, a comparison 

between the hierarchical observer designed in this chapter and a conventional Kalman filter-

based decentralized observer showed that the decentralized observer is less computationally 

expensive. However, as a result of ignoring subsystem interactions, this reduction in 

computational complexity is accompanied by a huge reduction in estimation accuracy that can 

prevent successful control design.  
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Chapter 5     

Robustness Analysis 

5.1 Motivation and Background 

The drawbacks of centralized and decentralized estimation algorithms motivated the 

development of many distributed [74], [75], [90], [91] and hierarchical estimation algorithms 

[51], [63], [76], [78]. Compared to a centralized design that suffers from a single point of failure, 

the inherent redundancy achieved by distributed and hierarchical algorithms increases the 

survivability of these frameworks. That is, the failure of a local observer in a hierarchical or 

distributed network can lead to a gradual degradation in the estimation accuracy rather than a 

complete failure of the overall observer.  

In distributed architectures, the estimation problem is solved by a network of observers 

that update at the same rate and asymptotically estimate the dynamics of a system based on 

partial information from their neighbors. Additionally, many systems are characterized by 

separable timescale dynamics (e.g. slow and fast dynamics). The dynamic behaviors of such 

systems can be estimated by hierarchical estimation algorithms that consist of a network of 

observers updating at multiple timescales (see Chapter 3). 

While distributed and hierarchical estimation algorithms offer many benefits compared to 

conventional designs, they also create new challenges that need to be overcome in order to 

provide accurate and reliable state estimates. A fault in a hierarchical or distributed observer can 

propagate in the network and negatively impact the dynamics of an entire physical system by 

communicating inaccurate estimates to its controllers. This is particularly dangerous for safety 
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critical systems such as electrified vehicles. The focus of this chapter is to analyze the robustness 

of the hierarchical estimation algorithm proposed in this dissertation (i.e. chapters 3 and 4).  

Many fault-tolerant distributed estimation algorithms exist in the literature [74], [75], 

[90]–[92]. For example, in [93], robustness to sensor faults or attacks is achieved using an 1L -

norm on the terms affected by the fault. However, security and robustness of hierarchical 

estimation algorithms require special attention. In contrast to distributed estimation algorithms, a 

hierarchical observer includes a global observer at the top-level of the hierarchy that inherently 

captures coupling among all subsystems. That is, the global observer at the top level is the main 

source of coupling information received by all lower-level observers in the hierarchy. 

Additionally, as derived in Chapter 3, there is a direct coupling between the stability and 

accuracy of the top-level observer and the lower-level observers in the hierarchy.    

This chapter numerically examines the robustness of the 3-level hierarchical observer of 

the FTMS developed in section 4.4 with respect to 

a. inilization errors, 

b. faulty pseudo-measurements received by the top-level observer, 

c. fautly sensor readings received by the lowest-level observers, and 

d. tuning parameters. 

The remainder of this chapter is organized as follows. The robustness of the overall 

hierarchical observer to faults at the top level of the hierarchy is presented in section 5.2. Section 

5.3 compares the robustness of the proposed hierarchical observer and a conventional centralized 

observer to faulty physical sensor readings. The robustness of the proposed hierarchical observer 

to initialization errors is presented in section 5.4. The effect of the tuning parameters of each 

observer in the hierarchy on the estimation accuracy of the overall observer is presented in 

section 5.5. Conclusions are presented in section 5.6.  

5.2 Robustness to Faults at The Top Level of The Hierarchy  

 This section investigates the impacts of faults at the top level of the hierarchy on the 

estimation accuracy of the overall proposed hierarchical observer. Faults are created by 

intentionally sending corrupted pseudo-measurements to the top-level observer. Specifically, 

subsection 5.2.1 explores the robustness of the hierarchical observer when pseudo-measurements 
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sent to the top-level observer are corrupted by additive incipient faults and subsection 5.2.2 

explores the robustness of the hierarchical observer when the same pseudo-measurements are 

corrupted by additive abrupt faults.  

5.2.1 Incipient Faults  

 In the case study presented in this subsection, all pseudo-measurements received by the 

global observer at the top level of the hierarchy are intentionally corrupted by the additive 

incipient fault presented in Figure 5.1. That is, at the end of the simulation, the incipient faults 

increase the actual value of each pseudo-measurement by around 35%. The resulting normalized 

estimation error of each state of the hierarchical observer is presented in Figure 5.2. The green, 

blue, and yellow dashed lines represent the average of the errors of first-level, second-level, and 

top-level states, respectively. Additionally, the red dashed line represents the average of the 

errors of all 77 states. Compared to the non-faulty scenario presented in Chapter 4 (i.e. Figure 

4.13), around a 97% increase in the overall mean error (i.e. red dashed line) is shown in Figure 

5.2. Additionally, the average estimation error increased by 20%, 6%, and 199% at the first (i.e. 

green dashed line), second (i.e. blue dashed line), and top level (i.e. yellow dashed line) of the 

hierarchy as shown in Figure 5.2. Nevertheless, the average estimation error remains below 1% 

at the lowest level and around 3% at the second level of the hierarchy. The simulated and 

estimated values of state 7 from SS2 (i.e. at the lowest level), state 2 from SS6 (i.e. at the second 

level), and state 6 from the top-level model (see Figure 4.4) are compared in Figure 5.3. 

Consequently, Figure 5.2 and Figure 5.3 demonstrate that, in the presence of an incipient fault 

that causes an average estimation error of 14% at the top level of the hierarchy, reliable state 

estimates can still be obtained from first-level and second-level local observers.   

 

Figure 5.1 Profile of the incipient fault added to the pseudo-measurements received by the 

global observer at the top level of the hierarchy. 
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Figure 5.2 Mean of the normalized estimation error of each state of the hierarchical 

observer when the pseudo-measurements received by the top-level observer are corrupted 

by the additive incipient fault presented in Figure 5.1. 

   

Figure 5.3 Performance of the hierarchical observer at all levels of the hierarchy when 

faulty pseudo-measurements corrupted by the incipient fault presented in Figure 5.1 are 

received by the top-level observer.  
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5.2.2 Abrupt Faults  

 In the case study presented in this subsection, all pseudo-measurements received by the 

global observer at the top level of the hierarchy are intentionally corrupted by the additive abrupt 

fault presented in Figure 5.4. This fault increases the value of each pseudo-measurement by 

around 25% for the first 600s of the simulation, then the value of the fault goes to zero for the 

rest of the simulation. The resulting means of the normalized estimation errors of the hierarchical 

observer are presented in Figure 5.5. Compared to the non-faulty scenario (i.e. Figure 4.13), 

Figure 5.5 shows around a 62% increase in the overall mean error (i.e. red dashed line), and 19%, 

4%, and 125% increase in the average estimation error at the first (i.e. green dashed line), second 

(i.e. blue dashed line), and top levels (i.e. yellow dashed line) of the hierarchy, respectively. 

