
© 2021 Satya Ravi Teja Peddada



A TWO-STAGE DESIGN FRAMEWORK FOR OPTIMAL SPATIAL PACKAGING OF 

INTERCONNECTED FLUID-THERMAL SYSTEMS 

BY 

SATYA RAVI TEJA PEDDADA 

DISSERTATION 

Submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in Systems and Entrepreneurial Engineering 

in the Graduate College of the  

University of Illinois Urbana-Champaign, 2021 

Urbana, Illinois 

Doctoral Committee: 

Associate Professor James T Allison, Chair and Director of Research 

Professor Nathan M Dunfield 

Assistant Professor Kai A James 

Associate Professor Pingfeng Wang 

Dr. Lawrence E Zeidner, Raytheon Technologies Research Center  



Abstract

Optimal spatial packaging of interconnected subsystems and components

with coupled physical (thermal, hydraulic, or electromagnetic) interactions,

or SPI2, plays a vital role in the functionality, operation, energy usage, and

life cycle of practically all engineered systems, from chips to ships to air-

craft. However, the highly nonlinear spatial packaging problem, governed

by coupled physical phenomena transferring energy through highly com-

plex and diverse geometric interconnects, has largely resisted automation,

and quickly exceeds human cognitive abilities at moderate complexity levels.

The current state-of-the-art in defining an arrangement of these functionally

heterogeneous artifacts still largely relies on human intuition and manual

spatial placement, limiting system sophistication and extending design time-

lines. Spatial packaging involves packing and routing, which are separately

challenging NP-hard problems. Therefore, solving the coupled packing and

routing (PR) problem simultaneously will require disruptive methods to bet-

ter address pressing related challenges, such as system volume reduction,

interconnect length reduction, ensuring non-intersection, and physics consid-

erations.

This dissertation presents a novel automated two-stage sequential design

framework to perform simultaneous physics-based packing and routing (PR)

optimization of fluid-thermal systems. In Stage 1, unique spatially-feasible

topologies (i.e., how interconnects and components pass around each other)

are enumerated for a given fluid-thermal system architecture. It is important

to guarantee a feasible initial graph as lumped-parameter physics analyses

may fail if components and/or routing paths intersect. Stage 2 begins with

a spatially-feasible layout, and optimizes physics-based system performance

with respect to component locations, interconnect paths, and other continu-

ous component or system variables (such as sizing or control). A bar-based
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design representation enables the use of a differentiable geometric projection

method (GPM), where gradient-based optimization is used with finite ele-

ment analysis. In addition to geometric considerations, this method supports

optimization based on system behavior by including physics-based (temper-

ature, fluid pressure, head loss, etc.) objectives and constraints. In other

words, stage 1 of the framework supports systematic navigation through dis-

crete topology options utilized as initial designs that are then individually

optimized in stage 2 using a continuous gradient-based topology optimiza-

tion method. Thus, both the discrete and continuous design decisions are

made sequentially in this framework. The design framework is successfully

demonstrated using different 2D case studies such as a hybrid unmanned

aerial vehicle (UAV) system, automotive fuel cell (AFC) packaging system,

and other complex multi-loop systems.

The 3D problem is significantly more challenging than the 2D problem due

to a vastly more expansive design space and potential features. A review

of state-of-the-art methods, challenges, existing gaps, and opportunities are

presented for the optimal design of the 3D PR problem. Stage 1 of the frame-

work has been investigated thoroughly for 3D systems in this dissertation.

An efficient design framework to represent and enumerate 3D system spatial

topologies for a given system architecture is demonstrated using braid and

spatial graph theories. After enumeration, the unique spatial topologies are

identified by calculating the Yamada polynomials of all the generated spa-

tial graphs. Spatial topologies that have the same Yamada polynomial are

categorized together into equivalent classes. Finally, CAD-based 3D system

models are generated from these unique topology classes. These 3D models

can be utilized in stage 2 as initial designs for 3D multi-physics PR opti-

mization. Current limitations and significantly impactful future directions

for this work are outlined. In summary, this novel design automation frame-

work integrates several elements together as a foundation toward a more

comprehensive solution of 3D real-world packing and routing problems with

both geometric and physics considerations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

High power density electric machines [1, 2], automotive cooling systems [3],

electric drives [4], aircraft engines [5] (and many other types of other en-

gineering systems) are composed of components that exchange energy, as

well as routing (interconnects) that facilitate energy transfer. One reason

these systems are difficult to design is that they have many requirements,

including: performance, cost, geometry, and volume restrictions. Identifica-

tion of feasible designs can be exceptionally difficult in applications where

the available physical design space is limited, components and interconnects

involve complicated geometries, and system performance depends on spatial

relationships and multiple physics couplings. Current practice relies largely

upon human expertise, design rules, modification of existing designs, and

manual adjustments to solve these problems. This limits both the complex-

ity of systems that can be designed involving non-trivial packing and routing

(PR) decisions, as well as the realization of potentially improved functionality

or performance. Many previous efforts have focused on creating design au-

tomation methods to address elements of the integrated packing and routing

problem described here, but not the combined problem. In this dissertation

a novel 2-stage design automation approach is presented that integrates sev-

eral of these elements as a step toward a more comprehensive solution of

3D packing and routing problems with both geometric and physics consid-

erations. Development of such methods for the formalization, automation,

and prioritization of topological layouts for complex, multi-domain systems

will offer benefits across several industry sectors. This chapter introduces the

spatial packaging of interconnected systems with physics interactions (SPI2),

various other related terms, and motivates the need for systematic design au-
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tomation methods in this field of research. Furthermore, the major research

objectives of this dissertation are outlined, and a thesis overview is presented

that briefly discusses the role of various chapters in this dissertation.

