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Abstract

Dynamic thermal management plays a very important role in the design and

development of electro-thermal systems as these become more active and

complex in terms of their functionalities. In highly power dense electronic

systems, the heat is concentrated over small spatial domains. Thermal energy

dissipation in any electrified system increases the temperature and might

cause component failure, degradation of heat sensitive materials, thermal

burnouts and failure of active devices. So thermal management needs to be

done both accurately (by thermal monitoring using sensors) and efficiently

(by applying fluid-based cooling techniques). In this work, two important

aspects of dynamic thermal management of a highly dense power electronic

system have been investigated.

The first aspect is the problem of optimal temperature sensor placement

for accurate thermal monitoring aimed toward achieving thermally-aware

electrified systems. Strategic placement of temperature sensors can improve

accuracy of real-time temperature distribution estimates. Enhanced temper-

ature estimation supports increased power throughput and density because

Power Electronic Systems (PESs) can be operated in a less conservative man-

ner while still preventing thermal failure. This work presents new methods

for temperature sensor placement for 2- and 3-dimensional PESs that 1) im-

prove computational efficiency (by orders of magnitude in at least one case),

2) support use of more accurate evaluation metrics, and 3) are scalable to

high-dimension sensor placement problems. These new methods are tested

via sensor placement studies based on a 2-kW, 60Hz, single-phase, Flying

Capacitor Multi-Level (FCML) prototype inverter. Information-based met-

rics are derived from a reduced-order Resistance-Capacitance (RC) lumped

parameter thermal model. Other more general metrics and system mod-

els are possible through application of a new continuous relaxation strategy

introduced here for placement representation. A new linear programming
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(LP) formulation is presented that is compatible with a particular type of

information-based metric. This LP strategy is demonstrated to support ef-

ficient solution of finely-discretized large-scale placement problems. The op-

timal sensor locations obtained from these methods were tested via physical

experiments. The new methods and results presented here may aid the de-

velopment of thermally-aware PESs with significantly enhanced capabilities.

The second aspect is to design optimal fluid-based thermal management

architectures through enumerative methods that help operate the system ef-

ficiently within its operating temperature limits using the minimum feasible

coolant flow level. Expert intuition based on physics knowledge and vast

experience may not be adequate to identify optimal thermal management

designs as systems increase in size and complexity. This work also presents a

design framework supporting comprehensive exploration of a class of single

phase fluid-based cooling architectures. The candidate cooling system archi-

tectures are represented using labeled rooted tree graphs. Dynamic models

are automatically generated from these trees using a graph-based thermal

modeling framework. Optimal performance is determined by solving an ap-

propriate fluid flow distribution problem, handling temperature constraints

in the presence of exogenous heat loads. Rigorous case studies are performed

in simulation, with components having variable sets of heat loads and tem-

perature constraints. Results include optimization of thermal endurance for

an enumerated set of 4,051 architectures. In addition, cooling system archi-

tectures capable of steady-state operation under a given loading are identi-

fied. Optimization of the cooling system design has been done subject to a

representative mission, consisting of multiple time-varying loads. Work pre-

sented in this thesis clearly shows that the transient effects of heat loads are

expected to have important impacts on design decisions when compared to

steady state operating conditions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Over the decades, there has been tremendous progress throughout the world

to move towards more electrification of systems with the discovery of wide-

band gap type semiconductor devices, compact battery storage systems,

power-dense and superconducting electric machines, converters, and advanced

sensing materials. These advances were made in several fields, including, but

are not limited to, industrial, commercial, agricultural, and domestic appli-

cations, which are the prime benefactors of this revolution [4, 5]. Especially,

the rapid pace at which the aircraft and the automobile sectors are electrify-

ing their ground systems in order to lower the rate of fossil fuel consumption

and emission of green house gases like CO2 and NOx is quite remarkable.

The major problem with transportation depending on oils is, it cannot be

sustainable over a long period of time considering the rate at which both the

on-road and off-road transportation systems are being manufactured. This

raises the desperate need to find a reliable, inexpensive and clean source of

power to support the modern transportation systems. Some of the recent

advances made in the aircraft industry are shown in Fig. 1.1.

1.2 Electrification of Mobile Transportation Systems

System-level efficiency is a key advancement needed for the aviation, ma-

rine, and automotive industries.This efficiency depends a lot on the weight,

volume, and reliability of these systems. For example if we consider the

automotive industry, the U.S. Environmental Protection Agency (EPA) an-

nounced new fuel efficiency standards in the year 2012 [6], which state that
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Figure 1.1: Some recent concepts of hybrid electric aircrafts and universally
electric aircrafts [1].

55 miles per gallon needs to be the average fuel economy of passenger cars

and light weight trucks by the year 2025. In order to reach such standards

quickly, the new generation vehicles need to be highly efficient to produce

a significant reduction in their average fuel usage. The internal combustion

engines (ICE) at present have an average efficiency of less than 25% and

the ambitious goals set by government agencies cannot be achieved by the

ICE technology improvement alone. Currently, switching from conventional

ICE-based vehicle power-trains with the support of high-density power elec-

tronic converters, electric machines, and electric energy storage systems is

an important element of an overall strategy to reach these targets of higher-

efficiency and high performance. Similarly, ICE technology depends a lot on

the consumption of fossil fuels, which has a direct impact on the environment.

Eco-friendly global organizations are coming up with clean energy policies

to be abided by several countries that restrict the usage of more fuel-based

engine systems. The promising solution seems to be electrification because of

it being an efficient and low-pollution energy source of transportation when

compared to the tonnes of toxic gases released into the atmosphere by mil-

lions of fossil fuel powered vehicles every year around the world.

Furthermore, many subsystems in the aviation industry [7] are being con-

verted to purely electrical systems from mechanical, pneumatic, and hy-

draulic domains as lighter aircrafts are more efficient and use less fuel. This

new design concept is often referred to the as the More Electric Aircraft

(MEA) design. An interesting example of MEA is the set of changes that

2



Figure 1.2: Power Assembly Technologies are moving towards System
Integration in All Electric and Hybrid-electric vehicles. (Courtesy of Yole
Development).

were made recently in the commercial aircrafts with the elimination of the

integrated drive generator (IDG). Previously, the speed of the jet engine was

controlled using IDG by mechanical means, but now the engine speed is

controlled via a gearbox by changing the frequency of electric power. This

greatly helped in reducing weight through the removal of now unnecessary

mechanical elements in the new aircraft architecture system. A More Electric

Aircraft Conference [MEAC] was held at Toulouse, France, Europe in Febru-

ary (2015) and the members who attended identified several advantages of

a MEA type design. Firstly, MEA support redundant power options, such

as electric generators and battery systems, with the help of a distributed

power system. Redundant electrical power systems can involve less mass

than redundant hydraulic power systems. Second, effective weight reduction

is achieved by the elimination of mechanical elements, such as pumps, tanks,

reservoirs and tubing. Third, most pneumatic and hydraulic equipments

must be tested before installation, whereas an aircraft’s Electrical Wiring

Interconnection System (EWIS) can be checked during the installation pro-

cess. Lastly, it is easier to integrate several other subsystems when utilizing

3
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increasing electrification (for example, Health Utilization and Monitoring

systems (HUMS)). Significant related improvements have also been made in

the Airbus Boeing B787, making it the most electric commercial aircraft due

to its 1.3 MW electrical power generating capacity. Interestingly, this led

to the complete elimination of the pneumatic system from its architecture.

Figures 1.3 and 1.4 show the difference in power distribution patterns be-

tween a conventional aircraft system that has a central power distribution

architecture (Fig. 1.3) and a more electric aircraft system (Fig. 1.4), utilizing

a remote power distribution network.

A significant number of developments have been made over the past 25

years, specifically in the field of mobile transportation systems toward achiev-

ing more electric aircraft (MEA), all electric ships (AESs), hybrid electric ve-

hicles (HEVs), plug-in electric vehicles (PEVs), and battery electric vehicles

(BEVs), of which a few developments in these systems have been described

earlier.

Figure 1.3: Conventional Aircraft Architecture Design with a Central
Power Distribution System obtained from Ref. [2].
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Figure 1.4: More Electric Aircraft Architecture Design with Remote Power
Distribution System in Boeing B787 Commercial Aircraft obtained from
Ref. [2].

1.3 Need for dynamic thermal management

The previous section clearly identifies some of the major advantages of elec-

trifying systems on a larger scale. Although electrification has the potential

to meet the needs of modern industries, it is a well-known fact that any elec-

tric system dissipates thermal energy due to conduction losses occurring in

its circuits and electronic devices. As systems increase in volumetric power

density, heat is dissipated within more localized regions, leading to increased

temperatures. Temperature has a direct effect on the operating efficiency

of any system, and also may lead to system failure. An important design

challenge for dense electronic systems is to carefully manage the heat losses
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in such a way that the system remains as efficient as possible and to provide

system reliability. High temperature can lead to failure of sensitive compo-

nents, circuit breakdown, electronic device degradation, thermal stresses in

materials, and sometimes even permanent failure. All these phenomena have

a direct impact on system reliability and durability.

Dynamic thermal management (DTM) systems perform thermal monitor-

ing and apply cooling techniques to help the system operate at temperatures

that maintain reliability and efficiency. In general, any DTM technique serves

two purposes: 1) ability to take control action, and 2) to prevent failure. The

criticality of a DTM depends on the system and the type of application. For

instance, in the case of microprocessors and computer chips that have mil-

lions of transistors on them, thermal failure of a few hundred transistors may

not be significantly detrimental. In other safety-critical systems, such as an

aircraft or an automobile, failure of any subsystem due to heat can at best

require an expensive replacement and at worst may harm passengers or oth-

ers. This may bring infamy to the original equipment manufacturers (OEM)

at large causing significant market losses. Other factors increase the diffi-

culty of providing effective thermal management for dense power electronic

systems, including the cost and time required to validate complex systems

in realistic conditions.

Considering all the drawbacks mentioned above, the task of dynamic ther-

mal management becomes more challenging in the case of highly power dense

systems, owing to the fact that their operating powers are in the range of

100s of kilowatts (kW) to 100s of megawatts (MW). Systems operating at

high power levels dissipate larger amounts of heat to their surrounding envi-

ronment. Electronic design engineers now face a two-sided problem in which

not only does the system needs to be lighter and more compact, but it should

also be able to accommodate sensor networks and cooling circuitry for per-

forming efficient DTM. Moreover, the current state of the art systems also

need to incorporate manufacturing and packaging constraints to meet the

requirements of the industries. DTM allows engineers to design systems that

not only operate within safety limits, but also push the system in achieving

higher levels of performance. For instance, in an aircraft there are different

subsystems functioning at various time scales. Unlike microprocessors and

computer circuit boards where the system is effectively functioning in steady

state, aircraft and automobiles (both at system and component level) are

6



subject to transient loads at time scales that impact thermal performance.

The DTM techniques must accomodate the transient nature of the system,

providing proper control action to manage thermal losses. Sometimes cool-

ing circuits must be designed in such a way that they account for maximum

power dissipation scenarios, although they rarely occur. Sizing DTM systems

for extreme events has a direct correlation with the cost and complexity of

the overall system. In order to achieve effective DTM, novel system level

integration and design methods must be developed to identify-optimally per-

forming solutions.

1.4 Thesis Overview

The remainder of the thesis is organized as follows. Chapter 2 presents some

of the significant efforts related to optimal sensor placement in various fields,

and describes several related terms and methodologies commonly used for

sensor placement. A prototype power inverter system is used in the sensor

placement studies and modeling techniques for this inverter are discussed in

Chapter 3. The novel and efficient algorithms for optimal sensor placement

and the experimentally validated sensor placement results are also presented

in Chapter 3. Chapter 4 discusses cooling system architecture design prob-

lems. Chapter 5 discusses a specific dynamic system design optimization

problem for flow control in detail, followed by cooling system architecture

case studies. Chapter 6 presents the conclusion and future work items.

The following overall objectives have been accomplished:

1. Developed integrated system design tools and algorithms for dynamic

thermal management and fault detection. Developed new optimization

methods for simultaneous control of electrical and thermal flows.

2. Investigated design-appropriate electro-thermal models to support sys-

tem optimal designs or architectures.

3. Created and tested efficient new sensor placement strategies for 2D and

3D power electronic systems, and thereby expanded the complexity of

sensor placement problems that can be solved efficiently.
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4. Investigated critical and failure zone based sensor placement for fault

diagnosis.

5. Studied optimal system level coolant flow control for multiple cooling

system design architectures to support discovery of the capabilities and

trade-offs associated with unprecedented system architectures.
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CHAPTER 2

OPTIMAL SENSOR PLACEMENT

2.1 Motivation

This chapter explains in detail the concept of optimal sensor placement

(OSP). As discussed earlier, DTM [8] is only valuable as long as accurate

thermal estimation of the system is performed. Without accurate thermal

monitoring, dynamic temperature control will not be effective, which in-turn

defeats the purpose of DTM. Thermal monitoring is performed by using a

number of temperature sensors in a system. Modern mobile systems con-

tain complex power electronic systems for control, monitoring, user interfac-

ing, and similar tasks, such as measurement and diagnostics, active thermal

management, and electric vehicle charging. Increasing the efficiency, per-

formance, reliability, and cost effectiveness of these mobile systems requires

increased electrical system power density (both gravimetric and volumetric).

Density must be enhanced while managing conflicting objectives, such as the

cost, reliability, and efficiency of the electrical system. Of particular concern

with dense power electronic systems (PESs) is the development of potentially

high temperatures during operation. High temperature can lead to failure of

sensitive components, circuit breakdown, electronic device degradation, ther-

mal stresses in materials, and sometimes even permanent failure. All these

have a direct impact on the system reliability and durability. The potential

of component failure due to high temperature limits the power throughput,

and therefore power density.

To perform active thermal management [8], accurate thermal monitor-

ing [9] is essential. Critical regions where temperature-sensitive materials or

components are present need to be monitored very carefully. The system-

level criticality depends on the type of application; for example, breakdown

or thermal burnout of a computer chip or microprocessor will not cause catas-

9



trophic harm in many cases, but such failures can prove to be lethal in other

applications, such as aircraft. Especially in aircraft and automotive applica-

tions the hours of operation and expected lifetime are very long compared to

smaller power electronic applications. Hence, accurate online estimation of

the dynamic thermal profile of these systems is very important for two main

reasons:

1. Thermal management: First and foremost, it is necessary to perform

dynamic thermal management to keep the entire system well within its

limiting temperatures. For example, knowing the temperature distri-

bution via sensors and estimators can help inform how to direct coolant

or throttle power throughput to maintain desirable system and compo-

nent temperatures, while achieving high system performance.

