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ABSTRACT 

Advances in technologies have led to a utilization of a wide range of transport, storage and 

release of energy as a form of heat. Researchers in electronics, thermoelectrics, energy science 

and biomaterials seek for materials with either high or low thermal conductivity as they help to 

manage heat in the device and the system. However, traditional materials can only provide 

thermal functionality in one way—thermal conductor or insulator—to prevent or facilitate heat 

transport. Therefore, a discovery of materials that have a bifunctional thermal transport property 

in which materials can switch between more than one thermal conductivity state (high and low 

states) can provide a desirable thermal transport property on-demand. Although there have been 

attempts to control thermal conductivity of materials using external stimuli, many have failed to 

show a high and fast thermal property switching of material.  

In this dissertation, I present novel stimuli-responsive polymers and Li-ion battery 

electrode materials that involve a wide range of thermal conductivity modulation in response to 

external stimuli. I describe thermal conductivity switching between high and low states of these 

thermal switching materials (TSMs) with structural changes in electronic, atomic and/or 

molecular levels that are associated with the fundamental thermal transport property. 

First, stimuli-responsive liquid crystal networks (LCNs) and light-sensitive azobenzene 

polymers (azopolymers) were designed and synthesized. Thermal conductivity and 

macromolecular structure transitions of LCNs and azopolymers were studied by in-situ time-

domain thermoreflectance (TDTR) and in-situ synchrotron X-ray scattering techniques under 

external stimuli. I observed thermal conductivity switching contrast r = Λhigh/Λlow  1.5–3.5 on a 

switching time of τ  10 s – 10 min for LCNs and azopolymers. This thermal conductivity 
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switching resulted from an alignment of the backbone and side-chain mesogen groups with 

applied magnetic and electromagnetic fields in LCNs and azopolymers.  

Then, thermal conductivity and elastic modulus changes of metal and metal oxides Li-ion 

electrode materials were studied during electrochemical reaction with Li+ ions. Five electrode 

materials with three electrochemical phase transition mechanisms with Li+ ions were chosen: 

Fe2O3 and NiO as conversion reaction systems, V2O5 and TiO2 as intercalation systems and Sb as 

an alloying reaction system. These electrode materials involve characteristic lattice and 

electronic band structure transitions with respect to their phase transition mechanisms. For 

conversion materials, 200~300% volume changes were observed due to the large amount of Li+ 

ion intake. This large volume changes were associated with an irreversible decrease in thermal 

conductivity r  2.5–7.5 due to the lattice disordering by Li+ ion. Intercalating V2O5 and TiO2 

showed reversible r  1.6–1.8 along with small volume changes and stable crystal structure up to 

1 mole of Li+ (x ≤ 1) intake. Alloying Sb showed the largest volume change of ~300% up to 3 

moles of Li+ intake in the lithiated state with the semimetal (Sb) to semiconductor (Li3Sb) 

transition. The large lattice and electronic transition resulted in the largest value r  30. 
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CHAPTER 1: INTRODUCTION 

1.1 MOTIVATION 

Heat is a fundamental form of energy transferred through materials and interfaces. For heat 

conduction, I start with Fourier’s law q T= − , which states that the heat flux q through a 

material is proportional to the thermal conductivity  of the material and the temperature 

gradient T . This simple equation dictates a ubiquitous phenomenon that the heat transport 

property is defined by thermal conductivity of materials (a convention to express the rate of heat 

transfer is thermal diffusivity / C =   where C is the heat capacity per unit volume of the 

material). In general, thermal conductivity of a material is considered as a sum of the electronic 

thermal conductivity e and the lattice thermal conductivity L(1):  

 e L =  +    (1.1) 

 
1

3
L C v l d        (1.2) 

 e LT =   (1.3) 

where Cω, vω, and lω are the volumetric heat capacity, the group velocity, and the mean free path 

(MFP) of phonons associated with a mode at the angular frequency ω, respectively; σ is the 

electric conductivity. Equation 1.3 is the Wiedemann-Franz law where L is the Lorentz number 

and considered as a constant (L0) for many materials. However, L0 is the quantum mechanical 

limit (Sommerfeld value) and L = L0 only applies if the electron scattering is nearly elastic. L can 
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deviate from L0 for materials having inelastic electron-phonon scattering and scattering with 

other carriers (magnons)(2).  

Most materials exhibit a gradual change in thermal conductivity Λ(T) near room 

temperature(3-5). ΛL increases with T3 where C follows the Debye model at the low T << D  

where D  is the Debye temperature of materials. Above T > 0.2 D , ΛL(T) decreases with 

temperature (T-1) for crystals due to phonon scattering (l  D /T). ΛL(T) of amorphous solids 

shows a little to moderate temperature dependency since l does not change much with T. Λe(T) of 

metal alloys increases with T according to the Wiedemann-Franz Law (eq. 1.3) while Λe(T) of 

pure metals is approximately independent of temperature where the factor of T is canceled out 

due to the decrease in electron MFP by lattice vibrations. Throughout my dissertation, I also 

discuss important figures of merit—thermal switching ratio r and switching time τ—to compare 

various thermal switching materials and to design a fast, high contrast thermal switching 

material:  

 
high

low

r


=


  (1.4) 

 high low( ) ( )t t =  −    (1.5) 

where Λhigh and Λlow are the high and low thermal conductivity values of the material and τ is a 

time required to switch from the high thermal conductivity state at t(Λhigh) to the low thermal 

conductivity state at t(Λlow), or vice versa.  

Materials with an abrupt change in (T) (non-linear temperature dependency) have been 

studied for their potential as thermal regulators. For example, (T) of VO2 increases abruptly by 
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50% (r = 1.5) at the metal-to-insulator transition temperature, TMI (340 K), as the electric 

conductivity increases along with the phase transition(6, 7). Liquid-to-solid transition of organic 

materials(8) and phase change memory alloys(9) can also exhibit r  2–3 at the melting and 

phase transition point, respectively. Antimony-based alloys (Zn3Sb, GaSb, CdSbAg) exhibit 

liquid-to-solid transitions along with the semiconductor-metal transition, which is predicted to 

exhibit r  10–15 as they involve transitions in both e and L at melting points above 

600 K(10). These materials can be utilized as thermal regulators where the heat flow is passively 

controlled at a narrow temperature range near the phase transition temperature(11).  

More advanced materials that respond to non-thermal stimuli, such as electric and 

magnetic fields with a change in thermal conductivity are sought as “thermal switching materials 

(TSMs),” which can actively control heat flow at a wide temperature range, analogous to those in 

the electric circuit(12-14). Nonetheless, TSMs have shown limited thermal conductivity contrasts 

compared to thermal regulators. So far, r of a giant-magneto-thermoresistive Co/Cu multilayer is 

 1.8(15); r of ferroelectric Pb(Zr0.3Ti0.7)O3 film is  1.1(16); and r of electrochemically 

lithiated/delithiated LixCoO2, LixMoS2 and LixP are  1.5(17),  2(18) and  1.7(19), respectively.  

To overcome the limits of the current TSMs, I focused on developing systems that can 

exhibit improved r and t accompanied with the dramatic change in e and L, similar to those 

observed in phase changing thermal regulators. Throughout my dissertation, I describe novel 

thermal switching polymers and Li-ion electrode materials showing solid-solid and solid-liquid 

transitions, discuss heat conduction in these materials under external stimuli, advance a structure-

property relationship and explain the role of micro- and macromolecular structures in thermal 

transport properties. I also discuss important figures of merit—thermal switching ratio r and 
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switching time τ—to compare various thermal switching materials and to design a fast, high 

contrast thermal switching material. 

1.2 THERMAL CONDUCTIVITY SWITCHING IN POLYMERS 

Heat is carried as diffusion of vibrational modes in insulating polymers, a process which is 

highly dependent on the macromolecular ordering of a polymer. While disordered molecular 

chains dissipate heat by strong phonon scattering, ordered and oriented molecular chains 

effectively transport heat through the oriented direction(20), which I refer as “intrachain thermal 

transport.” As a result, changes in macromolecular ordering have potential to significantly 

change the thermal transport property of a polymer. For example, the thermal conductivity of 

polyethylene varies from 0.1 W m-1 K-1, when randomly oriented to 90 W m-1 K-1 along the draw 

direction of a highly oriented crystalline fiber(21, 22). Another important factor contributing to 

the thermal conductivity of polymers is interchain interaction of polymers. This interchain 

thermal transport can add up to 0.5 W m-1 K-1 change in thermal conductivity in addition to the 

intrachain thermal transport(23).  

To utilize the advantage of the large thermal conductivity contrast of polymers, I 

searched polymers that can change macromolecular ordering and interchain interaction in 

response to external stimuli. In general, these properties of polymers are premarily dictated by 

the chemical structure (24). Recently, studies have shown a number of “smart polymers” which 

can be modulated by stimuli-modulated reversible chemical transitions(25). For example, 

light(26-28), electric(29) and magnetic fields(30), temperature(31), redox reactions(32), 

mechanical force(33), and changes in pH(34) have all been demonstrated as triggers for 
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reversible physical and chemical property transitions for applications of polymers in sensing, 

drug delivery, actuation, and self-healing(35-37).  

Among them, what I found intriguing are order-disorder transitions of liquid crystals 

(LCs) and liquid crystal polymers which have led to a huge success in an electronic display 

market. Addition of these LC mesogenic units to polymer chains enabled us to modulate the 

molecular ordering of polymeric materials by external stimuli, such as electric and magnetic 

fields.  

First of all, I describe a novel thermal switching polymer based on liquid crystal networks 

(LCNs) modulated by a magnetic field. Aligned LCNs exhibit thermal conductivity switching as 

a function of macromolecular ordering states controlled by the direction of magnetic fields. The 

LCNs exhibit r  1.5 and τ  10 min. I constructed an effective medium model to describe 

thermal conductivity changes in LCNs as a function of the orientational order parameter S of 

aligned mesogen units. I describe the details of the magnetic modulation of LCNs in Chapter 3. 

Then, I design and synthesize a thermally switchable azobenzene polymer that exhibits a 

reversible crystal-to-liquid transition in response to UV and visible light in collaboration with 

Jaeuk Sung in Sottos research group at UIUC. Azobenzene showed fast and reversible structural 

transitions between the planar (trans) and non-planar (cis) conformational states. I hypothesized 

that addition of azobenzene groups to the side chains of polymers could modulate the intrachain 

thermal transport property and interchain π-π bonding strength, and thus drive thermal 

conductivity switching in a fast and reversible manner. I found that this conformational transition 

between trans and cis azobenzene moieties resulted in an extreme change in macromolecular 
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ordering, in response to ultraviolet (UV) and green light, resulting in thermal switching contrast r 

 3.5 and τ  10 s at room temperature. Detail of this research is described in Chapter 4. 

1.3 THERMAL CONDUCTIVITY SWITCHING IN LITHIUM-ION BATTERY 

ELECTRODE MATERIALS 

Dynamic thermal transport changes in Li-ion battery electrode materials have been studied as 

insertion/desertion of Li ions can induce remarkable changes in microstructure as well as the 

electronic band structure of electrode materials. Nonetheless, except a few intercalating materials, 

LiCoO2(17), MoS2(18, 38) and black phosphorus(19), little has been studied for thermal transport 

properties of Li-ion battery electrodes materials during electrochemical cycling. Especially, 

dramatic structural and chemical transitions in alloying and conversion electrode materials 

associated with phase transition induced by Li+ ions make the accurate thermal measurement 

difficult.  

In Chapter 5, I present a thorough study on the thermal and structural evolution of five 

Li-ion electrode materials under electrochemical redox reaction with Li+ ions. Those five 

electrode materials represent three electrochemical phase transition mechanisms: Fe2O3 and NiO 

for conversion reaction systems, TiO2 and V2O5 for intercalation systems and Sb for an alloying 

reaction system(39).  

Each system exhibits characteristic phase transition mechanisms with an electrochemical 

reaction with Li ions. Conversion materials undergo amorphization at the first discharge caused 

by an insertion of a large amount of Li+ ion. Further cycling with Li ions leads to the amorphous 

solid-solid phase transition between a metal-oxide (MOx) and metal (M) + xLi2O phases: 
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 2MO 2 Li Li O Mx x x+  +   (conversion) (1.6) 

where M can be Fe and Ni. This leads to a large volume changes of ~200% for Fe2O3 and NiO, 

which is associated with an irreversible thermal conductivity decreases at the first cycle (r ~ 1.5–

7). After the first cycle, thermal conductivity of NiO and Fe2O3 showed a small fluctuation 

during further cycles. This fluctuation can be attributed to the density changes with varying Li+ 

ion concentration predicted by the minimum lattice thermal conductivity ΛL,min (40) 

 

21/3 / 33
3/2

L,min

1 0
6 ( 1)

i T x

B i x
i i

T x e
k n v dx

e




=

  
 =   

 −   
    (1.7) 

where kB is the Boltzmann constant, n is the atomic number density, vi is the longitudinal (i = 1) 

and transverse (i = 2,3) speed of sound, and i  is the Debye temperature. n can be calculated as 

/An N M=  where ρ is the density, M is the molecular weight of compounds and NA is the 

Avogadro number. vi can be reduced from the longitudinal modulus C11 and the transverse elastic 

modulus C44 as 1 11 /v C = and 2,3 11 /v C = .  

Intercalation materials, on the other hand, act as a host material that can provide 

energetically favorable spots for guest Li+ ions where insertion and desertion of Li+ ions into the 

host are assisted by a charge transfer reaction between the host and Li+ ions.  This charge transfer 

reaction involves a molecular orbital formation between Li(2s) orbital and host orbital, resulting 

in an electronic band structure transition. Furthermore, the phonon dispersion of host material 

changes with varying Li contents. Therefore, r can be defined by both lattice (ΛL) and electronic 

contributions (Λe). As a result, intercalating TiO2 and V2O5 showed a reversible thermal 

conductivity switching r  1.3–1.4 up to 0.5 and 1 moles of Li+ intake, respectively. 
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 y x yMO Li Li MOx+   (intercalation) (1.8) 

where M can be Ti and V. These intercalating electrode materials showed stable thermal 

conductivity values over many cycling, suggesting that intercalating mechanisms are the most 

thermally stable system during electrochemical cycling with a very small volume change of 

<10 %. 

Lastly, an alloying Sb shows the markedly large r  15-30 during the first few cycles. 

This large contrast can be attributed to changes in ΛL and e during phase transition between 

semimetal (Sb) and semiconductor (Li3Sb) states (41, 42). 

 3Sb+3Li Li Sb  (alloying) (1.9) 

where Sb exhibits electric contributions of e  15 W m-1 K-1 due to the overlap of valence and 

conduction bands and lattice contribution of ΛL  7 W m-1 K-1. As Li ions are inserted to the 

system, electric conductivity decreases along with separation of valence and conduction bands. 

The lattice contribution is also dramatically suppressed at Li3Sb state (43). Further details of this 

study are described in Chapter 5. 
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CHAPTER 2: EXPERIMENTAL METHODS 

Parts of Chapter 2 were published in “Light-triggered thermal conductivity switching in 

azobenzene polymers,” Jungwoo Shin, Jaeuk Sung, Minjee Kang, Xu Xie, Byeongdu Lee, 

Kyung Min Lee, Timothy J. White, Cecilia Leal, Nancy R. Sottos, Paul V. Braun, David G. 

Cahill, Proceedings of the National Academy of Sciences in press, (2019). 

Parts of Chapter 2 were published in “Measurement of water vapor diffusion in nanoscale 

polymer film by frequency domain probe beam deflection,” Xu Xie, Jordan M. Dennison, 

Jungwoo Shin, Zhu Diao, David G. Cahill,” Review of Scientific Instruments 89, 104904, (2018). 

In Chapter 2, I describe experimental methods to characterize the thermal and physical 

properties of thermal switching materials (TSMs) including stimuli-responsive polymers and Li-

ion battery electrode materials that switch between the high and low thermal conductivity states. 

First, I describe time-domain thermoreflectance (TDTR) which was used to study thermal 

conductivity changes of TSMs under external stimuli. I used a backside TDTR with a 

bidirectional heat transport model to calculate thermal conductivity changes of TSMs and the 

sensitivity and substrates were optimized for such measurements. In addition, I used a frequency-

domain probe beam deflection (FD-PBD) to measure low thermal conductivity states of 

polymers where the backside TDTR measurement is not sensitive. The rest of chapter describes 

the synchrotron X-ray scattering techniques which were used to study the macromolecular 

ordering transition of polymers, and the electrochemical experiments designed for real-time 

thermal conductivity measurement of Li-ion battery electrode materials during charge/discharge 

cycling.  
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2.1 TIME-DOMAIN THERMOREFLECTANCE (TDTR) 

With the advance of ultra-fast pump-probe laser techniques, TDTR has become a versatile and 

high-throughput tool to measure thermal conductivity of materials from the ultralow thermal 

conductivity of fullerene derivatives (1) to the ultrahigh thermal conductivity of BAs (2). 

Throughout my Ph.D. studies, I used two time-domain thermoreflectance (TDTR1 and TDTR2) 

systems at the Materials Research Laboratory at the UIUC. Figure 2.1A shows the optical layout 

of the TDTR. I used 785 nm mode-locked Ti-sapphire laser pulses (~ 200 fs duration) with a 

broad spectrum of a full width at half maximum (FWHM) bandwidth of 10–20 nm (3). Then, I 

used a polarized beam splitter (PBS) and sharp-edged optical filters with a cut-off wavelength of 

785 nm to create and separate spectrally distinct pump (long-pass filter) and probe beams (short-

pass filter). The repetition frequencies of mode-locked Ti-sapphire lasers were 80 MHz for 

TDTR1 and 74.8 MHz for TDTR2. The pump beam was modulated by an electro-optical (EO) 

modulator which is connected to a function generator (SR DS345 programmable function 

generator) imposing a square wave modulation at f = 1–11 MHz. The probe beam was modulated 

by a mechanical chopper operated at a fixed frequency at 200 Hz. A set of PBS and beam splitter 

(BS) were used to align the pump and probe beams after the modulation. Both pump and probe 

beams were then focused on the sample with an objective lens. The typical 1/e2 intensity radii of 

the pump (w0) and probe beams (w1) at the transducer surface were 5–10 μm with 5× and 10× 

objective lenses, respectively; and the intensities of the pump and probe beam were modulated 

by λ/2 plates to 5–10 mW and 3–5 mW, respectively.  

TDTR heats and senses the temperature excursions of a transducer metal film on a multi-

layer sample in response to a train of femtosecond pump and probe laser pulses (4). The pump 
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pulses absorbed in the transducer layer result in a transient temperature rise (a few ps) followed 

by a decay of temperature over a relatively long times scale (a few ns) as heat diffuses into the 

sample. Figure 2.1B shows a typical sample configuration optimized for the backside TDTR 

measurements of thermal switching materials (TSMs). The temperature change of the transducer 

film was detected as an optical reflectance changes ΔR of the transducer which is linearly 

dependent to the temperature change ΔT at the chosen wavelength (dR/dT = constant at 785 nm 

for Al transducer). An optical delay stage was used to delay the arrival time of the probe beam 

with respect to the pump beam. The temperature profile was carried as an intensity change of the 

probe beam with a varying delay time, giving the temperature profile of the transducer film 

before and after the arrival of the pump pulse at t = 0 ps. The reflected pump beam was detected 

by a Si photodiode detector at varying delay time from t = –20 ps to t = 3.6 ns.  

An additional short-pass filter next to the PBS was used to block the reflected pump 

beam. To maximize the signal to noise ratio an RF amplifier (SR 445A, with a gain of G = 5) 

was used to amplify the signal from the photodiode with an RF resonance filter with a maximum 

Q-factor (~10) at the modulation frequency f. The amplified signal was sent to a radio frequency 

(RF) lock-in amplifier (SR 844) synchronized to the function generator at f. The in-phase voltage 

(Vin) and out-of-phase voltage (Vout) from the lock-in amplifier were then sent to a computer 

which is equipped with a LabVIEW software-based AF lock-in synchronized with the 

mechanical chopper at 200 Hz.  

The Vin and Vout carry information of ΔR which is associated with the amplitude and 

phase of the temperature wave, as a form of the in-phase and out-of-phase temperature ΔTin and 
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ΔTout at f. To be specific, the lock-in amplifier picks up the convoluted frequency components at f 

and -f in real and imaginary domains at each delay time t:(4) 
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where τ is the repetition time of the mode-locked Ti-sapphire laser and M = 10τ/t and dR/dT is 

the thermoreflectance of the transducer at λ = 785 nm. These reflectance changes are measured 

as the lock-in amplifier voltages as in the following:  
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 Throughout the dissertation, Vin was divided by Vout to cancel out the dR/dT, average 

output voltage V0, the quality factor Q = 10 of the resonance filter, the gain of the amplifier G  

and the reflectance of the transducer R.  

The ratio Vin/Vout is sensitive to the thermal effusivity e C=   at high frequencies 

2/ ( )f Cd   and proportional to Λ and inversely proportional to C and at low frequencies 

2/ ( )f Cd   where d is the thickness of the TSM. I modulated the thermal penetration depths 

/ ( )Td f C=   to separate the thermal conductivity Λ and the heat capacity per unit volume C 

of TSMs(5, 6). These penetration depths are much smaller than the size of the focused beam, and 

consequently, the measured thermal conductivity represents the through-plane thermal transport 

across interfaces. In the rest of the dissertation, I fitted –Vin/Vout curves to calculate thermal 

properties of TSMs using the bidirectional heat flow model described in Chapter 2.2.  
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2.2 BIDIRECTIONAL HEAT TRANSPORT MODEL 

In Chapter 2.2, I expand a heat diffusion model from a unidirectional(4) to bidirectional by 

considering upward and downward heat propagations from the heating layer (j = h) to the top 

(j = 1) and the bottom layers (j = N), respectively (5, 7). First, I use a Hankel transform to 

convolute Gaussian-shaped beam and the periodic point heat source to calculate the temperature 

solution of layered materials at spatial and temporal frequency domain with a spatial frequency k 

and an angular frequency 𝜔. The temperature of the heating interface (interface between the 

transducer and the substrate) heated by the pump beam with w0 and measured by the probe beam 

with w1 is: 

 
2 2 2 2

0 1( )/2

0 0

0

2 ( )
k w w

T A G k e dk




− +
 =    (2.5) 

where A is the absorbed heat at 𝜔, which is defined as 0(1 )A R Tr P= − −  where Tr is the 

transmittance of the sample and P0 is the pump beam intensity(8, 9). G0(k) is a propagator 

function of thermal parameters including Λ, C and d of each layer.  