However, similar to the conclusions derived from the previous case study (i.e. subsection 5.2.1), 

Figure 5.5 and Figure 5.6 show that the failure of the overall observer is gradual and accurate 

state estimates can be obtained from the first-level and second-level observers even in the 

presence of faults at the top level of the hierarchy. Specifically, Figure 5.5 shows that, on 

average, the estimation error is below 1% at the lowest level and around 3% at the second level 

of the heirarchy. This survivabilty is enabled by the inherent redundancy achieved by the 

hierarchical network.   

 

 

Figure 5.4 Profile of the abrupt fault added to the pseudo-measurements received by the 

global observer at the top level of the hierarchy. 
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Figure 5.5 Mean of the normalized estimation error of each state of the hierarchical 

observer when the pseudo-measurements received by the top-level observer are corrupted 

by the additive abrupt fault presented in Figure 5.4. 

 

Figure 5.6 Performance of the hierarchical observer at all levels of the hierarchy when 

faulty pseudo-measurements corrupted by the abrupt fault presented in Figure 5.5 are 

received by the top-level observer. 
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5.3 Robustness to Faults at The Lowest Level of The Hierarchy   

 As described in section 3.3, only local observers at the lowest level of the hierarchy have 

direct access to physical sensor readings and every upper-level observer in the network treats 

local state estimates received from lower-level observers as pseudo-measurements. Therefore, 

the estimation accuracy at the lowest level of the hierarchy is critical to the overall stability and 

convergence of the proposed hierarchical observer. This section explores the robustness of the 

overall hierarchical observer to failures at the lowest level of the hierarchy. This is achieved by 

intentionally corrupting physical sensor readings received by lowest-level observers. Robustness 

to two types of faults is investigated. In subsection 5.3.1, physical sensor readings are corrupted 

by additive incipient faults. In subsection 5.3.2, physical sensor readings are corrupted by 

additive abrupt faults. Additionally, for both case studies, the performance of the benchmark 

centralized observer designed in Chapter 4 (see section 4.7) is presented.  

5.3.1 Incipient Faults  

In this case study, all sensor readings used by the observers of SS1, SS2, and SS3 (see 

section 4.4) are corrupted by the additive incipient fault presented in Figrue 5.1. The sensor 

readings received by the observer of SS4 are non-faulty. That is, 7 out of the 9 sensors used at 

the lowest level of the hierarchy (see figure 4.5) are corrupted. Figure 5.7 presents the resulting 

mean of the normalized estimation error of each state of the hierarchical observer at all levels of 

the hierarchy. Compared to the non-faulty scenario presented in Figure 4.13, Figure 5.7 shows 

around a 486% increase in the overall mean estimation error (i.e. red dashed line), and 1919%, 

394%, and 118% increase in the average estimation errors at the first (i.e. green dashed line), 

second (i.e. blue dashed line), and top levels (i.e. yellow dashed line) of the hierarchy, 

respectively. The simulated and estimated values of state 7 from SS2, state 2 from SS6, and state 

6 from the top-level model (see Figure 4.4) are presented in Figure 5.8. Thus, Figure 5.7 and 

Figure 5.8 show that, failures at the lowest level of the hierarchy can have a larger impact on the 

overall estimation accuracy of the hierarchical observer than top-level failures. This can be 

related to the fact that first-level observers use the highest-resolution models and thus generate 

the most accurate state estimates in the hierarchy as demonstrated in the results presented in 

Figure 4.13. 
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Figure 5.7 Mean of the normalized estimation error of each state of the hierarchical 

observer when sensor readings received by lowest-level observers are corrupted by the 

incipient fault presented in Figure 5.1. 

 

Figure 5.8 Performance of the hierarchical observer at all levels of the hierarchy when 

faulty sensor readings corrupted by the incipient fault presented in Figure 5.1 are received 

by lowest-level observers.  
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To examine the performance of a benchmark centralized observer operating under the 

same conditions, the centralized Kalman filter designed in Chapter 4 (see section 4.7) is tested 

using the same corrupted sensor readings. That is, 7 out of the 9 sensor readings used by the 

centralized observer are corrupted with the additive incipient fault presented in Figure 5.1. Figure 

5.9 presents the resulting mean of the normalized estimation error of each state of the centralized 

observer. Compared to the non-faulty case study (i.e. Figure 4.12), Figure 5.9 shows around a 

937% increase in the overall mean estimation error (i.e. red dashed line). Additionally, by 

comparing Figure 5.7 and Figure 5.9, it can be deduced that, for this case study, the hierarchical 

and the centralized observers are equally robust to the faulty sensor readings. Specifically, both 

observers have similar overall estimation accuracies, and the average estimation error of the 

hierarchical observer at the lowest level of the hierarchy is around 1% lower than the overall 

estimation accuracy of the centralized observer. 

 

 

Figure 5.9 Mean of the normalized estimation error of each state of the centralized 

observer when sensor readings are corrupted by the additive incipient fault presented in 

Figure 5.1. 
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5.3.2 Abrupt Faults  

Robustness of the proposed hierarchical and the benchmark centralized observers to 

faulty sensor readings corrupted by abrupt faults is analyzed in this subsection. Specifically, in 

this case study, all sensor readings used by the observers of SS1, SS2, and SS3 at the lowest 

level of the hierarchy (see Figure 4.4), and the equivalent 7 sensor readings used by the 

centralized observer are corrupted by the abrupt fault presented in Figure 5.4. The resulting mean 

of the normalized estimation error of each state of the hierarchical and the centralized observers 

is presented in Figure 5.10 and Figure 5.11, respectively. These results show that, for this case 

study, the overall mean of the normalized estimation errors of the hierarchical observer (i.e. red 

dashed line in Figure 5.10) is around 8% larger than that of the centralized observer (i.e. red 

dashed line in Figure 5.11). This can be due to the faster convergence achieved by the centralized 

observer (compared to the hierarchical observer) after the fault is resolved. Specifically, Figure 

5.12 compares the simulated values of state 7 from SS2, state 2 from SS6, and state 6 from the 

top-level model (see Figure 4.4) to their estimated values obtained from the hierarchical 

observer, and Figure 5.13 compares state 7 from SS2 (i.e. the same first-level state presented in 

Figure 5.12) to its estimated value obtained from the benchmark centralized observer. The results 

presented in Figure 5.12 and Figure 5.13 demonstrate that a faster convergence is achieved by the 

centralized observer at 600s (i.e. after the fault is resolved). Additionally, Figure 5.12 show that 

as the level of the hierarchy increases, the convergence rates of the observers in the hierarchy 

decreases. Finally, the results of this case study show that, the performance of the centralized 

observer is equivalent to the performance of the hierarchical observer at the lowest level of the 

hierarchy. Specifically, the average of the estimation errors of the lowest-level states of the 

hierarchical observer (i.e. red dashed line in Figure 5.10) is around 1% lower than the average of 

the estimation errors of the centralized observer (i.e. red dashed line in Figure 5.11).      
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Figure 5.10 Mean of the normalized estimation error of each state of the hierarchical 

observer when sensor readings received by lowest-level observers are corrupted by the 

abrupt fault presented in Figure 5.4. 