2. Fault detection: Secondly, faults, burnouts, or degraded components

can be detected early, preventing failure and supporting effective sys-

tem maintenance.

Accurate thermal estimates not only help in supporting active 1 thermal

management and cooling of these devices, but also help increase power den-

sity by allowing components to be pushed closer to failure (reduced safety

factors) while maintaining reliable operation. The goal here is to create fail-

safe, thermally-aware PESs.

High-accuracy spatial dynamic thermal system profiles could be achieved

using a large number of temperature sensors that cover the entire PES. How-

ever, this is an impractical solution for most real systems as it is expensive not

only in terms of sensor cost, but also fabrication, power for sensors, as well as

the computational cost of monitoring the data and sensor health in real-time.

In addition, sensor networks can interfere with packaging, circuit design, and

system reliability. Sensors can also interfere with beneficial thermal trans-

port that would occur in their absence, thereby affecting both thermal per-

formance and the accuracy of parameters estimated before adding sensors.

Here we explore the optimal tradeoff between accurate online estimation and

the cost (and other detriments) of an increased number of sensors. Optimal

sensor placement needs to be performed strategically considering the various

1Active in this context refers to using an external source such as a pump or a fan
to control the system temperatures compared to passive methods such as a heat sink
employing natural convection.
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modes of system operation, overall system performance, critical locations for

accurate temperature estimates, reducing the number of sensors, and other

design considerations. The methods presented here are useful for non-trivial

sensor placement problems where full coverage, expert intuition, or trial and

error methods are not effective. Of particular interest here is improving the

computational efficiency of sensor placement methods, as well as supporting

the use of performance metrics more aligned with overall system utility than

traditional information-based metrics.

2.2 Related work

Many researchers in the past have studied and developed strategies and al-

gorithms for optimal sensor placement and sensor network layout design over

wide ranges of applications. Any real time system requires monitoring and

measurement of its parameters over time to control its operation. Several

studies on optimal sensor placement were done for structural damage detec-

tion [10], especially in space structures [11], composite structures [12] and in

the field of structural health monitoring (SHM) using modal assurance cri-

terion (MAC) [13,14], state estimation and observability [15], wireless senor

networks [16],and through Fisher Information matrix [17,18] for maximizing

the information from sensors. In case of smart structures, optimal number of

piezoelectric sensors and actuators were placed for maximizing various opti-

mization criteria like observability and controllability [19], and for vibration

control of plates using Linear quadratic regulator (LQR) based performance

metric [20]. Sensor placement studies were also extended to the design of

energy efficient buildings for monitoring temperature and indoor air qual-

ity [21] and in wind studies [22] to achieve outdoor thermal comfort and

reduce energy consumption.

In addition to the above mentioned applications related to various kinds of

structures, optimal sensor placement has been used for monitoring soil mois-

ture [23] , remote sensing in precision agriculture [24,25], in monitoring wind

and water quality [26],and for leak detection and fault diagnosis in water dis-

tribution networks [27–29]. In chemical process industries, concentration of

the reactants and gases, temperatures in encased battery cells [30], distilla-

tion columns and reacting mixtures [31] must be measured to maintain the
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specific operating conditions in order to obtain the desired products. For

state estimation of different quantities like concentration and temperature,

many gramian based observability criteria [32–36] have been used to place

sensors optimally in tubular reactors [37], batch and reactive [31] distilla-

tion processes. Apart from passive sensor placement for health monitoring

in aircraft gas turbine engines [38] , robot localization [39] and underwater

vehicle localization [40], mobile sensor networks are used for studying motion

co-ordination strategies and target tracking applications [41]. Sensor place-

ment has also been studied in larger applications like thermal monitoring of

hot servers in data centers [42], road transportation networks [43], over wide

geographical regions in environmental and habitat monitoring [44].

Advances in power electronic systems: Several optimal sensor place-

ment studies have been performed in thermal monitoring [45, 46] of Low

Power-Density Electronics (LPDEs) like microprocessors [47–51], multi-core

processors, Network-on Chip (NoC), System on chip (SoC) devices [45, 46,

52–54], data centers [55] and cyber physical systems (CPSs) [56] for dy-

namic thermal management [47, 48, 52, 57]. Previous work related to op-

timal sensor placement in power electronics was performed using conven-

tional methods like uniform or non-uniform allocation [49], by grid-based or

clustering [47,52,58] techniques using distance minimization and greedy ap-

proaches [51,58], heuristics and information based estimation [50,59,60], for

example, entropy-based [53] metrics.

Despite significant achievements, optimal sensor placement in high-density

power electronic systems (HDPEs) remains a challenging task. While sen-

sor placement has been studied extensively for microprocessors and other

LPDEs, high power density electronics (HPDEs) have unique requirements.

Mature placement strategies for LPDEs, such as coverage, connectivity, and

heuristic-based techniques, cannot be extended readily to HPDE sensor place-

ment decisions. Microprocessors are smaller in size than power electronics

systems used for mobile transportation, power distribution and transmission,

and due to system architecture it is often sufficient to focus temperature mon-

itoring on hot spots. LPDEs often have just a single operating mode (fixed

set of operating conditions), simplifying requirements. HPDEs involve mul-

tiple operating modes (switching levels), significantly higher power levels,

distinct system architectures, and often higher cost. Differences also impact

reliability considerations. If some of the millions of transistors on a micropro-
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cessor fail, it can remain functional due to redundancy. In contrast, a HPDE

device, such as a power inverter, is composed of relatively fewer function spe-

cific components. Thus, failure of just one component will not only impact

functionality but overall system level performance. Some HPDEs are safety-

critical devices (e.g., automotive and aircraft applications), so reliability is

paramount. Enhancing the effectiveness of HPDE thermal monitoring sys-

tems for improved reliability and power density motivates the development

and investigation of new design methods specific for this class of systems.

Many established sensor placement design strategies are driven by met-

rics that are information-based, such as observability. Information-based

performance metrics are effective tools for observer design and estimation

purposes, but are normally based on simplified system models to aid real-

time computational efficiency. These approximate metrics cannot account

for the full range of phenomena that may be important factors in assess-

ing likelihood of thermal failure, especially for HPDEs. More sophisticated

measures are needed to support off-line design decisions such as sensor place-

ment. These should account for more detail than the reduced-order models

utilized for observer implementation, including spatially-varying properties

(component/switch locations, geometry, material properties, etc.).

2.3 Objectives and Contributions

One core objective of this work related to sensor placement is to demonstrate

the need to accurately estimate the dynamic thermal profiles of high-density

power electronic systems by utilizing a model-based estimation technique

(created in previous work [3,61]) in optimal sensor placement. In addition, we

present efficient sensor placement algorithms that are accurate and scalable

to systems of various sizes. Finally, we validate the methods used based

on controlled experiments. The primary contributions of this work are as

follows:

1. To demonstrate the importance of using design-appropriate models that

support the use of more accurate evaluation metrics. The lumped-

parameter thermal model used in this work is shown to be well-suited

for performing accurate dynamic thermal estimation.
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2. Here a fundamentally new sensor placement technique is created and

tested that utilizes a continuous relaxation inspired by a topology op-

timization method known as SIMP (Solid Isotropic Micro-structures

with Penalization). This technique is compatible with very general

objective functions for sensor placement.

3. Developed a new sorting algorithm for optimal sensor placement using

a linear programming (LP) formulation. This strategy is orders-of-

magnitude more efficient than alternative approaches, and is scalable

to large-scale/fine-mesh discretized sensor placement problems.

4. Methods presented here support cases where temperature requirements

vary spatially, such as in regions containing critical or sensitive compo-

nents. Temperature estimation accuracy requirements can be tailored

spatially to more efficiently allocate sensor locations.

5. Experimental validation of the optimal sensor placement design frame-

work presented here using a prototype inverter.

2.4 Important terms related to sensor placement

• Thermally-aware electrified systems - These are power electronic

systems of various types spanning from on-chip microprocessors, electro-

mechanical devices, to power inverters and electric machines that have

the sensing (via thermal estimation using sensors) and control (via

software-based algorithms to maintain frequency and rating of electrical

power) capabilities to maintain the system well within its desired tem-

perature conditions. Basically from the name itself it is clear that these

systems are aware of their dynamic spatial thermal profiles and take

support of thermal management techniques to prevent device degra-

dation or component failure. Not only cooling, but sometimes some

devices need to be maintained at higher temperatures to make their

operation more efficient. In either case, thermally-aware designs help

achieve the system functionalities by overcoming temperature-related

hindrances. It is sometimes referred to as temperature-aware design.
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• Sensors and actuators - Sensors are devices that help detect or mea-

sure parameters of a physical environment based on some input. Good

sensors do not interfere with the measured property, and their sensi-

tivity relies the a lot on how accurately they can detect a change in

output to the input parameters. Some examples are temperature sen-

sors, pressure sensors, current sensors and so on. Actuators are devices

or components that are responsible for moving, oscillating, rotating or

controlling a system mechanism. They act on a control signal and per-

form a mechanical or other physical action. Actuators use a source

of energy that could be hydraulic, electrical, or pneumatic in nature.

Example include fluid valves, piezoelectric devices, etc.

• Optimal sensor placement - It refers to embedding or placing a

minimum numbers of sensors at ideal locations on a system, subsystem,

or a component to provide real-time information of various physical

parameters. Some well-known physical parameters of a system include

temperature, pressure, thermo-mechanical stress, heat flux, current,

and so on. Optimal sensor placement is used as a tool to better monitor

the physical health of a system, or to retrieve accurate information for

control purposes.

• Wireless sensor network (WSN) - A wireless sensor network refers

to a collection of sensors that are spatially dispersed for the purpose

of measuring or detecting physical conditions such as temperature, hu-

midity, chemical substances, pressure, structural health monitoring,

and so on in a certain environment. Each sensor is represented by a

node, while the network represents a graph, and sometimes these net-

works can be layered. Many modern networks are bi-directional, which

means they can used both for sensing and control purposes. WSNs can

have different network topologies based on their specific applications,

and the information hopping across the network is done either using

routing or flooding techniques. Routing refers to choosing a specific

path while flooding refers to spreading the information to every part

of the network. Figure 2.1 shows a typical wireless sensor network.

A gateway sensor node refers to the router from where the informa-

tion is exchanged back and forth between the sensor network and data

collection point.
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Figure 2.1: A wireless sensor network architecture. [Source-Wikipedia]

2.5 Performance metrics commonly used in OSP

This section describes some of the most commonly-used performance metrics

for optimal sensor placement. Sensor networks are widely used in different

applications ranging from structures to medical devices, electronic systems

to water networks, quality monitoring to robot localization, and so on. Al-

though the principle is to extract maximum information from the system in

order to monitor its physical condition, the way is it done depends a lot on the

kind of models that are used to represent these systems. For example, struc-

tural systems are represented using finite element models, highly dynamic

systems, such as electronic circuits, are represented using lumped-parameter

graph-based models, geometric coverage/layout problems use distance-based

models, and water networks can be represented using computational fluid

dynamic models. Several performance metrics, sometimes called objective

functions, are used to capture the physical information (such as tempera-

ture, pressure, humidity, etc.) pertaining to a particular system. The two

most prominent performance measures for OSP in structural systems are

described below:

• Modal Assurance Criterion (MAC): This metric is very commonly

used in Structural Health Monitoring (SHM) and damage detection in

building and bridge design [62]. Modal shapes having the highest

numbers of degrees of freedom (DOFs) are chosen as the modes where

the sensor needs to be located. The MAC has been applied successfully

as an objective function to measure the utility of a sensor configuration
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in OSP. The MAC is defined to measure the correlation between two

mode shapes (e.g., obtained from different sources). Each component of

the MAC matrix is written as follows, taking into account the possible

sensor locations:

MACij(ϑ) =
[φTi (ϑ)φTj (ϑ)]2

[φTi (ϑ)φi(ϑ)][φTj (ϑ)φj(ϑ)]
, (2.1)

where φ is the mode shape matrix, and the subscripts i and j denote

the ith and the jth columns of φ, which are indicator of the orders of the

selected modes. The selected mode shapes are functions of the sensor

location parameter ϑ. In regard to OSP, the goal is to obtain a sensor

layout that gives the minimum off-diagonal values of the MAC matrix

so that the mode shapes become easily distinguishable. We herein

study two objective functions defined by the off-diagonal elements of

the MAC matrix. The first objective function is the largest off-diagonal

element, given by:

f1(ϑ) = max
i 6=j

[MACij(ϑ)]i,j=1,2,...,p, (2.2)

where p is the total number of selected modes for OSP. The second

objective function or performanc metric is defined as the sum of the

off-diagonal element least squares, that is given by:

f2(ϑ) =

p∑
i=1,j=1,i 6=j

[MACij(ϑ)]2. (2.3)

An OSP configuration is obtained if the minimum of the objective

function is found.

• Effective Independence Technique (EFI): The EFI method dis-

cussed in [63], developed by Kammer [64], is one of the most popular

methods to optimally locate sensors in structural dynamic tests. The

starting point of the EFI method is the full modal matrix from a finite-

element model of the structure to be studied. The finite element model

could be built with any type of elements, but not all DOFs under con-

sideration can be measured. Some of these DOFs are internal, while

others are rotations, neither of which can be measured conveniently in
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some applications. Hence, the rows corresponding to DOFs that can-

not be measured are deleted from the full modal matrix. Furthermore,

system identification methodologies from sensor data records can only

extract some of the mode shapes of the structure under study. There-

fore, a limited number of target modes must be selected to find the

best sensor configuration. Consequently, only some rows (potential

DOF locations) and columns (target modes) of the full modal matrix

are retained. The EFI sensor placement algorithm is based on the FIM

(Fisher Information Matrix) F, which is defined as:

F = φTφ, (2.4)

where φ is the mode shape matrix. The FIM is symmetric and posi-

tive semidefinite. Furthermore, if the mode shape vectors are linearly

independent, then the FIM is full rank; i.e., the rank is equal to the

number of target mode shapes. The main aim of the EFI method is to

select the best DOF configuration (in which sensors are to be placed)

that maximizes the FIM determinant. These DOFs are selected in an

iterative way, thereby producing a sub-optimal solution to the problem.