For the bidirectional model, I took account of both upward Gup and downward Gdown 

propagators, considering a heating source sandwiched by a substrate and a thermally functional 

material with a total number of layers N. Gup(k) represents the upward heat flow from the lower 

interface of Al transducer film to the TSM and beyond (h to 1). Gdown(k) represents the 

downward heat flow from the heating layer to the substrate (h–1 to N). I consider the top (j =1) 

and the bottom (j = N) layers thermally thick. 
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where j j j =   , 2 2 24j jk q = + , /j j jq i C=  and N is the total number of layers. 

G0(k) of the bidirectional model is calculated as  

 
1 1 1

0 up down( ) ( ) ( )G k G k G k− − −= +   (2.12) 

Note that G0 is calculated at each value of k and ω before integrating with respect to k. 

Figure 2.2 shows the schematic illustration for the bidirectional heat transport model described 

above. The interfaces between dissimilar materials are considered to have a typical interfacial 

thermal resistance of 20–200 MW m-2 K-1, which is equivalent to a thin layer of material with Λ 

= 0.02–0.2 W m-1 K-1 and d = 1 nm with a negligible C = 0.1 J cm-3 K-1.  

2.3 SUBSTRATES PREPARATION 

In Chapter 2.3 I describe methods to prepare and characterize substrates for the backside 

TDTR measurements of TSMs. The substrates were prepared by i) spin-coating with 

polyimide (PI) precursor solution (PI2545, HD Microsystems) on sapphire substrates, ii) 
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curing at vacuum oven at 200 oC for 2 h, and iii) subsequent Al thin film deposition by a 

magnetron sputtering. The cured PI film provides thermal insulation between the Al transducer 

and the sapphire substrate, thereby increasing the sensitivity of the measurement to the thermal 

conductivity of the TSMs(10). The thickness of the PI layers was measured by ellipsometry 

(200–400 nm). These values are greater than the heat penetration depth and can be considered 

as an infinitely thick insulating layer in our modeling of the TDTR data. The thickness of the 

PI layer does, however, play a dominant role in the steady-state temperature rise. I calculated 

that the fraction of steady-state temperature rise due to the PI layer is 84 % by comparing ΔTss 

with and without the PI layer. In this dissertation, typical per-pulse heating and steady-state 

heating by the accumulation of pulses are ΔTpp < 1 K and ΔTss = 1–2 K, respectively.  

I calculate the sensitivity SX from the ratio of the change in a quantity X to a change in the 

ratio (–Vin/Vout) for Al/PI/sapphire substrates where X can be any thermal parameter such as 

thermal conductivity, heat capacity or thickness of each layer. 
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Since SX is highly dependent to the modulation frequency, beam spot size and thickness 

of each layer, I chose the optimum condition in which the sensitivity of a thermal parameter 

(usually Λ of TSMs) dominates others. Figure 2.3 shows a calculated sensitivity plot for a typical 

polymer film (Λ = 0.2 W m-1 K-1, C = 1.8 J cm3 K-1, d = 200 nm) on an Al (50 nm)/PI 

(400 mm)/sapphire substrate.  

I found that the most significant contribution to –Vin/Vout other than the thermal properties 

of samples comes from the thermal properties of Al transducer (dAl, CAl). I performed an optical 

transfer-matrix calculation with sapphire/PI/Al film to estimate the effect of dn/dT of the PI 
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layer. Assuming that PI layer with dn/dT = –10-4 K-1 is equally heated as Al, the 

thermoreflectance (ΔR) only changed by 2% compared with the calculated ΔR without 

considering dn/dT of the PI layer.  

In the dissertation, I measured dAl by picosecond acoustics to calculate accurate 

thermal properties of samples. Figure 2.4A shows the measured curve for Al (48 nm)/PI 

(400 mm)/sapphire substrate. I observed a signal oscillation at the frequency of Г (t < 100 ps, 

Figure 2.4B) created by the reflection of the longitudinal acoustic wave in Al at interfaces: 

 Al Al?/ 2Г v d=   (2.14) 

where vAl is the longitudinal speed of sound (6.42 nm ps-1) and dAl is the thickness of Al.  

The Fourier transformed –Vin/Vout data (Figure 2.4C) shows a maximum at Г = 74 GHz, 

which can be converted to dAl = 44 nm. I typically add a 3–4 nm to the dAl to take account of an 

Al2O3 native oxide layer. The solid line in Figure 2.4A is a fitted TDTR curve using the 

following parameters: ΛAl (180 W m-1 K-1) was calculated by the Wiedemann-Franz law from the 

electrical conductivity measured by four-point probes; CAl = 2.49 J cm-3 K-1 was obtained from 

the literature; the thermal properties of sapphire (Λ = 35 W m-1 K-1, C = 3.08 J cm-3 K-1) and PI 

(Λ = 0.2 W m-1 K-1, C = 1.80 J cm-3 K-1) were obtained from the literature and independent 

measurements, respectively.  

For an accurate analysis of thermal conductivity with a wide temperature window, I first 

tested the thermal stability and measured temperature-dependent thermal properties of the 

Al/PI/sapphire substrate. Figure 2.5A shows measured TDTR curves of Al/PI/sapphire substrate 

signals from –50 oC up to 150 oC using a temperature controlled INSTEC HOT/COLD stage 

with an optical window allowing TDTR measurements during heating/cooling cycles. Figure 

2.5B shows –Vin/Vout values of Al/PI/sapphire substrate at fixed t = 100 ps from – 50 oC up to 
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150 oC. Small changes in –Vin/Vout with respect to temperature were interpreted as a change of 

thermal effusivity of PI layer ePI(T) along with heat capacity changes of Al and sapphire.  

I fitted –Vin/Vout using the bidirectional heat transport model with the thermal effusivity of 

a TSM, eTSM, as the only free parameter. For in situ TDTR measurements, I collected –Vin/Vout 

values continuously at fixed t = 60 – 200 ps and I calculated ΛTSM by using a relationship 

2

TSM TSM TSM/e C =  where CTSM was measured by an independent TDTR measurement at low 

2

TSM TSM TSM/ ( )f C d   or a differential scanning calorimetry (DSC). 

2.4 FREQUENCY-DOMAIN PROBE BEAM DEFLECTION (FD-PBD) 

For TSMs that exhibit Λlow lower than the thermal conductivity of the thermal blocking layer 

(polyimide = 0.2 W m−1 K−1, SiO2 = 1.3 W m−1 K−1), a majority of the heat deposited by the 

pump beam flows to the substrate side. Therefore, the sensitivity of backside TDTR 

measurements to the thermal conductivity of TSMs is significantly decreased. In collaboration 

with Xu Xie in Cahill group, we developed frequency-domain probe beam deflection (FD-PBD) 

to accurately measure thermal conductivity of low-Λ materials (especially for liquids). The FD-

PBD is based on the measurement of the deflection of the probe beam caused by the refractive 

index (nl) gradient of the liquid under the periodic heating by the pump beam (7). This technique 

is sensitive to the thermo-optic coefficient dnl/dT and the thermal diffusivity l l l/ C =    of 

the liquid.  

The model for the FD-PBD follows previous works in Cahill group on time-domain 

probe beam deflection(7, 11, 12). First, I used the transducer temperature solution from the 

bidirectional model (Chapter 2.2) where the temperature flow in jth layer can be expressed as  
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 ( , ) ( )exp( ) ( )exp( )j j j j jT k z T k z T k z + −= + −   (2.15) 

where z is the directional coordinator from the interface. I consider a heat from the transducer to 

a thermally thick material with αl ( 0T + = ). Then, the temperature profile from the surface of the 

transducer film to the material in the z-direction is 

 0 l( , ) ( ) exp( )T k z T k z=  −   (2.16) 

which causes changes in the beam path displacement Zl through the liquid with a refractive index 

nl by 
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where  2 2

l l4 / )k i   = + . 

The approximate solution for the probe beam deflection Δθ at a beam offset distance r0 

is, therefore: 
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where the Hankel transformed probe beam profile S(k) is defined as 

 
2 2 2

1( ) exp( / 2)S k A k w= −   (2.20) 
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I modified TDTR system to detect the probe beam deflection (Figure 2.6A) by replacing 

the Si photodiode with a position sensitive detector (PSD, Visible Quadrant Cell Photoreceiver 

Model 2901, New Focus). I removed the mechanical chopper and the focusing lens before the 

detector. I fixed the time delay at t = –50 ps during measurements. The EO modulator was used 

to modulate the pump beam at frequency f = 10 Hz–100 kHz and a motorized actuator was used 

to steers the pump beam by an offset r0 with respect to the probe beam. I used a 5× objective lens 

with a focal length D = 40 mm in these experiments where the objective lens converts the 

angular deflection of the probe beam to a displacement x D  =   of the probe beam.  

Then, the frequency dependent probe beam displacement was measured as the differential 

voltage output of the PSD, which is converted to the RMS voltage of the AF lock-in amplifier. 

 
0.652

RMS sum

D G
V V

W


=   (2.21) 

where W is the free-space laser size, G is the second-stage gain of the PSD, Vsum is the total 

voltage output from the PSD, and a prefactor 0.65.  

I validated the FD-PBD setup using liquid cells consisting of 1-mm thick DI-water and 

EtOH liquids sandwiched by a 100 nm Au-coated fused silica substrate and a glass cover slide 

(Figure 2.6B). Then, I measured the exact beam radius with the beam offset TDTR(13). Figure 

2.7A shows measured beam offset TDTR data and the Gaussian fitted curve with varying beam 

offset distance. Immediately following, I switched from TDTR setup to FD-PBD setup and 

calibrated the beam offset center. Figure 2.7B shows measured and fitted FD-PBD curves for DI-

water with varying beam offset distance from −20 μm to 20 μm at f = 300 Hz. I chose 

2

2

H O 0/ (2 )f D w  where 
2H OD is the thermal diffusivity of water (1.43 10-7 m2 s-1). Note that the 
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beam deflection signal goes to zero at r = 0 since the beam offset center where the pump and 

probe beams overlap perfectly. 

To maximize the sensitivity of FD-PBS, I calculated the normalized in-phase and out-of-

phase sensitivities to the parameter X as  
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where I used X as Λ and C of liquids, w0, r0, and Λ of Al transducer. The calculated Sin(X) and 

Sout(X) plots are shown in Figure 2.8.  

Since the FD-PBD curves at a fixed beam offset r0 and –r0 are symmetric with respect to 

r = 0, I balanced the FD-PBD signals by using the following equation to offset non-thermal 

signals. 

 in 0 in 0
in,balanced

( ) ( )

2

V r V r
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− −
=   (2.24) 

 out 0 out 0
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V r V r
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Figure 2.9 shows measured (balanced) and fitted FD-PBD curves for DI-water and EtOH 

on Au (100 nm)/SiO2 substrates at a fixed beam offset at 10 μm and −10 μm. I fixed C and nl 

values for DI-water and EtOH (
2H OC  = 4.13 J cm-3 K-1, CEtOH = 1.94 J cm-3 K-1, 

2H On  = 1.32, 

nEtOH = 1.36 at 785 nm), and used Λ and dnl/dT as free parameters for H2O and EtOH. The 



  25 

 

calculated thermal conductivity from the curve fitting (solid lines) matched with the literature 

values (
2H O  = 0.60 W m-1 K-1, ΛEtOH = 0.17 W m-1 K-1). 

2.5 ELECTROCHEMICAL MODULATION OF LITHIUM-ION BATTERY 

ELECTRODE MATERIALS 

Measurement of thermoreflectance signal without optical artifacts is critical for the analysis of 

thermal properties of electrode materials. The electrode materials and electrolytes exhibit large 

thermo-optic constant, dR/dT, which can add a significant thermal response of materials other 

than the transducer when the transducer is not opaque. The TDTR model assumes that the 

reflected probe beam only carries the temperature of the transducer layer. Depending on the 

signal of dR/dT of the electrodes and electrolytes, non-opaque transducer film would end up with 

overestimation or underestimation of thermal conductivity of the electrode materials.  

Since the thickness of the transducer film for the backside TDTR measurement is 

inversely proportional to the sensitivity of the thermal properties of electrode materials, there is a 

certain range of the transducer thickness to achieve high sensitivity as well as optical opacity. In 

this dissertation, I chose 60–80 nm as an optimum thickness for the backside TDTR analysis. For 

this range, Au and Pt are partially transparent and dR/dT is about an order of magnitude smaller 

than Al at λ = 785 nm (8, 9). I also observed a significant optical artifact (~ 20% of the total 

TDTR signal) from Au transducer with organic electrolytes due to the fraction of light 

transmitted and reflected through the electrolytes. Throughout the dissertation, I chose Al 

transducer film for the in situ backside TDTR measurement of electrode materials. 
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Al has been utilized as a current collector for cathode materials where Al film is stable in 

the range of 0.5–5 V vs Li/Li+. Below 0.5 V vs Li/Li+, Al forms a binary alloy with Li by an 

electrochemical reaction (14, 15). For this potential range, all cathode materials and some of the 

anode materials for Li-ion battery electrodes are safe. For example, 3-d metal oxides, Sn and Sb-

based anode materials are stable in this range, but carbon and Si-based anode materials, which 

undergo discharge reaction below 0.5 V vs Li/Li+ are incompatible with Al film. Figure 2.10 

shows cyclic voltammetry (CV) curves of Al film with varying cut-off voltages from 0.5 to 0 V 

vs Li/Li+. Li metal foil was used as a counter electrode. CV curves suggested that the Al film is 

stable above 0.2 V vs Li/Li+, which is slightly lower than the standard potential of LiAl reaction 

due to the presence of a native oxide layer.  

Contrary to many cathode materials, which undergo intercalation reaction with negligible 

volume change during electrochemical reaction with Li ions, anode materials exhibit moderate 

(~100 %) to the extreme (~300 %) volume changes associated with an insertion of Li ions to the 

materials (16). This large volume expansion resulted in delamination and destruction of electrode 

materials, which not only deteriorates the electrochemical capacity and cyclability of electrodes 

but also makes impossible for TDTR measurements. In collaboration with Sanghyeon Kim in 

Braun group, we designed two types of electrochemical cells for real-time TDTR measurements 

of electrode materials under continuous cycling with large volume changes. 

Figure 2.11 shows liquid and solid electrochemical cells which are designed for 

electrode materials with little or moderate (<100 %) volume changes and extreme volume 

changes (>100 %), respectively. Liquid electrochemical cells allow free volume expansion of 

electrode materials. Solid electrochemical cells were designed to prevent delamination of 
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electrode materials upon volume changes by pressurizing the cell. For both setups, I used  

Al/SiO2/sapphire substrates as a working electrode and optical transducer, which were 

prepared by plasma-enhanced chemical vapor deposition (PECVD) of SiO2 film (~200 nm) on 

sapphire substrates followed by Al magnetron sputtering (60 nm). 15-nm Au film was 

deposited for the solid electrochemical cell experiments to provide better adhesion. The 

methods depositing electrode materials are described in Chapter 5.  

For liquid electrochemical cells, I used 1 M lithium perchlorate (LiClO4) dissolved in 

ethylene carbonate (EC) and dimethyl carbonate (DMC) (1:1 by volume) solution as a liquid 

electrolyte and Li metal foil (Alfa Aesar, 99.9%) as the counter electrode for the two-electrode 

setup. The home-made liquid cell was assembled in the Ar-filled glove box with custom made 

glass jar sealed with the electrode material/Al/SiO2/sapphire substrate and rubber O-rings.  

Solid electrochemical cells consist of a Li2S-P2S5 solid electrolyte and the In-Li alloy 

counter electrode, which suppresses Li dendrite formation during cycling (17). The solid 

electrolytes were prepared by high-energy ball milling (8000M Mixer/Mill, SPEX SamplePrep) 

Li2S (Sigma, 99.98%) and P2S5 (Sigma, 99%) with a 77.5 to 22.5 molar ratio for 10 h in a 

stainless-steel vial under Ar atmosphere. A home-made solid-state cell consists of 

polyaryletheretherketone (PEEK) cell die with two Ti metal rods as current collectors for both 

working and counter electrode. One of the Ti metal rods was modified with a small hole to load a 

sample and to ensure laser beam pathway. 

A solid-state cell was assembled in the Ar-filled glove box as follows. The 

electrode/Al/SiO2/sapphire substrate (2 mm diameter), was inserted into the hole in a Ti metal 

rod. Then, 100 mg of 77.5Li2S-22.5P2S5 solid electrolytes was spread on the top of the sample 
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and pressed at 1 metric ton in the PEEK cell die to form a pellet (1-inch diameter). Finally, In-

Li alloy counter electrode was attached to the other side of the solid electrolyte pellet and 

pressed at 0.5 metric tons. The solid-state cell was then sealed with a 3M adhesive tape before 

taken out of the glove box. The solid-state cell was placed between two jaws in a vise which 

was hand-tightened during TDTR measurements.  

The thermal properties of electrode materials with varying Li ion contents were measured 

by in situ TDTR measurements under galvanostatic cycling (charge/discharge with a constant 

current) and cycling voltammetry (linear voltage sweeps in a certain voltage window). The 

electrochemical potential and capacity of the working electrode were converted to the Li ion 

contents in the electrode materials. All electrochemical experiments were conducted and 

measured by a portable potentiostat (SP-200, Bio-Logic) for both liquid and solid-state cell at 

room temperature. 

2.6 SYNCHROTRON X-RAY SCATTERING TECHNIQUES 

In Chapter 2.6, I describe small and wide-angle X-ray scattering (SAXS and WAXS) and grazing 

incident small and wide-angle X-ray scattering (GISAXS and GIWAXS) to study 

macromolecular ordering change of TSMs, especially for polymer films.  

Synchrotron X-ray scattering techniques are powerful tools to understand the structure, 

shape and periodicity of nanostructures in polymer films due to the superior brilliance (~1010 

times higher than the lab source), monochromatic (Δλ/λ ~ 10-5) and coherent X-ray beam source 

with a small divergence Δθ ~ 10-7. The bright, monochromatic X-ray source allows us to 

measure complex macromolecular structures of polymers in a few angstroms to tens of 
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nanometer scale with a time scale of milliseconds (18). In collaboration with Minjee Kang in 

Leal group, we carried out synchrotron X-ray scattering experiment at the 12-ID-B and 12-ID-C 

beamlines at the Advanced Photon Source, Argonne National Laboratory, with 13 –18 keV 

photons with a beam width of 200 μm. The 2-D GIWAXS scattering data were collected with a 

PerkinElmer XRD 1621 CN detector. The 2-D WAXS scattering data were collected with a 

Pilatus 300k detector; SAXS and GISAXS data were collected with Pilatus 2M large area 

detector. The temperature of the sample was controlled by an INSTEC temperature-controlled 

stage during measurements. For GIWAXS and GISAXS measurements, the incident angle of the 

beam was varied from 0.1° to 0.25° to find the optimum angle for each sample (which is slightly 

larger than the critical total reflection angle αc of the film). 

For 2-D reciprocal space, the scattering intensity ( )I q  carries important information 

regarding the structure of materials with respect to the scattering vector q  

 'q k k= −  (2.26) 

where k is the incident wavevector and 'k  is the scattered wavevector. For elastic scattering, 

( )I q is maximized when the reciprocal lattice meets the Ewald sphere with radius |k|. For 

crystals, ( )I q  depends on the structure factor of the unit cell, resulting in 3-D interference 

function as follows. 
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where I0 is the intensity of incident X-ray, re is Thomson scattering length, α is the polarization 

angle, R is the radius of the scattered plane wave (or distance from the sample), ( )jf q  is the 
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atomic form factor, jr  is the position of jth atom relative to the origin in 3-D real space with unit 

vectors of a1, a2 and a3; Nc is the total number of the unit cell; and N1,N2 and N3 are the numbers 

of unit cells in each direction. ( )I q  is maximized when  

 2
hkl

q g  =   (2.28) 

where hkl
g is the reciprocal lattice vector of the hkl plane. 

In real space, ( )I q  is measured with 2-D CCD detector as a function of incident angle 

and scattered angle where the scattering vector is presented as qx, qy and qz with respect to the 

incident angle. For transmission X-ray scattering experiment, q is isotropic because of the 

random orientation of the lattice plane of powders. For grazing incident X-ray scattering 

experiments, qx and qy are scattering components in in-plane direction while qz is the out-of-

plane scattering component. For grazing incident measurement, the incident angle is set close to 

the αc because the penetration depth of X-ray is typically much larger than the thickness of the 

polymer films (19).  

Due to the limited pixel size of the CCD detector, sample-to-detector (SSD) distance was 

modulated from 20 cm (GIWAXS, WAXS) to 3 m (SAXS, GISAXS) to maximize the resolution 

of the data. For long SSD distance, the detector is placed inside a vacuum flight tube because of 

absorption of X-ray in air. The typical q-ranges of 12-ID-B beamline at APS are 0.0035–0.9 Å -1 

for SAXS and GISAXS measurements and 0.4–2.8 Å -1 to WAXS and GIWAXS measurements. 

Figure 2.12 shows a schematic illustration for GIWAXS and GISAXS measurements of polymer 

films. 

Throughout the dissertation, the 2-D X-ray scattering data were converted to 1-D 

scattering profiles using Igor-pro based software NIKA(20). I used 2-D and 1-D X-ray scattering 
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data to characterize and analyze the structure factor and dynamics of thermal switching polymers 

under external stimuli, including magnetic field dependent molecular orientation (Chapter 3) and 

time-dependent structural evolution of polymers (Chapter 4). 
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2.7 FIGURES 
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Figure 2.1. Thermal conductivity measurements of thermal switching materials (TSMs). A. 