 

Figure 5.11 Mean of the normalized estimation error of each state of the benchmark 

centralized observer when its sensor readings are corrupted by the abrupt fault presented 

in Figure 5.4. 
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Figure 5.12 Performance of the hierarchical observer at all levels of the hierarchy when 

sensor readings corrupted by the abrupt fault presented in Figure 5.4 are received by 

lowest-level observers. 

 

 

Figure 5.13 Performance of the centralized observer when sensor readings are corrupted 

by the abrupt fault presented in Figure 5.4. 
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5.4 Robustness to Initization Errors  

This section examines the robustness of the proposed hierarchical observer to 

initialization errors in the observer states at all levels of the hierarchy. Specifically, a 20% 

initialization error is introduced to every state of every observer in the hierarchy. Figure 5.14 

shows the simulated and the estimated values of state 7 from SS2, state 2 from SS6, and state 6 

from the top-level model (see Figure 4.4). These results demonstrate that, the hierarchical 

observer converges to the actual state values in the presence of the introduced initialization errors 

at all levels of the hierarchy. Additionally, these results show that, as the level of the hierarchy 

increases, the convergence rates of the observers decrease. This is directly related to the update 

rates of the observers. As described in Chapter 3, as the level of the hierarchy increases, the 

update rates of the observers decrease.  

 

Figure 5.14 Performance of the hierarchical observer when 20% initialization errors are 

introduced in every observer at all levels of the hierarchy.  
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5.5 Effect of Tuning Parameters 

In this section, the effect of the tuning parameters on the estimation accuracy of each 

observer in the hierarchy is tested. The tuning parameters are the matrices iQ  (i.e. covariance of 

the process noise) and iR  (i.e. covariance of the measurement noise) of each observer i  in the 

hierarchical network. Values with lower estimated uncertainties are trusted more. Larger process 

noise covariance (i.e. larger iQ ) drives the observer to trust the measurements more than the 

model. Similarly, larger sensor noise covariance (i.e. larger iR ) drives the observer to trust the 

model more than the measurements. That is, the relative certainty between the measurements (or 

pseudo-measurements) and the model is an important factor in the performance of the observer.  

Seven different cases are tested in this section. For each case, the values of the chosen 

parameters are presented in Table 5.1. I  represents an identity matrix of appropriate dimensions. 

Set 7 shows the parameters used in the experimentally validated case study presented in Chapter 

4. The performance of the proposed hierarchical observer in these seven cases is presented in 

Figures 5.15 - 5.21. In each of these figures, green, blue, and yellow dashed lines plot the average 

of the normalized estimation errors of first-level, second-level, and top-level states, respectively. 

Additionally, the red dashed lines represent the average of the normalized estimation errors over 

all 77 states. 

Figure 5.15, and Figure 5.17 to Figure 5.21 show that, design sets 1, and 3 to 7 result 

approximately in the same overall estimation accuracy. Figure 5.16 and Figure 5.18 (i.e. sets 2 

and 4) show that the overall performance of the hierarchical observer can be negatively affected 

if, at upper levels of the hierarchy, the models are trusted more than the pseudo-measurements. 

This reduction in the overall estimation accuracy is caused by pushing the upper-level observers 

to rely on reduced-order models rather than pseudo-measurements obtained from lower-level 

observers that use models of higher-resolutions.  

The mean and maximum normalized estimation errors of the benchmark centralized 

observer (see section 4.7) are 0.0126 and 0.0278, respectively (see Table 4.1), for .Q R I= =

Thus, Figures 5.15 to 5.21 show that, except for design set 2, the average estimation accuracy of 

the hierarchical observer at the lowest level of the hierarchy is higher than the overall estimation 
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accuracy of the centralized observer. Furthermore, Figures 5.15 to 5.21 show a constant trend for 

the estimation accuracy of the observer with respect to the level of the hierarchy. That is, 

regardless of the choice of the tuning parameters, the estimation accuracy decreases as the level 

of the hierarchy increases. This can be related to the update rates and the resolution of the models 

used by the observers as the level of the hierarchy increases. Specifically, as the level of the 

hierarchy increases, the update rates and the resolution of the models used by the observers 

decrease. 

Table 5.1 Tuning sets for the proposed hierarchical observer. 

  SS1 SS2 SS3 SS4 SS5 SS6 SS7 

Set 1 
iR
 

0.1I  0.1I  0.1I  0.1I  0.01I  0.01I  0.01I  

iQ
 

50 I  50 I  50 I  50 I  I  I  I  

Set 2 
iR
 

10 I  10 I  10 I  10 I  10 I  10 I  10 I  

iQ
 I  I  I  I  I  I  I  

Set 3 
iR
 I  I  I  I  I  I  I  

iQ
 

10 I  10 I  10 I  10 I  10 I  10 I  10 I  

Set 4 
iR
 

10 I  10 I  10 I  10 I  I  I  5 I  

iQ
 I  I  I  I  5 I  5 I  10 I  

Set 5 
iR
 I  I  I  I  5 I  5 I  10 I  

iQ
 

10 I  10 I  10 I  10 I  20 I  20 I  30 I  

Set 6 
iR
 

10 I  10 I  10 I  10 I  5 I  5 I  I  

iQ
 I  I  I  I  5 I  5 I  10 I  

Set 7 
iR
 

0.1I  0.1I  0.1I  0.1I  0.01I  0.01I  I  

iQ
 

50 I  50 I  50 I  50 I  I  I  I  
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Figure 5.15 Mean of the normalized error of each state estimated by the hierarchical 

observer – Set 1. 

 

Figure 5.16 Mean of the normalized error of each state estimated by the hierarchical 

observer – Set 2. 
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Figure 5.17 Mean of the normalized error of each state estimated by the hierarchical 

observer – Set 3. 

 

Figure 5.18 Mean of the normalized error of each state estimated by the hierarchical 

observer – Set 4. 
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Figure 5.19 Mean of the normalized error of each state estimated by the hierarchical 

observer – Set 5. 

 

Figure 5.20 Mean of the normalized error of each state estimated by the hierarchical 

observer – Set 6. 
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Figure 5.21 Mean of the normalized error of each state estimated by the hierarchical 

observer – Set 7. 

5.6 Conclusion  

This chapter presented several case studies that numerically investigate the robustness of 

the 3-level hierarchical observer of the FTMS presented in Chapter 4 to  

• failures in the global observer at the top-level of the hierarchy, 

• failures in the physical sensors used by the local observers at the lowest level of 

the hierarchy, 

• initialization errors at all levels of the hierarchy, and 

• tuning parameters at all levels of the hierarchy. 