The selection procedure is based on the orthogonal projection matrix

E, defined as:

E = φF−1φT , (2.5)

The matrix E is an idempotent matrix with rank equal to the sum

of the diagonal terms. Hence, the ith diagonal element of matrix E,

denoted by Eii, represents the fractional contribution of the ith DOF

to the rank of E. The DOF with the lowest value of Eii is deleted as a

candidate sensor location, and the corresponding row is removed from

the modal matrix. The contribution of Eii to the rank of E is often

cited as the reason that this procedure retains the linear independence

of the mode shapes. However, it is easily shown that :

det(F ) = det(F0)(1− Eii). (2.6)

where F0 is the original FIM and F is the FIM after the removal of the
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ith sensor. Thus, every time one row is deleted from the mode shape

matrix φ, the determinant of the FIM decreases, and the objective of

the selection method is to maintain a high value for this determinant.

It is often highlighted that the high determinant ensures the variance

of the estimated response is low, and this is used as the criteria for

sensor location selection.

Although several such performance metrics exist depending on the type of

application, almost all of them are similar to or slight variants of the ones that

are listed above in terms of their principles. In case of systems whose dynamic

state space models can be obtained, controllability- and observability-based

information metrics are used to determine the optimal sensor locations in

systems. More details about these metrics are discussed in detail in Section

3.3.1 presented in the next chapter.
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CHAPTER 3

OSP CASE STUDY: POWER
ELECTRONIC SYSTEM

3.1 Flying Capacitor Multi-Level Inverter System

This section details the multi-level power inverter system that serves as the

case study for the optimal sensor placement studies presented in this thesis.

The inverter is a 2 kilowatt, 60 Hertz, single-phase, 450-VDC to 240-VAC

power inverter printed circuit board (PCB). It is shown in Fig. 3.1 with its

various components labeled, and Fig. 3.2 shows the structure and thickness

of the various layers it is composed of. It has a planar architecture with

active switching components on the top, with the overall dimensions of 64.7

mm by 47.3 mm. The inverter has twelve low-voltage GaN (Gallium Nitride)

switches operating at 120 kHz, and features a seven-level Flying Capacitor

Multi-level Converter (FCML) [65]. It achieves a high power density of 216

W/in3 with a peak overall efficiency of 97.6 percent. The GaN transistors

are the most significant heat-generating components on the board. Each of

these PCBs can be stacked together to form a larger power generating source

with a capacity of few 10s or 100s of kilowatts for various applications. The

Adum 5210 devices are isolated level shifters that power the gate drivers. The

ceramic capacitors reduce the stress on switching devices and help transfer

electrical energy. As power levels increase, the temperature of the GaN

transistors increases, while the temperature of the Adum 5210 devices remain

approximately constant due to constant control losses. The PCB is a layered

board that consists of four copper layers, three layers of glass reinforced epoxy

laminate (FR4) and two solder mask layers. The material properties related

to the PCB are shown in Table 3.1.

Figure 3.3 shows the 3D inverter system that contains both the PCB and

the heat sink on its top. The heat sink is made up of aluminum (-highly

conductive: KAl 205 W/mK), with a base 8 cm long by 3 cm wide. Each
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Table 3.1: PCB constituent material properties.

Material Specific Thermal Density
Used ( Heat J/gC) Conductivity (W/mK) (g/cm3)

Copper 0.385 to 0.4 385 to 390 8.9 to 8.96
FR4 0.6 to 0.95 0.25 to 0.3 1.85 to 1.91

Figure 3.1: A 2 KW, DC-AC, single-phase, 7-level flying capacitor
multilevel inverter- 2D system

of the rectangular heat sink fins is 2.5 cm high by 0.8 cm in thickness. A

0.051 cm fiberglass-reinforced polymer thermal gap pad and filler (Gap Pad

5000S35) with a relatively high thermal conductivity is placed on top of the

active components. It acts as a filler between the aluminum heat sink and the

active components on the PCB. It efficiently conducts heat from the active

components to the the heat sink in z direction. From a thermal perspective,

the gap pad increases the thermal performance of the inverter, and from an

electrical perspective, it enhances electric insulation between the components

and heat sink.

3.2 Power Inverter System Modeling

To perform accurate dynamic spatial thermal estimation, we require a model

that can help extract information from the power electronic system. A very
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Figure 3.2: Structural depiction of the power inverter board with different
layers along with their thicknesses.

Figure 3.3: PCB with Aluminum heat sink - 3D system

important aspect in modeling a system for design is having the flexibility

of evaluating its performance while changing the design variables. Design-

specific modeling is very useful for optimizing various parameters of the sys-

tem. Here we present design-appropriate models for designing thermally-
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aware power electronic systems. Here a lumped-parameter resistor-capacitor

(RC) graph-based modeling technique has been implemented, considering the

duality between thermal and electrical domains based on previous work [61].

On-line estimation becomes more challenging with a higher dimensional ther-

mal model. Therefore, a trade-off exists between the accuracy of thermal es-

timation and model complexity. A model order reduction (MOR) technique

has been used to preserve both the physical information, while simultaneously

making the estimation process easier. This is achieved by reducing the num-

ber of parameters to be evaluated. Commonly used model order reduction

techniques include Hankel-norm Reduction [66] and Proper Orthogonal De-

composition [67]. A MOR technique decreases the size of a high-dimensional

graph model by aggregating several nodes into a single super-node to cre-

ate a reduced-order model. Each super-node contains both the physical and

thermal information of its corresponding nodes in the full-order model.

3.2.1 2-dimensional RC Thermal Model

The multilevel power inverter system shown in Fig. 3.1 is open to the ambient

environment, i.e., it is not enclosed with a heat sink. Therefore, convective

heat transfers occurs in the z-direction while there is conductive heat transfer

in both the x and y directions along the inverter. A resistor-capacitor (RC)

network was used to model the dynamic thermal behavior of the power elec-

tronics system for estimation purposes. This model sacrifices some predictive

accuracy to support rapid computation. High-fidelity thermal models would

be impractical for real-time estimation, but are important for off-line design

and for assessing the quality of real-time temperature estimates.

The RC network is created using an analogy between electrical and ther-

mal systems, where electrical current is analogous to heat flux (both are

‘through’ or ‘flow’ variables), and voltage is analogous to temperature (both

are ‘across’ or ‘effort’ variables) [54, 68]. Electrical resistance and capaci-

tance properties are used to model thermal capacitance and resistance. The

thermal model of the multi-level inverter was generated as a 2D RC model.

The PCB was divided into planar regions, each associated with a capacitance

value. Adjacent regions are connected by resistance elements, enabling heat

conduction across region interfaces. Heat generation is modeled as a current
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source. Ambient temperature is modeled as a voltage source connected to

each capacitor through a resistor that represents convective heat transfer.

Thermal capacitance is given by:

C = ρcV, (3.1)

where ρ is material density, c is specific heat capacity, and V is the region

volume. Thermal conduction resistance is modeled as:

Rcond =
L

KAc
, (3.2)

where L is the length through which the heat is being conducted, K is the

thermal conductivity of the material, and Ac is the cross-sectional area of

the conductive material. Convective resistance is given by:

Rconv =
1

hAs
, (3.3)

where h is the heat transfer coefficient and As is the region area as shown in

Fig. 3.4.

Figure 3.4: Heat transfer mechanisms in a sample discretized two-region
system.

A state space model was constructed using the graph-based modeling ap-

proach, where each graph node represents an RC model node, and each edge

represents resistance between vertices. Conservation of thermal energy is
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applied at each vertex to complete the model:

Ck
dTk
dt

= qk +Qs −
1

Rck

(Tk − Ta), (3.4)

where Ck is the thermal capacitance at node k, Tk is the temperature of

node k, qi is the net heat flow into node k, and Qs is the heat input from the

current source connected to node k. The convective heat transfer resistance

at node k is Rci, and the ambient temperature is Ta.

The inverter is partitioned into 39 planar regions, each with a functional

board component, and each corresponding to a state in the state space model.

The switches on the PCB are the primary heat sources. The RC inverter

model has been validated experimentally in an earlier study [61]. MOR

was performed to produce a nine-state model that preserves correspondence

between the physical system and the RC thermal model (Fig. 3.5). The

corresponding first order differential equations are:

Figure 3.5: Reduced order (9 states) and full-order (39 states) thermal 2D
models.

ẋ = Ax +Bu + V d (3.5)

y = Cx +Du +We (3.6)

The state vector x (dimension n × 1) represents the temperature of each

node on the graph. The number of states is n, and A and C (both with

dimension n×n) are the system dynamics and output matrices, respectively.
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Table 3.2: Mapping between full-order model states and reduced-order
thermal model states.

Reduced-order model Full-order model
state index state indices

1 1, 26, 29, 35, 36, 37, 38, 39
2 2, 3, 4, 5, 6, 7, 13, 16
3 8, 11, 12
4 4, 14, 15
5 10, 17, 18
6 19, 20, 21, 22, 23
7 24, 25, 32
8 27, 28, 33
9 30, 31, 34

The input vector u (dimension c × 1) represents the time-varying heat flux

from the c heat generating components. B (dimension n × c) is the input

matrix, d is the state disturbance vector (used to model the ambient tem-

perature, which is assumed to be a constant 30◦ C), and V is the disturbance

matrix. The output trajectories y are the observed node temperatures. W

and e model sensor noise. Table 3.2 illustrates the mapping from the full-

order model states to the reduced-order thermal model states. The predicted

state temperatures for the reduced order model and the full order model were

validated and shown to be accurate in previous work [61].

3.2.2 Three-dimensional RC thermal model

A model for a planar (two-dimensional) system was just presented. When

combining the inverter with a heat sink, the planar model is inadequate. As

depicted in Fig. 1.3, heat is conducted in all the three directions (x, y, and z).

Due to the heat sink, convective heat transfer is absent between the ambient

atmosphere and inverter components. It is assumed that the convective heat

transfer from the bottom side of the inverter to the ambient air is negligible

because heat-generating components are on top of the PCB, and several

layers of material below separate these components from the environment.

The 3D model development is similar to the 2D modeling procedure. While

the 2D thermal system was discretized into planar regions, the 3D thermal

system is discretized into voxels. Each voxel represents a functional compo-
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Figure 3.6: 3D thermal network representation.

nent of the 3D system having a capacitance value. Adjacent voxels that are

not exposed to the ambient environment are assumed to have heat trans-

fer via conduction alone. However, voxels (if any) that are exposed to the

ambient atmosphere include an additional convective resistance edge. Along

the x, y and z directions, the conductive resistances are calculated using

Eqn. (3.2), whereas the convective resistances cannot be calculated directly

using Eqn. (3.3). Instead, the following relationship is used to account also

for extended resistances:

Rt,o =
1

ηohAt
, (3.7)

where Rt,o and ηo are the overall effective convection resistance and the over-

all efficiency of the array of fins, respectively, At is the total surface area

(including the extended surface area due to the heat sink), and h is the con-

vection heat transfer coefficient. The fin array overall efficiency ηo is given

by:

ηo = 1− NAf
At

(1− ηf ), (3.8)
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where N , Af and ηf are the number of fins, surface area of a fin, and the

efficiency of a single fin, respectively. The number of fins N is calculated

using the formula:

At = NAf + Ab, (3.9)

where Ab is the exposed base area of the extended surface. The efficiency of

a single fin ηf is given by:

ηf =
tanhmLc
mLc

, (3.10)

where Lc (the corrected length) and the model parameter m are found using:

Lc = L+ t/2, (3.11)

and

m =

√
2h

kt
. (3.12)

This equation is based on the assumption that rectangular fin width is greater

than its thickness. L and t are the length and thickness of the fin, respec-

tively. The dynamics of the 3D PES are obtained using coupled first order

differential equations:

Ci
dTi
dt

= qi, (3.13)

where Ci, Ti, and qi denote the capacitance, temperature, and the net heat

flow at node i of the thermal network (similar to the 2D model differential

equations). The 3D thermal model thus contains two layers as shown in

Fig. 3.6: the 2D power inverter thermal layer and the heat sink thermal layer

that is exposed to the ambient atmosphere. In Fig. 3.6 the PCB is layer 1,

and the heat sink is layer 2. Each layer has four nodes. The heat sink nodes

are connected to an infinite-capacitance ambient temperature node Ta. Qs is

the input source node. The 3D thermal model was discretized into 78 nodes

(39 nodes representing the PCB and the remaining 39 nodes representing

the heat sink). MOR techniques were applied to the full-order RC model to

produce a reduced order RC model, alleviating the computational expense

of estimation. The reduced-order 3D thermal model is represented using 10

nodes (9 nodes for the PCB and a single node for the heat sink). The 3D

model used here has been validated experimentally, as reported in Ref. [3].
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3.3 Optimal Sensor Placement Strategies

The aim of the methods presented here is to quantify the optimal tradeoff

between the number of sensors required and accurate dynamic thermal esti-

mation. In this section, alternative sensor placement strategies are discussed,

including methods based on integer programming, continuous relaxation, and

strategies combining quantitative tools and intuition.

3.3.1 Information-Based Performance Metrics

A system is observable if its state variables can be reconstructed from avail-

able outputs. The RC model is linear and time invariant (LTI), so we can

use the linear observability Gramian to quantify observability:

Wo,linear =

∫
∞

0

eA
T tCTCeAtdt, (3.14)

A system is completely observable only when the observability Gramian ma-

trix has full rank. Additional related measures of system observability have

been used in optimal sensor placement studies. The three most widely-used

metrics are summarized here [37,69,70].

Observability Gramian Determinant:

Larger observability Gramian determinants are associated with improved sys-

tem observability. If det(Wo,linear) = 0, all states cannot be observed. The

metric commonly used is: D = [det(Wo,linear)]
1/n, where n is the number of

system states. This metric is less preferred than the next two because if the

determinant is zero, it is difficult to determine the states actually contribut-

ing to system observability.

Observability Gramian Condition Number:

The condition number of a matrix refers to the ratio of its largest and smallest

magnitude eigenvalues. Smaller observability Gramian condition numbers
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correspond to improved observability. Often logarithmic scaling is used:

C = log10

[
σmax(Wo,linear)

σmin(Wo,linear)

]
. (3.15)

This metric has been used widely in chemical engineering processes [71].

Observability Gramian Trace:

The observability Gramian trace refers to the sum of all Gramian eigenvalues:

Trace(Wo,linear) =
n∑
i=1

σi(Wo,linear). (3.16)

Measures based on Gramian condition number and determinant are limited

in their ability to obtain information from the whole range of system states.