Optical layout of TDTR system. B. Typical sample configuration for the backside TDTR 

measurements of TSMs. 
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Figure 2.2. Schematic illustration of the bidirectional heat transport model.  A train of pump 

pulses (f = 80 MHz) results in upward and downward heat flows from the lower interface of the 

heating layer (transducer film, j = h) to the top (j = 1) and bottom (j = N) layers with individual 

thermal parameters (Λj, Cj, dj). 
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Figure 2.3. Calculated sensitivity curves for a polymer TSM/Al/PI/sapphire substrate at 

f = 10 MHz. Note that ΛTSM and CTSM exhibit identical sensitivity values 

as
2

TSM TSM TSM/ ( )f C d  .  
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Figure 2.4. Characterization of Al/PI/sapphire substrates. A. Measured and fitted TDTR curves 

for an Al (50 nm)/PI (400 nm)/sapphire substrate at f = 10 MHz. B. A magnified TDTR curve 

shows a picosecond acoustic oscillation at low time delay. C. Fourier transformed TDTR signal 

in panel B.  
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Figure 2.5. Thermal stability test of Al/PI/sapphire substrates. A. Measured TDTR curves for an 

Al/PI/sapphire substrate from –50 oC to 150 oC with temperature interval of 10 oC. B. –Vin/Vout 

values for an Al/PI/sapphire at t = 100 ps and calculated ePI values of the PI layer as a function of 

temperature.  
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Figure 2.6. Thermal conductivity measurements for low Λ materials. A. Optical layout of FD-

PBD system. B. Typical sample configuration for a FD-PBD measurement of a liquid. 
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Figure 2.7. Beam size and beam offset calibrations for FD-PBD measurements. A. A measured 

beam offset TDTR curve and the Gaussian fitting for beam size calculation. B. Measured and 

fitted FD-PBD curves for DI-water/Au (100 nm)/SiO2.  
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Figure 2.8. Sensitivity calculation for FD-PBD. A. In-phase and B. Out-of-phase FD-PBD 

sensitivity plots for r0, w0, and Λ and C of each layer (sample configuration: EtOH/Au/SiO2). 
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Figure 2.9. FD-PBD measurements for liquids. Measured and fitted FD-PBD curves for A. DI-

water and B. EtOH at r0 = 10 μm. 
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Figure 2.10. Electrochemical stability of Al film. Cyclic voltammetry data shows 

electrochemical redox peaks of Al below 0.2 V vs Li/Li+. Above 0.2 V vs Li/Li+, there is no 

specific redox peaks, indicating that Al film is electrochemically stable.  
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Figure 2.11. Schematic illustration for in situ TDTR measurement with custom-made liquid and 

solid electrochemical cells with Li-ion battery electrodes. A.  Liquid electrolyte cells consist of 

Li metal foil as the counter electrode and the electrode material/Al/SiO2/sapphire electrode as a 

working electrode. B. Solid electrolyte cells consist of Li metal foil as the counter electrode and 

the electrode material/Al/SiO2/sapphire electrode as a working electrode. The transparent side of 

the electrode material/Al/SiO2/sapphire substrate works as an optical window for the backside 

TDTR measurements. 
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Figure 2.12. Schematic illustration for GIWAXS and GISAXS measurements of polymer film. 

The incident X-ray beam with a very small incident angle scattered on a surface of polymer film. 

The scattered X-ray intensity can be detected close to the sample (wide angle) and far from the 

sample (small angle). The pixel size and SSD of 2-D CCD detector define the resolution and q-

range of the data.  



  39 

 

2.8 REFERENCES 

1. X. J. Wang, C. D. Liman, N. D. Treat, M. L. Chabinyc, D. G. Cahill, Ultralow thermal 

conductivity of fullerene derivatives. Physical Review B 88, 075310 (2013). 

2. S. Li et al., High thermal conductivity in cubic boron arsenide crystals. Science 361, 579-

581 (2018). 

3. K. Kang, Y. K. Koh, C. Chiritescu, X. Zheng, D. G. Cahill, Two-tint pump-probe 

measurements using a femtosecond laser oscillator and sharp-edged optical filters. Rev 

Sci Instrum 79, 114901 (2008). 

4. D. G. Cahill, Analysis of heat flow in layered structures for time-domain 

thermoreflectance. Rev Sci Instrum 75, 5119 (2004). 

5. J. Shin et al., Thermally Functional Liquid Crystal Networks by Magnetic Field Driven 

Molecular Orientation. Acs Macro Lett 5, 955-960 (2016). 

6. X. Xie et al., High and low thermal conductivity of amorphous macromolecules. Physical 

Review B 95, 035406 (2017). 

7. X. Xie, J. D. Dennison, J. Shin, Z. Diao, D. G. Cahill, Measurement of water vapor 

diffusion in nanoscale polymer films by frequency domain probe beam deflection. Rev 

Sci Instrum 89, 104904 (2018). 

8. Y. X. Wang, J. Y. Park, Y. K. Koh, D. G. Cahill, Thermoreflectance of metal transducers 

for time-domain thermoreflectance. J Appl Phys 108, 043507 (2010). 

9. R. B. Wilson, B. A. Apgar, L. W. Martin, D. G. Cahill, Thermoreflectance of metal 

transducers for optical pump-probe studies of thermal properties. Opt Express 20, 28829 

(2012). 

10. Z. B. Ge, D. G. Cahill, P. V. Braun, Thermal conductance of hydrophilic and 

hydrophobic interfaces. Phys Rev Lett 96, 186101 (2006). 

11. X. Zheng, D. G. Cahill, R. Weaver, J. C. Zhao, Micron-scale measurements of the 

coefficient of thermal expansion by time-domain probe beam deflection. J Appl Phys 

104, 073509 (2008). 

12. X. Xie, X. Zheng, R. Weaver, J. C. Zhao, D. G. Cahill, Micron-scale measurements of 

the coefficient of thermal expansion by time-domain probe beam deflection (vol 104, 

073509, 2008). J Appl Phys 122, 219901 (2017). 



  40 

 

13. J. P. Feser, D. G. Cahill, Probing anisotropic heat transport using time-domain 

thermoreflectance with offset laser spots. Rev Sci Instrum 83, 104901 (2012). 

14. S. T. Myung, Y. Hitoshi, Y. K. Sun, Electrochemical behavior and passivation of current 

collectors in lithium-ion batteries. J Mater Chem 21, 9891-9911 (2011). 

15. D. W. Liu, G. Z. Cao, Engineering nanostructured electrodes and fabrication of film 

electrodes for efficient lithium ion intercalation. Energ Environ Sci 3, 1218-1237 (2010). 

16. M. Ko, S. Chae, J. Cho, Challenges in Accommodating Volume Change of Si Anodes for 

Li-Ion Batteries. Chemelectrochem 2, 1645-1651 (2015). 

17. X. H. Wu, M. El Kazzi, C. Villevieille, Surface and morphological investigation of the 

electrode/electrolyte properties in an all-solid-state battery using a Li2S-P2S5 solid 

electrolyte. J Electroceram 38, 207-214 (2017). 

18. P. Willmott, An Introduction to Synchrotron Radiation: Techniques and Applications. 

John Wiley and Sons Ltd, (2011). 

19. K. Yamamoto, Grazing-Incidence Small Angle X-Ray Scattering in Polymer Thin Films 

Utilizing Low-Energy X-Rays, X-ray Scattering. Alicia Esther Ares, IntechOpen, Chapter 

3 (2017). 

20. J. Ilavsky, Nika: software for two-dimensional data reduction. J Appl Crystallogr 45, 

324-328 (2012). 

 

 

 



  41 

 

CHAPTER 3: THERMAL CONDUCTIVITY SWITCHING IN LIQUID CRYSTAL 

NETWORKS BY MAGNETIC FIELD DRIVEN MOLECULAR ORIENTATION 

Chapters 3.1-3.6 were published in “Thermally functional liquid crystal networks by magnetic 

field driven molecular orientation,” Jungwoo Shin, Minjee Kang, Tsunghan Tsai, Cecilia Leal, 

Paul V. Braun, David G. Cahill, ACS Macro Lett. 5, 955−96. (2016). 

In Chapter 3, I designed and synthesized aligned liquid crystal networks by 

photopolymerization of liquid crystal (LC) monomers in the presence of magnetic fields. 

Grazing incident wide-angle X-ray scattering (GIWAXS) and TDTR were used to characterize 

the degree of molecular alignment of mesogen chains and thermal conductivity. Liquid crystal 

networks (LCNs) with mesogenic units aligned perpendicular and parallel to the substrate exhibit 

thermal conductivity of 0.34 W m-1 K-1 and 0.22 W m-1 K-1, respectively. The thermal 

conductivity and orientational order of liquid crystal networks vary as a function of temperature, 

which can be also manipulated by a magnetic field at above the glass transition temperature 

(65 oC) where the reduced viscosity enables molecular reorientation on the time scale of 10 min. 
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3.1 ANISOTROPIC THERMAL CONDUCTIVITY OF LIQUID CRYSTALS 

Liquid crystals (LCs) have an anisotropic thermal conductivity that can be switched through 

changes in molecular ordering (1, 2). 1,4-bis-[4-(3-acryloyloxypropyloxy)benzo-yloxy]-2-

methylbenzene (RM257, Wilshire Technologies) is a polymerizable nematic liquid crystal 

reactive mesogen in the temperature range of 67 – 130 oC, which can be oriented by magnetic 

fields due to the anisotropic magnetic susceptibility Δχ = 1.1×10-3 cm3 mol-1 (Figure 3.1) (3). 

Figure 3.2 shows optical microscopy (OM) images of RM257 at crystalline, nematic and 

isotropic liquid phases at each phase. 

First of all, I measured the anisotropic thermal conductivity of nematic RM257 in the 

presence of magnetic fields perpendicular (B⊥) and parallel (B∥) to the Al/PI/sapphire 

substrate. RM257 was melted at 80 oC and injected into a cell consisting of an Al/PI/sapphire 

substrate and a glass slide. Figure 3.3A shows the thermal conductivity of RM257 under 

magnetic fields (B⊥ and B∥). Open circles and squares are independent data points measured 

by a continuous TDTR scan with a heating rate of 4 oC min-1 up to 120 oC and independent 

TDTR measurements at a fixed temperature (Figure 3.3B) at up to 110 oC, respectively in the 

presence of the perpendicular field (B⊥). At the crystalline phase there is no difference in 

thermal conductivity values under B⊥ and B∥. The anisotropic thermal conductivity of 

nematic RM257 was 0.24 W m-1 K-1 and 0.14 W m-1 K-1 at 80 oC under B⊥ and B∥, 

respectively. The thermal conductivity of RM257 under B⊥ and B∥ converges as it reaches the 

clearing temperature. This degree of anisotropy, approximately a factor of 2, is similar to other 

reported values of nematic LCs(1, 2). 
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3.2 SYNTHESIS OF MAGNETICALLY ALIGNED LIQUID CRYSTAL NETWORKS 

(LCNS) 

As discussed in Chapter 3.1, the anisotropic thermal conductivity of LCs can be utilized for 

thermally switching materials. When polymerized, the molecular ordering of LC mesogen 

units in LCNs can be manipulated by external stimuli such as thermal, electric, magnetic and 

optical fields (4). In Chapter 4.1, I describe a method to prepare thermally switching 

polymeric materials based on RM257 LCNs modulated by a magnetic field.  

The magnetically aligned LCNs were prepared by photopolymerization of RM257 with 

a thiol cross-linker (pentaerythritol tetrakis[3-mercaptopropionate]) (PETMP, Sigma Aldrich) 

in the presence of magnetic fields. The thiol-ene cross-linking reaction between PETMP and 

RM257 results in an increase of the toughness of the material at T<Tg and creates an elastomer 

at T>Tg. Without the cross-linking agent, RM257 forms a brittle solid up to 250 oC. 

First, an LC solution was prepared by mixing RM257 with 5 mol% of PETMP and 

photoinitiator (2-hydroxy-2-methylpropiophenone, HHMP, 0.3 wt%) at 80 oC. Then, I 

prepared a thin film of LC solution by a drop-casting method. Figure 3.4 shows the drop-

casting procedure: i) the LC solution was first dropped onto a glass slide; ii-iii) the glass slide 

was placed onto an Al/PI/sapphire substrate; iv) and the glass slide was used to cast an LC 

film across the Al/PI/sapphire substrate. 

After the LC film casting, photopolymerization was performed for 20 min using a UV 

lamp (nominal wavelength 365 nm with a nominal power at the substrate of 3-20 mW cm-2) at 

80 oC forming a randomly cross-linked LCN film. A magnetic field was applied to the sample 

by N52 grade NdFeB magnets during photopolymerization. Figure 3.5 shows a schematic 
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illustration of molecular alignments of LCNs under magnetic fields perpendicular (B⊥) and 

parallel (B∥) to the substrate (5-7). The typical sizes of samples are 11 cm2 and 10.2 cm2 

for perpendicular (B⊥) and parallel (B∥) field alignments, respectively. The magnetic field 

strength at the surface of a SmCo magnet is 0.4 T and the magnet field between two parallel 

NdFeB magnets is 0.7 T as measured by a DC gaussmeter (AlphaLab, GM-1-ST). 

3.3 THERMAL CONDUCTIVITY OF ALIGNED LCNS 

Thermal conductivity of aligned LCNs was measured by the backside TDTR with 

f  = 9.1 MHz and w0 and w1 = 10 µm (8, 9). During the measurement, I manipulated molecular 

orientation using the magnetic field by SmCo permanent magnets (B ~ 0.4 T), which can 

operate at elevated temperatures up to 320 oC (Figure 3.6A). The measured and fitted TDTR 

data are shown in Figure 3.6B. Compared with the RM257 monomer, thermal conductivity 

was increased by 0.1 W m-1
 K

-1 in both directions with the formation of chemical bonds 

between the monomers (10). The thermal conductivity of LCNs aligned perpendicular and 

parallel to the substrate was measured to be 0.34 ± 0.05 W m-1 K-1 and 0.22 ± 0.02 W m-1 K-1, 

respectively, with a standard deviation of ~ 10 % for 10 samples.  

Due to the thermotropic nature of LCN, the molecular ordering and thermal 

conductivity of LCNs depend on temperature. Figure 3.7 shows two sets of TDTR data 

measured at from the room temperature to 200 °C for LCNs aligned perpendicular to the 

substrate. First, individual measurements were done at fixed temperatures (Figure 3.8) and 

converted to thermal conductivity (open squares) with time intervals of 10 min. The thermal 

conductivity measured by in situ TDTR measurement with a constant heating and cooling rate 

of 4 °C min-1 is plotted in the same graph (small circles). Both measurements showed that that 
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the high thermal conductivity state is lost at above 120 oC followed by a large hysteresis on 

cooling. I attribute this decrease in thermal conductivity to the loss of molecular ordering at 

above glass transition temperature (11).  

The glass transition temperature of LCN of LCN was characterized by Differential 

Scanning Calorimetry (DSC) (Q20 DSC, TA instruments). An endothermic peak marked with 

an arrow in Figure 3.9 indicates the glass transition temperature at 65 oC, which is in the 

typical range of 40–120 oC for LCNs (4). 

On the contrary, LCNs can maintain the thermal conductivity up to 200 oC when a constant 

magnetic field is applied in the aligned directions upon heating. The thermal conductivity change 

can be suppressed in the presence of magnetic fields. Figure 3.10 shows that the thermal 

conductivity of LCNs polymerized under B∥and B⊥ at temperatures up to 200 oC. Contrary to 

the thermal conductivity decrease of LCNs without a magnetic field, the LCN polymerized under 

B⊥ exhibited a slight increase in the thermal conductivity up to 150 oC (blue dots) in the 

presence of B⊥. Likewise, LCN polymerized under B∥ exhibits a slight decrease in the thermal 

conductivity up to 150 oC under the constant magnetic field (B∥). 

3.4 MAGNETIC FIELD DRIVEN MOLECULAR REORIENTATION OF LCNS 

In collaboration with Minjee Kang in Leal group at Illinois, we performed GIWAXS 

measurement at 12-ID-B beamline at Advanced Photon Source. Figure 3.11 shows GIWAXS 

data and corresponding schematics of the mesogenic unit ordering of LCNs under B⊥ and B∥. 

Note that the backbone chains connecting mesogen units are omitted for clarity. The observed 

scattering peaks are typical of magnetically-aligned LCNs (11). Since three phenyl rings at the 
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core of RM257 are rotated by 24o with respect to each other (5) the primary GIWAXS peak at q 

~ 1.53 Å -1 corresponds to a plane spacing of 4.1 Å , 0.3 Å  larger than typical for - stacking (12, 

13). With the magnetic field applied perpendicular to the substrate (B⊥) during polymerization, 

the - stacking peaks appear along the direction parallel to the substrate, indicating the vertical 

alignment of mesogen units in the LCN, see Figure 3.11A. 

Perpendicular and parallel GIWAXS measurements with respect to the magnetic field 

direction (B∥) were performed to prove in-plane anisotropy of mesogens in LCN films. The 

different features of - stacking orientation distribution in Figure 3.11B-C reveal the nature 

of in-plane anisotropic alignment of mesogen units. The long optical axis of mesogens in each 

domain is aligned in the direction of the magnetic field while - stacks have no preferential 

orientation around the optical axis, resulting in the isotropic ring pattern with an incident beam 

along with the aligned direction (Figure 3.11C). Note that GIWAXS data of RM257 solidified 

in a magnetic field show similar molecular order as LCNs that are lightly cross-linked.  

When heated above the glass transition temperature magnetically aligned LCNs can 

lose their nematic ordering. Figure 3.12A-B shows GIWAXS data for LCNs aligned 

perpendicular to the substrate at 25 oC and 150 oC. We observed an isotropic ring at 150 oC 

suggesting a loss of orientational and positional order. Unlike the sharp nematic-to-isotropic 

transition of small molecule LCs, the order-disorder transition of LCNs is gradual with 

temperature (14). We examined chain reorientation kinetics of LCNs by switching the 

magnetic field direction at the elevated temperature. The LCN aligned perpendicular to the 

substrate (B⊥) was first heated to 200 oC and slowly cooled to room temperature in the 

presence of a magnetic field applied parallel to the substrate (B∥). The GIWAXS patterns 
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(Figure 3.12C) and azimuthal intensity at q ~ 1.53 Å -1 (Figure 3.12D) show that the scattering 

peak becomes wider and the center is tilted by 32o with respect to the initial state (Figure 

3.12A). 

Figure 3.13 shows thermal conductivity of LCN during magnetic reorientation. First, the 

LCN polymerized under a magnetic field parallel to the substrate (B∥) was heated to 150 oC 

(Figure 3.13A) followed by switching the orientation of the magnetic field (B⊥). After the 

magnetic reorientation, the thermal conductivity of LCN increased gradually over a time span 

of 1500 s, see Figure 3.13B. The thermal conductivity shows a pronounced hysteresis upon 

cooling, resulting the room temperature thermal conductivity of 0.30 W m-1 K-1, comparable to 

LCNs polymerized under a magnetic field (B⊥, 0.34 W m-1 K-1). The GIWAXS pattern after 

reorientation shows vertical molecular alignment as well (Figure 3.14). 

The reorientation kinetics is controlled by the competition between the magnetic torque, 

1 2

01/ 2 (2 )MГ B sin  −= −   and the viscous drag ( )1  /visГ d dt = −  where μ0 is the 

permeability of vacuum, η1 is the rotational viscosity, Δχ is the anisotropy of the magnetic 

susceptibility of the mesogen, and B is the applied magnetic field (15, 16). The relaxation time 

constant τ is (17, 18) 

 0

2

2
   

B

 




 
=  

 
  (3.1) 

The theoretical value of Δχ of RM257 is 1.1×10-3 cm3 mol-1 (3). I measured the dynamic 

viscosity of the LCN by rotational oscillatory rheometry at 150 oC and found 4.5×103 Pa s. The 

rheological characterization of LCNs was carried out by a rotational rheometer (AR-G2, TA 

instruments) with coin-shaped LCN samples (25 mm in diameter, 1 mm in thickness). The 
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measurement was done in a linear viscoelastic regime with an oscillation strain of 1% and 

frequency of 10 rad s-1. I calculate the average molecular weight between the cross-linkers, MC, 

using an equation C / 'M RT G=  where ρ is the density, R is the gas constant, T is the 

temperature and G’ is the storage modulus. Samples show a slight variation about ~35% in G’ 

indicating variations in the average distance between cross-linkers (in average, ~14 units of 

RM257). 

Equation 3.1 predicts τ ~ 8×103 s (Figure 3.15), an order of magnitude higher than what I 

observe in the thermal conductivity measurements (τ ~ 700 s, see Figure 3.13B). An order of 

magnitude discrepancy between measurements and the theory has been observed in other 

liquid crystal polymer systems which range from a few minutes for liquid crystal elastomers to 

a few tens of hours for block copolymers (11, 15, 16, 18-22). 

3.5 THERMAL TRANSPORT MODEL FOR LCNS 

To relate thermal conductivity and mesogen orientation of LCNs, I construct an effective 

medium model to provide insights into the dependence of thermal conductivity on molecular 

orientation. The model describes the LCN material as comprised of partially-ordered, 

cylindrical mesogens embedded in an isotropic amorphous polymer matrix. The fundamental 

thermal conductivity tensors of the mesogen are ΛIn-plane and ΛOut-of-plane.  

The thermal conductivity of a partially-aligned aggregate of mesogens is a function of the 

order parameter S (23-27): 

 ( ) ( )Out-of-plane Out-of-

1 1 1 1 1

In-plane In p- laneplane

1 2
2

3 3
B S⊥

− − − − − =  +  +  −     (3.2) 
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 ( ) ( )// Out-of-plane Out-of

1 1 1 1 1

In-plane I -n pla-plane ne

1 1
2

3 3
B S− − − − − =  +  −  −     (3.3) 

 ( )21
  3 cos 1

2
S = −   (3.4) 

where φ is the angle between the long axis of the molecules and the magnetic field (28). 
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


   (3.5) 

where the orientational distribution function of the mesogen molecules f(β) is obtained from the 

azimuthal intensity I(θ) of the primary scattering peak (28). 
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The measured azimuthal intensity Iexp(θ) is a sum of I(θ) and background intensity IBG. 

Here, I subtracted IBG from the average value from the diffuse ring. Figure 3.16 shows the 

measured azimuthal intensity Iexp(θ) and calculated order parameters from curve fitting (solid 

line). Small deviations at the edge (θ = 0 o and 180o) are attributed to the shaded area of the 

detector at lower angles. In both cases, I calculate S = 0.6 as the order parameters for LCNs 

aligned parallel (B∥) and perpendicular (B⊥) to the substrate (Figure 3.16).  
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I included the flexible chain segments of the mesogens and cross-linkers to the 

effective medium model as an isotropic polymer matrix. The constructed effective medium 

model for cylindrical LC molecules embedded in an isotropic matrix (29, 30) predicts that the 

effective thermal conductivity of LCNs under magnetic field parallel (B∥) and perpendicular 

(B⊥) is: 

 ( )LCN, // /medium /Λ 1 ΛB B= −  +    (3.8) 

 ( ) mediumLCN,Λ 1 ΛB B⊥ ⊥= −  +    (3.9) 

where Ф is the volume fraction of rigid core of mesogen and Λmedium is thermal conductivity of 

the isotropic polymer matrix. I estimate Ф by  

 
( )

( )( )
RC RC

LC LC C C

1 / )(

(1 / / )

C M
Ф

C M C M



 

−
=

− +
  (3.10) 

where MLC MRC and MC are the molecular weights of the LC monomer, rigid core of mesogen, 

and cross-linker, respectively; ρLC, ρRC and ρC are their mass densities; and C is the cross-

linker concentration. The volume fraction taken by rigid cores is Ф = 0.6 for LCN with 

5 mol% cross-linker. MLC MRC and MC we used are 588.6, 488.7 and 362 g mol-1; and ρLC, ρRC 

and ρC are 1.22, 1.28 and 1.20 g cm-3, respectively. 