It has been demonstrated that, as a result of the inherent redundancy in the hierarchical network, 

the degradation in the performance of the overall observer is gradual in the case of a failure in 

the global observer at the top level of the hierarchy. Additionally, it has been shown that failures 

of the physical sensors used at the lowest level of the hierarchy can have a larger impact on the 

overall estimation accuracy of the hierarchical observer than the failure of the global observer at 

the top level. Also, for the case studies conducted in this chapter, it was found that the 
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hierarchical and the centralized observers are equally robust to faulty physical sensors. 

Furthermore, it has been demonstrated that, even in the presence of initialization errors at all 

levels of the hierarchy, the hierarchical observer can converge to the actual state values. 

However, as expected, the rate of the convergence decreases as the level of the hierarchy 

increases. This behavior is directly related to the update rates of the observers at different levels 

of the hierarchy (i.e. the update rates of the observers decrease as the level of the hierarchy 

increases). Finally, after testing several tuning parameter sets, the overall estimation accuracy of 

the hierarchical observer was found to be reduced when the models are trusted more than the 

pseudo-measurements at the upper levels of the hierarchy. This can be related to the fidelity of 

the models used by the upper-level observers. The results presented in this chapter are specific 

for a particular system. However, several of these outcomes can be generalizable for other 

systems with different architectures.   
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Chapter 6     

Model-based Fault Diagnosis for Complex Dynamical 

Systems 

6.1 Motivation and Background 

Fault detection and isolation (FDI) has become an important and challenging topic in 

many engineering fields such as aerospace engineering [26], [94]–[102], chemical engineering 

[103]–[105], nuclear engineering [106], [107], and power electronics [108]. Early fault diagnosis 

not only improves system reliability but can also help prevent complete system failure in the case 

of safety-critical systems. A fault is defined to be any malfunction in the system dynamics that 

causes an anomaly in the system performance [25], [30], [109]. A fault can occur in the 

actuators, sensors, or even in the system components. A fault diagnosis approach can be used to 

ensure that the system is operating normally and safely. Fault diagnosis can be divided into two 

tasks: fault detection and fault isolation. The fault detection task determines whether a fault has 

occurred in the system. The fault isolation task determines in which sensor, actuator, or 

component the fault has occurred.  

FDI techniques are usually based on analytical or hardware redundancies [25], [109]. In 

the case of hardware redundancy, multiple components are used to compare duplicate 

measurements of the same signal [26], [27]. The major problems of this approach are the 

increased cost and weight of the system due to the additional components needed. As a result, 

hardware redundancy might not be a good fit for systems such as small unmanned aircraft where 

there are hard constraints on the size, weight, and power of the system [110]. These problems 
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can be solved using an analytical redundancy approach in which a mathematical model of the 

system is used instead of the extra hardware [28]–[30]. 

Observer-based FDI methods are one of the most well-known techniques based on 

analytical redundancy. The basic concept of observer-based FDI techniques is to compare the 

actual system behavior to the estimated system behavior obtained from an observer [30]–[32]. 

The residual generated from the difference between the actual response and the estimated 

response of the system is used to detect and isolate faults. Typically, residuals are zero in fault-

free case, and an increase in their values above zero indicates that a fault has occurred in the 

system. However, since perfect models do not exist in practice, there will always be a 

discrepancy between the actual system’s measurements and the estimated measurements 

obtained from the observers even when there is no fault in the system. This discrepancy causes 

false alarms and interferes with the performance of the FDI approach. Hence, to avoid false 

alarms, residuals should be designed to be insensitive to modeling uncertainties and noise. On 

the other hand, reduction in the sensitivity of the residuals to modeling errors should not reduce 

its sensitivity to actual faults in the systems. Robustness is particularly important for the 

detection of incipient faults (i.e. drift change) since their effect on the residual is minor compared 

to the effect of abrupt faults (i.e. step change). 

Unknown input observers can be used to generate robust residuals by de-coupling the 

unknown inputs, i.e. disturbances, from the residuals [36]. Once a fault is detected, it can be 

isolated using a set of structured residuals obtained from a bank of UIOs. Structured residuals are 

designed to be sensitive to certain faults and insensitive to others. UIO-based FDI has been 

widely applied in the literature owing to its robustness property [36], [105], [111]–[113]. 

However, most of the work in the literature considered low order models for the design of UIOs 

due to the additional complexity introduced with the design of online estimators for high 

dimensional models. This work develops and experimentally validates an overall fault detection 

and isolation approach for complex (i.e. high dimensional) dynamical systems using graph-based 

models, a structure preserving aggregation-based model order reduction technique, and a bank of 

UIOs.  

The remainder of the chapter is organized as follows. Section 6.2 presents the observer-

based fault diagnosis algorithm used in this work. The models used by the FDI algorithm are 
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presented in section 6.3. An example aircraft fluid-based thermal management system used to 

experimentally validate the fault diagnosis framework is presented in section 6.4. Experimental 

validation of the FDI implementation is presented in section 6.5. Conclusions are presented in 

section 6.6. 

6.2 Observer-based Fault Diagnosis  

Physical systems are usually excited by unknown exogenous signals (i.e. unknown 

disturbances). In the FDI community, these signals are referred to as “unknown inputs”. 

Therefore, when unknown disturbances are present in a system, some of the inputs are unknown. 

Consequently, a conventional observer that uses all input signals of a system cannot be designed. 

In this case, a UIO, which is a generalization of the Luenberger observer, can be used. More 

specifically, a UIO is an observer in which the state estimation error approaches zero 

asymptotically regardless of the presence of the unknown input, i.e. disturbance, in the system 

[114]. Many methods have been proposed for the design of full-order [114]–[116] and reduced-

order [117], [118] UIOs. However, the higher number of free parameters in the full-order UIO 

creates more design freedom that can be used to achieve other design criteria such as the rate of 

convergence. The focus of this chapter is on the design of a robust FDI framework based on full-

order UIOs. 

To design a UIO, system uncertainties are represented by additive disturbances as 

follows. 

 
( ) ( ) ( ) ( )

( ) ( ),

x t Ax t Bu t Ed t

y t Cx t

= + +


=
  (6.1) 

where ( ) nx t   represents the state vector, ( ) ru t   represents the known input vector, 

( ) qd t   represents the disturbance vector (i.e. unknown input), and ( ) my t   represents the 

output vector. A , B , C , and D  are known matrices with appropriate dimensions. The dynamics 

of a full-order UIO are given by [114] 

 
( ) ( ) ( ) ( ),

ˆ( ) ( ) ( ),

z t Fz t TBu t Ky t

x t z t Hy t

= + +


= +
  (6.2) 
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where ( ) nz t   represents the observer state vector, ˆ( ) nx t   represents the estimated state 

vector, and F , T , K , and H  represent matrices that should be designed to achieve 

disturbance decoupling. The dynamics of the state estimation error ˆ( ) ( ) ( )e t x t x t= −  are then 

given by 

 ˆ( ) ( ) ( )e t x t x t= −   (6.3) 

 

1 1

2 1

( ) ( ) ( ) [ ( )] ( )

[ ( ) ] ( ) [ ( )] ( )

( ) ( ),

e t A HCA K C e t F A HCA K C z t

K A HCA K C H y t T I HC Bu t

HC I Ed t

= − − + − − −

+ − − − + − −

+ −

  (6.4) 

where  

 1 2.K K K= +   (6.5) 

The primary requirement for the design of a UIO is the a priori knowledge of the matrix E . 