The trace metric does not have this limitation. Maximizing it supports max-

imum information extraction [35]. It can be thought of as the output observ-

ability energy of a system. The larger this value is, the greater the system

observability. In studies presented here where only one information-based

performance metric is used, the trace metric is chosen.

3.3.2 Enumeration-Based Placement Solution

One way to view the placement problem is as a discrete decision. If we

have ns sensors, in which PCB regions should they be placed to maximize

estimation accuracy? In this approach, we do not distinguish between con-

tinuous location differences within a PCB region, only if a sensor is in a

region or not. A sure method for obtaining a globally-optimal solution for

this discrete sensor placement problem is to enumerate all possible unique

placements, evaluate each design using the chosen metric, and select the de-

sign(s) with the best performance. This strategy is possible for small test

problems, but completely impractical for realistic problems (especially if we

use a fine spatial discretization for improved placement resolution).

If our model has n states, and we assume that each region can have either

zero or one sensor, and if we consider the full range of the possible numbers

of sensors (0 ≤ ns ≤ n), the number of possible sensor placement designs for

our 39 and 9 state models are 239 and 29, respectively. An enumeration of all
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sensor location designs has been performed for the reduced-order (nine-state)

model, and assessed using all three information-based performance metrics:

determinant, condition number, and the trace of the observability Gramian

matrix. The enumeration results are illustrated in Fig. 3.7. For each number

of sensors, a spread in performance is observed. As an example, the number

of unique sensor placements possible with four sensors on a nine-region PCB

is (94) = 9!/(4!(9− 4)!) = 126. Enumeration results helps us to understand

the trends in the performance metrics, and may be used as a benchmark

for comparing the other placement methods (at least for the low-dimension

nine-region case).

3.3.3 Discrete Optimization

Here we formulate the placement problem as a binary integer programming

problem. A binary variable ri exists for each state/region. If ri = 1, a sensor

is placed in region i, and if ri = 0, region i has no sensor. If we want to place

exactly k sensors, we require that
∑n

i=1 ri = k. This problem may be solved

with integer programming methods. A genetic algorithm can be used to

solve very general formulations of this problem approximately. This integer

programming strategy has proven to be inefficient for large-scale problems

[72, 73], motivating new solution techniques presented later in this section.

The observability matrix Qo (of order np x n, where p is the length of the

output y):

Qo =
[
C CA CA2 . . . CAn−1

]T
(3.17)

must be full rank for the system to be completely observable. The diagonal

output matrix C (size n× n) is:

C =


r1 0 0 . . . 0

0 r2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . rn

.
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Figure 3.7: Enumeration of all possible discrete sensor placement solutions
for the nine-state reduced-order model. All three information-based
performance metrics are illustrated.
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Using the trace metric defined above, we can formulate the sensor placement

problem as the following binary integer program:

minimize:
r

-tr(Wo,linear)

= −tr

(∫ t1

t0

eA
T (t−t0)CTCeA(t−t0)dt

)
subject to:

n∑
i=1

ri ≤ k

ri ∈ {0, 1}

(3.18)

The number of sensors k is varied parametrically. Note that due to mono-

tonicity, the inequality constraint on ri values is always active, and this

inequality constraint is therefore satisfied with equality. This formulation

is mathematically equivalent to one requiring an exact number of sensors

k. The inequality constraint is used instead of the equality constraint to

improve computational solution efficiency.

3.3.4 Continuous Relaxation

In the discrete optimization approach, solution difficulty increases rapidly as

system size (n) increases. As with enumeration, it is impractical for scaling

up to larger system design problems. Here we present a novel sensor place-

ment strategy based on a continuous relaxation of the binary variables. Such

a relaxation enables the use of highly-efficient gradient-based optimization

algorithms [74]. Here we allow ri to take on any value between 0 and 1.

Because a fractional sensor does not make physical sense, we can use a cre-

ative formulation to bias ri values toward 0 or 1. While fractional values are

allowed, at convergence each ri is approximately binary.

This solution strategy is analogous to established methods for structural

topology optimization where a structural design domain is discretized into

pixels (2D) or voxels (3D). Continuous design variable 0 ≤ xi ≤ 1 represents

material density for each element. One of the most well-known gradient-

based topology optimization methods is the Solid Isotropic Material with Pe-

nalization (SIMP) approach [75]. SIMP utilizes a particular type of penalty

on xi values to bias them toward {0, 1} values. Our continuous relaxation of

the sensor placement problem, inspired by SIMP, is:
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minimize:
r

f(rp1, r
p
2, ....., r

p
n)

subject to:
n∑
i=1

ri ≤ k

0 ≤ ri ≤ 1.

(3.19)

A finite penalty exponent value p (generally chosen between 2 and 9) can

result in a solution that coincides approximately with the discrete solution.

Larger penalty values improve binary precision, but this also increases non-

linearity and solution difficulty. This can be ameliorated through a change

of variables. Define ti such that ti = rpi , and ri = t
1/p
i . A mathematically

equivalent problem can be defined in terms of ti:

minimize:
t

f(t1, t2, ....., tn)

subject to:
n∑
i=1

t
1/p
i ≤ k

0 ≤ ti ≤ 1.

(3.20)

Due to the change of variables, this problem can be solved more easily for

large p values.

3.3.5 Linear Integer Program Reformulation

The continuous relaxation strategy reduces computational expense signifi-

cantly, and supports use of more general performance metrics beyond ob-

servability metrics that are information-based. We observed, however, an

important opportunity for even greater efficiency improvements when using

one particular performance metric. It is possible to manipulate the trace of

the observability Gramian in a way that enables formulation as a linear pro-

gram (LP), a convex optimization problem that can be solved efficiently for

very large systems (thousands of states or more). Instead taking the integral

over time from t0 to t1, the trace of the observability Gramian derivative

fd(r), which is a linear function, can be calculated using a finite difference

method. The gradient can then be used directly in the solution of the corre-

sponding LP. The procedure for obtaining the trace of observability Gramian
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derivative is detailed in Algorithm 1. The LP is:

minimize:
r

− fd(r) (3.21a)

subject to:
ns∑
i=1

(ri) ≤ ns (3.21b)

ri ∈ {0, 1} (3.21c)

ALGORITHM 1: Calculation of derivative of trace of observability
gramian matrix

Input : A,B – system dynamics matrix(A) and input matrix(B) h – step-size for
forward differencing

Output: fd – derivative of trace Observability Gramian
1 ns ← length(A) /* store total number of states */

2 fd ← zero /* Initialize Observability derivative */

3 C ← zeros(ns, ns) /* Initialize an output matrix */

4 ss ← ss(A,B,C, []) /* Calculate state space form */

5 for k← ns do /* going from 1 to entire length of A */

6 fd1(k) ← trace(ObsGram(ss(t0)) /* calculating the trace of obs. Gram. Wo

at instant to */

7 fd2(k) ← trace(ObsGram(ss(t0 + h)) /* calculating the trace of obs. Gram.

Wo at instant t0 + h */

8 end
9 fd ← (fd2 - fd1)/h /* forward difference method */

3.3.6 Critical Zone-Based Sensor Placement

In this strategy we modify our optimization formulation to ensure a specified

number of sensors are used to monitor regions near critical locations. This

can help bias placement near critical states (components). It can be thought

of as a hybrid between intuition and information-based design. It is informed

by designer specifications for critical locations. Suppose the designer specifies

j specific states as critical locations: {S1, S2, . . . , Sj}, and the designer wants

to allocate a minimum of k sensors from the m total available sensors to

monitor these critical states. The rest may be placed elsewhere. The new
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formulation is:

minimize:
r

-tr(Wo,linear)

= −tr

(∫ t1

t0

eA
T (t−t0)CTCeA(t−t0)dt

)
subject to:

m∑
i=1

ri = m, i ∈ 1, 2, ...m

rS1 + rS2 + rS3 + ...+ rSj
= k

ri ∈ {0, 1}

(3.22)

An extended version of this method would include detailed failure models

for all components and materials in the PES, possibly enabling reduced safety

factors and increased power density. This design strategy, however, would

require significant modeling and computational effort, and is beyond the

scope of the studies presented here.

3.4 Results and Discussion

3.4.1 2D placement results comparison

States where sensors should be located for the 2D reduced order model, based

on enumeration and the Gramian trace metric, are given in Table 3.3. The

corresponding states where sensors go on the physical domain are shown in

Fig. 3.5.

Table 3.3: Optimal sensor locations for 2D reduced-order model.

Number of sensors State Locations Trace of Obs. Gramian

1 1 10.014
2 1,2 20.029
3 1,2,6 27.177
4 1,2,6,7 34.072
5 1,2,5,6,7 40.966
6 1,2,3,5,6,7 47.793
7 1,2,3,5,6,7,9 54.607
8 1,2,3,5,6,7,8,9 61.188
9 1,2,3,4,5,6,7,8,9 67.768

36



An initial comparison is made between the binary integer program, con-

tinuous relaxation, and LP placement strategies in terms of their efficiency.

The computational solution time required by each method using trace of the

observability Gramian as the performance metric has been assessed for both

the reduced and full-order models. Results are compiled in Table 3.4. The

simulations have been performed using a workstation with an Intel i5-4570

x64 processor with 4 physical cores running in parallel. Computational ef-

ficiency improves in the order presented in Table 3.4, with the LP strategy

being the most efficient by a significant margin.

Table 3.4: Time comparison between enumeration, discrete, continuous and
linear programming based placement schemes.

Computational Reduced-order Full-order
Method (9 states) (39 states)

Combinatorial approach 450 sec 2.4 hrs
Discrete optimization 220 sec 0.7 hrs

Continuous method (SIMP) 10-11 sec 17-18 sec
Linear/Sorting program 0.4 to 0.45 sec 0.7-0.8 sec

A study was performed to investigate the efficiency of the LP strategy in

placing sensors for high-resolution state space systems. Figure 3.8 shows the

resulting Pareto fronts that illustrate the tradeoff between estimation quality

and the number of sensors. Table 3.5 shows how computational solution time

increases as a function of model order. Figure 3.9 illustrates for a few Pareto-

optimal solutions the regions where the sensors must be placed on the board

to improve observability.

Although the LP method yields efficient and accurate results, it is limited

to using the trace of the observability Gramian as a performance metric. The

mathematical structure of this metric can be leveraged for efficient formu-

lation and solution, but this is not the case for more general performance

metrics. The continuous relaxation strategy is appealing in that it can solve

placement problems relatively efficiently, while admitting very general per-

formance metrics (e.g., metrics must be smooth, continuous functions of the

relaxed optimization variables).
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Figure 3.8: Pareto fronts for optimal sensor placement using the LP
strategy with random state space models of various sizes.
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Table 3.5: Computational time required to obtain Pareto fronts using the
LP strategy as a function of model order.

Number of states 10 50 100 300 500 1000

Solution Time (in sec) 0.7 1.2 7.5 9.7 69.5 1352.5

Figure 3.9: Reduced order 2D thermal model results: A selection of
Pareto-optimal sensor placements are illustrated on the inverter board.

3.4.2 3D placement results comparison

The 3D sensor placement problem is similar to the 2D problem. The thermal

state space model is different, so different optimal placement solutions are

expected. The optimal sensor locations for 3D reduced thermal model are

listed in Table 3.6. These state locations were obtained using the trace of

the observability Gramian as the objective function.

As expected, the optimal sensor locations obtained here are different com-

pared to those obtained for the 2D reduced order thermal model. The 3D

system model is different from the 2D system as it takes into consideration

the interaction between the heat sink and the PCB. In addition, the 3D

model has a different path from the heat-generating components to the at-

mosphere (through the heat sink). Four of the solution methods presented

in Section 3.3 were applied both to the reduced-order and the full-order 3D
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Table 3.6: Optimal sensor locations for 3D reduced order model.

Number of sensors State Locations Trace of Obs. Gramian

1 2 8.6627
2 1,2 17.3255
3 1,2,6 25.9836
4 1,2,4,6 34.6370
5 1,2,4,6,10 43.2900
6 1,2,4,6,8,10 51.9420
7 1,2,4,5,6,8,10 60.5934
8 1,2,4,5,6,7,8,10 69.2448
9 1,2,4,5,6,7,8,9,10 77.8963
10 1,2,3,4,5,6,7,8,9,10 86.5477

models. The computational solution times are listed in Table 3.7 using the

same processor that was used as for the 2D sensor placement problem.

Table 3.7: Solution time comparison between enumeration, discrete,
continuous, and LP sensor placement strategies for the 3D inverter system.

Computational Reduced-order Full-order
Method (10 states) (78 states)

Combinatorial approach 515 sec 6.3 hrs
Discrete optimization 279 sec 2.1 hrs

Continuous method (SIMP) 11-13 sec 36-138 sec
Linear/Sorting program 0.55-0.70 sec 1.2-1.4 sec

3.5 Experimental Validation

The design framework that has been proposed has been experimentally val-

idated using a prototype inverter described in Section 3.1. After the Pareto

sets were obtained for the 2D and 3D thermal models, the thermal estimation

was performed using an optimal continuous-discrete Kalman filter. The esti-

mation procedure adopted here is detailed in Ref. [61]. Selecting the number

of sensors to be used can be supported knowing the state estimation error

obtained from the Kalman filter. The sum of the absolute value of the esti-

mation error versus the number of sensors is shown both for the 2D system

and the 3D system respectively in Tables 3.8 and 3.9.

It can be seen that in both the cases the error remains nearly constant af-
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Table 3.8: Sum of absolute estimation error vs. number of sensors with 2D
reduced-order model (9 states)

Number of sensors 2 3 4 5 6 7 8 9

Absolute estimation error (in deg.C) 40 37.6 19.8 5.1 4.7 3.1 1.9 0.4

Table 3.9: Sum of absolute estimation error vs. number of sensors with 3D
reduced-order model (10 states)

Number of sensors 2 3 4 5 6 7 8 9 10

Absolute estimation error (in deg.C) 38.4 13.8 6.2 4.0 2.2 2.1 2.0 0.9 0.3

ter reaching a certain number of sensors (five and six sensors for the 2D and

3D systems, respectively). Hence, five and six sensors (for the 2D and 3D

systems, respectively), appear to be ideal choices that balance the number of

sensors and temperature estimation error. The optimal sensor locations for

these two cases listed in Tables 3.3 and 3.6 are (1,2,5,6,7) and (1,2,4,6,8,10),

respectively. We know that a group of nodes in the full-order model are com-

bined into a super-node in the reduced order model. Although these optimal

locations correspond to the super-nodes of the reduced full-order model, each

super-node is comprised of several nodes where a sensor could go. The de-

signer could pick that node (a state location) from the super-node which has

greater observability than the other nodes (states) in that super-node. The

optimal sensor locations for the full order 2D and 3D thermal models are

provided in Table A.1 and Table A.2, respectively, in the Appendix section.