Here, I modulated S of LCNs with a higher cross-linker concentration (up to 20 mol% 

PETMP) (11, 31). GIWAXS data confirm the loss of orientational ordering at the high cross-

linking density (Figure 3.17), which shows a ring pattern which indicates the absence of 

molecular ordering as shown at the 20 mol% cross-linker concentration. The thermal 
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conductivity of LCN with the 20 mol% cross-linker concentration is 0.2 W m-1 K-1 independent 

of the magnetic field during polymerization. 

Figure 3.18A shows a schematic illustration of an isotropic medium of thermal 

conductivity Λmedium embedding partially-ordered mesogens with the fundamental in-plane 

thermal conductivity, ΛIn-plane, and out-of-plane thermal conductivity, ΛOut-of-plane. Figure 3.18B 

shows the measured and fitted azimuth integrated intensities and corresponding order 

parameters for magnetically aligned LCNs with different cross-linker concentrations. Figure 

3.18C shows measured and calculated ΛLCN,B∥ and ΛLCN,B⊥ of LCNs with different cross-

linker concentrations (circles) under magnetic fields by the constructed effective medium 

model (dashed lines). Here, I adjusted ΛIn-plane and ΛOut-of-plane to match ΛLCN, B⊥ for different 

values of S and Φ. Assuming Λmedium = 0.2 W m-1 K-1, a typical value of amorphous polymer 

chains, I estimate the fundamental in-plane thermal conductivity, ΛIn-plane, and out-of-plane 

thermal conductivity, ΛOut-of-plane, of perfectly aligned rigid core of LCN of 1.5 W m-1 K-1 and 

0.15 W m-1 K-1. Thus, I conclude that the contrast in the thermal conductivity change can be 

improved with a larger order parameter S and smaller isotropic component (1–Ф) but the 

upper limit on the contrast will be a factor of 10.  

3.6 MESOGEN ORDERING NEAR THE SURFACE AND BULK 

Near the surface, within the boundary layer, mesogenic units can exhibit local orientation that 

deviates from the bulk. The thickness of the boundary layer can make up a significant portion of 

the thermal penetration depth of the TDTR measurement (3). The effect of surface effect on 

thermal conductivity was examined by using surface-functionalized substrates. Al films with and 

without hydrophobic surface functional groups were prepared. The hydrophobic surface was 
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prepared by soaking a substrate in the 10 mM PFDTES (1H,1H,2H,2H-perfluorodecyltriethoxy-

silane, Sigma Aldrich) in toluene for 4 h at room temperature. Then, the substrates were rinsed 

with toluene and ethanol and dried in a stream of dry N2 gas. The substrates were then heated in 

an oven at 100 oC for 1 h. Then I compared the TDTR data between LCNs on bare and 

functionalized substrates. However, I did not observe a significant difference in thermal 

conductivity for LCNs with or without surface functionalization of the substrates by PFDTES 

which greatly lowers surface anchoring energy. The lack of dependence on surface anchoring 

energy indicates that surface interactions are not affecting the TDTR measurement of the LCNs. 

 In the bulk state, I confirmed that mesogen units do not have preferential ordering 

without an aid of magnetic fields. To test the molecular ordering of LCNs prepared without 

magnetic fields, I carried out transmittance WAXS. I prepared bulk LCNs samples by filling an 

LC solution with a 0, 5 and 20 mol % cross-linker in capillary tubes followed by UV 

polymerization at nematic (80 oC) and isotropic (140 oC) temperatures. Figure 3.19 shows that 

bulk LCNs at the nematic temperature (80 oC) and isotropic temperature (140 oC) exhibited 

isotropic ring patterns in WAXS measurements without preferred orientation. A slight decrease 

in diffraction intensity was observed for LCNs prepared at 140 oC compared to 80 oC. Although 

the bulk LCNs might comprise a substantial amount of unreacted RM257 monomer, I observed 

that they evolve to an isotropic state without displaying residual ordering.  

3.7 SUMMARY 

In summary, magnetically aligned LCNs were synthesized via photo-polymerization of 

RM257 LCs in the presence of a magnetic field. Magnetically-aligned LCNs showed thermal 

conductivity of 0.34 W m-1 K-1 and 0.22 W m-1 K-1, respectively, for magnetic fields applied 
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perpendicular and parallel to the substrate during polymerization. The 50% increase in thermal 

conductivity depends on the molecular orientation assisted by magnetic fields, which can be 

further manipulated by temperature and magnetic field at above the glass transition 

temperature on a time scale of tens of minutes.  
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3.8 FIGURES 
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Figure 3.1. Chemical structure of RM257. 
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Figure 3.2. Optical microscopy (OM) images of RM257 at the crystalline phase (50 oC), nematic 

phase (80 oC) and isotropic liquid phase (130 oC). 
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Figure 3.3. Anisotropic thermal conductivity of RM257. A. Thermal conductivity of RM257 in 

the presence of magnetic fields parallel (B∥) and perpendicular (B⊥) to the Al/PI/sapphire 

substrate. B. Independent TDTR data at fixed temperatures from 30 oC to 110 oC in the presence 

of a perpendicular field (B⊥). Thermal conductivity values of each measurement are plotted as 

open squares in panel A. 
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Figure 3.4. Schematic illustration for casting a LC solution on an Al/PI/sapphire substrate. 
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Figure 3.5. Schematic illustration for molecular alignments of LCNs during UV 

photopolymerization of drop-casted LC films under perpendicular (B⊥ ) and parallel (B∥ ) 

magnetic fields. 
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Figure 3.6. Thermal conductivity measurement of aligned LCNs by backside TDTR. A. 

Schematic illustration of TDTR measurement for LCN/Al/polyimide/sapphire samples under a 

perpendicular magnetic field B⊥ applied by a permanent magnet. B. Measured and fitted TDTR 

data for LCNs polymerized under parallel (B∥) and perpendicular (B⊥) magnetic fields. 
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Figure 3.7. Temperature effect on thermal conductivity of LCNs. TDTR data for the 

perpendicularly aligned LCN (B⊥) measured at fixed temperatures from room temperature to 

200 oC (open squares) and continuous temperature measured by a continuous measurement 

with a heating rate of 4 oC min-1 (dots).  
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Figure 3.8. A set of TDTR data for LCN polymerized under B⊥ at fixed temperatures from room 

temperature to 200 oC. Each data set is converted to the open squares in the thermal conductivity 

plot in Figure 3.7. 
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Figure 3.9. DSC data of LCN with a scanning rate of 4 oC min-1. 
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Figure 3.10. Thermal conductivity of LCNs polymerized in the presence of magnetic fields 

perpendicular (B⊥) and parallel (B∥) to the Al/PI/sapphire substrate.  
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Figure 3.11. The effect of magnetic fields during polymerization on chain alignment. A. 

GIWAXS data for LCN polymerized with a magnetic field perpendicular to the substrate (B⊥). 

B. C. GIWAXS data for LCN polymerized with a magnetic field parallel to the substrate (B∥). 

X-ray incident direction is represented as red arrows. In the figure, scattering vector q (2π λ-1) 

ranged from -3 Ǻ-1 to 3 Ǻ-1 for the xy plane and 0 to 4 Ǻ-1 for the z plane. 
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Figure 3.12. Temperature and magnetic field effect on molecular ordering. A. GIWAXS data 

for the LCN aligned perpendicular to the substrate (B⊥) at 25 oC. B. GIWAXS data for the 

LCN aligned perpendicular to the substrate after heating up to 150 oC. I observe an order-

disorder transition. C. GIWAXS data for the LCN after the magnetic reorientation (B∥→ B⊥). 

the LCN aligned perpendicular to the substrate (B∥) was heating up to 150 oC then cooled 

down to the room temperature in the presence of a magnetic field parallel to the substrate (B⊥). 

D. Azimuthal intensities of the LCN before and after the magnetic reorientation: (A), initial 

state at 25 oC, (B) after the complete loss of ordering at 150 oC and (C) 30 oC after the 

magnetic reorientation with B∥. Φ represents the azimuth angle from the substrate. 
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Figure 3.13. Effect of magnetic field on thermal conductivity of aligned LCN. A. Thermal 

conductivity of LCNs before and after magnetic reorientation. LCN polymerized under a parallel 

magnetic field (B∥) was heated up to 150 oC with B∥. After magnetic reorientation (B∥→ B⊥) it 

is slowly cooled down to room temperature. Heating and cooling rate is 4 oC min-1. B. Thermal 

conductivity of a parallel aligned (B∥) LCN in response to an orthogonal magnetic field (B⊥) at 

150 oC. The magnetic field was switched to the perpendicular direction (B⊥) at 150 oC at t = 0 s.  

B⊥

 

Figure 3.14. GIWAXS pattern after magnetic rotation. The magnetic field was changed from 

parallel (B∥) to perpendicular (B⊥) direction at elevated temperatures of 200 oC and slowly 

cooled to the room temperature. This image was taken at room temperature after the magnetic 

rotation. The scattering vector q (2π λ-1) in this figure ranges from -3 Ǻ-1 to 3 Ǻ-1 in the xy plane 

and 0 Ǻ-1 to 4 Ǻ-1 in the z plane. 
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Figure 3.15. A. Storage modulus G’, loss modulus G’’ and tan δ of the LCN sample. B. 

Dynamic viscosity of the LCN measured by the oscillatory rotational rheometer.  
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Figure 3.16. Azimuth integrated intensity and order parameter (S). A. Azimuth integrated 

intensity of LCNs polymerized in the presence of a magnetic fields perpendicular (B⊥) to the 

substrate. B. Azimuth integrated intensity of LCNs polymerized in the presence of a magnetic 

field parallel (B∥) to the substrate. Order parameters were obtained from curve fitting (solid 

lines).  
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Figure 3.17. GIWAXS data for LCN with a cross-linker concentration of 20 mol%. The scattering 

vector q (2π λ-1) in this figure ranges from -3 Ǻ-1 to 3 Ǻ-1 for the xy plane and 0 to 4 Ǻ-1 for the z 

plane. 
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Figure 3.18. Thermal transport model for LCNs. A. Schematic illustration for the effective 

medium model for partially-ordered, anisotropic cylindrical mesogen units with the 

anisotropic thermal conductivity of ΛIn-plane and ΛOut-of-plane embedded in an isotropic medium 

with a thermal conductivity of Λmedium. B. The azimuth integrated intensities and calculated 

order parameters for LCNs polymerized with cross-linker concentrations of 5, 10, 15 and 20 

mol%. C. Comparison between measured and calculated ΛLCN,B∥ and ΛLCN,B⊥ of LCNs 

polymerized under magnetic fields parallel (B∥) and perpendicular (B⊥) to the substrate as a 

function of cross-linker concentration. The dashed line is calculated from the effective 

medium model.  
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Figure 3.19. WAXS data for bulk LCNs prepared with a molecular ratio of RM257 to PETMP 

of A. 100/0, B. 95/5, and C. (80/20) at the nematic temperature (80 oC). D. WAXS data for bulk 

LCNs prepared with a molecular ratio of RM257 to PETMP (80/20) at the isotropic temperature 

(140 oC). E. Integrated WAXS intensity of bulk LCNs prepared with a molecular ratio of RM257 

to PETMP of 80/20 at 80 oC and 140 oC.  
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CHAPTER 4: THERMAL CONDUCTIVITY SWITCHING IN AZOBENZENE 

POLYMERS VIA A LIGHT-TRIGGERED REVERSIBLE CRYSTAL-TO-LIQUID 

TRANSITION 

Parts of Chapter 4 were published in “Light-triggered thermal conductivity switching in 

azobenzene polymers,” Jungwoo Shin, Jaeuk Sung, Minjee Kang, Xu Xie, Byeongdu Lee, 

Kyung Min Lee, Timothy J. White, Cecilia Leal, Nancy R. Sottos, Paul V. Braun, David G. 

Cahill, Proceedings of the National Academy of Sciences of the United States of America, in 

press (2019). 

In Chapter 3, I showed a thermal conductivity switching contrast, r  1.5, for 

magnetically aligned LCNs on a time scale of 10 min at above 150 oC. Studies of the kinetics 

and thermal transport properties of macromolecules suggest that the thermal conductivity 

switching ratio and decrease response time could be further enhanced by introducing light-

responsive pendent groups−azobenzene−to polymer chains.  

In Chapter 4, in collaboration with Jaeuk Sung in Sottos group, we designed and 

synthesized a photo-responsive azobenzene-based polymer (azopolymer) exhibiting an 

unprecedented reversible crystal-to-liquid transition driven by ultraviolet (UV) (375 nm) and 

green (530 nm) light-triggered modulation of interchain π-π interactions. Employing in situ 

TDTR and in situ synchrotron X-ray scattering, we report a reversible, light-triggered thermal 

conductivity switching of azopolymer between high (0.35 W m−1 K−1) and low thermal 

conductivity (0.10 W m−1 K−1) states. This three-fold change in the thermal conductivity is 

achieved by modulation of chain alignment resulted from the conformational transition between 

planar (trans) and non-planar (cis) azobenzene groups under ultraviolet (UV) and green light 
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illumination. This conformational transition leads to changes in the π-π stacking geometry and 

drives the crystal-to-liquid transition which is fully reversible and occurs on a time-scale of tens 

of seconds at room temperature.  

To the best of knowledge, this is the first observation of a photo-triggered crystal-to-

liquid transition in any polymeric material. This result demonstrates powerful control of the 

thermophysical properties of polymers by modulating interchain π-π networks by light. The fast 

(seconds), reversible crystal-to-liquid transition may also provide a new class of polymers 

engineered to switch physical, optical and thermal properties on demand, which may enable 

controlled molecular release, mechanical bonding, and reconfigurable thermal routing. 

4.1 SYNTHESIS OF POLY[6-(4-(PHENYLDIAZENYL)PHENOXY)HEXYL 

METHACRYLATE] (AZOPOLYMER) 

All materials were purchased from Sigma-Aldrich. 4-phenylazophenol (98%), methacrylol 

chloride (97%), 6-bromo-1-hexanol (97%) and cyanoisopropyl dithiobenzoate (CPDB) were 

used as received. 2,2’-azobisisobutyronitrile (AIBN, 98%) was recrystallized in chloroform 

before use. The synthesis steps of azopolymer are as follows. 

6-(4-(phenyldiazenyl)phenoxy)hexan-1-ol  

 

4-(phenyldiazenyl) phenol (3 g, 15 mmol) and 6-bromo-1-hexanol (5.48 g, 30 mmol) were 

dissolved in dimethylformamide (DMF) solution (25 mL) containing anhydrous potassium 
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carbonate (4.14 g, 30 mmol) and potassium iodide (15 mg, 0.9 mmol). The solution was refluxed 

at 90  under vigorous stirring for 24 h. The reacted mixture was then cooled to room 

temperature. After solvent evaporation, the concentrated solution was washed with water and 

extracted with chloroform. The extracted solution was dried over anhydrous MgSO4. The 

remaining solvent was removed by evaporation. The 6-carbon spacer was chosen to optimize the 

trade-offs between the glass transition temperature and the mobility of the azobenzene functional 

group for conformational changes within the close-packed structure(1). The resulting crude 

product was recrystallized with ethanol, giving a dark brown solid. Yield: 75 %. 

1H NMR (CDCl3, 400 MHz):  (ppm) = 7.96-7.84 (dd, 4H, Ar-H), 7.54-7.38 (dt, 3H, Ar-H), 

7.04-6.96 (m, 2H, Ar-H), 4.05 (t, 2H, OCH2), 3.72-3.59 (m, 2H, CH2OH), 1.90-1.78 (m, 2H, 

OCH2CH2), 1.67-1.36 (m, 6H, OCH2CH2CH2CH2CH2CH2OH).13C{1H} NMR (125 MHz, 

CDCl3): δ (ppm) = 25.98, 26.10, 28.81, 29.35, 64.91, 68.38, 114.94, 115.00, 122.78, 122.78, 

125.00, 125.53, 129.28, 129.28, 130.56, 147.32, 153.00, 161.86. 

6-(4-(phenyldiazenyl)phenoxy)hexyl methacrylate 

 

An anhydrous tetrahydrofuran (THF, 20 mL) solution containing 6-(4-(phenyldiazenyl)-

phenoxy)hexan-1-ol (2 g, 6.7 mmol) and triethylamine (1.35 g, 13.4 mmol) was cooled to 0  in 

a water-ice bath. Then, methacryloyl chloride (1.4 g, 13.4 mmol) was added slowly dropwise. 

The solution was stirred in 0  for 30 minutes and at room temperature for 24 h. After constant 

stirring for another 24 h at room temperature, the solvent was evaporated, and chloroform was 
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added. The solution was then washed with aqueous NaCl and NaHCO3 solutions, followed by 

drying with anhydrous MgSO4. After solvent evaporation, the crude product was recrystallized 

from ethanol, giving an orange solid. Yield: 82 %. 

1H NMR (CDCl3, 400 MHz):  (ppm): 7.94-7.84 (dd, 4H, Ar-H), 7.53-7.40 (dt, 3H, Ar-H), 7.03-

6.96 (d, 2H, Ar-H), 6.10 (s, 1H, CCH2), 5.55 (s, 1H, CCH2), 4.21-4.13 (t, 2H, OCH2), 4.08-4.02 

(t, 2H, CH2O), 1.95 (s, 3H, CH3), 1.89-1.79 (m, 2H, OCH2CH2), 1.78-1.67 (m, 2H, CH2CH2O), 

1.60-1.39 (m, 4H, OCH2CH2CH2CH2CH2CH2O). 13C {1H} NMR (125 MHz, CDCl3): δ (ppm) = 

18.60, 26.00, 26.07, 28.82, 29.35, 64.89, 68.38, 114.93, 114.96, 122.78, 122.78, 124.23, 125.00, 

129.27, 129.27, 130.56, 136.81, 147.18, 153.04, 161.84, 167.82. 

Poly[6-(4-(phenyldiazenyl)phenoxy)hexyl methacrylate] (azopolymer) 

 

Azopolymer was prepared by reversible addition fragmentation chain-transfer (RAFT) 

polymerization. 6-(4-(phenyldiazenyl) phenoxy)hexyl methacrylate (2.17 g, 5.92 mmol), CPDB 

(6.7 mg, 0.064 mmol), and AIBN (1.3 mg, 0.012 mmol) were dissolved in anisole (6 mL). Then, 

the solution was treated with three freeze-pump-thaw cycles and sealed under N2 gas. The 

polymerization system was placed in an oil bath at 70 oC  for 72 h. After polymerization, the 

polymer solution was added dropwise to cold methanol. The precipitate was dissolved in 

dichloromethane (DCM). The precipitate was recrystallized in cold methanol three times to 

remove unreacted monomers. The resulting azobenzene-functionalized polymer (poly[6-(4-

(phenyldiazenyl)phenoxy)hexyl methacrylate])—hereafter referred to as “azopolymer”—was 
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collected and dried in a vacuum oven at 40 ° C for 24 h. Yield: 40%. Mw (GPC) = 2.40 × 104 g 

mol−1 and PDI = 1.37. 

4.2 LIGHT-TRIGGERED PHASE TRANSITION OF AZOPOLYMER 

We prepared ~280-nm thick, trans-azopolymer thin films by spin-coating 5 wt% azopolymer 

dissolved in a mixture of cyclopentanone and cyclohexane (9:1 weight ratio) on 

Al/polyimide/sapphire substrates. The substrates were first prepared by spin-coating a 250 nm 

polyimide film on a sapphire wafer followed by a 60 nm Al film deposition using magnetron 

sputtering. The purpose of the PI film is to reduce heat flow between the Al transducer and the 

sapphire substrate and thereby to increase the sensitivity of the TDTR measurements to the 

thermal conductivity of the azopolymer layer. The same specimens were used throughout the in 

situ optical microscopy, in situ TDTR, and in situ synchrotron X-ray scattering measurements.  

Figure 4.1 shows the chemical structure of the synthesized azopolymer, as well as cross-

polarized optical microscopy (POM) images of a spin-coated azopolymer film on Al/PI/sapphire 

and glass substrates, respectively, in the trans (Figure 4.1A, after green light exposure or time) 

and cis (Figure 4.1B, after UV exposure) states. The optical microscope images and videos were 

recorded using a VHX-5000 series Keyence Digital Microscope at 200× magnification. The 

phase transition of azopolymers was characterized under green (530 nm) and UV (375 nm) light 

illumination. We used collimated light emitting diodes (LEDs) with wavelengths of 530 nm and 

375 nm for green and UV light sources, respectively (M530L3 and M375L3, Thorlabs) where we 

focused the light on a 0.16 cm2 area throughout Chapter 4. The illuminated light intensity was 

controlled between 38 mW cm−2 and 630 mW cm−2 using a variable power controller LEDD1B 

(Thorlabs).  
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Starting from the crystalline ground state, UV light triggers a trans-to-cis photo-

isomerization leading to melting of the polymer. Upon green light triggered reconversion of the 

cis-azobenzene groups to trans-azobenzene, the polymer returns to the crystalline state (at room 

temperature in the dark, the cis to trans isomerization will also take place over the course of 

several hours). The light-triggered melting and crystallization is a direct result of differences in 

the stacking of the planar trans- and non-planar cis-states of the azobenzene group. The planar 

trans-azobenzene readily undergoes π-π stacking, while the bent cis-azobenzene, in which the 

two phenyl rings align in different planes (2), does not (3).  