Thus, if F , T , K , and H  are designed such that  

 
1

2

( ) 0,

,

,

,

HC I E

T I HC

F A HCA K C

K FH

− =


= −


= − −
 =

  (6.6) 

the state estimation error will be given by 

 ( ) ( ).e t Fe t=   (6.7) 

Further, if F  is Hurwitz, then ( )e t  approaches zero asymptotically. Therefore, if 1K  is chosen 

such that F  is Hurwitz, the observer will be a UIO since ˆ( ) ( )x t x t→  in the presence of 

unknown inputs. The necessary and sufficient conditions for the existence of a UIO are [114]: 

1. rank( CE ) = rank( E ) 

2. ( 1,C A ) is detectable, and 1
1 [( ) ] .TA A E CE CE CA−= −  

A fault can occur in a number of different locations in a system (e.g. sensors, actuators, 

components, etc.). However, the focus in this chapter is on actuator faults only. That is, sensors 
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and components are assumed to be fault-free. Fault diagnosis is achieved by generating residuals 

and detecting their threshold crossings. Residuals are generated from the difference between the 

actual system output and the observer output and are given by 

 ˆ( ) ( ) ( ) ( ) ( ) ( ).r t y t Cx t I CH y t Cz t= − = − −   (6.8) 

Faults can be then detected using the following logic 

 
( ) Threshold, Fault-free case

( ) Threshold, Faulty case

r t

r t

 




  (6.9) 

and thresholds can be designed to be constant, time-varying, or state-dependent. Once a fault is 

detected, it can be isolated using a bank of r  UIOs. Each UIO in the bank is given by 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ), 1,2,..., ,

i i i i i i i

i i i

z t F z t T B u t K y t

r t I CH y t Cz t for i r

 = + +


= − − =

  (6.10) 

where 
( 1)i n rB  −  is obtained from B  by deleting the 

thi  column ib , and 
1i ru −  is 

obtained from u  by deleting the 
thi  component iu . The matrices 

iF ,  
iT , 

iK , and 
iH  are given 

by  

 1

2

1 2

i i i

i i

i i i

i i i

i i i

H CE E

T I H C

F T A K C

K F H

K K K

 =

 = −


= −


=


= +

  (6.11) 

where 

  .i
iE E b=   (6.12) 

To isolate a fault in the 
thi  actuator, the following logic is used 
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( ) , 1,...,

( ) , 1,..., 1, 1,...,

i i

i k

r t R for i r

r t R for k i i r

  =



 = − +


  (6.13) 

where 
iR  and 

kR  represent isolation thresholds. 

The unknown disturbances modeled in equation (6.1) can represent modeling errors, 

linearization errors, parameter variations, or model order reduction errors.  For example, a 

mathematical model can be represented by 

  
11 12 1

21 22 2

( ) ( )
( ),

( ) ( )

r r

h h

x t x tA A B
u t

x t x tA A B
  (6.14) 

where rx  represents the state vector of the reduced-order model and hx  represents the vector of 

the remaining states of the full-order model (i.e. higher order states). Consequently, the reduced-

order model can be represented as 

 ( ) ( ) ( ) ( ),r r r rx t A x t B u t Ed t   (6.15) 

where  

 11 12 1

( )

( ) ( ) ( ) ( ) .

( )

r

r r h

x t

Ed t A A A B B x t

u t

  (6.16) 

That is, equations (6.15) and (6.16) show that model order reduction errors can be represented by 

additive disturbances and consequently, they can be decoupled from the residuals. However, the 

additive disturbance modeled in equation (6.1) do not capture sensor noise. In practice, sensor 

noise exists and actual system output (i.e. sensor measurement) can be represented by 

 ( ) ( ) ( ),y t Cx t t= +   (6.17) 

where for example ( ) (0, )kt N R  is a white noise vector with zero mean and covariance kR . 

Therefore, to avoid false alarms caused by sensor noise, thresholds should be chosen to be larger 

than the effect of sensor noise on the residuals. Substituting (6.17) into (6.10), threshold lower 

limits can be chosen such that  
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2

( ) ( ) .i iR I CH t −   (6.18) 

Equation (6.10) shows that each residual is a function of all outputs (i.e. ( )y t ) and all but 

one input (i.e. ( )iu t ). This framework is known as the generalized observer framework and can 

be used to detect and isolate one fault at a time. It is found that, for this class of applications, this 

framework offers more design freedom for disturbance decoupling than the dedicated observer 

framework in which multiple faults can be detected at the same time [114].   

Compared to conventional observers (e.g. Luenberger observers or Kalman filters), the 

major benefit of UIOs is the robustness achieved through disturbance decoupling. Specifically, a 

Luenberger observer for (6.1) is given by 

 
ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( )),

ˆ ˆ( ) ( ),

x t Ax t Bu t L y t Cx t

y t Cx t

 = + + −


=
  (6.19) 

where L  represents the gain matrix and ˆ( )y t  represents the output of the observer. The 

dynamics of the state estimation error ˆ( ) ( ) ( )e t x t x t= −  are then given by 

 ( ) ( ) ( ) ( ).e t A LC e t Ed t= − +   (6.20) 

Equation (6.20) demonstrates that, for a Luenberger observer, the state estimation error is 

affected by unknown signals disturbing the physical system. Consequently, using this type of 

observers to perform FDI complicates the process of threshold selection and affects the 

robustness of the residuals.  

6.3 Physics-based Lumped Parameter models for Fault Diagnosis 

6.3.1 Physics-based Lumped Parameter Models 

The models used by the UIOs are required to run in real-time, demanding a suitable 

balance between accuracy and computational complexity. Consequently, these models are 

developed using the lumped parameter physics-based modeling technique presented in Chapter 

2. That is, the dynamics of the monitored systems are captured by graph-based models. As 

presented in section 2.2 (i.e. equation (2.7)), the dynamics of graph-based models are typically 
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represented by a set of first order nonlinear differential equations. Therefore, prior to the design 

of the UIOs, the dynamics of the graph-based model of the monitored system should be 

linearized.  