The 2D experimental validation was performed on the prototype inverter

using an FLIR T420 IR (Infra-Red) camera that captures a thermal video

of the board when it is under operation. Figure 3.10 shows two thermal

snapshots of the PCB. The ambient temperature during the operation of

the inverter PCB was 30◦ C. Figure 3.11 (verified in Ref. [61]) shows how

temperature estimates of states 1, 2, 5, and 6 of the 2D reduced-order ther-

mal model are in good agreement (error within +/- 3◦C) with experimental

temperatures of those regions measured using the IR camera. This clearly

shows how the estimation technique using the continuous discrete Kalman

filter with just 5 sensors can predict accurately the PCB temperatures PCB
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within a small tolerance value.

Figure 3.10: Annotated Snapshot from IR Measurement of the operating
multilevel inverter at an input power level of 550 W.

(a) Estimated states 1 and 2 of 2D
reduced order model vs experimental
IR cam temperature.

(b) Estimated states 5 and 6 of 2D
reduced order model vs experimental IR
cam temperature

Figure 3.11: Comparison of estimated states from 2D reduced order model
with experimental results.

Since the 3D system is enclosed by an inverter, it is not possible to obtain

a direct IR camera image to validate the thermal profile. In order to obtain

experimental temperature data, 13 sensors were placed on the inverter board.

Figures 3.12 and 3.13 show the experimental setup of the 3D PES with 13

thermocouples installed for reconstructing the dynamic thermal profile and

fault diagnosis of the 3D PES tested in Ref. [3]. The measurements obtained

from these thermocouples are presented in Fig. 3.14.

It was observed that one of the components on the power inverter failed

during this test. The faulty component was detected using the IR camera
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Figure 3.12: Cross-sectional view of the experimental setup with 13
thermocouples.

Figure 3.13: Top view of the experimental setup with a faulty component
indicated using a red circle located at the right bottom.
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Figure 3.14: Measurements from the 13 thermocouples obtained from the
previous work detailed in Ref. [3].

Figure 3.15: The prediction of state 5 using the 78-state full-order model is
shown in circles.

without the heat sink on top of the board, and is shown using a red circle

in Fig. 3.13. Figure 3.15 shows the estimated readings of all the 78 states

of the 3D full-order thermal model. They agree well with the experimental

readings shown in Fig. 3.14 obtained using 13 physical sensors, accounting

for the faulty component. Based on these experiments, it can be seen clearly

how the online estimation procedure based on optimal sensor placement is

not only helpful in accurately reconstructing the dynamic thermal behaviour

of the inverter but also useful in fault diagnosis.
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CHAPTER 4

COOLING SYSTEM
ARCHITECTURE DESIGN

4.1 Motivation

There is an emergent need for the development of high performance cooling

systems for efficient fluid-based thermal management of high density power

electronic systems. As the size and complexity of electro-thermal systems

increases, it is becoming a challenging task to design cooling system ar-

chitectures that are both cost-effective and optimal, especially when neither

intuition nor human experience are adequate. Dense circuitry and tight pack-

aging of power electronic systems makes thermal management a very difficult

design task. As discussed in Chapter 1, removal of waste heat is critical to en-

suring reliability and sustainability of systems in extreme environments. The

goal of this research is to provide a general design methodology for cooling

system architecture design that is relevant to a range of applications.

4.2 Related Works

The 21st century is seeing a continuing trend toward greater electrification

of systems in industrial, transportation, agricultural, and consumer appli-

cations [4, 5, 76]. Large quantities of waste thermal energy are generated

by high-power electrical systems, including electro-mechanical devices, elec-

tronic power converters, battery systems, and other electro-thermal systems.

The performance, efficiency, safety, and life cycle of components within these

systems can depend strongly on temperature. Therefore, thermal manage-

ment systems are tasked with maintaining operating temperatures to within

their specified limits. While waste thermal energy must ultimately be re-

jected to the environment, it is often first transferred from heat-generating
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components to a liquid coolant circulating through a network of pipes. Con-

trol of these fluid-based thermal management systems requires determining

command inputs to all valves and pumps in the fluid network. Designing and

controlling such systems becomes a challenging task as they increase in both

size and complexity, commensurate with the systems that they cool.

A thermal management system must not only be energy efficient and re-

liable, but also help reduce capital cost in terms of cooling network size,

complexity, and fabrication cost. Mobile systems have additional consider-

ations, such as size and weight limitations, and possibly more limited op-

tions for cooling mechanisms. Cooling system architecture can affect all

of the above attributes. Poor architectures can result in sudden failure of

temperature-sensitive components or lead to long-term degradation when

operating temperature constraints cannot be maintained, while over-cooling

can reduce the component efficiency. The cooling system architecture design

must balance maintaining the temperature constraints of individual com-

ponents with overall system considerations such as pumping efficiency and

geometric packaging. Performance metrics can vary widely. For example,

aircraft thermal management systems can be characterized by their thermal

endurance, defined as the duration of operation before any temperature con-

straint is violated, to ensure safe operation and maximum range [77]. Other

applications, such as hybrid-electric vehicles [78] or server farms [79] may

have a different set of requirements. As new cooling system applications

and requirements emerge, engineers must learn how best to meet new needs,

sometimes without the benefit of design heritage or the associated expert

knowledge for particular systems. Cooling system architecture design prob-

lems can have a vast design space that is cognitively difficult to navigate,

motivating efficient systematic design methods with the flexibility to explore

and assess new configurations.

Even without the use of systematic design methods, recent work has illus-

trated the sub-optimality of conventional thermal management architectures.

For example, Ref. [77] demonstrates that a dual fuel tank topology for an

aircraft can achieve a 35% improvement in thermal endurance over a con-

ventional single fuel tank topology under closed-loop control. In the dual

configuration, one tank is used in a standard recirculation loop, while the

second tank acts as an auxiliary reservoir. This reduces the thermal ca-

pacitance of the recirculation loop as compared to the single tank topology,
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allowing the temperature of the fuel feeding the engine to increase faster and

therefore removing more thermal energy from the system when that fuel is

burned early in flight. The decision to analyze this dual-tank topology aligns

with the concept of minimizing exergy destruction in thermal systems [80],

however, in the absence of exhaustive or other systematic design studies it

is left to engineering intuition to conceive of unconventional topologies such

as this. This begs the question of whether systematic design methods could

suggest additional modifications to conventional configurations for this class

of systems to improve performance, efficiency, or robustness.

Many past efforts have focused on improving individual components in

a cooling system, but few have addressed overall system design. Examples

of the latter include Refs. [81, 82]. In Ref. [81] a design methodology was

developed to predict cooling tower performance considering heat load dis-

tributions. In Ref. [82], interactions between a heat exchanger network and

cooling tower were considered. Cooling system architecture studies typi-

cally focus on a single application such as process utilities in petrochemi-

cal plants [83] or multi-chip processors [84], as opposed to a general design

framework. Existing architecture studies have often been limited in scope

to improve tractability. For example, rearranging components in a given

topology restricts problem complexity, but limits broad exploration of new

designs [85].

4.3 Design Methodology and Contributions

In this work, simplifying model assumptions are made that support tractabil-

ity while retaining important physical effects and applicability to a wide range

of thermal management system applications. Many of these assumptions

have been validated in previous experimental work [86], and are discussed

in more detail in later sections where appropriate. The design methodology

presented here:

• Uses dynamic graph-based modeling to provide flexibility in assessing

a variety of different cooling system types,

• Supports systems with multiple temperature-sensitive components hav-

ing high heat loads and different maximum allowable temperatures,
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• Is applicable to small to medium-scale systems, whereas extension to

large-scale systems is a topic of ongoing work. Here small and medium-

scale architecture design problems are defined to be those that are

solvable via recently-developed efficient enumeration techniques [87]).

• Uses flexible solution methods such as variable-horizon direct optimal

control, and

• Determines optimal coolant flow distribution across the system, bal-

ancing competing objectives.

Primary contributions include 1) a new method for enumerating system ar-

chitectures modeled using graphs as labeled rooted trees, and 2) a rigorous

method for comparison between candidate architectures 1. The first contri-

bution builds on recent work in efficient methods for architecture enumer-

ation [87]. The second contribution is enabled by recent advancements in

direct optimal control [88,89] .

For each architecture, flow is distributed optimally across the system such

that thermal endurance is maximized across components operating under

different heat loads and temperature constraints. The highest performing

architectures are then determined as those with the greatest thermal en-

durance. Here the design scope is limited to a fluid-based thermal manage-

ment system with a single junction and single-split. However, the class of

architectures considered in this work can be used as canonical architectures

that can be built upon to generate other complex architectures. Hence, fu-

ture work will expand this to include architectures with greater degrees of

freedom in topological design.

4.4 Graph-based system modeling

The class of thermal management system architectures considered in this the-

sis is depicted in Fig. 4.1. The primary purpose of the system is to manage

the operating temperature of a number of heat-generating electrical or me-

chanical components, each mounted to a cold plate heat exchanger (CPHX)

1The work presented in this chapter on graph-based modeling and labeled rooted tree
graph generation was performed in collaboration with graduate student Herschel Pangborn
(pangbor2@illinois.edu) and post-doctoral scholar Daniel Herber (herber1@illinois.edu).
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Figure 4.1: Illustration of the class of cooling system architectures
considered, consisting of cold plate heat exchangers (CPHXs) in series and
parallel, and constrained to have a single split/junction in the coolant flow.

through which a coolant flows. This fluid is stored in a tank and driven by

a pump through a set of Nf parallel flows, each of which includes a variable-

aperture valve v. The fluid in each parallel flow passes through a number of

CPHXs in series, absorbing thermal energy from the CPHX walls. Thermal

energy is transferred from the fluid to a thermal sink (e.g., a secondary loop

regulated by a vapor compression cycle system [86]) via a liquid-to-liquid

heat exchanger (LLHX). This class of architectures is representative of many

single-phase fluid-based thermal management systems, such as those found

in aircraft [90,91], electrified automobiles [92], and server farms [79].

The total number of CPHXs, which is assumed to be fixed for a given

design study, is denoted as Nc. We assume that the heat load applied to

each CPHX, as well as the temperature and mass flow rate of the thermal

sink fluid, are known exogenous disturbances. and that the temperature of

each heat-generating component is the same as the temperature of the wall

of the CPHX to which it is mounted. The thermal management system is

controlled by commanding the rotational speed of the pump and the position

of each variable-aperture valve.
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Figure 4.2: Notional graph example to demonstrate key features of the
modeling approach.

4.4.1 Dynamic Graph-Based Modeling

One approach for the lumped parameter dynamic modeling of power flow

systems, including the class of thermal management architectures considered

here, is to apply conservation equations within a graph-based framework,

where vertices represent the capacitive storage of energy and edges repre-

sent the paths along which power can flow between vertices [86,93–96]. This

graph-based approach is particularly well-suited for architecture exploration

and optimization because the models are generated from a structural map-

ping of interconnections that can be constructed in a programmatic way

and leveraged in both system analysis and control design. The remainder of

this subsection presents an overview of the graph-based modeling approach,

which is then contextualized to the type of architectures considered in this

thesis.

In graph-based modeling, the structure of interconnections of the system

is described by the oriented graph G = (v, e) of order Nv with vertices

v = [vi], i ∈ {1, 2, ..., Nv}, and size Ne with edges e = [ej], j ∈ {1, 2, .., Ne}.
As shown in the notional graph example of Fig. 4.2, each edge ej is incident

to two vertices and indicates directionality from its tail vertex vtailj to its

head vertex vheadj . The set of edges directed into vertex vi is given by eheadi =

{ej|vheadj = vi}, while the set of edges directed out of vertex vi is given by

etaili = {ej|vtailj = vi} [97].

Each vertex has an associated dynamic state associated with energy stor-

age. For thermal systems, this state is the temperature of a thermal element,
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Ti. Each edge has an associated quantity Pj describing the rate of transfer of

thermal energy (equivalently referred to as thermal power flow in this thesis)

between adjacent vertices. The orientation of each edge indicates the con-

vention assigned to positive power flow, from vtailj to vheadj . Therefore, the

dynamics of each state satisfy the conservation equation:

CiṪi =
∑

{j|ej∈eheadi }
Pj −

∑
{j|ej∈etaili }

Pj (4.1)

where Ci > 0 is the thermal capacitance of the vertex. In words, Eqn. (4.1)

states that the rate of thermal energy storage in the vertex is equal to the

total thermal power flow into the vertex minus the total thermal power flow

out of the vertex.

For the fluid-based thermal system in this work, the power flow Pj along

each edge is a function of the temperature states of the vertices to which it

is incident and may also be a function of an associated mass flow rate ṁj

which can be treated as an input to the thermal system model [86, 93–95].

The transfer rate along each edge is therefore given generically by:

Pj = fj
(
T tailj , T headj , ṁj

)
(4.2)

Figure 4.2 includes examples of Eqns. (4.1) and (4.2) as applied to several

vertices and edges.

In addition to capturing the exchange of energy within the graph, the

modeling framework must account for exchange with entities external to

the graph. Sources to graph G are modeled by source edges es = [esj ], j ∈
{1, 2, ..., Ns} with associated power flows P s = [P s

j ], which are treated as

disturbances to the system that may come from neighboring systems or the

environment. Therefore, edges belonging to es are not counted among the

edges e of graph G, and transfer rates in P s are not counted among the

internal transfer rates P of the system.

Sinks of graph G are modeled by sink vertices vt = [vtj], j ∈ {1, 2, ..., Nt}
with associated states T t = [T tj ]. The sink vertices are counted among the

vertices v of graph G, but the sink states T t are not included in the state

vector T of the system. Instead, the sink states T t are treated as disturbances

to the system associated with neighboring systems or the environment.

To describe the structure of edge and vertex interconnections of a graph,
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the incidence matrix M = [mi,j] ∈ RNv×Ne is defined as:

mi,j =


+1 vi is the tail of ej,

−1 vi is the head of ej,

0 else.

(4.3)

M can then be partitioned as:

M =

[
M̄

¯
M

]
with M̄ ∈ R(Nv−Nt)×Ne , (4.4)

where the indexing of edges is assumed to be ordered such that M̄ is a

structural mapping from power flows P to states T , and
¯
M is a structural

mapping from P to sink states T t.