As shown in the POM image (Figure 4.1C) the presence of spherulites indicates lamellar 

ordering of azopolymer film under ambient conditions. The spherulites in the crystalline trans-

azopolymer film disappear upon exposure to UV light, resulting in an isotropic liquid, which 

turns dark in the POM image (Figure 4.1D). OM images in Figure 4.2 show a gradual melting of 

azopolymer during trans-to-cis photoisomerization and formation of spherulites during cis-to-

trans photoisomerization. Under UV and green light illumination conditions, the melting and 

crystallization are complete within 10 s for azopolymer films. The reversible crystal-to-liquid 

transition can take place for azobenzene powder, too. Figure 4.3 shows reversible transition from 

solid powder to liquid on the glass substrate under UV and green light illumination. The 

transition time for azopolymer powders is slightly higher than the thin films due to the light 

penetration depth. Hereafter, we refer to the crystalline and liquid states of azopolymer as trans- 

and cis-azopolymer, respectively. 
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4.3 PHYSICAL PROPERTY CHANGES OF AZOPOLYMER DURING TRANS-CIS 

PHOTOISOMERIZATION 

UV-Vis spectroscopy and differential scanning calorimetry (DSC) measurements were carried 

out to confirm the trans-cis photoisomerization. First, DSC was performed to study the phase 

transition temperature of the azopolymer with trans and cis conformational states of the attached 

azobenzene groups. The DSC measurements were performed using a TA Instrument Q20 

Differential Scanning Calorimeter equipped with a Liquid Nitrogen Cooling System (LNCS). 

Tzero aluminum pan and lid were used as sample containers. Al2O3 was used as a reference 

material for calculating the specific heat of azopolymers. Dry nitrogen was used as a sample 

purge gas. The heating and cooling rates were 10 oC min-1. We determined the glass transition 

temperature (Tg), melting temperature (Tm) and crystallization temperature (Tc) of the trans- and 

cis-azopolymers from the inflection points in the DSC data.  

We observed an appearance of a glass transition temperature (Tg,cis) at −48 oC after 

exposure to UV light which disappears upon exposure to green light. This transition temperature 

is markedly lower than the temperature of a small endothermic inflection in the DSC data at 31 

oC, which we interpret as Tg of residual amorphous trans-azopolymer. (The trans-azopolymer 

melting point is 80 oC.) Previous studies of polymers with similar azobenzene side-chain 

structures in trans states (4-6). have reported glass transition temperatures in the range of 35 < Tg 

< 80 oC. Similar large shifts in Tg as a function of isomer-state have been previously observed in 

polybutadiene (ΔTg ~ 90 oC) (7), and azobenzene functionalized polymers (ΔTg ~ 60 oC) (8). 

Figure 4.4 shows 1st and 2nd heating and cooling DSC curves for trans-azopolymer between −80 

and 110 °C. There is evidence of a small amount of amorphous phase after green light exposure 
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as a weak inflection point at 31 oC, see the inset of Figure 4.4A. This inflection point is thought 

to be the glass transition of the remaining amorphous phase. An endothermal peak at 80 oC 

appears which corresponds to melting of trans-azopolymer. The cis-azopolymer thermally 

relaxes via cis-to-trans transition near the melting temperature. Figure 4.5A shows an exothermal 

peak at 88 oC, followed by melting at 80 oC.  The cis-to-trans transition overlaps with the 

melting of trans-azopolymer. After the cis-to-trans thermal relaxation, DSC curves for cis-

azopolymer become identical to the trans-azopolymer as shown in Figure 4.4B. The glass 

transition of cis-azopolymer shown in the magnified heating DSC curve in Figure 4.5C 

disappears in the cooling curve. Tg of cis-azopolymer was further verified by subjecting cis-

azopolymer to multiple cycles between −80 °C and −10 °C. Figure 4.5D shows 1st and 2nd 

heating and cooling DSC curves, indicating consistent glass transition at –48 oC. Because of its 

completely amorphous nature, the cis-azopolymer does not exhibit a sharp melting point, but 

rather softens over a temperature range around Tg to a viscoelastic liquid. DSC data was used to 

calculate the specific heat of trans- and cis-azopolymer (Figure 4.6). The thermal conductivity 

throughout this chapter is calculated using the relationship 2 /e C =  where e is the thermal 

effusivity of azopolymer measured by TDTR and C is determined by the density and the specific 

heat of trans- and cis-azopolymers. 

The crystal-to-liquid transition of azopolymer takes advantage of a large change in the 

difference in the phase transition temperature between trans- and cis-azopolymers (Tg,cis, Tm,trans). 

At room temperature, cis-azopolymer is stable in the fluid state, Tg,cis < 300 K, and trans-

azopolymer is stable in the crystalline state, Tm,trans > 300 K. The data presented in Chapter 4 

results from azopolymer with a molar mass Mw = 24,000 g mol-1; for this molar mass, 

Tg,cis = −48 oC and Tm,trans = 80 oC. We expect that the temperature window for the crystal-liquid 
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transition, Tg,cis <T< Tm,trans, can be tuned by varying the molar mass. An increase in molar mass 

would lead to an increase in Tg,cis as predicted in the Flory-Fox equation, eventually leading to a 

crystal-glass transition at room temperature. A crystal-glass transition would be preferred over a 

crystal-liquid transition in applications in which materials need to retain their shape and 

mechanical properties.  

Gel permeation chromatography (GPC) was performed to measure molecular weights and 

molecular weight distributions relative to linear polystyrene standards using a Waters 1515 

Isocratic HPLC module equipped with a Waters (2998) Photodiode Array Detector, a Waters 

(2414) Refractive Index Detector, a Waters (2707) 48 well autosampler and a series of 4 Waters 

HR Styragel columns (7.8 X 300 mm, HR1, HR3, HR4, and HR5) in HPLC grade THF at 30 °C 

at a flow rate of 1 mL min-1. Standard polystyrenes from Shodex with Mn of 1.2 KDa, 3 KDa, 

9 KDa, 28 KDa, 65 KDa, 152 KDa, 419 KDa, 979 KDa, 2,233 KDa, and 2,906 KDa with PDI of 

1.09, 1.04, 1.03, 1.03, 1.03, 1.03, 1.04, 1.05, 1.04, and 1.04 were used as reference for molecular 

weight determination. The molecular weight of the azopolymer was calibrated using the 

following equation. 

 
2 1 2 2 3 3 4 5 5

wlog M 1.445596 3.66 2.53 8.77 1.52 1.05e e t t e t e t e t− − − −= − + − + −   (4.1) 

where t is the retention time and Mw is the relative molecular weight of the polymer. Fig. S6a 

shows a GPC trace of the azopolymer.  

UV-Vis spectroscopy was performed to confirm the trans-cis photoisomerization of the 

azopolymer using a model UV-2450 UV-VIS Spectrophotometer, Shimadzu Corp. We used a 

280-nm thick spin-coated azopolymer film on a sapphire substrate and illuminated the 
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azopolymer sample with UV light with varying intensity of 38, 80, 180, 320 and 630 mW cm-2 

for 15 and 30 s. Figure 4.7B shows the absorption spectra of azopolymer film which is gradually 

shifted due to trans-to-cis photoisomerization under UV light. We attribute the spectral changes 

at wavelengths near 360 nm to the π → π* electronic transitions and the changes at wavelengths 

near 450 nm to the n → π* electronic transitions of the azobenzene functional groups (9). 

Transverse (vt) and longitudinal (vl) speed of sounds of trans-azopolymer were measured 

by picosecond acoustic and surface acoustic wave measurements for crystalline azopolymer, and 

picosecond interferometry for liquid azopolymer using a TDTR setup (10, 11). vl was calculated 

from the acoustic echoes from Al/azopolymer film interphase using the relationship vl = 2 h/Δt, 

where h is the thickness of the azopolymer film and Δt is the time between echoes. vt was 

calculated by generating and measuring surface acoustic waves using a periodic elastomeric 

PDMS mask on trans-azopolymer film. The longitudinal (C11) and transverse (C44) elastic 

moduli were calculated as C11 = ρvl
2 and C44 = ρvt

2. vl of the liquid state azopolymer was 

calculated by measuring reflected probe beam intensity of a SiO2/cis-azopolymer (1 mm)/Pt (60 

nm)/SiO2 liquid cell under continuous UV light illumination (630 mW cm-2) where vl = νp/(2λnl) 

and νp is the in-phase TDTR probe beam oscillation frequency,  is the wavelength of light and 

nl is the refractive index of liquid measured by Woollam VAS Ellipsometer (nl= 1.64 at λ = 780 

nm). All measured physical parameters, including the molecular weight, the poly-dispersity 

indices (PDI), heat capacity per unit volume (C), Tg, Tm, and longitudinal and transverse speed of 

sounds (vl and vt) and elastic moduli (C11 and C44) for trans- and cis-azopolymers, are 

summarized in Table 4.1. 
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4.4 THERMAL CONDUCTIVITY SWITCHING IN AZOPOLYMER 

Across the crystal-to-liquid transition, the most significant property change observed, other than 

the crystal-liquid transition, is a three-fold change in the thermal conductivity in a matter of 

seconds at room temperature. I measured the dependence of out-of-plane thermal conductivity of 

the azopolymer film on Al (60 nm)/polyimide (250 nm)/sapphire substrates on exposure to UV 

and green light using in situ TDTR measurements (12-14). The 1/e2 intensity radius was 10 μm, 

and the intensities of the pump and probe beam were 5 mW and 3 mW, respectively. The steady 

state temperature rise, ΔTSS, of the probed region was 10 K. The thermal penetration depths 

were 55–75 nm at 11 MHz and 180–240 nm at 1.12 MHz. At f = 11 MHz, the bidirectional heat 

flow model is sensitive to the thermal effusivity, e C=  , where C is independently determined 

by combining measurements of a 280-nm thick azopolymer film using modulation frequencies of 

10.1 and 1.12 MHz at room temperature and the density and the specific heat of trans- and cis-

azopolymers under UV and green light illumination in Figure 4.6 (15). To measure changes in 

thermal conductivity during the crystal-to-liquid phase transition, I fixed the delay time at 100 ps 

and continuously measured Vin and Vout under UV and green light illumination.  

Figures 4.8A-B shows a schematic illustration for the experimental configuration of in 

situ TDTR measurements for azopolymer/Al/PI/sapphire samples under green and UV light 

illumination. Figure 4.8C shows measured and fitted TDTR curves for trans- and cis-azopolymer 

films after green and UV light illumination. The thermal conductivity reversibly switches 

between 0.35 ± 0.05 W m−1 K−1 in trans-azopolymer to 0.10 ± 0.02 W m−1 K−1 in cis-

azopolymer. These values are within the values expected for polymers: for example, the thermal 
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conductivity of polyethylene varies from 0.1 W m-1 K-1, when randomly oriented to 90 W m-1 K-1 

along the draw direction of a highly oriented crystalline fiber (16, 17). 

Figure 4.9A shows temperature-dependent thermal conductivity of trans- and cis-

azopolymers. The temperature-dependent thermal conductivities of trans- and cis-azopolymers 

were measured using a temperature controlled INSTEC HOT/COLD stage having an optical 

window with the heating and cooling rates of 10 oC min−1 under continuous green and UV light 

illuminations (630 mW cm−2). Figure 4.9B shows the thermal conductivity of the azopolymer 

under alternating UV and green light illumination. 90% of the change in thermal conductivity 

occurs within a few tens of seconds when the light intensity is 320 mW cm-2. The partial loss of 

thermal conductivity is attributed to incomplete crystallization due to insufficient time of 

illumination and the steady-state temperature rise during in situ TDTR measurements. The rate 

of thermal conductivity switching, τ0
−1, which is the rate to achieve 90% of the total thermal 

conductivity change, increases from 0.016 to 0.126 s-1 as the UV light intensity increases from 

38 to 630 mW cm-2 (Figure 4.10).   

The thermal conductivity of cis-azopolymer is lower than the conductivity of the 

polyimide thermal blocking layer (0.2 W m−1 K−1). Therefore, a majority of the heat deposited by 

the pump beam flows to the substrate side. Thus, the sensitivity of the measurement to the 

thermal conductivity of cis-azopolymer is smaller than the sensitivity to the thermal conductivity 

of trans-azopolymer. Therefore, I performed an independent experiment using frequency-domain 

probe beam deflection (FD-PBD) to verify the thermal conductivity of the liquid state (18). The 

detail of FD-PBD is described in Chapter 2.4. I used a 1-mm thick of azopolymer liquid 

sandwiched by a 60 nm Pt-coated fused silica substrate and a glass cover slide. Figure 4.11A 
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shows the measured and fitted FD-PBD curves for the liquid azopolymer on a Pt (60 nm)/SiO2 

sample under 630 mW cm−2 UV illumination at 60 oC. The pump beam heated the sample from 

the liquid side while measuring the probe beam deflection at r0 = 10 μm. Figure 4.11B shows the 

in-phase and out-of-phase Δθ at a fixed f = 500 Hz with varying r0 from −20 μm to 20 μm. The 

probe beam deflection becomes zero when the pump and the probe beams overlap. I fixed C = 

1.85 J cm-3 K-1 and fitted the FD-PBD curve using Λ as a free parameter. The fitted value for the 

Λ of liquid state azopolymer is 0.12 W m−1 K−1, which is consistent with the thermal 

conductivity of the liquid state azopolymer measured by TDTR. 

4.5 THE EFFECT OF CHAIN ALIGNMENT ON THERMAL CONDUCTIVITY 

Amorphous trans-azopolymer film was prepared by LN2 quenching the trans-azopolymer film 

from the melting temperature. The measured and fitted TDTR data for amorphous azopolymer 

film is shown in Figure 4.12A. The thermal conductivity of the amorphous azopolymer is 

Λamorphous = 0.19 ± 0.02 W m−1K−1 at room temperature, which is similar to other amorphous 

polymers with similar transverse (vt) and longitudinal (vl) sound velocities and atomic densities 

(15). Figure 4.12B shows thermal conductivity of amorphous film from −75 to 130 oC. The 

thermal conductivity of amorphous azopolymer slightly decreases with decreasing temperature. 

Above the melting temperature, the thermal conductivity of amorphous azopolymer becomes 

closer to that of the liquid state azopolymer.  

While C can have a significant impact on the thermal conductivity, we observed that C is 

only  10 % greater in the amorphous state than the crystalline state yet the crystalline trans-

azopolymer exhibits an 80% higher thermal conductivity than the amorphous trans-azopolymer, 

suggesting that crystallinity plays the dominant role in the change in thermal conductivity. The 
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higher thermal conductivity of crystalline trans-azopolymer can be attributed to the stronger 

dispersion and longer lifetimes of vibrational modes created by the out-of-plane alignment of 

side chains with planar azobenzene groups. Due to the limitations in the experiments associated 

with a very low sensitivity of the TDTR signals to in-plane thermal conductivity, the 

experimental data are limited to the out-of-plane thermal conductivity of azopolymer films. 

Nevertheless, we expect that the in-plane thermal conductivity of azopolymer film is lower than 

the out-of-plane thermal conductivity since the direction of thermal conduction is normal to the 

aligned side chains where most of heat would be carried by interchain interaction across the side-

chain networks. 

4.6 INTERCHAIN π-π BONDING TRANSITION BY LIGHT 

Polymer films with azobenzene side-chain groups often form smectic or lamellar structures with 

an out-of-plane azobenzene group arrangement (19, 20), exhibiting characteristic side-chain 

interdigitation due to the π-π stacking of azobenzene groups (1). Upon UV light illumination, 

these interchain π-π interactions decrease dramatically with the torsional rotation of the 

azobenzene groups (3). Figure 4.13 illustrates a possible mechanism for crystal-to-liquid 

transition, associated with disruption of the π-π stacked azobenzene groups in azopolymer during 

the trans-to-cis isomerization. Upon UV excitation, the trans-azobenzene groups transform to 

non-planar cis-azobenzene isomers with various (C-N=N-C) dihedral angles between the two 

phenyl rings. This torsional rotation of the azobenzene groups causes a steric hindrance for 

azobenzene π-π stacking (2). As the population of the cis-isomer grows, the azobenzene stacking 

decreases, and long-range crystalline order is lost (3). Upon exposure to the green light (cis-to-

trans transition), crystalline order is recovered by stacking of the trans-azobenzene groups. 
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In collaboration with Minjee Kang in Leal group at Illinois, we performed in situ 

synchrotron grazing-incidence wide-angle X-ray scattering (GIWAXS), wide-angle X-ray 

scattering (WAXS), grazing-incidence small-angle X-ray scattering (GISAXS) and small-angle 

X-ray scattering (SAXS) measurements to test this hypothesis and study the temporal evolution 

of short- and long-range macromolecular structure created by UV and green light illumination. 

We brought the azopolymer/Al/PI/sapphire samples to the 12-ID-B and 12-ID-C beamlines at the 

Advanced Photon Source at the Argonne National Laboratory for in situ synchrotron X-ray 

scattering measurements. Samples were probed using 13.3 keV (12-ID-B) and 18 keV (12-ID-C) 

X-rays. The samples were placed on a temperature-controlled stage at a temperature of 25–30 oC. 

The UV and green LEDs were mounted 15 cm above the sample stage. The LEDs were remotely 

controlled during X-ray scattering measurements. The data collection time of the detector was set 

at 0.5 s for the GISAXS, SAXS and GIWAXS experiments, and 1 s for the WAXS experiments. 

The time intervals between each data collection were 1 s and 3 s for the SAXS and WAXS 

measurements, respectively. 

Figure 4.14 shows in situ 2-D GIWAXS patterns of the azopolymer/Al/PI/sapphire 

substrate during trans-to-cis and subsequent cis-to-trans transitions under UV and green light 

(630 mW cm-2). Two sets of diffraction rings can be observed for the trans-azopolymer film 

(upper left panel). One corresponds to in-plane diffraction associated with the lateral side-chain 

interdigitation of azobenzene π-π stacking (dπ-π) at q = 1.68–1.78 Å −1. The second arises from 

out-of-plane diffraction at integral multiples of qz = 0.233 Å −1 consistent with a 2.7 nm (001) 

lamellar spacing of the azopolymers. The diffraction changes associated with dπ-π and lamellar 

spacing represent macromolecular ordering of the azopolymer at different length scales. UV light 

illumination triggers order-disorder transition from the crystalline phase to isotropic phase where 
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We observed the loss of crystalline diffraction peaks, leaving a diffuse ring (as indicated by a 

violet arrow). Under green light illuminations We observed evolution of GIWAXS pattern 

almost identical to the initial pattern (as indicated by a green arrow), suggesting full recovery of 

lamellar structure on a time scale of ~10 s. 

Transmission WAXS experiments were also performed to generate time-dependent 

diffraction peak intensity profiles Figures 4.15-16 show in situ transmission 2-D WAXS images 

of azopolymer during trans-to-cis and subsequent cis-to-trans transitions under UV and green 

light illuminations, respectively (630 mW cm-2). We first collected sets of azimuth integrated 

intensity profiles during microstructural evolution. Then, the sets of azimuth integrated intensity 

profile were presented as a 2-D the time-dependent, azimuth-integrated WAXS signal intensity 

in a defined q scale in Figure 4.17A. Under UV light illumination, the dπ-π peak gradually 

broadens and shifts to lower q while the unit cell lattice (010) reflection remains at q = 1.22 Å −1. 

After ~20 s of UV illumination, the dπ-π peak fades, followed by damping of the (010) peak, 

leaving only a broad diffuse scattering ring. Figure 4.17B shows dπ-π spacing and the dπ-π peak 

full-width-at-half-maximum (FWHM) during the trans-to-cis photoisomerization. Subsequent 

green light illumination triggers a cis-to-trans transition in which all diffraction patterns 

reappear, indicating recovery of the interdigitated structure. The time-scale of the phase 

transition corresponds to the time-scale of the thermal conductivity switching observed in TDTR 

measurements in Chapter 4.4. 

4.7 LONG-RANGE ORDER-DISORDER TRANSITIONS 

In addition to the short-range order-disorder transition of side-chain azobenzene groups revealed 

by the WAXS measurements, we performed GISAXS and transmission SAXS to study the long-
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range order-disorder transition of the azopolymer backbone under UV and green light 

illumination. Figure 4.18 shows a 2-D GISAXS diffraction pattern of a trans-azopolymer film. 

We observed integral multiples of qz = 0.233 Å −1 and qz = 0.224 Å −1 consistent with a double 

periodic array at short (001)s and long (001)l spacings for trans-azopolymer lamellae.   

Figures 4.19-20 show in situ transmission 2-D SAXS images of azopolymer during trans-

to-cis and subsequent cis-to-trans transitions under UV and green light illuminations 

(630 mW cm-2), respectively. Each SAXS data was converted to azimuth integrated intensity as 

presented in 2-D the time-dependent, azimuth-integrated SAXS intensity plot in Figure 4.21 

during trans-to-cis and cis-to-trans transitions. The interdigitated (001) and (002) peaks decay 

under UV illumination in approximately 10 s. Crystallization into the lamellar structure occurs 

under subsequent green light illumination on a comparable time-scale. Prior to formation of the 

final lamellar structure, we observed a transient diffraction peak at q = 0.189 Å −1, which can be 

attributed to an intermediate phase (IP) consisting of a weakly ordered structure (d = 3.3 nm) that 

does not give rise to higher order peaks. The diffraction peak of this intermediate phase decays 

rapidly as the fully interdigitated (001)s and partially interdigitated (001)l peaks grow in the time-

dependent intensity profile in Figure 4.22. 

The transient nature of the IP prior to the formation of the lamellar structure supports a 

crystallization pathway which passes through a weakly ordered phase. We speculate that in this 

intermediate state side-chains form a non-interdigitated structure during the cis-to-trans 

isomerization before forming the interdigitated structure. After the azopolymer chains are 

interdigitated at the nucleation site, they exhibit outward growth of the spherulite structure (see 
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Chapter 4.2). Figure 4.23 shows a schematic illustration of the assembly and crystallization 

process outlined in Chapter 4.7.  

4.8 SIDE-CHAIN INTERDIGITATION OF TRANS-AZOPOLYMER 

The intensity of the (001)s peak is an order of magnitude higher than the (001)l peak, suggesting 

that (001)s is the most dominant structure. This split peak can be attributed to the two distinct 

populations of lamellar spacings originating from slightly different azobenzene interdigitation 

configurations (1, 21). In Chapter 4.7, We observed that trans-azopolymer exhibits two 

independent packing structures with fully and partially interdigitated azobenzene side-chains. 