A linear representation of the graph dynamics can be obtained by individually linearizing 

the power flows along each edge of the graph. Chapter 3 showed that the dynamics of a graph 

can be directly represented by a linear time-varying system when the power flows along the 

edges satisfy a state-affine form. Furthermore, it has been demonstrated that thermal power flows 

of fluid-based thermal management systems (FTMS) of electrified vehicles (i.e. convective and 

advective power flows) are state-affine. Thus, thermal dynamics of a FTMS can be directly 

represented by a linear time-varying system. When, power flows along the edges of a graph can 

not be modeled by a state-affine form, a linear representation of the graph-dynamics can be 

obtained by linearizing each power flow individually using a first order Taylor series as done in 

[23]. 

6.3.2 Reduced-Order Models 

High dimensional models present a challenge for online estimation. Therefore, it is often 

desirable to design observers using reduced-order models. In this chapter, complexity of graph-

based models is reduced by applying an aggregation-based model order reduction technique. 

There are many methods available in the field of model order reduction. The best known 

methods are Truncated Balanced Realization [28],  Hankel-norm reduction [120], and  Proper 

Orthogonal Decomposition [121]. However, these methods do not preserve the physical 

correspondence between the physical system and the reduced-order model. The model order 

reduction technique used in this work reduces the number of nodes of the model while 

preserving its input-output behavior and the correspondence with the physical system. This 

technique is an aggregation based approach developed in [122]. It provides a way to aggregate 

multiple adjacent nodes in the full-order model into single nodes, called “super-nodes”, in the 

reduced-order model by applying the aggregation method of a continuous time Markov chain. 

The main idea behind this model order reduction technique is to find an optimal partition 

function :V M → , where {1, 2,..., }M m=  with m n . The partition   reduces the dimension 

of the state space from n  nodes in the full-order model into m  nodes in the reduced-order 
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model, where m  is specified by the user. Each super-node has a super-capacitance C  and a 

super-state x . Super-nodes are connected by edges representing super-power flows P . Super-

capacitances and super-power flows are given by 

 ,k ii V
C C


=   (6.21) 

 
,

.kl ij
i j E

P P


=   (6.22) 

In order to aggregate the nodes of the full-order model, the optimal partition function    

has to be found. This function is difficult to get exactly when the order of the reduced-order 

model is greater than 2 which is the general case. Instead, the reduced-order model is obtained by 

applying a spectral algorithm on the symmetric matrix 
1 1 1 1

2 2 2 20.5( )TP P P
− −

=   +  . Here 

( )diag  = , where   is the stationary distribution of the Markov chain, and ( )P t  is the 

Markov transition matrix. For the linear systems of interest, ( )P t  is given by ( ) : AtP t e=  [123]. 

The stationary distribution is given in terms of the capacitances by 

 , .i
i

jj V

C
i V

C




= 


  (6.23) 

The computation steps used to develop reduced-order models are shown in Algorithm 5.1.  

 

Algorithm 5.1: Computation Steps of The Model Order Reduction Algorithm  

1. Construct 
1 1 1 1

2 2 2 2: 0.5( )TP P P P
− −

=   +  . 

2. Check the sign structure of the second largest eigenvector of P . 

3. Aggregate the spatially adjacent nodes that share the same sign into super-nodes. 

4. Calculate the super-capacitances and super-power flows (Neglect the internal power 

flows in the super-nodes).  

5.  
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6.4 An Example Aircraft Fluid-based Thermal Management System 

In this section, the robust UIO-based actuator FDI approach is implemented on the 

example aircraft fluid-based thermal management system shown in Figure 6.1. The system 

schematic is shown in Figure 6.2. In this system, the fluid plays the role of a heat sink and a 

coolant [124]. Heat generated from the generator, AEE, and electronics represented by the cold 

plates shown in Figure 6.1 gets absorbed by the fluid, and then rejected to neighboring systems 

through heat exchangers. The system is composed of 4 loops: 3 secondary loops (referred to by 

yellow, purple, and green arrows) and one main loop (referred to by red arrows).  

 

Figure 6.1 Testbed representing an example aircraft fluid thermal management system. 

Heat generated by cold plate CP1 (in the secondary loop referred to by yellow arrows) 

gets absorbed by the fluid driven by pumps P2a and P2b and transferred to the reservoirs R1 and 

R2. Heat generated by cold plate CP2 (in the secondary loop referred to by purple arrows) gets 

absorbed by the fluid driven by pump P3 and transferred to the main loop through the fluid-to-

fluid heat exchanger HX1. The secondary loop referred to by green arrows absorbs the heat 

generated in the main loop through the fluid driven by pump P4 and transfers it to a heat sink 

representing a neighboring system or the external environment. The blue arrows shown in Figure 
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6.2 represent input and output flows of a chiller representing a heat sink. Cold plate CP4 helps 

controlling the temperature of the fluid in the loop. For example, this cold plate helps setting 

specific temperatures for the external environment or the neighboring system represented by this 

secondary loop. The main loop fluid driven by pumps P1a and P1b absorbs the heat generated by 

cold plates CP1, CP2, and CP3 and transfers it to the heat sink loop. 

Each component, actuator, or sensor of the testbed can fail in several ways leading to the 

failure of the overall system. The scope of this case study is limited to the detection and isolation 

of pump faults characterized by an increase in the pump commands above nominal pump 

command values determined a priori by a mission profile. Only major faults that occur in pumps 

are considered. Fluid leaks which would be more like incipient faults are not considered. A pump 

error can negatively impact both the hydraulic and the thermal behaviors of the system given the 

coupling between the two energy domains. However, in this example case study, fault detection 

and isolation are achieved by designing UIOs that estimate dynamics spanning the hydraulic 

domain only. More specifically, the inputs of the UIOs designed in this case study are the pump 

commands and the residuals are generated from the differences between the actual and estimated 

pressure drops across the corresponding fluid loops. 

 

Figure 6.2 Schematic of the testbed shown in Figure 6.1. 



 120  

As presented in section 6.2, fault isolation is achived by designing a bank of UIOs. The 

number of UIOs in the bank should be equal to the number of monitored actuators. Each residual 

is then designed to be sensitive to all but one fault. In this case study, the bank of UIOs is 

designed to isolate faults in pumps P1a, P1b, P2a, and P2b only since, from a hydraulic 

perspective, the remaining two loops (denoted by purple and green arrows) are disconnected 

from the main loop. Furthermore, pumps P1a and P1b are connected in series (i.e. driven by the 

same input) and are jointly referred to by P1. Similarly, pumps P2a and P2b are connected in 

series and are jointly referred to by P2. Therefore, it is not necessary to isolate faults between 

pumps P1a and P1b, or P2a and P2b. Consequently, the robust FDI approach is used to isolate P1 

faults from P2 faults.  