Similarly, the connection of external sources to the system is given by

D = [di,j] ∈ R(Nv−Nt)×Ns where:

di,j =

1 vi is the head of esj ,

0 else.
(4.5)

Following from the conservation equation for each vertex in Eqn. (4.1) and

the above definitions of M̄ and D, the dynamics of all states in a system are

given by:

CṪ = −M̄P +DP s (4.6)

where C = diag([Ci]) is the diagonal matrix of capacitances.

Following from Eqn. (4.2), the vector of all power flows P in a system is

given by:

P = F (T ,T s, ṁ) = [fj(T
tail
j , T headj , ṁj)]. (4.7)

4.5 Candidate Architecture Modeling

To demonstrate the design methodology, the scope of studies in this thesis

have been limited to a specific class of cooling system architectures.
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4.5.1 Graph-Based Model for the Class of Architectures

Figure 4.3 shows the graph corresponding to the class of system architectures

considered in this thesis. To model this class using the graph-based approach

of Section 4.4.1, vertices are assigned to represent the temperature of the

fluid in the tank, the temperature of the fluid in each CPHX and the wall

of each CPHX, and the temperature of the fluid in each side of the LLHX

and the wall of the LLHX. The thermal capacitance associated with states

representing a fluid temperature in Eqn. (4.1) is given by Ci = ρVicp, where

V is the volume of the stored fluid, cp is the specific heat capacitance of the

fluid, and ρ is the density of the fluid. The thermal capacitance associated

with states representing a wall temperature is given by Ci = Mw,icp,w,i, where

Mw is the mass of the wall and cp,w is the specific heat capacitance of the wall

material. All thermal capacitances in this work are assumed to be constant.

In this thesis, the modeling of two types of thermal power flow is required

to capture the exchange of thermal energy between temperature states of

the graph. The first is power flow due to convective heat transfer, given by

Pj = hjAs,j(T
tail
j − T headj ), where As is the convective surface area and h

is the heat transfer coefficient, assumed to be constant in this thesis. This

type of power flow occurs between the wall and the fluid of each CPHX, and

between the wall and the fluid on each side of the LLHX.

The second type of thermal power flow is advection associated with fluid

flow, given by Pj = ṁjcpT
tail
j , where ṁ is the mass flow rate of the fluid and

cp is the specific heat capacitance of the fluid, assumed to be constant in this

work. When fluid flows in a loop between two thermal elements, as between

the secondary side of the LLHX and the thermal sink, the advective power

flow in each direction can be combined into a single “bidirectional advection”

power flow, given by Pj = ṁjcp(T
tail
j − T headj ).

Based on the above discussion, for every power flow in the graph-based

model of the class of architectures, Eqn. (4.2) can be put in the form:

Pj = a1,jT
tail
j + a2,jT

head
j + b1,jṁT

tail
j + b2,jṁT

head
j (4.8)

where the coefficients ai,j and bi,j are constants. The source power flows

P s of the graph-based model for the class of system architectures consist of

the heat load to each CPHX from the heat-generating device to which it is
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Figure 4.3: Graph for the class of thermal management architectures
considered in this thesis. Vertices representing fluid temperatures are
colored white, while vertices representing wall temperatures are colored
gray.
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mounted. The lone sink state of the system T t is the temperature of the

thermal sink.

In this thesis, as in Ref. [77], it is assumed that the valves can be controlled

such that the flow through the pump can be split with any desired propor-

tioning into each of the parallel flows. It is also assumed that the upper and

lower bounds on the mass flow rate achievable by the pump are independent

of the number of parallel flows, number of CPHXs in each parallel flow, and

valve positions. While the hydraulic modeling that would be necessary to

remove this assumption falls outside the scope of this study, previous work

has included graph-based modeling of the hydrodynamics of a fluid system,

where it is demonstrated that hydraulic and thermal graphs-based models

of a system can be interconnected to capture both these domains using a

common modeling approach [86,93].

Experimental validation of the graph-based modeling approach for similar

fluid-thermal architectures can be found in Refs. [86,93,95]. This has shown

the modeling approach to be consistently accurate within approximately 2
◦C, including under transient behavior, while executing orders of magnitude

faster than real time on modern desktop computers. This provides both

sufficient accuracy and sufficient computational simplicity to support stud-

ies in system and control design. The parameters used in Section 5.2 were

nominally sized in accordance with the parameters used for experimental

validation in the previous work [86,93,95]. Several of the key parameters are

listed in Table 5.1. Each CPHX is assumed to be identical, although the heat

load applied to each CPHX may be different. The working fluid is assumed

to be an equal parts mixture of propylene glycol and water.

4.5.2 State Equations for the Graph-Based Model

Let Ma = [m̃i,j] be a weighted incidence matrix defined by:

m̃i,j =


a1,j if vi is the tail of ej,

a2,j if vi is the head of ej,

0 else.

(4.9)

where ai,j are the coefficients in Eqn. (4.8). Mb can be defined similarly
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using the coefficients bi,j in Eqn. (4.8).

Note that there is not a one-to-one relationship between the mass flow

rates of the system architecture and the edges of its thermal graph. For

example, the mass flow rate through each CPHX of a given parallel flow is

the same. Therefore, the set of unique mass flow rates of the system can be

mapped to the set of edges of the graph by:

ṁe = Z

ṁp

ṁf

ṁt

 , Z ∈ {0, 1}Ne×(2+Nf ), (4.10)

where ṁp is the mass flow rate rate through the pump, ṁf is the vector of

mass flow rates through each parallel flow, and ṁt is the mass flow rate of

the thermal sink. From Eqn. (4.6) and Eqns. (4.8)--(4.10), the state-space

equation for the system architecture can be written as:

Ṫ = A

[
T

T t

]
+B1diag

Z
ṁp

ṁf

ṁt


B2

[
T

T t

]
+DP s, (4.11)

where:

A =−C−1M̄M̄T
a (4.12a)

B1 =−C−1M̄ (4.12b)

B2 =M̄T
b (4.12c)

and D is as defined in Eqn. (4.5). For a given number of parallel flows and

number of CPHXs in each flow, the corresponding state-space model in the

form of Eqn. (4.11) can be programmatically generated.
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(a) 1− 23. (b) 3− 5− 62− 714.

Figure 4.4: Two labeled rooted tree graphs in the class of graphs of interest.

4.6 Generating New Architectures with Labeled

Rooted Tree Graphs

4.6.1 Representation as Labeled Rooted Tree Graphs

The class of architectures A can be represented as labeled rooted tree graphs.

In graph theory, a tree is a undirected graph in which any two vertices are

connected by unique simple path [98,99]. An equivalent definition is an undi-

rected graph that is connected and has no cycles. Here a labeled rooted tree

is a tree where the root is labeled with 0 and each other vertex is assigned

a unique integer value from 1 to Nc [99]. The architectures in A are repre-

sentable by labeled rooted trees because the labels in the tree (other than the

root) correspond to specific CPHXs in a predefined list and the fluid is de-

fined to flow away from the root. Finally, to completely define A, we require

all the vertices in the tree except the root to have at most one child. Two

example trees are shown in Fig. 4.4 along with a unique direct representation.

This direct representation, specific to single-split architectures, utilizes “−”

to indicate a connection to the root (split) and neighboring CPHX numbers

that are connected in series, with the leftmost number connected to the root.

The number of unlabeled rooted trees of interest with Nc + 1 nodes is

equivalent to the partition numbers (i.e., different ways of writing Nc as a

sum of positive integers). For a given partition, each summation represents

an additional valve, and the integers represent the number of CPHXs in series

with a particular v. For example, 1 + 3 + 3 and 1 + 1 + 2 + 3 are two of the

15 unique partitions for Nc = 7. The number of partitions for different Nc is
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given by OEIS A000041 [99,100]:

Su = 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, . . . (4.13)

However, trees generated using these partitions are unlabeled. To deter-

mine the number of labeled rooted trees, we can naively consider all permu-

tations of the vertices for each partition, providing the upper bound on the

number of architectures as:

|A(Nc)| = Sl(Nc) ≤ Nc!× Su(Nc) (4.14)

This is only an upper bound as there will potentially be isomorphic graphs [99]

using the naive permutations. Fortunately, we can directly account for the

isomorphic graphs by considering the number of instances of a specific integer

in the partition and their permutations:

|A(Nc)| =
S(Nc)∑
k=1

Nc!×

(
Nc∏
i=1

I(k, i)!

)−1 (4.15)

where I(k, i) is the number of times the integer i appears in partition k

(e.g., if we have partition k : 1 + 2 + 2 + 2, then I(k, 2) = 3) and I can

be computed with Ref. [101]. The first few values for the number of unique

architectures for increasing Nc are:

Sl = 1, 3, 13, 73, 501, 4051, 37633, 394353, . . . (4.16)

The 13 unique cooling system architectures for Nc = 3 are shown in Fig. 4.7.

This information will be used when generating each of the trees. Table 4.1

below shows the time complexity to generate trees for Nc ranging from 1 to

10. The labelled rooted trees generated for a sample Nc = 4 and 6 are shown

in Fig. 4.5 and Fig. 4.6 respectively.

4.6.2 Generating the Labeled Rooted Tree Graphs

Here we will utilize the parent pointers representation of a tree graph where

the kth child (vertex labeled with k) of vector V has the parent node V (k) [98].

For example, V = [0 3 0] defines the labeled rooted tree in Fig. 4.7c. To enu-
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Table 4.1: Time complexity to generate labeled rooted trees for Nc from 1
to 10

n S(n) N t(s)

1 1 1 0.000075
2 2 3 0.000105
3 3 13 0.00016
4 5 73 0.000522
5 7 501 0.003206
6 11 4051 0.027741
7 15 37633 0.288439
8 22 394353 3.382594
9 30 4596553 44.315895
10 42 58941091 646.033944

Figure 4.5: All 73 labeled rooted tree graphs for Nc = 4.
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Figure 4.6: All 501 labeled rooted tree graphs for Nc = 6.

(a) 1− 2− 3. (b) 1− 23. (c) 1− 32. (d) 2− 13.

(e) 2− 31. (f) 3− 12. (g) 3− 21. (h) 132.

(i) 123. (j) 213. (k) 231. (l) 312.

(m) 321.

Figure 4.7: The 13 unique architectures when Nc = 3.
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merate all possible labeled rooted trees with all the vertices except the root

having at most one child, a recursive algorithm was developed.

Some key features of the approach are:

1. Recursively generating all vectors of length Nc with integer entries from

0 to Nc by adding one child-parent entry at a time.

2. Keeping a list of potential parents and removing vertices that already

have a child from this list during the recursion. The root node is

always a potential parent. This ensures the single-junction structure of

the trees.

3. Removing any graphs that have a cycle added during the recursion

(since they are not trees).

Due to the special structure of the parent pointers representation, all of the

generated trees are unique. We can readily generate the listing of all the

trees up to Nc = 10, where we start to have data storage issues due to the

combinatorial nature of the problem. These listings will serve as a basis for

evaluating all potential cooling system architectures for a given problem.
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CHAPTER 5

OPTIMAL FLOW CONTROL
PROBLEM

5.1 Optimal Coolant Flow Control Problem

To study the thermal performance of the candidate architectures, a dynamic

optimization problem is posed. The goal of this optimization problem is

to maximize the thermal endurance of a candidate architecture, defined as

the length of time before any temperature state violates its upper bound

under a given heat load profile. To continue operation past this time, the

system must risk failure or degradation due to operating beyond its thermal

limits, or the devices generating thermal energy must be throttled to reduce

the heat loads applied to the cooling system. Increasing thermal endurance

therefore often facilitates improved performance or capability of the systems

being cooled. In many cases, heat load profiles may resemble square waves,

pulsing in accordance with the duty cycle of electrical or mechanical devices.

Thermal endurance under a constant heat load is then representative of the

maximum pulse duration that can be tolerated before the system must be

allowed to cool down.

The variable time optimal control problem provides an upper limit on

length of the time horizon tend such that the constraints of the problem are

still satisfied:

min
ṁf ,tend

−tend, (5.1)

where ṁf are the open-loop control variables used to regulate the valve flow

rates.

The dynamics for this problem are then a combination of Eqn. (4.11) and
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additional states to capture m̈f :

ξ̇ =

[
Ṫ

m̈f

]
(5.2)

where T is the vector of temperature states, Ṫ is given in Eqn. (4.11), T t

is the temperature of the thermal sink (the chiller), and there are nξ =

4 + 2Nc +Nf states.

The next constraint initializes the temperature states of the system:

Tw(0) = Tw,0, Tf (0) = Tf,0, Tl(0) = Tl,0 (5.3)

where Tw,0 is the initial temperature of the cold plate walls, Tf,0 is the initial

temperature of the cold plate fluids, and Tl,0 is the initial temperature of the

tank and LLHX states.

To ensure that each component remains within an upper bound on its oper-

ating temperature, we include the following linear inequality path constraints

on the temperature states:

Tw(t) ≤ Tw,max, Tf (t) ≤ Tf,max, Tl(t) ≤ Tl,max (5.4)

where Tw,max ∈ RNc are the maximum allowable temperatures for the CPHX

walls, Tf,max ∈ RNc are the maximum allowable temperatures for the CPHX

fluids, and Tl,max ∈ R4 are the maximum allowable temperatures for the tank

and LLHX states.

We also ensure nonnegative flow through each of the valves (i.e, no fluid

flow in the reverse direction) with the following linear inequality path con-

straint:

0 ≤ ṁf (5.5)

A static form of conservation of mass ensures that the total mass flow rate

through all the parallel flows is equal to the mass flow rate through the pump

with the following linear equality path constraint:

Nf∑
i=1

ṁf,i(t) = ṁpump (5.6)
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where ṁpump is the mass flow rate of the pump, assumed to be constant in

this thesis.

To model a limit on the rate of change of the valve positions, we also

enforce constraints on the derivative of the mass flow rates:

|m̈f (t)| ≤ m̈f,max (5.7)

where m̈f,max is the rate limit.

Finally, we impose a small quadratic penalty term on the controls to

both smooth the solution trajectories and improve convergence, modifying

Eqn. (5.1) to:

min
ṁ,tend

−tend + λ

∫ tend

0

‖m̈f (t)‖22 dt (5.8)

where λ is the penalty parameter. Larger values of λ help regularize the

problem, but extremely large values push the solution away from the de-

sired unpenalized value for tend. We ensure that the additional penalty

term has a limited overall effect on the objective function value by setting

λ� 1/(Nfm̈
2
f,max), noting that λtendNfm̈

2
f,max is the maximum value for the

penalty term. Therefore, selecting λ = 0.01/(Nfm̈
2
f,max) ensures that the

total penalty cost is always at most 1% of the final value for tend.