We suspect that the partially interdigitated lamellar (001)l exhibit weak π-π interaction compared 

with the fully interdigitated lamellar (001)s structure, thereby losing ordering much faster than 

the fully interdigitated lamellar under UV light illumination. We used a low-intensity UV light 

illumination to trigger a selective trans-to-cis transition of partially interdigitated trans-

azopolymer lamellar and measured in situ SAXS pattern changes (Figure 4.24). We plot a 2-D 

time-dependent azimuth integrated SAXS intensity plot and time-dependent SAXS intensity 

profile in Figure 4.25. The (001)l peak intensity decays under low-intensity UV illumination 

while (001)s peak intensity remains almost the same.  

4.9 SUMMARY 

In summary, we observed reversible crystal-liquid transitions in an azopolymer which occur on 

the order of 10 s with a UV and green light under illumination intensities on the order of 100 

mW cm-2. This transition is associated with a three-fold change in thermal conductivity. UV light 

illumination induces a transition in the azobenzene side chains from the planar trans-state to the 
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non-planar cis-state; green light illumination reverses this transition. The torsional rotation of the 

phenyl rings in cis-azobenzene disrupts π-π interactions between the azobenzene groups, 

resulting in formation of an isotropic liquid with a thermal conductivity of 0.10 W m−1 K−1. 

Subsequent green light illumination induces crystallization of trans-azopolymer, which is found 

to have a thermal conductivity of 0.35 W m−1 K−1 and consists of crystals containing 

interdigitated aligned planar-azobenzene side chains. Excitingly, we find that the conformational 

state of specific functional groups on polymer chains not only regulates short- and long-range 

ordering, but also the thermal transport properties of the polymer.  
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4.10 FIGURES AND TABLE 

A

Trans Cis

B

UV (λ = 375 nm)

Green (λ = 530 nm)

10 s

10 s

C D

200 μm

 

Figure 4.1. Light-triggered phase transition of azopolymer. A. Trans- and B. cis-azopolymer 

structures. Corresponding cross-polarized optical microscopy images of C. trans- and D. cis-

azopolymer films on the glass substrate under continuous UV and green light illuminations. All 

scale bars are 200 μm.  
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Figure 4.2. Optical microscopy images of a spin-coated azopolymer film on the 

Al/polyimide/sapphire substrate during reversible crystal-to-liquid transitions under UV and 

green light illumination. The light intensity is 630 mW cm−2. The time interval between each 

image is 1 s. The scale bar is 200 μm. 
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Figure 4.3. Transmission optical microscopy images of azopolymer powders on the glass slide 

during reversible crystal-to-liquid transitions under UV and green light illumination 

(630 mW cm−2). The scale bar is 200 μm. The time interval between each image is 1 s.  
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Figure 4.4. Phase transition temperatures of trans-azopolymer. A. 1st and 2nd heating DSC 

curves for trans-azopolymer. The inset shows a magnified heating curve with an inflection point. 

B. 1st and 2nd cooling DSC curves for trans-azopolymer.  
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Figure 4.5. Phase transition temperatures of cis-azopolymers. A. 1st heating and cooling DSC 

curves for cis-azopolymer from −80 oC to 110 oC. B. 2nd heating and cooling DSC curves for cis-

azopolymer immediately following the 1st DSC cycle shown in panel A. C. Expanded 1st heating 

and cooling DSC curves for cis-azopolymer. D. 1st and 2nd heating and cooling DSC curves for 

cis-azopolymer with a reduced temperature window from −80 oC to −10 oC. 
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Figure 4.6. Specific heat of trans- and cis-azopolymers from –100 oC to 150 oC. The dotted lines 

under the endothermic melting peak represent the estimated specific heat values used to 

determine the thermal conductivity of trans- and cis-azopolymers at around the melting 

temperature. 
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Figure. 4.7. Molecular weight distribution and optical properties of azopolymer. A. GPC trace of 

the synthesized azopolymer. B. UV-Vis absorption spectrum shift for an azopolymer film under 

UV illumination. 
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Figure 4.8. Thermal conductivity switching of azopolymer. A. Schematic illustration for in situ 

TDTR measurements for an azopolymer film under green and UV light illumination. B. 

Measured and fitted TDTR data for trans- and cis-azopolymer films after green and UV light 

illumination, respectively. 
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Figure 4.9 Thermal conductivity switching of azopolymer. A. Temperature-dependent thermal 

conductivity of trans- and cis-azopolymer films. B. Thermal conductivity of the azopolymer film 

under alternating green and UV light illumination. The reversible trans-to-cis transitions between 

the crystalline and liquid states occur within 10 s under UV and green light illumination 

(320 mW cm-2) at room temperature. Error bars represents temporal signal fluctuations and 

experimental uncertainty. 
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Figure 4.10. Thermal conductivity switching rate τ0
−1 of azopolymer film with increasing UV 

intensity. 
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Figure 4.11. Thermal conductivity of cis-azopolymer measured by FD-PBD. A. Measured and 

fitted FD-PBD curves for the liquid state azopolymer at r0 = 10 μm. B. Measured and fitted FD-

PBD data with varying r0 from −20 μm to 20 μm at f = 500 Hz.  
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Figure 4.12. Thermal conductivity of amorphous trans-azopolymer. A. Measured and fitted 

TDTR curves for the amorphous trans-azopolymer film and the Al/polyimide/sapphire substrate. 

B. Temperature-dependent thermal conductivity of amorphous trans-azopolymer film from 

−75 oC to 130 oC. 
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Figure 4.13. Schematic illustration of the conformation changes of the azopolymer driven by 

photoisomerization.  



  97 

 

 

375 nm

0 s 2 s 4 s 8 s

50 s

530 nm

2 s4 s6 s8 s

0 s

In
te

n
s
ity

 (c
o
u
n
ts

)2×103

4×103

6×103

8×103

1×104

2

1

0

-1

-2

0 1 2

q
x
y
 (

Å
-1

)

qz (Å
-1)

2

1

0

-1

-2

0 1 2

q
x
y
 (

Å
-1

)

qz (Å
-1)

2

1

0

-1

-2

0 1 2
q

x
y
 (

Å
-1

)

qz (Å
-1)

2

1

0

-1

-2

0 1 2

q
x
y
 (

Å
-1

)

qz (Å
-1)

2

1

0

-1

-2

0 1 2

q
x
y
 (

Å
-1

)

qz (Å
-1)

2

1

0

-1

-2

0 1 2

q
x
y
 (

Å
-1

)

qz (Å
-1)

2

1

0

-1

-2

0 1 2

q
x
y
 (

Å
-1

)

qz (Å
-1)

2

1

0

-1

-2

0 1 2

q
x
y
 (

Å
-1

)

qz (Å
-1)

2

1

0

-1

-2

0 1 2

q
x
y
 (

Å
-1

)

qz (Å
-1)

 

Figure 4.14. In situ 2-D GIWAXS diffraction pattern changes of a 280 nm trans-azopolymer 

film on the Al/polyimide/sapphire substrate during reversible crystal-to-liquid transition under 

UV (violet arrow) and green light illumination (green arrow) (630 mW cm−2) at 30 ℃. 
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Figure 4.15. In situ transmission 2-D WAXS data of azopolymer powders during crystal-to-

liquid transition under UV light illumination (630 mW cm
−2) at 25 ℃. 
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Figure 4.16. In situ transmission 2-D WAXS data of azopolymer powders during liquid-to-

crystal transition under green light illumination (630 mW cm
−2) at 25 ℃, immediately following 

UV light illumination shown in Figure 4.15. 
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Figure 4.17. π-π stacking evolution of azobenzene groups during trans-to-cis 

photoisomerization. A. Azimuth integrated in situ transmission WAXS intensity of the 

azopolymer during the trans-to-cis transition driven by UV illumination (630 mW cm−2). B. dπ-π 

and full width at half maximum (FWHM) of the π-π stacking peak as a function of trans-to-cis 

photoisomerization time. Error bar represents the uncertainty of q. This time-dependent plot 

represents the dπ-π diffraction shift in panel A. 
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Figure 4.18. 2-D GISAXS diffraction pattern of the trans-azopolymer film. 
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Figure 4.19. In situ transmission 2-D SAXS data of azopolymer powders during crystal-to-liquid 

transition under UV light illumination (630 mW cm−2) at 25 ℃. 
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Figure 4.20. In situ transmission 2-D SAXS data of azopolymer powders during liquid-to-crystal 

transition under green light illumination (630 mW cm−2) at 25 ℃, immediately following UV 

light illumination shown in Figure 4.19. 
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Figure 4.21. Photo-triggered reversible lamellar crystallization pathway. A. Azimuth integrated 

in situ transmission SAXS intensity of azopolymers during trans-to-cis photoisomerization (UV 

light). B. Azimuth integrated transmission SAXS intensity of azopolymers during the cis-to-

trans photoisomerization (green light). 
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Figure 4.22. Long-range ordering changes under UV and green light illuminations. A. SAXS 

intensity profile of (001)l and (001)s peaks of azopolymer during trans-to-cis photoisomerization 

under UV light illumination (630 mW cm−2). B. SAXS intensity profile of (001)l, (001)s and 

intermediate phase (IP) peaks during cis-to-trans photoisomerization under green light 

illumination (630 mW cm−2).  
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Figure 4.23. Schematic showing the suggested crystallization pathway under green light 

illumination (right to left). (i) Randomly distributed cis-azopolymer chains initially form (ii) an 

intermediate phase consisting of non-interdigitated polymer clusters followed by the formation 

of (iii) the interdigitated structure with long (001)l and short (001)s spacings. 
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Figure 4.24. In situ transmission 2-D SAXS data of trans-azopolymer during selective trans-to-

cis transition of (001)l by low intensity UV light illumination (130 mW cm−2). 
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Figure 4.25. Selective trans-to-cis isomerization of partially-interdigitated lamellar. A. Azimuth 

integrated in situ transmission SAXS intensity data of azobenzene polymer during selective 

trans-to-cis transition by low-intensity UV light illumination (130 mW cm−2). B. Azimuth 

integrated SAXS intensity plots of (001)l and (001)s peaks shown in panel A.  

 

 

Table 4.1. Physical properties of trans- and cis-azopolymer. PDI and weight average molar 

mass (Mw) are calculated from the gel permeation chromatography (GPC) data. C is measured 

by frequency modulated TDTR and confirmed by DSC; Tg and Tm are measured by DSC; vl, vt, 

C11 and C44 of trans-azopolymer are calculated from picosecond acoustics and surface 

acoustic wave measurements; vl of cis-azopolymer is calculated from picosecond 

interferometry measurement.  

Isomer PDI 
MW,  

g mol−1 

C, 

J cm−3 K-1 

Tg, 
oC 

Tm, 
oC 

vl, 

nm ps−1 

vt, 

nm ps−1 

C11, 
GPa 

C44, 
GPa 

Trans-

azopolymer 
1.37 2.4 × 104 

1.6 31† 80 3.4 1.83 11.6 3.35 

Cis-

azopolymer 
1.88 −48 — 1.78 — — — 

†residual amorphous phase. 

Dashed lines indicate that the quantity is not applicable or has not been measured. 
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CHAPTER 5: THERMAL CONDUCTIVITY CHANGES OF CONVERSION, 

INTERCALATION AND ALLOYING ELECTRODE MATERIALS DURING 

ELECTROCHEMICAL REACTION WITH LITHIUM IONS 

Parts of Chapter 5 are being prepared for a publication in “Thermal conductivity changes of 

conversion, intercalation and alloying electrodes during electrochemical reaction with Li+ ions,” 

Jungwoo Shin, Sanghyeon Kim, Hoonkee Park, Ho Won Jang, David G. Cahill, Paul V. Braun, 

manuscript in preparation. 

In Chapter 5, in collaboration with Sanghyeon Kim in Braun group at Illinois, we studied 

thermal and mechanical properties of five Li-ion electrode materials during charge/discharge 

cycles with Li+ ions. In situ time-domain thermoreflectance (TDTR) and picosecond acoustics 

were used to characterize the thermal and elastic properties of the five electrodes with varying 

Li+ ion contents in the electrode materials. The conversion electrodes, Fe2O3 and NiO showed 

irreversible thermal conductivity and elastic modulus loss of up to 80% and 40% after the first 

cycle, and eventually became static thermal insulator regardless of Li+ ion contents. The 

intercalating V2O5 and TiO2 electrodes exhibited a stable and reversible thermal conductivity 

switching as a function of Li+ ion contents without the irreversible thermal conductivity and 

elastic modulus loss. The alloying Sb electrode showed the highest thermal conductivity 

switching ratio r ~ 20–30 during the first few cycles, which gradually decreased with cycling. 

We attribute these large differences in the thermal and mechanical switching properties among 

the three different mechanisms to the existence of Li-ion pathways in the crystal structure of 

electrode materials. While the irreversible thermal conductivity and mechanical modulus loss of 

conversion and alloying electrode materials are caused by the lattice disordering and structural 
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degradation by Li+ ions, the intercalation electrodes maintain stable Li+ ion pathway and crystal 

structure during cycling. 

5.1 SELECTION AND PREPARATION OF ELECTRODE MATERIALS 

Phase transitions in materials result in discontinuities of physical properties (e.g., volume, heat 

capacity, mechanical strength, thermal conductivity). Here, I am particularly interested in the 

change in thermal conductivity during a phase transition of electrode materials induced by Li+ 

ion insertion, which can be dramatic due to the large-scale rearrangements of atoms and their 

associated network of bond that carries heat. In Chapter 5, I chose five electrode materials for 

candidates showing large changes in thermal conductivity under electrochemical reaction with 

Li+ ions. I took advantage of the superior temporal resolution of in situ TDTR, which is essential 

to study thermal conductivity changes of electrode materials during characteristic redox 

reactions.  

As discussed in Chapter 2.5, in collaboration with Sanghyeon Kim in Braun group at 

Illinois, we used Al film as a current collector of the electrode materials as well as a transducer 

for in situ TDTR measurements. Al has a stable electrochemical potential range above 0.5 V vs. 

Li/Li+, compatible with a few anode materials including 3d-metal oxides and Sb anodes and all 

cathode materials(1). Here, we present a systematic experimental platform for the investigation 

of various electrode materials with switchable conductivity caused by electrochemically driven 

solid-solid phase transitions with negligible (<10%) to extreme volume change (300%).  

The electrochemical lithiation/delithiation of electrodes undergo three electrochemical 

phase-transition mechanisms: conversion, intercalation and alloying. We selected Fe2O3 and NiO 
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as conversion systems; TiO2 and V2O5 as intercalation systems; and Sb as an alloying system. 

The electrochemical reactions for the three electrochemical systems are described in the 

following: 

 +M Li Li Mxx xe−+ +  , alloying  (5.1) 

 + -

2ZO + 2 Li + 2 e Li O + Zx x x x , conversion (5.2) 

 +

y x yQO Li Li QOx xe−+ +   , intercalation (5.3) 

where x is the Li+ ion contents in the electrode, M = Sb, Z = Fe, Ni, and Q = V, Ti. These are 

well-known Li-ion battery electrodes exhibiting distinct electrochemical reaction mechanisms 

which may impact the resulting thermal conductivity transitions(2-4). 

Fe2O3, NiO, V2O5, and TiO2 films were deposited on the Al/SiO2/sapphire substrates by 

an electron beam evaporator (Rocky Mountain Vacuum Tech, Englewood, CO). The base 

pressure, e-beam voltage and current for the e-beam deposition were set to 10−6 Torr, 3.4 kV, 

and 20 mA, respectively. The as-deposited metal oxide samples were annealed in the 

following conditions: Fe2O3 in Air at 400 °C for 1 h; NiO in Ar at 300 °C for 2 h; V2O5 in air 

at 500 °C for 1 h; TiO2 in Air at 400 °C for 2 h. This heat treatment dramatically increased the 

initial thermal conductivity of electrodes. For example, Figure 5.1 shows measured and fitted 

TDTR data of the V2O5/Al/SiO2/sapphire sample before and after the heat treatment. The inset 

is a cross-sectional scanning electron microscopy (Hitachi S-4800 High-Resolution SEM) 

image of the V2O5/Al/SiO2/sapphire sample. Thermal conductivity of V2O5 increased from 0.9 

W m-1 K-1 to 8.4 W m-1 K-1 due to the improvement of crystallinity and the reduction of 
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defects(5). The electrochemical properties of Fe2O3, NiO, V2O5, and TiO2 were tested in a 

home-made liquid jar cell with a 1 M lithium perchlorate (LiClO4) dissolved in ethylene 

carbonate (EC) and dimethyl carbonate (DMC) (1:1 by volume) solution as a liquid electrolyte 

and a Li metal foil as the counter electrode.  

For the alloying system, Sb was deposited by thermal evaporation of Sb pellets (1-3 

mm, Kurt J. Lesker, 99.999 %) on Au/Al/SiO2/sapphire substrate. Note that 15-nm Au film 

with a 2-nm Cr adhesion layer was deposited on top of Al transducer to provide better 

adhesion between Sb and the substrate. Compared with Al with a native oxide layer which 

does not have a high adherence with Sb, Au can form a thin intermetallic AuSb2 layer with 

much improved adherence(6). 

The all-solid-state cell made of Ti metal rods and polyaryletheretherketone spacer was 

employed to test the electrochemical properties of Sb with the Li2S:P2S5 solid electrolyte and 

In-Li alloy counter electrode. Details regarding the experimental setup and geometry of the 

liquid and solid electrolyte cells are described in Chapter 2.5. 

5.2 VOLUME EXPANSION OF ELECTRODE MATERIALS  

While intercalating TiO2 and V2O5 exhibit negligible volume changes during cycling, 

conversion and alloying electrode show markedly large volume expansion during lithiation 

process. The theoretical expansion ratio of conversion electrodes during electrochemical 

reactions with Li+ ions (MyOx + 2xLi ↔ xLi2O +yM) was calculated as Vlithiatd/V0 =  

y x y x 2 2M O M O Li O Li O M M/ ( / / )M xM yM   +  where MyOx can be Fe2O3 and NiO; ρ is the 
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density and M is the molecular weight. The theoretical volume expansion ratio of the alloying 

electrode Sb (Sb + 3Li ↔ Li3Sb) was calculated as Vlithiatd/V0 =  
3 3Sb Sb Li Sb Li Sb/ ( / )M M  . 

While NiO and Fe2O3 exhibited Vlithiatd/V0 ~ 1.9; and Sb exhibited Vlithiatd/V0 ~ 2.3 

actual volume changes of the electrode materials were measured by cross-sectional SEM. 

Figure 5.2 shows cross-sectional SEM images of five electrodes deposited on Al/SiO2/sapphire 

substrates at the initial (after the heat treatment), lithiated and delithated states. We compared 

the thicknesses before and after the first lithiation reaction. For Fe2O3, the initial thickness 

2 3Fe O 350 nmd = ; the thickness after the first lithiation 
2 3Fe O -discharge 836 nmd = ; and the 

experimental volume expansion ratio 
2 3 2 3Fe O -lithiated Fe O/ 2.4d d = , which is ~25% larger than the 

theoretical volume expansion ratio described above. This discrepancy can be attributed to the 

irreversible solid-electrolyte interphase (SEI) layer formation, which also accounts for the 

irreversible discharge capacity loss at the first cycle. The thickness of the lithiated state was 

also larger than the initial state by 
2 3 2 3Fe O -delithiated Fe O/ 1.16d d = (irreversible volume expansion). 

NiO showed a slightly lower volume expansion as NiO-lithiated NiO/ 2.0d d = , comparable with the 

prediction, and NiO-delithiated NiO/ 1.2d d = .  

Contrary to the conversion electrodes, intercalating V2O5 and TiO2 showed negligible 

volume change. The experimental volume expansion ratio of TiO2 (anatase) 

2 2TiO -lithiated TiO/ 1.16d d = , which is slightly larger than the theoretical volume expansion of 

4%(7).  After the first discharge, TiO2 showed a small irreversible volume expansion of 

2TiO -delithiated NiO/ 1.03d d = . Likewise, V2O5 showed a volume expansion of < 1 % during 

charge/discharge cycles.   
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The most dramatic experimental volume expansion was observed for Sb, with severe 

structural degradation. Figure 5.3 shows cross-sectional SEM and surface SEM images of 

Sb/Au/Al/SiO2/sapphire samples at the initial and lithiated states. Note that we were not able 

to measure the thickness of the delithiated Sb film due to the delamination of the film with the 

irregular mixing with the solid electrolyte. The cross-sectional and surface SEM images at the 

lithiated state (Li3Sb) show a severe pulverization of Sb film and the formation of irregular 

SEI layer (8), typical phenomena observed for bulk alloying electrode materials with poor 

electrochemical properties (9). 

5.3 PHASE TRANSITIONS OF ELECTRODE MATERIALS  

To determine the phase transition of the electrode materials, we performed Rutherford 

Backscattering Spectrometry (RBS) using high-energy He+ ion beam (0.5-2.0 MeV) from the 

high-energy ion-beam accelerator (3SDH Pelletron, NEC), and X-ray diffraction (XRD) using 

Panalytical Phillips X’pert with a Cu-Kα radiation (λ = 0.154 nm) at Materials Research 

Laboratory at UIUC. Figure 5.4 shows measured and fitted RBS data for the conversion and 

intercalation electrode materials deposited on Al/SiO2/sapphire substrates. The calculated 

atomic ratio of Fe2O3 electrode is Fe:O = 41.4:58.5, suggesting the presence of Fe-rich phases 

such as Fe3O4. RBS signal fluctuation of Ni peak of NiO sample (Figure 5.4B) suggested an 

inhomogeneous phase mixing with varying atomic ratios of Ni:O = 55.2:44.8 (bottom) 65:35 

(middle) and 50:50 (top). The oxygen gradient from the top layer indicates incomplete 

oxidation of NiO after the heat treatment. Figures 5.4C-D show RBS data of TiO2 and V2O5 on 

Al/SiO2/sapphire substrates. The calculated atomic ratios are Ti:O = 31.4:68.6 and V:O = 
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28.7:71.3, close to the theoretical values of TiO2 and V2O5: Ti:O = 33.3:66.7 and V:O = 

28.6:71.4.  

 Figure 5.5 shows XRD data of five electrode materials at the initial, lithiated state and 

delithated state. Co-existent of Fe2O3 and Fe3O4 phases and NiO and Ni phases were observed, 

consistent with the off-stoichiometries observed in RBS measurements. After the first 

lithiation reaction, the 3-d metal oxide conversion electrode materials lost crystal structures, 

resulting in amorphization and the dramatic structural change associated with the insertion of 

Li+ ion (10). Metal nanoclusters (Ni and Fe) embedded in electrically insulating amorphous 

Li2O matrix do not give rise of XRD peak at the delithiated state. Subsequent delithiation does 

not recover the crystalline structure but amorphous metal oxide phase.  