1.2 Some Important Terms

This section provides descriptions to several terms that will be widely used

in various sections of this dissertation. A system can be defined as the com-

bination of heterogeneous elements such as components, interconnections,

equipment, etc., that function together to produce the capability required

to meet a specific need. Parts of a system are referred to as subsystems,

they can be classified based on functionality, spatial proximity, physics-type,

etc. The performance of a system as a whole, beyond that contributed in-

dependently by its parts, is primarily created by the relationship among the

parts; that depends both on how they are interconnected to and interacting

with each other in a given physical environment. Systems engineering (SE)

is a methodical, multi-disciplinary process that supports the design and de-

velopment of an optimized system capable of meeting several performance

requirements within multiple, often conflicting constraints. In other words,

SE is an integrated discipline where different engineering domains’ decisions

are combined in a holistic and balanced manner to achieve stakeholder func-

tional, physical, and operational performance requirements in the intended

use environment over the planned life-cycle of the system within cost, sched-

ule, and other constraints. Systems engineers are personnel skilled in the art

and science of system engineering. Their key job is to lead in the development

of the concept of system operations, define boundaries, integrate sub-systems,

analyze interfaces, evaluate design trade-offs, and perform verification and

validation for final product design. A systems approach in design considers

the attributes of the entire system to achieve certain system-level perfor-

mance objective(s). This approach is very challenging because it involves

understanding the functionalities and interaction between sub-systems in a

synthetic view while simultaneously analyzing individual sub-subsystems.

Design representation provides a way to describe the different features of

an engineering system design problem. This representation is generally per-
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formed using a model that embodies the functionality and relationships of

various components in a system. Design representations can be mathemati-

cal, graphical, physics-based, conceptual or analytical. Design methods refer

to the procedures, steps, or tools to aid the development of systems. Design

methods can be developed either to address a unique design application or

could be generic to support a class of systems that have similar functional-

ities. A design framework is a collection of design methods that are either

implemented sequentially, simultaneously or in a nested manner for achiev-

ing final system designs. Design theory describes the set of design guidelines

and principles on which the design practice is based. In other words, design

theory, when combined with a purpose (function) or problem to solve, results

in effective design solutions.

1.3 SPI2 Problem Definition

The Spatial Packaging of Interconnected Systems with Physics Interactions

(SPI2) problem can be defined as optimal spatial arrangement of hetero-

geneous geometric components and interconnects of often non-trivial sizes

inside irregular three-dimensional volumes, along with the consideration of

their physics-based behavior, life-cycle processes, and system operating con-

ditions. These design problems cut across a wide swath of engineering do-

mains that are vital to society (e.g., medical devices, transportation, and

computing hardware), and entail especially complex design spaces (com-

bining complex combinatorial/topological, geometric, parametric, and time-

dependent decisions) that are difficult to navigate either via expert human

cognition or computational search. These have resisted holistic treatment

by potentially powerful design automation methods, and still rely largely on

manual spatial placement by designers supported by computer-aided design

(CAD) tools. Solving the SPI2 problem requires highly-skilled engineers who

understand the engineering application, manufacturing, testing, assembly,

maintenance, and repair requirements. Moreover, design and maintenance

of large-scale systems such as aircraft and ships requires thousands of man

hours, and any advancement to overcome this bottleneck has potential for sig-

nificant technical and economic impact. The SPI2 design problem attributes
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are outlined as follows:

1. Fundamentally 3-dimensional; involves interconnected components with

complex spatial geometries and often complex, irregularly shaped en-

closing volumes;

2. Interconnects of various types (pipes, ducts and/or wires, etc.), sizes,

shapes, and requirements (curvature, proximity, temperature, electro-

magnetic interference (EMI), etc.)

3. Strongly-coupled physics interactions (thermal, hydraulic pressure, elec-

tromagnetic, etc.) and influence of spatial arrangement on performance

4. Interconnect complexity (both topological and spatial), as illustrated

in Fig.1.1

5. Unlike 2D systems, the 3D-SPI2 problem contains objects (components,

casings, bays, etc.) that are either solid or have holes or spatial-access

ports. This makes the topological problem more interesting. For ex-

ample, an interconnect may pass through a hole in a component, or

bypass the hole and be routed between components.

6. SPI2 designs can be characterized based on scale of the relevant ap-

plications. For example, Fig. 1.2 shows examples of SPI2 design ap-

plications at the cabinet level (automotive system electric layout, aero

engine, etc.) and device level (3D chips design).