For the pure series architectures (Nf = 1), we developed a simple shooting-

based, bisection method that quickly determines the maximum value of tend

for each architecture under the given pump mass flow rate.

5.2 Case Studies

Here we present four case studies to demonstrate both the efficacy and utility

of the design methodology for cooling system architectures. The nonlinear

optimal control problem presented in Section 5.1 was solved using GPOPS-

II, which discretizes the problem using pseudospectral methods into a finite-

dimensional nonlinear program [88]. The key model and optimization prob-

lem parameters used in the case studies are given in Table 5.1.
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Table 5.1: Key model and optimization problem parameters.

Parameter Value
CPHX wall mass 1.15 kg
LLHX wall mass 1.2 kg
Tank fluid mass 2.01 kg

Thermal sink temperature T t 15 ◦C
Tank/LLHX initial temperatures, Tl,0 15 ◦C
CPHX initial wall temperatures, Tw,0 20 ◦C
CPHX initial fluid temperatures, Tf,0 20 ◦C

Thermal sink mass flow rate, ṁt 0.2 kg/s
Pump mass flow rate, ṁp 0.4 kg/s

Valve rate limit, m̈f,max 0.05 kg/s2

Penalty parameter, λ 0.01/(Nfm̈
2
f,max)

5.2.1 Case Study 1

Here we study cooling system architectures that have three CPHXs. As

shown in Fig. 4.7 and Section 4.6, there are thirteen unique architectures

possible. For these results, we assume that all temperature constraints are

equal to 45 ◦C and that the total heat load on the cooling system is equal to

15 kW.

Identical Heat Loads

The first set of results has an identical heat load to each CPHX, resulting

in only three unique architectures. The results are shown in Fig. 5.1. The

optimal values for tend were (133, 129, 123) s, for the (pure parallel, hybrid,

pure series) architectures, respectively. This result indicates that the pure

parallel architecture is the best one under these conditions. Note that in each

of the cases, at least one of the temperature constraints is active at the final

time (a necessary stopping condition), and for both 1− 2− 3 and 1− 32, all

the wall temperatures are at their maximum allowable value.

Unique Heat Loads

The next set of results, shown in Fig. 5.2, have a unique and linearly spaced

heat load to each CPHX. Here the best architecture is a series topology, 321,

with tend = 234 s (in fact, there would only be a minor constraint violation of
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(a)

(b) (c)

Figure 5.1: Optimal temperature and flow trajectories for the architectures
with P s = [5, 5, 5]′ kW and Tmax = 45 ◦C: (a) Nf = 3; (b) Nf = 2; (c)
Nf = 1.
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(a)

(b) (c)

Figure 5.2: Optimal temperature and flow trajectories for the best
architectures with P s = [2.5, 5, 7.5]′ kW and Tmax = 45 ◦C: (a) best
architecture with Nf = 3 (1− 2− 3); (b) best architecture with Nf = 2
(1− 32); (c) best architecture with Nf = 1 (321).
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(a)

(b) (c)

Figure 5.3: Optimal temperature and flow trajectories for the best
architectures with P s = [3.75, 3.75, 7.5]′ kW and Tmax = 45 ◦C: (a) best
architecture with Nf = 3 (1− 2− 3); (b) best architecture with Nf = 2
(1− 32); (c) best architecture with Nf = 1 (321).
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0.25 ◦C were the constraint softened such that the system could reach steady-

state). The pure parallel architecture was 7th best overall with tend = 119 s.

The worst result was found to be 123, with tend = 71 s. It is observed that

the CPHX with the highest heat load (3) should always be connected to the

root to achieve good thermal endurance. In addition, many of the solutions

have some of the temperature path constraints active for long periods of time

(up to 80 s).

Grouped Heat Loads

Here we consider the case when two CPHXs have the same heat load and

the third is double the heat load of the first two. The results are shown

in Fig. 5.3. Again, the series architectures 321 and 312 (identical models)

performed the best with tend = 199 s, while the pure parallel architecture was

5th with tend = 119 s. Comparing these results to those under unique heat

loads, we see that the best architecture performs worse with these grouped

heat loads than in the unique case, even though the total heat load on the

system is the same.

5.2.2 Case Study 2

Unlike in Case Study 1, here we select different values for both the tem-

perature constraints and heat loads among the CPHXs; thus, it is quite

challenging to determine through intuition the optimal architecture.

Enumeration with Four CPHXs

For this first result, we consider architectures with four CPHXs and:

P s = [2.5, 6.5, 9.6, 8.7]′ kW, Tw,max = [47, 59, 41, 53]′ ◦C

The results for all 73 architectures is summarized in Fig. 5.4. The best

architecture was 3 − 421. This differs from the previous case study, where

either pure series or pure parallel was determined to be the best. Observing

the trajectories in Fig. 5.5a shows a large amount of constraint activity, with

all four wall temperature constraints active at the end. The pure parallel
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Figure 5.4: Sorted results for all 73 architectures.

(a) (b)

Figure 5.5: Results from Case Study 2 for Enumeration with Four
CPHXs: (a) best architecture (3− 421); (b) worst architecture (1243).
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Figure 5.6: Sorted results for all 4051 architectures.

(a) (b)

Figure 5.7: Results from Case Study 2 for Enumeration with Six CPHXs:
(a) best architecture with Nf = 3 (1− 36− 542); (b) best architecture with
Nf = 4 (1− 5− 34− 62).
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(a) (b) (c)

Figure 5.8: Select results for P s = [2.25, 4.5, 6.75] kW and Tmax = 45 ◦C
with steady-state solutions: (a) feasible architecture with Nf = 3
(1− 2− 3); (b) feasible architecture with Nf = 1 (321); (c) infeasible
architecture with least tend (123).

architecture was the 5th best architecture, with marginally shorter thermal

endurance than the best (26.8 s vs. 29.1 s).

Enumeration with Six CPHXs

This study is structured similarly to the previous result but with six CPHXs:

P s = [2.0, 6.1, 4.7, 6.7, 3.2, 6.7]′ kW

Tw,max = [41, 53, 60, 42, 47, 50]′ ◦C

The results for all 4051 architectures are summarized in Fig. 5.6. Here,

the best architecture was 2 − 3 − 46 − 51, and had a thermal endurance of

46.2 s. The pure parallel architecture was the 116th best architecture and

lasted for 44 s. The temperature and flow rate trajectories for both of these

architectures are shown in Figs. 5.7a and 5.7b, respectively. As with the

previous result, the solution is not necessarily intuitive. Additionally, since

we evaluated all 4051 architectures, we have a large amount of information to

aid in choosing the architecture that is the best for the requirements in this

case study. For example, patterns with desirable properties can be observed

for the problem of interest, which is beyond what is possible when only

generating a single optimal design. From these results, one clear pattern is

improved thermal endurance when CPHX 4 is placed at the root.
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Figure 5.9: Thermal endurance results for P s = [2.25, 4.5, 6.75] kW and
Tmax = 45 ◦C with varying values of the pump mass flow rate (select
architectures are labeled).

5.2.3 Case Study 3

In the third case study, we consider the goal of determining whether a feasible

steady-state operating condition can be reached for a given set of heat loads

and temperature constraints. To test this property, we set an upper bound

on tend of 1000 s as a conservative estimate of the maximum duration that a

feasible architecture could take to reach state-state. Here we used unique and

linearly spaced heat loads with Nc = 3, similar to Section 5.2.1 except now

with a slightly reduced total heat load of 13.5 kW. The results for several of

the architectures are shown in Fig. 5.8. Of the 13 candidates, 11 were able

to handle the heat loads for 1000 s. The two that were unable to satisfy the

conditions were 123 and 213. The remaining candidates with feasible steady-

state solutions are distinguished by differing numbers of CPHXs hitting their

upper temperature bound. Architecture 321 in Fig. 5.8b had the lowest

maximum temperature of 41 ◦C, so none of the constraints were active. These

results demonstrate the sensitivity of thermal endurance with respect to the

total heat load, as many architectures with 13.5 kW total heat load can
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operate indefinitely, while the best architecture with 15 kW could only last

234 s.

These results suggest several interesting design questions, such as which

architecture achieves steady-state behavior with the lowest pump mass flow

rate ṁp (i.e., the smallest pump size), and is there a value for ṁp such

that all the architectures can achieve steady-state behavior? To investigate

these questions, a pump sensitivity study was performed using the same

conditions as Fig. 5.8. The results of the study are shown in Fig. 5.9 for all

thirteen architectures, where each architecture is represented by a distinct

curve, and each point on each curve represents maximal tend for a given

ṁp value for the corresponding architecture. The pump flow rates start

increasing from zero kg/s, where all architectures have a similar thermal

endurance of 14.1 s. For each of the architectures, the thermal endurance

increases when the pump flow rate increases. However, the rate of change can

be different between the architectures and we can observe that the rankings

of the architectures may be different at different flow rates. The pure series

architecture (123), shown in Fig. 5.8c, that was infeasible when ṁp = 0.4

kg/s is marked by the black dot in Fig. 5.9. We can observe that only

a small increase above 0.4 kg/s is required to achieve indefinite operation

as all the architectures exhibit a steep increase in thermal endurance when

near the steady-state asymptote. Overall, all the architectures do achieve

steady-state behavior around 0.41 kg/s. To minimize the required pump size,

the pure series architecture (321) is clearly the best architecture, achieving

steady-state behavior with the lowest pump mass flow rate.

5.2.4 Case Study 4

In the final case study, time-varying electronic heat load profiles were con-

sidered, unlike the previous case studies with constant profiles. In many

applications, the loads are dynamic and cooling system design becomes very

challenging and less intuitive. Also, the computational cost is typically higher

as compared to the previous studies with constant heat loads due to the more

dynamic behavior of the solutions.

Here, three unique trapezoidal pulse profiles, shown in Fig. 5.10, were used

with different peak powers and duty cycles. Under these conditions, the pure
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Figure 5.10: Time varying power flows used in this Case Study 4.

parallel architecture (1−2−3) had the maximum thermal endurance of 41.8

s, while the 312 pure series architecture was the worst, lasting for only 27.5

s. The temperature and flow rate trajectories for both of these architec-

tures are shown in Figs. 5.11a and 5.11b, respectively. For the pure parallel

architecture, the fluid was dynamically distributed between the two more

challenging heat load profiles, P s
1 and P s

2 . For P s
3 , there was no coolant flow

across the entire time horizon, demonstrating that under certain conditions,

certain components should not be actively cooled in maximizing thermal en-

durance. At the final point of constraint violation, we observe that the flow

was controlled such that just enough cooling was provided to prevent both

component 1 and 2 from overheating at different points, but fails in the end

due to the control limits. Therefore, it seems that the pure parallel architec-

ture was the best because fluid could be directly diverted to the necessary

components.

5.3 Summary of Case Studies

The first case study (Sec. 5.2.1) contains three sub-cases in which a total

heat load of 15 kW is divided in different ways among three CPHXs, while
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(a) (b)

Figure 5.11: Results from Case Study 4 with time-varying power flows:(a)
best architecture (1− 2− 3); (b) worst architecture (312).

the temperature constraints on each CPHX remain the same throughout the

study. In the second case study (Sec. 5.2.2), both the heat loads and the

temperature constraints vary among the CPHXs. To determine whether a

steady-state feasible operating condition can be reached for a given set of

temperature constraints and heat loads, a third case study (Sec. 5.2.3) was

performed using three CPHXs. This case study also explores the sensitivity of

thermal endurance to pump mass flow rate. Unlike the first three case studies,

the fourth case study (Sec. 5.2.4) maximizes thermal endurance subject to

time varying load profiles.
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CHAPTER 6

CONCLUSION AND FUTURE
WORK

6.1 Thesis summary

In this chapter the thesis is summarized in addition to highlighting the main

contributions that have been made. A number of future work items that

could be done are also outlined.

As mentioned earlier, this thesis involves two main parts: optimal sen-

sor placement and optimal cooling system architecture design. Both sensor

placement and cooling methods complement each other in efforts to improve

DTM. While the design methods developed in the former were validated on

a prototype inverter as a good test case problem, the latter was solved for a

candidate single-split and single junction type electro-thermal circuit system.

Optimal sensor placement: An essential component of a dynamic ther-

mal management problem is accurate thermal monitoring. Accuracy of the

online estimation of electro-thermal systems depends significantly on the

modeling methods used and the optimal sensor placement scheme that sup-

ports it. In Chapter 2 of this thesis, many previous optimal sensor place-

ment applications were reviewed, and a clear distinction was made as to how

optimal sensor placement in high-density power electronic systems stands

as a unique case against previous problems tackled by several researchers

in the past. To perform accurate thermal estimation, RC-based lumped-

parameter thermal models were used for representing 2D and 3D prototype

multi-level inverter power electronic system based on previous work [61].

Novel and computationally-efficient optimal temperature sensor placement

methods for active and complex high-density power electronic systems have

been presented. A rigorous study of the sensor placement algorithms has

been performed and their computational efficiencies have been compared. A
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new sensor placement method was introduced based on a continuous relax-

ation, which was inspired by the SIMP topology optimization method. An

important advantage of the relaxation method is improvement in computa-

tional efficiency, while admitting much more general performance metrics to

be used for sensor placement optimization. A new reformulation based on

the trace of the observability Gramian resulted in an LP with dramatically

faster solution time, with potential to scale to much larger placement prob-

lems. The LP method, however, cannot utilize more general performance

metrics. Finally, the design method has been validated experimentally using

a highly power dense FCML prototype inverter through dynamic estimation

via a continuous-discrete Kalman filter. The temperatures obtained both

experimentally and via estimation were in a very close agreement with each

other, having errors within 2-3% of the actual experimental values. Thus,

not only do the methods developed support accurate dynamic temperature

estimation, but also are scalable and applicable to a range of PESs. These

advances may help achieve unprecedented performance for thermally-aware

power electronic systems that are highly reliable and robust. Future work

will incorporate more realistic performance metrics, increased model fidelity,

redundant sensor placement techniques, more detailed failure and reliability

models, and increased system level design considerations including compo-

nent layout and cooling system control design.