In contrary, intercalation electrode materials exhibited a stable crystal structure after 

cycling. Among TiO2 polymorphs, we examined anatase TiO2 (α phase). α-TiO2 is a tetragonal 

phase consisting of distorted 1-D TiO6 octahedra chains with vacancy channels, which work as 

a diffusion path for Li+ ions(11). Insertion of Li+ ions into these vacancies resulted in 

coulombic repulsion, leading to the phase transition to orthorhombic Li-titanite phase (LixTiO2, 

x < 0.6, β phase), with a lattice expansion in b axis and contraction in c-axis (12). Further 

insertion of Li+ ions resulted in tetragonal γ phase (LiTiO2).  

Figure 5.5C shows XRD data of TiO2 before and after the lithiation and delithiation. 

After the lithiation, the (020) diffraction peak of anatase TiO2 phase shifted from 2θ = 48.33 (b 

= 3.78 Å ) to 44.68o (4.054 Å ), which are close to α-TiO2 (b = 3.792 Å ) and β-LixTiO2
 (b = 

4.084 Å ) phases(13). On the other hand, V2O5 shows a mixture of multiple phases with varying 

x of LixV2O5 where co-existent α (x< 0.1), ε (0.35<x< 0.7), δ (x<1) and γ (1<x≤2) phases were 
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observed (14, 15). Figure 5.5D shows XRD data of V2O5 where (001) textured crystalline α-

LixV2O5 film at the initial state was transformed to a binary mixture of δ-LixV2O5 and γ-

LixV2O5 phases after the lithiation and returned to the initial α-LixV2O5
 phase after the 

delithiation(15).  

 Figure 5.5E shows XRD data of Sb at the initial state and after the first discharge. The 

Sb at the initial state turned into Li3Sb phase with after the lithiation. The additional 

diffraction peaks of Li2S came from a trace of Li2S:P2S5 solid-electrolyte powders on the 

surface of the recovered electrode. Note that we were not able to perform ex situ XRD 

measurements for the delithated Sb film which was strongly adhered to the Li2S:P2S5 pellet. 

5.4 THERMAL CONDUCTIVITY AND ELASTIC MODULUS CHANGES OF 

IRON(III) OXIDE AND NICKEL(II) OXIDE 

Before in situ TDTR measurements, we carried out ex situ TDTR measurements of 500 oC 

heat treated iron(III) oxide (Fe2O3) deposited on Au (60 nm)/SiO2 substrates. Figure 5.6A 

shows as-prepared (after annealing), discharged and charged Fe2O3
 (335 nm)/Au (60 nm)/SiO2 

samples. Fe2O3 has been known to exhibit reversible and stable electrochemical conversion 

reactions, can be simply observed by the color of the sample. After the lithiation process, 

yellowish Fe2O3 film reduced to black Fe + Li2O phases, which returned to dark yellow film, 

indicating a partial recovery of Fe2O3 phase which might contain a trace of Fe and/or Fe3O4 

phase. Figure 5.6B shows a differential capacity curve (dQ/dV) of the Fe2O3
 (335 nm)/Au 

(60 nm)/SiO2 with the Li metal counter electrode in 1 M LiClO4 dissolved EC/DMC 

electrolyte. The cathodic and anodic peaks observed at 1.55 and 0.8 V vs. Li/Li+ correspond to 

the conversion reaction of Fe2O3 (2Fe2O3 + Li ↔ 6Li2O + 4Fe).  
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 After lithiation/delithiation reactions, we deposited Al transducer films on as-prepared, 

lithiated and delithiated Fe2O3/Au/SiO2 samples for ex situ TDTR measurements. Samples 

were sealed in an Ar-filled container and brought to the Al deposition chamber to minimize the 

exposure to air.  Figure 5.6C shows measured in-phase TDTR voltage of the as-prepared 

Al/Fe2O3/Au/SiO2 sample. The time interval between peaks correspond to the acoustic echoes 

reflecting between air/Al and Al/Fe2O3 interfaces, (Δtp1 = 33.5–34.5 ps) and Al/Fe2O3 and 

Fe2O3/Au interfaces (Δtp2 = 90–90.5 ps) where Δtp1 = 2hAl/vAl, hAl and vAl are the thickness and 

the longitudinal speed of sound of Al (6.42 nm ps-1). vFe2O3 was calculated using vFe2O3 = 

2hFe2O3/Δtp2 where hFe2O3 was measured by SEM. Then, vFe2O3 was converted to C11 = ρFe2O3vFe2O3
2 

where ρFe2O3 is the density of Fe2O3. Figure 5.6D shows measured and fitted ex situ TDTR data 

of as-prepared and lithiated Fe2O3. We observed a dramatic thermal conductivity decrease 

from 7.6 W m-1 K-1 to 0.44 W m-1 K-1 after the first lithiation. TDTR signal of the charged 

Fe2O3 sample is identical to the lithiated Fe2O3 sample without thermal conductivity recovery. 

For the conversion nickel(II) oxide (NiO) electrode, we observed a moderate thermal 

conductivity loss from 7.7 W m-1 K-1 to 3.1 W m-1 K-1 after the first delithiation, which was 

recovered to 4 W m-1 K-1 after the delithiation. 

To study the thermal conductivity changes of Fe2O3 and NiO as a function of Li+ 

contents x in Fe2O3 + 6xLi ↔ 3xLi2O + 2xFe + (1-x)Fe2O3 and NiO + 2xLi ↔ xLi2O + xNi + 

(1-x)NiO,  we used the liquid electrolyte cell with the Fe2O3 or NiO/Al/SiO2/sapphire substrate 

for in situ TDTR measurements. See Chapter 2.5 for the detail of the liquid-electrolyte cell 

construction. Alloying and conversion materials in which the phase transformation initiates 

from supersaturation of Li+ ions in the electrode surface, forming metastable or unstable phase. 

As the discharge/charge process proceeds, the supersaturated Li+ ions diffuse to the bulk, 
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moving the boundary between the Li-ion rich and poor phases. Here, we estimated x of the 

Fe2O3 and NiO electrode materials based on their volumes and theoretical capacities.  

First of all, we measured picosecond echoes of NiO and Fe2O3 with varying x. Figure 

5.7 shows the measured in-phase TDTR signal of NiO/Al/SiO2/sapphire substrate in the liquid 

electrolyte cell. Note that the echoes were generated from the reflection longitudinal lattice 

waves between i) NiO/Al and Al/SiO2 interphases and ii) electrolyte/NiO and NiO/Al 

interphases. The first acoustic signals are static and marked with a dashed black line, and the 

second acoustic signals are variable and marked with black arrows with respect to the Li+ ion 

contents. Note that we were not able to measure the acoustic signal from the lithiated Fe2O3 

sample due probably to the pulverization and structural degradation associated with the large 

volume change of Fe2O3. 

 Figure 5.8A shows thermal conductivity and calculated C11 of as-prepared Fe2O3. 

Similar to what we observed in ex situ TDTR, thermal conductivity of Fe2O3 dropped from 4.6 

W m-1 K-1 to 0.6 W m-1 K-1 after the first lithiation, which does not return to the initial state 

after the delithiation. The reason for the low thermal conductivity of Fe2O3 measured by in situ 

TDTR compared with ex situ TDTR (4.6 vs. 7.6 W m-1 K-1) is the difference of annealing 

temperature (400 vs. 500 oC). Figure 5.8B shows voltage curves of Fe2O3 during the 

galvanostatic charge/discharge cycling (5 cycles). Figure 5.8C shows thermal conductivity and 

calculated C11 value of NiO from in situ TDTR measurements of the liquid electrolyte cell 

with NiO/Al/SiO2/sapphire sample.  

Similar to Fe2O3, NiO showed irreversible decreases in thermal conductivity and C11 

from 7.7 to 3.1 W m-1 K-1 and from 329 to 190 GPa during the first lithiation process, 
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suggesting the amorphization and lattice softening of NiO during the conversion reaction. The 

elastic modulus shift was calculated from the acoustic echo shift from 95 ps (x = 0) to 138 ps 

(x = 0.71). The acoustic echo shifts with respect to x, Δtp2(x), ware used to calculate the change 

of longitudinal speed of sound, vNiO(x). We estimated the thickness and the density of NiO 

changes linearly with respect to x in xLi2O + xNi + (1-x)NiO where C11(x) = ρFe2O3(x) vFe2O3(x)2. 

After the first discharge, thermal conductivity and C11 of NiO were recovered to 4.3 W m-1 K-1 

and 218 GPa.  

Despite of large decreases in thermal conductivity and elastic modulus of Fe2O3 and 

NiO with respect to x during lithiation, they remained almost the same during the delithiation 

process. This irreversible loss of thermal conductivity and elastic modulus after the lithiation 

are associated with the irreversible electrochemical capacity at the first discharge as shown in 

Figure 5.8D.  

Figure 5.9 shows the voltage and thermal conductivity changes of Fe2O3 and NiO 

measured by in situ TDTR during five galvanostatic charge/discharge cycles at the current 

density of 330 and 182 mA g-1, respectively. While Fe2O3 became a thermal insulator (<1 W 

m-1 K-1) after the first discharge NiO showed a small fluctuation of thermal conductivity 

attributable to the changes in density and elastic modulus. Since Fe2O3, NiO, and Li2O are 

semiconducting oxides with band gaps of 2.1 eV, 3.5 eV, and 4.8 eV(16) the major heat 

carriers for these materials are phonon at room temperature. As observed from XRD, 

conversion electrodes undergo Li-ion induced amorphization at the first discharge(10), which 

is responsible for the large loss of the lattice thermal conductivity after the first lithiation. 
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Further cycling would result in changes of density and elastic modulus as a function of x, 

which leads to a small change in the minimum lattice thermal conductivity as (17) 
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where kB is the Boltzmann constant, n is the atomic number density, vi is the longitudinal (i = 1) 

and transverse (i = 2,3) speeds of sound, and i  is the Debye temperature. n is calculated from 

the density ρ and molecular weight M of the electrode material, /An N M=  where NA is the 

Avogadro number. vi can be reduced from longitudinal modulus C11 and transverse elastic 

modulus C44 with density ρ where 1 11 /v C = and 2,3 44 /v C = .  

 After the first lithiation (amorphization), we expect that the density and speed of sound 

changes could set the minimum boundary of the conversion electrode materials.  However, we 

calculated Λmin (Li2O) = 1.75 W m-1 K-1, Λmin (Fe) = 1.16 W m-1 K-1 and Λmin (Fe2O3) = 1.41 W 

m-1 K-1, which are larger than the measured thermal conductivity of discharged Fe2O3. We 

attribute this low thermal conductivity of Fe2O3 to the formations of SEI and voids, which 

account for the additional volume expansion (~40%) measured by SEM after the first lithiation.  

 Figure 5.10 shows the specific charge and discharge capacities of Fe2O3 and NiO 

during five galvanostatic cycling. NiO shows the first discharge capacity of 508 mAh g-1, 

which is 71% of the theoretical capacity (718 mAh g-1). After the first discharge, two-thirds of 

the initial capacity of NiO was not recovered during the following cycles. Fe2O3 showed the 

first discharge capacity of 1080 mAh g-1, which is close to the theoretical capacity of 1000 

mAh g-1. However, this value gradually decreased to 390 mAh g-1 during the following cycles. 
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This irreversible capacity loss could be related to the formation and growth of insulating SEI 

with the pulverization of active materials. The irreversible structural degradation, SEI, phase 

separation and electric conductivity decreases of metal oxide conversion electrode (18) can be 

associated with the ultralow thermal conductivity of discharged Fe2O3.  

5.5 THERMAL CONDUCTIVITY AND ELASTIC MODULUS CHANGES OF 

TITANIUM(IV) OXIDE AND VANADIUM(V) OXIDE 

Studies on intercalation electrode materials have shown reversible thermal conductivity 

switching along with stable crystal structures during lithiation/delithiation. Examples are 

LixCoO2, LixMoS2 and LixP with r of 1.5(19) 2.0(20) and 1.65(21). Here, we chose 

semiconducting titanium(IV) oxide (TiO2, anatase) and vanadium(V) oxide (V2O5) with band 

gaps of 3.3 eV and 2.3 eV(16). At room temperature, we expect that most heat is carried by 

lattice for TiO2 and V2O5. With the reversible insertion and desertion of Li+ ion between the 

van der Waals V2O5 layers and vacancy channels of TiO2, we hypothesized that the phonon 

dispersion of these intercalation electrodes changes with varying Li+ ion contents.  

 Figure 5.11 shows picosecond acoustic data of TiO2 and V2O5 on Al/SiO2/sapphire 

substrates with varying Li+ ion contents during electrochemical charge/discharge reaction in 

the liquid electrolyte cell. As TiO2 and V2O5 exhibited (001) textured crystal structures the 

measured vl is considered as the speed of sound in (001) direction. The vl of as-prepared V2O5 

(2.7 nm ps-1) is closed to literature value of the speed of sound in the (001) direction (across 

the van der Waals interfaces, 2.5 nm ps-1) of V2O5 (22). Contrary to alloying Fe2O3 and NiO, 

intercalation TiO2 and V2O5 showed increases in vl from 6.5 nm ps-1 to 7.8 nm ps-1 and from 

2.7 nm ps-1 to 2.8 nm ps-1, respectively.  
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The monotonic increase in speed of sound of TiO2 and V2O5 are related to the elastic 

moduli increases with respect to x in the intercalation materials. vl of TiO2 and V2O5 were 

converted and presented as C33 in Figure 5.12 with thermal conductivity measured by TDTR. 

Here, we estimated x of V2O5 based on the potential plateau and x of the LixTiO2 which clearly 

exhibited two potential plateaus corresponding to Li+ ion insertion to ε (0.35<x< 0.7), δ (x<1) 

and γ (1<x≤2) phases (23). x of LiTiO2 was estimated based on the volume and theoretical 

capacity. We note that Li+ ion insertion to anatase TiO2 film is kinetically restricted to LixTiO2 

below x = 0.6 since the dimension is larger than ~100 nm(13). However, the thickness if TiO2 

film (255 nm) was chosen as close as the thermal penetration depths / ( )Td f C=   to 

secure the sensitivity of TDTR at f = 11 MHz.  

TiO2 showed C33 increased from 164 to 249 GPa, similar to calculated values of 185 

and 276 GPa of α-TiO2 and γ-LiTiO2(24). Likewise, V2O5 showed C33 increased from 23 to 28 

GPa. Although elastic moduli were increased with respect to x, we observed thermal 

conductivity changes of LixTiO2 from 7.7 W m-1 K-1 (x = 0) to 4.4 W m-1 K-1 (x = 0.34) after 

the first lithiation, followed by a recovery to 8.0 W m-1 K-1 (x = 0.1) after the subsequent 

delithiation and LixV2O5 from 7.22 W m-1 K-1 (x = 0) to 4.78 W m-1 K-1 (x = 2) and 5.64 W m-1 

K-1 (x = 0.11) after the first lithiation/delithiation. As TiO2 and V2O5 showed thermal 

conductivity recovery after the delithiation, we assume that the intercalation materials are 

structurally-stable during the electrochemical lithiation/delithiation processes. The potential 

plateau of TiO2 and V2O5 electrode (Figure 5.12B and D) are stable, which is consistent with 

the small volume changes and stable crystal structures after cycling. 
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Figure 5.13 shows thermal conductivity and electrochemical potential changes of TiO2 

and V2O5 during galvanostatic charge/discharge cycles. LixTiO2 showed a monotonic decrease 

in thermal conductivity with respect to x up to x = 0.34. The reason for the thermal 

conductivity decrease is not clear. The phase transition from α-TiO2 to β-LixTiO2 are assisted 

by a charge transfer reaction between the host and guest. The insertion of Li+ ions to TiO2 

results in changes of phonon dispersion(25) as well as an electronic band structure transition 

between Li(2s) and of Ti(3dyz) orbitals (26). As Li(2s) electrons fill the 3dyz orbitals of TiO2 

the electron density of state grows in number at EF(27). The resulting increase in the electric 

conductivity would increase the electrical contribution to thermal conductivity (Λe). The 

increase in speed of sound, which is related to the lattice thermal conductivity (ΛL), is 

contradicting with the observed thermal conductivity decrease of LixTiO2.  

On the other hand, LixV2O5 showed thermal conductivity decrease from x = 0 to x = 

0.5 and increase from x = 0.5 to x = 1, which remained almost the same up to x =2 at around 

4.8 W m-1 K-1. This “thermal conductivity valley” can be contributed to the series of phase 

transitions where ε phase (0.35<x< 0.7) might have lower thermal conductivity than other 

phases including α (x< 0.1), δ (x<1) and γ (1<x≤2)(14, 15). We further confirmed the 

existence of the thermal conductivity valley of V2O5 by subjecting it to cycling between x = 0 

and x = 1 (2nd cycle, Figure 5.13B). During five charge/discharge cycles, intercalating LixTiO2 

and LixV2O5 showed a reversible thermal conductivity switching r  1.6–1.8 up to x 0.5, 

respectively. Further increase in x (x > 1) did not induce the thermal conductivity change of 

V2O5. We suspect that this thermal conductivity valley (0<x<1) might also present in LixTiO2. 

However, we were not able to test this hypothesis since further insertion of Li+ ions to LixTiO2 

(x > 0.6) can be achieved by nanostructuring (<~10 nm) (27, 28).   
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Figure 5.14 shows specific cycling performance of TiO2 and V2O5 with the 

charge/discharge capacities of 40–50 mAh g-1, which is much lower than the theoretical 

capacities of TiO2 (165 mAh g-1) and V2O5 (260 mAh g-1). We attribute the reduction of 

capacity to the poor kinetics of Li+ ions diffusion in bulk film at high C-rates (1–2C), which 

were chosen for in situ TDTR measurements. Note that we pre-cycled 255-nm TiO2 at the 

current density of 75 mA g-1 with the initial discharge capacity of 110 mAh g-1. Then, TiO2 

showed capacity fading from 73 to 52 mAh g-1 (up to 6 cycles) at the current density of 50 

mAh g-1 for five cycles. These values are close to 300-nm TiO2 microspheres with the initial 

discharge capacity of 110 mAh g-1 and 50 mAh g-1 (up to 20 cycles) (29). 

5.6 THERMAL CONDUCTIVITY AND ELASTIC MODULUS CHANGES OF 

ANTIMONY 

To measure the thermal conductivity switching of Sb, we used specially designed all-solid cells 

that are compatible with TDTR measurements of electrode materials with large volume 

expansion. For this setup, we Li2S:P2S5 solid electrolyte was used to replace the conventional 

liquid electrolyte. The Li metal counter electrode was replaced with the In-Li alloy counter 

electrode to suppresses the dendrite formation on the surface (30). This cell was made to keep 

pressurizing the electrode by Ti metal rods. Detail of the solid electrochemical cell is described 

in Chapter 2.5. 

 Figure 5.15 shows TDTR data of as-prepared (Sb) and lithiated (Li3Sb) 

Sb/Au/Al/SiO2/sapphire sample in the solid electrolyte cell.  We measured Λ = 18 W m-1 K-1 for 

as-prepared Sb, mostly from the electric contribution to thermal conductivity Λe = 12 W m-1 K-1 

calculated by Wiedemann Franz law: 
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 e LT =   (5.5) 

where σ is the electric conductivity of the Sb film measured by four probes, L is the Lorentz 

number (2.44 × 10-8 W Ω K-2). This large electrical contribution is originated from the overlap of 

valence and conduction bands at EF. The estimated lattice thermal conductivity of Sb ΛL = Λ – 

Λe = 6 W m-1 K-1. At the fully lithiated state, Li3Sb, we measured thermal conductivity of 0.6 

W m-1 K-1, which is close to Λmin = 0.43 W m-1 K-1. This dramatic thermal conductivity contrast 

r  30 can be attributed to the loss of crystallinity and electric conductivity during the phase 

transition between semimetal (Sb) and semiconductor (Li3Sb, Eg = 0.7 eV) (31, 32). The lattice 

thermal conductivity is also dramatically suppressed to 2.2 W m-1 K-1 at the crystalline Li3Sb 

(first principles) (33) compared with the lattice thermal conductivity of crystalline Sb (first 

principles)(34). A similar degree of thermal conductivity has been reported for semiconducting 

Sb compounds: 0.35 and 0.23 W m-1 K-1 for crystalline and amorphous Sb2Te3(35) and 0.65 

W m-1 K-1 for Zn4Sb3(36) due to i) the loose coupling of Zn and Sb oscillating different 

frequencies and ii) the interstitials (37). 

We observed that this dramatic thermal conductivity decrease is associated with the 

irreversible loss of C11. Figure 5.16 shows picosecond acoustic data and thermal conductivity of 

LixSb with respect to the Li+ ion contents x. x was calculated by the theoretical capacity and 

volume of the Sb film. Note that we used the classical heat capacity C = 3NkB = 2.36 J cm-3K-1 to 

calculate thermal conductivity of Li3Sb (
3Li Sb = 171 K) where both Sb and Li match well with 

the classical 3NkB = 1.38 J cm-3 K-1 and 1.9 J cm-3 K-1, respectively. This large heat capacity 

transition ΔC = 70% compared with ΔC < 10% of Fe2O3, NiO, TiO2 and V2O5 might add 

uncertainty to the measured thermal conductivity as TDTR measures thermal effusivity, 
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e C=  , of electrode materials. Pulverization of Sb with the formation of void and SEI could 

lead to the underestimation of thermal conductivity. During the lithiation process, the position of 

picosecond acoustic peak changed from 247 ps (x = 0) to 344 ps (x = 1), which returned to 239 

ps after the delithiation. The first two peaks were converted to C11 = 88 and 59 GPa, considering 

the theoretical volume expansion from Sb to LiSb. However, we were not able to calculate C11 at 

fully discharged and charged states as the thicknesses of fully discharged Li3Sb and charged Sb 

films could not be determined by SEM due to the severe structural degradation and mixing with 

SEI.  

 Figure 5.17A shows voltage and thermal conductivity of Sb during galvanostatic 

charge/discharge cycles. Compared with the irreversible thermal conductivity loss of conversion 

electrode materials at the first discharge, we observed a gradual thermal conductivity loss of Sb 

(delithiated) from 18 to 3.3 W m-1 K-1 for five cycles. This thermal conductivity reduction could 

be attributed to the pulverization of Sb film (200 nm) during repetitive charge/discharge cycling. 