6.5 Experimental Validation of the FDI Framework  

Figure 6.3 shows the full-order graph-based model of the mass flow dynamics of the 2 

loops containing P1 and P2. As presented in Chapter 2, the hydraulic dynamics of a fluid thermal 

management system (FTMS) derived from a graph-based model are represented by a nonlinear 

form. Therefore, in order to design the UIOs, a linear dynamic model is obtained by linearizing 

each mass flow rate individually. From Chapter 2 (i.e. equations (2.11) and (2.13)), the nonlinear 

mass flow rates for all components of the FTMS can be described by the following general form 

[23] 

 1, 2, 3, 4,( ) ,tail head
j j j j j j j jm c c c p p c u= + − +   (6.24) 

where the coefficient 
,i jc  are constant for each i , and j , 

tail

jp , and 
head

jp  are the pressure states 

associated with the head and tail vertices, and 
ju  is the actual pump effort given by 

 ( ) ( ),
1

sj
c

j j
j

e
u s u s

s





−

=
+

  (6.25) 

where c
ju  is the pump command value expressed in terms of %  duty cycle of PWM, j  is the 

time constant, and j  is the time delay. By linearizing equation (6.24) around equilibrium 
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operating conditions using a first-order Taylor series, linear mass flow rates can be represented 

by 

 ( ) ,tail head
j j j j j jm a p p b u =  − +    (6.26) 

where 
ja  and 

jb  are constant coefficients, and   represents deviations from the linearization 

point. By substituting the linearized mass flow rates in Equation  (6.26) into (refer to Chapter 2 

for a detailed derivation of equation (6.27)) 

 ,Cp Mm= −   (6.27) 

the linear state space model used by the UIOs can be given by  

 
p A p B u

m C p D u

=  + 

 =  + 
  (6.28) 

where  

 
1( ) ([ ])( ) ,T

jA C Mdiag a M−= −   (6.29) 

 1( )B C M b−= −   (6.30) 

 ([ ])( ) ,T

iC diag a M=   (6.31) 

 [ ] .e pN N

jkD d


=    (6.32) 

M  represents the columns of the submatrix  M  corresponding to edges associated with pumps, 

and b̂  represents the vector of input coefficients for edges associated with pumps. 
jkd  is given 

by  

 
, if edge is associated with pump ,

0, else.

j

jk

b j k
d


= 


  (6.33) 

Figure 6.4 shows pumps P1 and P2 commands given in terms of %PWM. The reduced-

order graph-based model is shown in Figure 6.5. Each node of the reduced-order model 

represents a lumped state of pressure obtained by aggregating several adjacent nodes of the full-
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order model. Figure 6.6 shows simulation versus experimental results of the pressure dynamics 

of the nonlinear full-order, linearized full-order, and linearized reduced-order graph-based 

models of 2 components of the FTMS (i.e. Tank 3, and Pump 2b).  

 According to the FDI framework presented in section 6.2,  a fault in one of the pumps 

results in an increase in the values of all but one residual.  Since the FDI framework is used to 

isolate faults between two pumps (i.e. P1 and P2), a bank of 2 UIOs is used. The matrices of the 

state space model and the observers’ parameters are shown in the Appendix. UIO1 generates 

residual 1 (
1R ) and UIO2 generates residual 2 (

2R ). Consequently, a fault in P1 results in an 

increase in 
2R , and a fault in P2 results in an increase in 

1R . 

 

Figure 6.3 Full-order graph-based model of the mass flow dynamics of the FTMS. 

The performance of the FDI approach is tested in 3 different scenarios. In the first 

scenario, P1 and P2 operate at their nominal commands (i.e. no fault in the system). Simulation 

and experimental results presented in Figure 6.7 show that, in a fault-free scenario, there is no 

increase in the values of residuals 
1R  and 

2R  above their threshold. In the second scenario, a 
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fault is introduced in P1 as shown in Figure 6.8. In this scenario, 
2R  crosses the threshold until 

the fault is cleared and then remains below the threshold until the end of the mission. On the 

other hand, 
1R  remains below the threshold during the entire mission. In the third scenario, a 

fault introduced in P2 as shown in Figure 6.9 results in an increase in 
1R  above the threshold 

until the fault is cleared, whereas 
2R  remains below the threshold during the entire mission. 

Figure 6.8 and Figure 6.9 present results from 3 experiments. Through disturbance decoupling 

achieved by equations (6.6) and (6.7), a constant threshold value of 
1 2 0.2R R= =  is found to be 

large enough to avoid false alarms and sensitive enough to detect a 25% change in actuator input 

commands. Threshold lower bound was found using equation (6.15) based on pressure sensor 

noise properties and matrices ( 3)A , ( 4)A , and ( 5)A  from the Appendix. In all experiments, 

pressure is measured using Measurement Specialities US300 sensors with a +/-0.1% accuracy. It 

is important to note that increasing threshold values decreases the UIO sensitivity to actual 

actuator faults. Furthermore, using sensors with higher accuracy helps decreasing threshold 

lower bounds and consequently increasing UIO sensitivity. Figures 6.7-6.9 indicate that the 

constant residuals chosen did not result in any false alarms or missed detections.  

 

 

Figure 6.4 Pump commands given in terms of PWM. 
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Figure 6.5 Reduced order (left) versus full-order (right) graph-based model of the mass 

flow dynamics of the FTMS. 

 

Figure 6.6 Pressure dynamics of the FTMS. 
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Figure 6.7 FDI – Scenario 1 (Non-faulty case). 

6.6 Conclusions 

In the case of safety critical systems (e.g. aircraft systems), early fault diagnosis not only 

improves system reliability, but can also help prevent complete system failure. This chapter 

presents a robust fault detection and isolation (FDI) framework for complex dynamical systems. 

For fault diagnosis, robustness is central for avoiding false alarms without reducing sensitivity to 

actual faults in the system. In this chapter, robustness is achieved by decoupling the effect of 

unknown inputs modeled as additive disturbances (i.e. modeling errors, linearization errors, 

parameter variations, or model order reduction errors) from a set of structured residuals 

generated from a bank of UIOs.  The framework is experimentally validated on an example 

aircraft fluid thermal management system (FTMS). System dynamics are modeled using the 

graph-based approach presented in Chapter 2. To reduce the complexity of the dynamic models 

used by the observers, a structure-preserving aggregation-based model order reduction technique 
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is used. A reduced-order linearized state space model is then used in a bank of UIOs to generate 

a set of structured robust (in the sense of disturbance decoupling) residuals. Simulation and 

experimental results show successful actuator FDI in the presence of unknown inputs. 

 

 

Figure 6.8 FDI – Scenario 2 (faulty case). 
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Figure 6.9 FDI – Scenario 3 (faulty case). 
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Chapter 7     

Conclusion 

7.1 Summary of Research Contributions 

Electrified vehicles consist of many subsystems that interact among each other across 

multiple energy domains and dynamic timescales.  To ensure their safe, reliable, and efficient 

performance, a holistic system perspective with novel estimation strategies that can account for 

coupling between subsystems and energy domains and identify anomalies in the system 

performance is needed. This dissertation proposes a hierarchical estimation approach with a 

novel coordination framework and an overall fault diagnosis approach for electrified vehicle 

systems.    