Enumeration and Design of Optimal Cooling Systems Architec-

tures: To complement the optimal sensor placement problem, efficient cool-

ing system design is necessary. Similar kind of graph based modeling tech-

nique has been used to generate candidate architectures relevant to this study.

Single-split and single-junction type architectures have been considered as an

initial step in order to gain insights on cooling system design. The optimal

flow control problem for each candidate architecture has been solved using a

commercial software total, GPOPS-II. The optimization formulation is done

in a way that all the candidate design architectures possible for a certain case

study could be evaluated and sorted according to their thermal endurances.

The optimal control problem also provides the flexibility of adding various

types of temperature, mass flow rate, and other system-level constraints that

one would be interested in. The enumeration could become more compu-

tationally challenging as the number of cold plate heat exchangers in the
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system goes beyond ten. In that case, more efficient algorithms need to be

developed to scale up larger system design problems. Considering that the

design method is both scalable to larger problems and flexible enough to

incorporate more realistic system level design considerations, such as geo-

metric layout and reliability factors, it could be applied in several real-time

applications ranging from low power electronic systems to high end electro-

thermal systems. This work serves as a preliminary study toward the design

of novel fluid-based thermal management architectures with optimal coolant

flow distribution. Candidate cooling system design architectures have been

generated using labeled trees and a graph-based dynamic thermal modeling

framework. A variable-horizon optimal control problem was posed to iden-

tify cooling architectures having maximum thermal endurance. Four case

studies were performed that demonstrated the effectiveness and potential of

the proposed design methodology. The optimal solutions obtained show that

intuition and experience may not be sufficient to identify the best-performing

cooling architectures, especially as complexity increases. In particular, this

methodology serves as a powerful tool to aid engineers in finding feasible

and optimal architectures under different operating conditions. The identi-

fied optimal control trajectories can also serve as a basis for the realization of

implementable feedback controllers. Finally, this work highlights some of the

challenges associated with utilizing enumerative methods in architecture de-

sign as well as the automated construction and solving of the corresponding

dynamic optimization problems.

6.2 Future Work

The following future work items have been identified that have the potential

to improve the design of high density power electronic systems:

• Complete a comprehensive study of sensor location problems with more

realistic metrics, integration with control design, and more complete

design considerations.

• Further investigation into more comprehensive failure models, including

thermo-mechanical modeling of stress and reliability. This is expected
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to become increasingly important with integration of new cooling sys-

tem architectures and increases in system density.

• Develop effective design tools for multi-type sensor placement in both

2D and 3D power electronic systems. Multi-type sensors include stress

sensors, flux sensors and current sensors apart from temperature sen-

sors used for this study.

• Cooling system architectures studied here are only limited to a single

split and a single junction. Efforts could be made to evaluate more gen-

eral cooling system architectures having multiple loops, tanks, cooling

pumps, etc.

• Further investigation into a more complete physical representation of

the cooling system design by incorporating hydraulic models that ac-

count for pressure drops across cooling channels.

• In addition, an alternative fixed-horizon optimization problem in which

the objective is to minimize violations of soft upper bounds on compo-

nent temperatures, similar to that used for control in Ref. [86], will be

considered.

• To utilize new machine learning techniques to enable solution of much

larger synthesis problems with dimension reduction and active learning

to support strategic evaluation described in Ref. [102], based on the

data obtained via enumeration.

• Lastly, a subset of the best designs identified here will be experimentally

validated on a reconfigurable fluid-thermal testbed recently developed

as described in Refs. [86, 93].

• One long term goal is to provide engineers design guidelines based on

this work to support the development of unprecedented cooling systems

that enable future power electronic applications.
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APPENDIX A

Supplementary Information for
Optimal Sensor Placement

The system dynamics matrix A, input B matrix and heat generation u vector

used in optimal sensor placement for the reduced order model are given below:

A =



−0.28 0.22 0.01 0.00 0.00 0.01 0.02 0.01 0.01

0.22 −0.28 0.01 0.01 0.02 0.01 0.00 0.00 0.01

0.25 0.21 −0.94 0.00 0.00 0.39 0.00 0.00 0.00

0.00 0.33 0.00 −0.81 0.00 0.39 0.00 0.00 0.00

0.00 0.46 0.00 0.00 −0.94 0.39 0.00 0.00 0.00

0.03 0.03 0.07 0.07 0.07 −0.50 0.07 0.07 0.07

0.46 0.22 0.01 0.00 0.00 0.39 −0.94 0.00 0.00

0.33 0.22 0.01 0.00 0.00 0.39 0.00 −0.81 0.00

0.21 0.25 0.00 0.00 0.00 0.39 0.00 0.00 −0.94



B =



0 0 0 0 0 0

0 0 0 0 0 0

12.5 0 0 0 0 0

0 12.5 0 0 0 0

0 0 12.5 0 0 0

0 0 0 0 0 0

0 0 0 12.5 0 0

0 0 0 0 12.5 0

0 0 0 0 0 12.5


u =

[
1.20 1.50 1.40 0.16 0.25 0.16

]
Note: These are just representative matrices for the readers to understand

the material presented in the paper. More estimation related information

can be found in [61]. The following table A.1 shows the optimal sensor
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locations for the full-order 3D model comprising 39 states with the trace of

the observability gramian as the performance metric.

Table A.1: Optimal sensor locations for 2D full order model.

Number of sensors State Locations

1 3

2 5,38

3 5,20,22

4 3,4,20,22

5 4,5,20,37,38

6 3,5,22,36,37,38

7 3,4,5,16,20,22,36

8 2,7,13,20,22,29,36,37

9 1,4,13,16,22,29,35-37

10 1,3-5,13,20,22,26,36,37

11 2-5,16,20,22,29,36-38

12 2,5,13,16,19,20,22,26,35-39

13 3-6,13,16,20,22,26,36-39

14 2-5,7,13,20,22,26,29,35-38

15 1-6,13,16,20,22,26,35-38

16 1-6,8,13,19,20,22,35-39

17 1-7,13,16,20,22,26,29,36-39

18 1-5,8,11,13,16,20,22,26,29,35-39

19 1-6,13,16,19,20,22,26,29,31,35-39

20 1-5,7,8,12,16,20,22,23,25,26,29,35-39

21 1-8,12,13,16,20,22-24,26,29,35,37-39

22 1-7,11,13,16,19,20,22,23,26,29,34-39

23 1-8,13,16,19,20,22,23,26,29,31,32,35-39

24 1-8,11-13,16,17,19,20,22,26,29,32,35-39

25 1-7,11,13,16,20-23,25,26,29-32,35-39

26 1-8,11-14,16,19,20,22,23,25,26,2932,35-39

27 1-8,11-13,16,19,20,22-26,29,31,32,35-39

28 1-9,12,13,16,17,19,20,22-26,29,32,34-39

29 1-8,11-13,15,16,19,20,22,23,25,26,29,30,32-39

30 1-8,11-13,16,19-23,25,26,29-39

31 1-8,11-14,16,19,20,22-26,29-39

32 1-8,11-13,15,16,19-32,35-39

33 1-8,11-13,16,18-32,34-39

34 1-9,11-13,15-17,19,20,22-27,29-39

35 1-39 (except 10,15,17,33)

Continued on next page
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Table A.1 – continued from previous page

Number of sensors State Locations

36 1-39 (except 10,15,18)

37 1-39 (except 14 and 17)

38 1-39 (except 10)

39 1-39

The following table A.2 shows the optimal sensor locations for the full-order 3D model
comprising 78 states with the trace of the observability gramian as the performance metric.
TOG stands for the Trace of the Observability Gramian matrix.

Table A.2: Optimal sensor locations for 3D full order model.

No. of sensors State Locations TOG

1 75 0.6733

2 42,75 1.3466

3 44,75,77 2.0198

4 42,44,75,77 2.6931

5 3,40,42,46,75 3.3469

6 40,42,44,46,75,77 4.0275

7 36,40,42,44,46,75,77 4.6935

8 3,5,36,42, 44,46,75,77 5.3583

9 5,38,40-42, 44,46,75,77 6.0219

10 1,3,36,38,40,42,44,46,75,77 6.6892

11 1,3,5,36,38,40,42,44,46,75,77 7.3552

12 1,3,5,36,40,41,42,44,46,74,75,77 8.0139

13 1,3,5,7,36,38,40-42,44,46,75,77 8.6813

14 1,3,5,7,36,38,40-42,44,46,74,75,77 9.3437

15 1,3,5,7,36,38-42,44,46,74,75,77 9.9953

16 1,3,5,7,35,36,38-42,44,74,75,77,78 10.6422

17 1-3,5,7,35,36,38,40-42,44-46,74,77,78 11.2985

18 1-3,5,7,35,36,38,40-42,44-46,74,75,77,78 11.9718

19 1-3,5-7,35,36,38,40-42,44-46,74,75,77,78 12.6128

20 2,3,5-7,35,36,38-46,74,75,77,78 13.24

21 1-3,5-7,35,36,38-46, 74,75,77,78 13.9093

22 1-3,5-7,35,36,38-46, 74-78 14.5434

23 1-7,35,36,38-46, 74-78 15.1671

24 2-7,20,35-46, 74-78 15.6918

25 1-5,7,20, 35-46, 52,74-78 16.2391

26 1-7,20,22, 35-46,74-78 16.9201

27 1-7,20,22, 35-46,71,74-78 17.4693

28 1-7,20,22, 35-46,49,71,74-78 18.0185

29 1-7,20,22, 35-46,49,71,73-78 18.5677

30 1-7,20,22, 35-46,49,52,65,71,73-78 19.1031

31 1-7,20,22, 35-47,49,52,71,73-78 19.6523

32 1-7,20,22, 35-47,49,52,65,71,73-78 20.1876

33 1-7,13,20,35-47,49,52,65,68,71,73-78 20.6895
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34 1-7,16,20,22,35-47,49,55,65,68,71,73-78 21.2542

35 1-7,13,20,22,35-47,49,52,55,65,68,71,73-78 21.7895

36 1-7,13,16,20,22,26,35-47,49,52,55,68,71,73-78 22.3167

37 1-7,13,16,22,26,29,35-47,49,52,55,65,68,71,73-78 22.8186

38 1-8.16,20,22,26,29,35-47,49,52,55,65,68,71,73-78 23.3644

39 1-7,13,16,19,20,22,26,29,35-47,49,52,55,63,65,71,73-78 23.9012

40 1-7,13,16,20,22,26,29,35-47,49,50,55,57,5863,70,71,73-78 24.4135

41 1-7,13,16,19,20,22,23,29,35-47,49,50,52,55,57,68,70,71,73-78 24.9520

42 1-7,13,19,20,22,26,29,35-47,49,50,52,55,57,63,65,68,70,71,73-78 25.4917

43 1-7,13,20,22,23,25,29,35-47,49,52,55,57,58,62,63,65,68,70,71,73-78 26.0049

44 1-7,13,16,19,20,22,26,29,35-47,49, 26.5415

50,52,55,57,59,63,65,68,70,71,73-78

45 1-7,13,16,19,20,22,26,29,35-47,49, 27.0684

50,52,55,57,59,63,65,68,70,71,73-78

46 1-7,13,16,19,20,22,23,26,29,35-47,49,50, 27.5894

52,55,57,58,62,63,65,68,70,71,73-78

47 1-7,13,16,19,20,22-24,26,29,35-47,49,50, 28.1018

52,55,57,58,62,63,65,68,70,71,73-78

48 1-7,13,18-20,22,23,26,29,35-47,49-52, 28.6129

55,57,58, 62, 63,65,68,70,71,73-78

49 1-78, except 9-12,14,15,17,18,21,24,25,27,28, 29.1313

30-33,48,51,53,54,56,60,64,66,67,69,72

50 1-78, except 9-12,14,15,17,18,21,24,25,27,28, 29.6515

30-34,48,53,54,60,64,66,67,69,72

51 1-78, except 8,9,12,14,15,17,18,21,24,25,27,28, 30.1660

30,31,33,34,48,53,54,60-62,66,67,69,72

52 1-78, except 8,9,12,14,15,17,18,21,24,25,27,28,30, 30.6647

31,33,34,48,53,54,60-62,66,67,69,72

53 1-78,except 9,11,12,14,15,17,18,21,24,25,27, 31.1909

28,30,31,33,34,48,53,54,56,60,66,67,69,72

54 1-78, except 8-11,14,15,17,18,21,24,25,27,28,30, 31.6724

31,33,34,48,53,54,60,66,67,69

55 1-78, except 8,9,11,14,15,17,18,21,24, 32.2176

25,27,28,30-33,48,53,54,60,66,67,72

56 1-78, except 9,11,14,15,17,18,21,24, 32.7289

27,28,30,31,33,34,48,51,53,54,60,66,67,72

57 1-78, except 9,11,14,15,17,21,24,25,27, 33.2425

28,30,31,33,34,48,53,54,60,66,67,72

58 1-78, except 9,12,14,15,17,18,21,25,27,28,30,31,33,48,53,54,60,66,67,72 33.7549

59 1-78, except 9,12,14,15,17,21,25,27,28,30,31,33,48,53,54,60,66,67,72 34.2675

60 1-78, except 9,12,14,15,17,21,25,27,28,31,33,48,53,54,60,66,67,72 34.7797

61 1-78, except 9,12,14,15,21,25,27,28,30,33,48,53,54,60,66,67,72 35.2921

62 1-78, except 9,14,15,17,21,27,28,30,33,48,53,54,60,66,67,72 35.8044

63 1-78, except 9,14,15,21,27,28,30,33,48,53,54,60,66,67,72 36.3166

64 1-78, except 14,15,21,25,27,28,33,48,53,54,60,66,67,72 36.7524

65 1-78, except 9,14,15,21,27,28,33,53,54,60,66,67,72 37.3096

66 1-78, except 9,15,21,27,28,33,53,54,60,66,67,72 37.7452

67 1-78, except 9,14,15,21,27,28,33,53,54,60,67 38.2310

68 1-78, except 9,14,15,21,27,28,33,60,66,67 38.6717

69 1-78, except 9,14,15,21,27,28,33,60,67 39.1125

Continued on next page
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70 1-78, except 9,14,15,21,27,33,60,67 39.5841

71 1-78, except 9,14,15,27,28,33,60 39.9924

72 1-78, except 9,15,27,28,33,60 40.4280

73 1-78, except 9,15,27,28,33 40.8642

74 1-78, except 14,15,27,28 41.3001

75 1-78, except 14,15,28 41.7357

76 1-78, except 14,15 42.1713

77 1-78, except 15 42.6069

78 1-78 43.0425
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