We expect decreases in ΛL as the majority of phonons carrying heat in Sb and Li3Sb has a mean 

free path (MFP) between 10 nm to 100 nm (33, 34). Furthermore, pulverization of Sb leads to a 

decrease in electric conductivity due to the formation, breakage and growth of SEI on newly 

exposed, pulverized Sb particles during cycling(8, 38). Because the pulverization of Sb 

introduces new active Sb surface, we observed an increase in the discharge capacity of Sb and a 

continuous shift of potential hysteresis as cycle goes (Figure 5.17B-C). 

 We attributed this capacity loss with structural degradation to the gradual loss of thermal 

conductivity. To prevent the SEI growth and pulverization Sb film, we limited the discharge 

capacity up to x = 1.38 (250 mAh g-1)—the irreversible discharge capacity of the fully lithiated 



  127 

 

Li3Sb film at the first discharge. Figure 5.18A shows voltage and thermal conductivity of LixSb 

during galvanostatic charge/discharge cycles with a limited discharge capacity up to x = 1.38. As 

shown in Figure 5.18B-C, we observed irreversible discharge capacities of 190 and 109 mAh g-1 

during the first and the second discharges. Interestingly, thermal conductivity of Sb remained 

above 10 W m-1 K-1 during discharge reactions attributable to these irreversible capacities at the 

first and second cycles. We attribute these irreversible discharge capacities to the stable SEI film 

formation on the surface of Sb. The sum of irreversible capacity at the first and second 

discharges (299 mAh g-1) is also comparable with the irreversible discharge capacity of fully 

lithiated Li3Sb at the first discharge.  

With limiting discharge capacity, the volume expansion of Sb is also limited, thereby 

suppressing the severe pulverization of Sb with the continuous growth of SEI. Thus, we observed 

a stable thermal switching of Sb between 8.5–10.5 W m-1 K-1 (Sb) and 4.5–6 W m-1 K-1 (LixSb) 

for five cycles with much improved coulombic efficiencies (>90%). 

5.7 SUMMARY 

In summary, we explored the thermal, structural, mechanical and electrochemical properties of 

five electrode materials (Fe2O3, NiO, TiO2, V2O5, Sb) with respect to Li+ ion content. We 

performed a series of in situ TDTR and picosecond acoustic measurements to relate the 

thermal conductivity changes with speed of sound changes of the electrode materials. We 

observe contrasting behaviors between conversion (NiO, Fe2O3), intercalation (V2O5 and 

TiO2) and alloying (Sb) electrode materials. Conversion electrodes become thermally static 

materials preceded by an irreversible thermal conductivity loss of a factor of two to five 

during the first discharge. Intercalation materials showed reversible thermal conductivity 
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switching (up to a factor of 2) and elastic modulus switching with varying Li+ contents. The 

alloying Sb electrode showed the largest thermal conductivity switching by a factor of 20–30 

at the first few cycles, which gradually became thermal insulator regardless of Li+ ion contents. 

With a limiting discharge capacity, we were able to keep the thermal conductivity switching of 

Sb up to 5 cycles. This study emphasizes the role of structural and electrochemical stability of 

electrode materials in their thermal transport properties. 
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Figure 5.1. Effect of heat treatment on thermal conductivity of V2O5. A. The measured (open 

circles) and fitted (solid lines) TDTR curves of V2O5/Al/SiO2/sapphire sample before and after 

the heat treatment at 500 oC at air. B. the cross-sectional SEM image of V2O5/Al/SiO2/sapphire 

sample (after the heat treatment). 
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Figure 5.2. Cross-sectional SEM images of four electrode materials before and after 

lithiation/delithiation. The scale bar is 1 μm. 
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Figure 5.3. SEM images of the cross sections and the top surface of Sb/Al/SiO2/sapphire 

samples before and after the first lithiation. The scale bar is 1 μm. 



  132 

 

0 200 400 600 800

0

500

1000

1500

2000

2500
C

o
u

n
ts

Channel

 Overall

 O

 Al

 Si

 Fe

0 200 400 600 800

0

1000

2000

3000

4000
 Overall

 O

 Al

 Si

 Ni

C
o

u
n

ts

Channel

0 200 400 600 800

0

500

1000

1500

2000

2500

3000
 Overall

 O

 Al

 Si

 Ti

C
o

u
n

ts

Channel

0 200 400 600 800

0

500

1000

1500

2000

2500

3000
 Overall

 O

 Al

 Si

 V

C
o

u
n

ts

Channel

A B

C D

 

Figure 5.4. RBS data of conversion and intercalation electrode materials on Al/SiO2/sapphire 

substrates after the heat treatment. A. Conversion Fe2O3; B. Conversion NiO; C. Intercalating 

TiO2; and D. Intercalating V2O5.  
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Figure 5.5. XRD data of five electrode materials before and after lithiation/delithiation: A. 

Conversion Fe2O3; B. Conversion NiO: C. Intercalating TiO2; D. Intercalating V2O5; and E. 

Alloying Sb.  
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Figure 5.6. Ex situ TDTR analysis of conversion Fe2O3 electrode material A. Photographs of 

as-prepared, discharged and charged Fe2O3 films on Au/SiO2 substrates. B. Differential 

capacity analysis for Fe2O3. C. Picosecond acoustic data of the Al (107 nm)/Fe2O3
 (335 

nm)/Au (60 nm)/SiO2 sample. D. Measured and fitted ex situ TDTR data of Al (107 nm)/Fe2O3
 

(335 nm)/Au (60 nm)/SiO2 before and after the first discharge. 
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Figure 5.7. In situ picosecond acoustic analysis of the conversion NiO electrode. Measured in-

phase TDTR signal of NiO/Al/SiO2/sapphire substrate in the liquid electrolyte cell under 

electrochemical reaction with Li+ ions. The Li+ ion content, x, was calculated from the volume 

and the theoretical capacity of NiO (718 mAh g-1). 
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Figure 5.8. Thermal conductivity and elastic modulus of conversion Fe2O3 and NiO electrode 

materials with respect to x. A. Thermal conductivity and calculated C11 of Fe2O3 with varying 

x during lithiation/delithiation. B. Potential hysteresis of Fe2O3 during five galvanostatic 

charge/discharge cycles at the current of 300 mA g-1 with the voltage window from 2.5 to 0.5 

V vs. Li/Li+. C. Thermal conductivity and calculated C11 of NiO with respect to x during 

lithiation/delithiation. D. Potential hysteresis of NiO during galvanostatic charge/discharge 

cycling (5 cycles) at the current of 182 mA g-1 from 3.0 to 0.5 V vs. Li/Li+. Black dashed line 

indicates the irreversible capacity loss at the first discharge. Red dashed line indicates the 

theoretical C11. 
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Figure 5.9. In situ TDTR analysis of Fe2O3 and NiO electrode materials. A. Voltage (up) and 

thermal conductivity (down) of Fe2O3 during five galvanostatic charge/discharge cycling at the 

current density of 300 mA g-1 with the voltage window from 2.5 to 0.5 V vs. Li/Li+. B. Voltage 

(up) and thermal conductivity (down) of Fe2O3 during galvanostatic charge/discharge cycling 

(5 cycles) at the current density of 182 mA g-1 with the voltage window 3.0 to 0.5 V vs. Li/Li+. 

The current densities were calculated based on the weight and volume of each electrode 

material. 
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Figure 5.10. Cycling performance of Fe2O3 and NiO. Electrochemical charge/discharge 

capacity of A. Fe2O3 and B. NiO films on Al/SiO2/sapphire substrates during in situ TDTR 

measurements (Figure 5.9). Specific capacity was calculated based on weight and volume of 

each electrode material. 
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Figure 5.11. In situ picosecond acoustic analysis of the intercalating TiO2 and V2O5. with 

varying x. A. Measured in-phase TDTR signal of TiO2/Al/SiO2/sapphire substrate in the liquid 

electrolyte cell under electrochemical reaction with Li+ ions. x was calculated from the volume 

and the theoretical capacity of anatase α-TiO2 (165 mAh g-1). B. Measured in-phase TDTR 

signal of V2O5/Al/SiO2/sapphire substrate in the liquid electrolyte cell under electrochemical 

reaction with Li+ ions. x was calculated from the potential plateaus of V2O5. 
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Figure 5.12. Thermal conductivity and elastic modulus of intercalating TiO2 and V2O5 

electrode materials with respect to x. A. Thermal conductivity and calculated C33 of TiO2 with 

respect to x during lithiation/delithiation. B. Potential hysteresis of TiO2 during five 

galvanostatic charge/discharge cycles at the current of 50 mA g-1 with the voltage window 

from 3.0 to 1.3 V vs. Li/Li+. C. Thermal conductivity and calculated C33 of V2O5 with respect 

to x during lithiation/delithiation. D. Potential hysteresis of V2O5 during five galvanostatic 

charge/discharge cycles at the current of 100 mA g-1 with the voltage window from 4.2 to 1.9–

2.6 V vs. Li/Li+. V2O5 was activated up to x = 2 at the first discharge. For the following cycles, 

V2O5 was discharged to 2.6 (2nd cycle, x = 1) and 2.0 V (up to 5th cycle, x ≤ 2) vs. Li/Li+. 

Black dashed line indicates the irreversible capacity loss at the first discharge. Red dashed line 

indicates the theoretical C33. 
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Figure 5.13. In situ TDTR analysis of intercalating TiO2 and V2O5 electrode materials. A. 

Voltage (up) and thermal conductivity (down) of TiO2 during five galvanostatic 

charge/discharge cycles at the current density of 50 mA g-1 with the voltage window from 3.0 

to 1.3 V vs. Li/Li+. B. Voltage (up) and thermal conductivity (down) of V2O5 during five 

galvanostatic charge/discharge cycles at the current density of 100 mA g-1 with the voltage 

window from 4.0 to 1.9 (1st, x = 2), 2.6 (2nd, x ≤ 1) and 2.0 (3rd to 5th, ≤ 2) V vs. Li/Li+. Current 

densities were calculated based on the weight and volume of each electrode material. 
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Figure 5.14. Cycling performance of TiO2 and V2O5. Electrochemical charge/discharge 

capacity of A. LixTiO2 and B. LixV2O5 films on Al/SiO2/sapphire substrates up to x = 1 and x 

= 2 during in situ TDTR measurements (Figure 5.13). Note that the second cycle of LixV2O5 

was performed at x ≤ 1 and the rest of cycles were performed at ≤ 2 for LixV2O5. Specific 

capacities were calculated based on the weight and volume of each electrode material. 
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Figure 5.15. Measured and fitted TDTR data of as-prepared and discharged 

Sb/Au/Al/SiO2/sapphire. 
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Figure 5.16. Thermal conductivity and elastic modulus of the alloying Sb electrode material 

with respect to x. A. Measured in-phase TDTR signal of Sb/Au/Al/SiO2/sapphire substrate in 

the solid electrolyte cell under electrochemical reaction with Li+ ions. x was calculated from 

the volume and the theoretical capacity of Sb (660 mAh g-1). B. Thermal conductivity and 

calculated C11 modulus of Sb with respect to x during electrochemical cycling with Li+ ions. 

Black dashed line indicates the irreversible loss of capacity at the first discharge. Red dashed 

line indicates the theoretical C11 of Sb. 
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Figure 5.17. In situ TDTR analysis of the alloying Sb electrode material. A. Voltage (up) and 

thermal conductivity (down) of Sb during five galvanostatic charge/discharge cycles. B. 

Electrochemical charge/discharge capacity and C. potential hysteresis of Sb during five 

galvanostatic charge/discharge cycles at the current of 200 mA g-1 with the voltage window 

from 1.5 to 0.5 V vs. Li/Li+. 
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Figure 5.18. In situ TDTR analysis of the alloying Sb electrode material with a limited 

discharge capacity (x ≤ 1.38, 250 mAh g-1). A. Voltage (up) and thermal conductivity (down) 

of Sb during five galvanostatic charge/discharge cycles. The discharge capacity is limited to 

the 250 mAh g-1. Sb was charged up to 1.5 V vs. Li/Li+ at the current density of 250 mA g-1. B. 

Electrochemical charge/discharge capacity and C. potential hysteresis of Sb five galvanostatic 

charge/discharge cycles with a limited discharge capacity. 
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CHAPTER 6: CONCLUSIONS AND PERSPECTIVES 

6.1. SUMMARY 

In summary, I have shown novel thermal switching materials (TSMs) that can change their 

thermal conductivity states in response to external stimuli, such as magnetic fields, 

electromagnetic waves and electrochemical reaction with Li+ ions. These external stimuli caused 

physical and chemical property transitions, resulting in atomic and molecular-level transitions 

associated with thermal conductivity switching between high (Λhigh) and low (Λlow) states. 

Throughout the dissertation, I presented thermal conductivity switching of (i) liquid crystal 

networks (LCNs) by controlling their mesogen group alignments by magnetic field, (ii) 

azopolymers by modulating interchain π-π bonding strength by light, and (iii) Li-ion battery 

electrode materials (Fe2O3, NiO, TiO2, V2O5 and Sb) by electrochemical reactions with Li+ ions.  

 In Chapter 3, I reported thermal switches based on the control of molecular ordering of 

liquid crystal networks (LCNs) by a magnetic field. I presented the structure-property 

relationship connecting the thermal conductivity and the molecular orientation of LCNs with r = 

Λhigh/Λlow = 1.5 and Λhigh = 0.34 W m-1 K-1 and Λlow =0.22 W m-1 K-1. This thermal conductivity 

switching is based on the alignment of the mesogen groups controlled by a magnetic field at 

above the glass transition temperature (65 oC) over the switching time τ = 10 min. The switching 

time is highly dependent to the reorientation kinetics with the relaxation time ~ 2μ0η/ΔχB2, where 

μ0 is permeability of vacuum, η is the rotational viscosity, Δχ is the anisotropy of the magnetic 

susceptibility of the mesogen, and B is the applied magnetic field.  
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Since the limiting factor for thermal switching is the viscous drag against the collective 

rotation of mesogen units, I designed a much faster thermal switching system by introducing 

light-sensitive azobenzene groups to polymer chains (azopolymer) in Chapter 4. The cis-trans 

photoisomer transition of azobenzene moieties triggered an unprecedented reversible crystal-to-

liquid phase transition of azopolymer under ultraviolet (UV) and green light. The azopolymer 

showed r  3.5 with Λhigh = 0.35 W m−1 K−1 and Λlow = 0.10 W m−1 K−1. This 3.5-fold thermal 

conductivity change is attributed to a spontaneous chain alignment modulated by the interchain 

π-π network transitions. The high thermal conductivity state of the crystalline phase resulted 

from the formation of well-ordered lamellar and spontaneous alignment of π-π stacked trans-

azobenzene groups under ambient condition. The low thermal conductivity state was driven by 

the melting of the cis-azobenzene polymer where UV irradiation reduced the strength of the 

interchain π-π network. Subsequent exposure to green light restored the crystalline order and 

high thermal conductivity at τ = 10 seconds at room temperature.   

In Chapter 5, I described thermal conductivity and elastic modulus change of five Li-ion 

battery electrode materials. The thermal conductivity of the electrode materials significantly 

changed with respect to the Li+ ion contents, the number of charge/discharge cycles and the 

electrochemical reaction mechanisms: conversion, intercalation and alloying. Conversion 

electrodes exhibited a volume change of 200 % along with the formation of solid electrolyte 

interphase (SEI) passivation layer and the irreversible amorphization during the first lithiation 

caused by Li-ion induced lattice disordering. These structural degradations resulted in a 

significant, irreversible thermal conductivity loss of r = 2.5 (NiO) and 7.5 (Fe2O3). After the first 

lithiation, the thermal conductivity of NiO and Fe2O3 remained almost constant regardless of Li+ 

ion content.  
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On the contrary, intercalating TiO2 and V2O5 electrodes showed a reversible thermal 

switching performance (r  1.6–1.8,) up to 5 cycles without loss of the crystalline structure. 

Interestingly, the largest r  20-30 was observed for the alloying Sb electrode between the 

semimetal (Sb) to semiconductor (Li3Sb) states for a limited number of cycles. To the best of my 

knowledge, this is the highest value reported among thermally switching materials. All electrode 

showed a thermal switching on τ = 1–2.5 hours (C-rate: 0.2–1 C). By subjecting Sb to a limited 

discharge capacity (Li1.38Sb), I observed enhanced cyclability with reversible thermal switching 

property. Figure 6.1 summarizes the thermal conductivity contrast r and the low thermal 

conductivity states (mostly lithiated) of electrode materials. As low(1 )r = −   , the solid 

diagonal guidelines in Figure 6.1 help to understand the absolute thermal conductivity changes of 

each electrode. Intercalating LiCoO2 (1), black phosphorous (Lix-P) (2) and bulk and thin MoS2 

(3) were plotted for comparison as well.  

In conclusion, I presented novel thermal switching materials that exhibited a wide range 

of thermal switching properties: from the lowest thermal conductivity Λlow = 0.1 W m-1 K-1 (cis-

azopolymer), to the highest thermal conductivity Λhigh = 18 W m-1 K-1 (for Sb); from the lowest r 

= 1.5 (LCNs), to the highest r = 30 (LixSb); and from the fastest τ = 10 seconds (cis-trans 

azopolymer transition), to the slowest τ = ~ hours (Li-ion electrode materials with 0.2 C-rate). 

Figure 6.2 summarizes thermal switching ratio r and switching rate τ-1 of thermal switching 

materials. Note that the thermal switching performance, Q, the normalized thermal conductivity 

change ΔΛ/Λlow at a given time Δt, is defined as 

 
low

1 1r
Q

t 

 −
= =

 
  (6.1) 
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 The solid diagonal lines in Figure 6.2 provide a guideline to compare the thermal 

switching performance of each TSMs. For example, azopolymer lies above the line Q = 10 s-1, 

suggesting that the azopolymer can change the thermal conductivity more than 100% per second 

while intercalating TiO2 and LiCoO2 lie on the line Q = 104 s-1, indicating that they exhibit 

thermal conductivity change of ~1% per second. 

6.2 PERSPECTIVE OF THERMAL SWITCHING MATERIALS 

Contrary to traditional materials having inherently immutable thermal properties, TSMs are 

novel materials that can change their thermal conductivities responding to external stimuli, such 

as electric and magnetic fields, and electromagnetic waves. I have shown examples of effective 

control of the thermophysical properties of polymers and Li-ion battery electrodes which show 

structural changes in electronic, atomic and/or molecular levels associated with the thermal 

conductivity. These results could provide insight for the interpretation of preceding studies on 

thermal properties of materials, broadening our understanding of TSMs for the advance in 

electronics, material science, and other fields of study.  

Possible applications of thermal switching polymers are micro-thermal switches, which 

can focus cooling power on critical hot spots and enable thermal routing in the device, and 

thermal energy storage system utilizing the conversion of thermal energy. Study on thermal 

switching Li-ion battery electrode materials could help to build a database of dynamic thermal 

properties of electrode materials under electrochemical cycling, providing electrochemical and 

other pivotal thermo-physical properties of various Li-ion battery electrode materials. Prediction 

based on the database could offer valuable insights for designing Li-ion batteries with enhanced 
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thermal management capacity, minimizing any potential problems related to thermal runaway 

(exothermic breakdown) of Li-ion batteries (4-7). 
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6.3 FIGURES 
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Figure 6.1. Thermal conductivity of the low thermal conductivity state (Λlow) and the 

switching ratio (r) of the electrode materials. Reference data from †LiCoO2(1), ‡LixP(2) and 

*MoS2 (3). The solid diagonal lines are contour lines with the absolute thermal conductivity 

changes, ΔΛ = Λhigh – Λlow.  
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Figure 6.2. Thermal conductivity switching ratio (r) and switching rate τ -1 of TSMs studied in 

this dissertation. The solid diagonal lines are contour lines with the thermal switching 

performance, Q = (ΔΛ/Λlow)⋅τ-1, which is the ratio of thermal conductivity change per second.  
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APPENDIX A. THERMAL CONDUCTIVITY LIMIT OF THERMALLY SWITCHING 

POLYMERS 

In Chapter 3 and 4, I presented thermal conductivity switching of liquid crystal networks (LCNs) 

and azobenzene-functionalized polymer (azopolymer). These thermal switching polymers 

showed thermal conductivity switching near the lower limit of polymers (Λlow = 0.1 – 0.2 W m-1 

K-1). Therefore, the effective way to enhance r is to achieve higher thermal conductivity at the 

high thermal conductivity state (Λhigh). So far, the observed r and Λhigh of LCNs and azopolymer 

 1.5–3.5 are similar to thermal conductivity changes of polydomain n-alkanes with comparable 

lengths (n = 9 ~ 19) with r    2 ~ 3 (Λhigh ~ 0.4 W m-1 K-1) during melting transition (A1, A2). 

With a larger order parameter S and smaller isotropic component fraction Ф, I expect that 

r could be as high as 100, which is the anisotropic thermal conductivity ratio (Λin-plane/Λouf-of-plane 

of polymer fibers(A3, A4). However, polymer fibers with the high order parameter (S > 0.9) 

would expense chain mobility, resulting in poor kinetics at room temperature. Practical 

improvement of r could be achieved by a nonthermal solid-liquid phase transition from thermally 

insulating liquid phase to thermally conducting solid (crystalline) phase, which enables physical 

displacement and rearrangement of molecules at the liquid phase at a reasonable time scale. So 

far, Azopolymer is the only system allowing this solid-liquid phase transition at tens of second.  

In collaboration with Xingfei Wei and Dr. Tengfei Luo at the University of Notre Dame, 

we used molecular dynamics (MD) to simulate the theoretical thermal conductivity limit of 

azopolymer and compared with the effective medium theory(A5). MD predicts the thermal 

conductivity in the side-chain direction of azopolymer crystal as 0.51 W m-1 K-1, which is 
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consistent with the thermal conductivity of azopolymer crystal (Λcrystal = 0.48 W m-1 K-1) without 

defects or amorphous phase (Ф = 0). The theoretical thermal conductivity of azopolymer crystal 

is calculated as (see Chapter 3.5) 

 
crystal 1 1

amorphous(1 )



− −
 =

 − − 
  (A.1) 

where Λ = 0.35 W m-1 K-1, Λamorphous = 0.19 W m-1 K-1 (see Chapter 4.5) and Ф = 76 % 

determined by polarized optical microscopy (POM) images of azopolymer spherulites.  
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