Chapter 2 presents a modular and scalable graph-based modeling approach that can 

capture dynamics spanning multiple energy domains and timescales. The resulting models are 

control-oriented physics-based lumped parameter models that can run in real-time. Additionally, 

various system decomposition techniques that can generate hierarchical graph-based models are 

presented in this chapter. Finally, to reduce the computational complexity of the hierarchical 

models used by the hierarchical observers, Chapter 2 presents an aggregation-based model order 

reduction technique that preserves the physical correspondence between the physical systems 

and their reduced-order models.  

Chapter 3 presents the architecture, formulation, and stability analysis of the proposed 

mutli-level hierarchical estimation framework. The formulation of a baseline centralized 

observer used as a benchmark for the hierarchical observer is also presented in this chapter. 

Furthermore, the advantages of the proposed hierarchical estimation approach compared to 
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conventional and current practices are discussed. This chapter ends with two simulation case 

studies that show the boundedness and convergence of the hierarchical estimation approach. It is 

found that, even though the sufficient conditions for the stability and convergence of the 

proposed hierarchical observer are derived in a conservative approach, the error bounds 

calculated in the case study are effective enough for successful control.  

Chapter 4 presents and experimentally validates a 3-level hierarchical observer for 

thermal management systems of electrified vehicles. The testbed used for validation is designed 

to replicate the power flows of a fuel thermal management system of an electrified aircraft but 

does not represent any specific platform. The hierarchical observer is connected to a previously 

developed 3-level hierarchical controller with the objective of increasing the safety, capability, 

and efficiency of the thermal management system. Experimental results demonstrate that the 

hierarchical observer achieves good estimation accuracy that enables successful control of multi-

timescale dynamical systems. Additionally, this chapter demonstrates that hierarchical estimation 

creates a tradeoff between centralized and decentralized estimation. Specifically, it is shown that 

the 3-level hierarchical observer is more accurate than a decentralized observer and less 

computationally expensive than a centralized observer.  

Chapter 5 investigates the robustness of the hierarchical observer designed in Chapter 4 

to failures at the top and lowest levels of the hierarchy, initialization errors, and tuning 

parameters. It is found that a fault at the lowest level of the hierarchy has a larger negative 

impact on the overall estimation accuracy of the proposed hierarchical observer than a fault at 

the top level. Additionally, it is demonstrated that the hierarchical observer can converge to the 

actual state values even in the presence of initialization errors. However, the convergence speed 

is directly related to the update rate of the observer, and thus lower-level observers converge 

faster than upper-level observers. Finally, it is found that designing upper-level observers to rely 

on their reduced-order models more than their pseudo-measurements reduces the overall 

estimation accuracy of the hierarchical observer. 

Chapter 6 proposes and experimentally validates a robust fault diagnosis framework that 

detects and isolates faults in complex energy systems. Robustness is achieved by decoupling the 

effect of unknown inputs (i.e. modeling errors, linearizarion errors, model order reduction errors, 

parameter variations, noise, etc.) from a set of structured residuals used for fault diagnosis. Fault 
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isolation is then achieved using a bank of unknown input observers (UIOs). Experimental 

validation is performed on a testbed representative of an aircraft fluid-thermal management 

system without replicating any specific platform. The lumped parameter models used by the 

UIOs are derived using the graph-based modeling approach presented in Chapter 2. The 

complexity of the models is further reduced using a structure-preserving aggregation-based 

model order reduction technique. Experimental results demonstrate successful fault detection and 

isolation (i.e. no false alarms and missed detections).   

7.2 Future Work 

The contributions presented in this dissertation constitute an initial effort towards the 

development of safe, reliable, and efficient complex energy systems. Future research on this 

topic will build on this work to advance the theory and applications.  

1. Hierarchical estimation of additional physical systems and energy domains: The 

hierarchical estimation framework proposed in this dissertation is adaptable to 

different systems, architectures, and energy domains. However, the dynamics 

of the testbed used for validation (i.e. the FTMS of an electrified aircraft 

presented in Chapter 4) spanned the hydraulic and thermal domains only. 

Electrical inefficiencies (i.e. from the battery, power electronics, electric 

machine, etc.) are simulated. Future work will expand the current testbed to 

include electrical and mechanical components and experimentally validate 

hierarchical observers and controllers that capture interactions between the 

mechanical, electrical, thermal, and hydraulic domains. Additionally, future 

work should experimentally validate the approach on a different platform (e.g. 

electrified automotive system [51]). 

2. Sufficient conditions for the stability and convergence of multilevel hierarchical 

observers for nonlinear systems with switched dynamics: The stability analysis 

presented in Chapter 3 is based on the assumption that every observer in the 

hierarchy is a linear Kalman filter. However, many complex energy systems 

are better represented by nonlinear models. Additionally, it is very common for 

these systems to include discrete components with switching dynamics (e.g. 
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valves in a hydraulic system, switches in an electrical system, etc.). Future 

work should expand the analysis presented in Chapter 3 to include sufficient 

conditions for the stability and convergence of hierarchical frameworks that 

include nonlinear and switched observers.  

3. Simultaneous fault detection and isolation of multiple faults for different component 

types: The fault diagnosis framework proposed and experimentally validated in 

Chapter 6 can isolate one actuator fault at a time. However, in practice there is 

a need to simultaneously detect and isolate faults in multiple components of 

different types (e.g. simultaneously detecting and isolating faults in 3 sensors, 

2 actuators, and 1 pipe). Additionally, it is very important to communicate 

accurate estimates of the fault magnitudes and profiles to the controllers of the 

monitored systems so that appropriate corrective actions can be taken in real 

time. Future efforts should build on the tools presented in Chapter 6 to 

incorporate these capabilities in the robust fault diagnosis framework proposed 

in this dissertation.  

4. Scalable observer-based fault diagnosis: Observer-based FDI suffers from a 

scalability problem. As described in Chapter 6, in these approaches, fault 

isolation is achieved through a bank of obsevers that run in parallel. 

Additionally, each observer in the bank is designed using the entire system 

model. Model order reduction can be an effective strategy to reduce the 

computational cost of this technique. However, for many large-scale complex 

energy systems, model order reduction might not be sufficient to design fast 

running models for the entire system with appropriate details for effective fault 

diagnosis. Consequently, to reduce computational cost, future work will 

investigate distributed observer-based fault diagnosis by integrating the fault 

diagnosis framework proposed in Chapter 6 into the hierarchical estimation 

framework proposed in Chapter 3. For example, each local observer at the 

lowest level of the hierarchy can be appended by a bank of observers designed 

to perform fault diagnosis for a specific subsystem only while receiving the 

required coupling information from upper-level observers in the hierarchy.   
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Appendix A     

Parameters of the Unknown Input Observers 

The following parameters are used to design the bank of unknown input observers 

presented in section 6.5. 
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