7. Value metrics: packaging density (volumetric), product life-cycle and

maintenance costs, efficiency measures, system reliability, and physics-

based objectives such as maximum system temperature variance, pres-

sure head loss, electrical energy/power efficiency, etc.

8. Constraints: geometric (for ensuring both feasibility and connectiv-

ity), physics-based (device/fluid temperature, fluid velocity, etc.), fail-

ure modes, etc.
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Figure 1.1: Diverse examples of typical manually designed systems presenting
SPI2 spatial packing and routing complexity, subject to physics interactions,
and exhibiting spatial accessibility challenges for life-cycle processes: A) the
externals (components, wires, pipes and ducts interconnecting components
and engine features) of a commercial turbofan engine covering the limited sur-
face area of its core and fan case, B) the refrigeration unit for a truck trailer,
C) an environmental control system providing pressurization and cooling to
commercial aircraft cabin air, and D) helicopter avionics hardware, intercon-
nected by wire harnesses and thermal management pipes and ducts to reject
electronics heat, presenting accessibility challenges in the front avionics bay.
Figure courtesy: Wikipedia public-domain (copyright-free) images.

Figure 1.2: Cabinet level (automotive electrical and cooling system, aero-
engines, etc.), and device level (circuit layout board, chip scale designs, etc.)
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1.4 SPI2 Design Research: Stuck since Decades

A high demand exists in present society to create systems that are increas-

ingly compact, while providing enhanced technical capability to realize ben-

efits such as reducing emissions [6], increasing energy efficiency [7], and im-

proving economic competitiveness. New SPI2 design automation methods

are needed that can reduce the size of complex systems considerably, im-

pacting applications such as power-dense smart batteries [6], spacecraft cool-

ing systems [8], minimally-invasive medical wearables [9–11], strategies for

improving vehicle spaciousness [12], and compact avionics and military elec-

tronic systems [13,14]. Engineers have labored for decades to improve spatial

packing density across diverse domains such as in avionics [15–18], spacecraft

systems [19], automotive packaging [20], vehicle electrification [3], and space-

suit design [21,22]. These advances, however, have largely been incremental,

and have depended heavily on expert human ingenuity.

Current practice relies heavily on design heuristics and time-intensive hu-

man activities. Computer-Aided Design (CAD) tools provide support, but

packing and routing decisions still rely primarily on manual design tech-

niques as described in Refs. [3, 18, 20]. Product design engineers and skilled

industry personnel who understand the engineering applications, manufac-

turing, testing, assembly, maintenance, and repair requirements use legacy

design methods for product development. In most cases, they start with an

existing system design and adapt it to meet new requirements. This evolu-

tionary process is not only very time-consuming, but usually leaves available

performance enhancements on the table, such as improved density, system

performance, or reliability. The associated design space involves many in-

terrelated geometric constraints and physics-based considerations, which are

cognitively difficult to navigate effectively. For these and related reasons

(such as those articulated in Refs. [11,13,14]), SPI2 design practice has been

stuck for decades. As demand for higher-complexity systems grows, SPI2

design is further complicated in that the number of possible arrangements

increases exponentially with the number of components and interconnects.

Several inefficiencies, including biased human errors, lead to inferior designs,

and these inefficiencies may increase as product requirements grow more

complex and required packaging volumes shrink.
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1.5 Complexity of SPI2 vs. VLSI

Significant work has been performed in related areas, such as 2D VLSI (Very-

large-scale integration) circuit component layout, design and routing opti-

mization [23, 24] for several board-based electronic applications. The VLSI

design problem that has been automated successfully has limited degrees of

freedom compared to more general SPI2 design problems. VLSI problems,

in general, are primarily 2D applications with planar rectangular or square

simple geometric surfaces [25] and do not involve extensive physics coupling

between components and/or interconnect networks. Moreover, manually it

is possible to design VLSI circuits both intuitively and by experience using

existing design tools, and is possible to estimate their efficiency or other re-

lated performance metrics. In contrast, real-world SPI2 design problems are

3-dimensional (which adds a another layer of complexity) and have multi-

ple diverse attributes such as components with complex spatial geometries

(either concave or convex), restrictive domains, arbitrarily-sized, irregularly-

shaped bounding volumes, interconnects of various types (pipes, ducts and/or

wires, etc.) and radii, possible topological network configurations, strongly-

coupled physics interactions (thermal, hydraulic pressure, electromagnetic,

etc.), often large scale, and frequently encompass several other design chal-

lenges. To make accurate SPI2 design decisions based on human judgement,

or even using limited software tools, one cannot easily attain superior op-

timal designs or quantify their performance. Another consideration is that

SPI2 systems need to be designed with spatial accessibility to support safe

and efficient manufacture, assembly, maintenance, diagnosis, overhaul, re-

pair, upgrade, replacement, and other complex requirements.

1.6 Need for SPI2 Design Automation

Based on the discussion presented in the previous sections, it is evident that

no single industry or application domain can afford to tackle this large com-

mon packaging problem. It requires diverse and deep expertise and tight,

interdisciplinary engagement. For example, new mathematical SPI2 rep-

resentations must integrate with physics considerations, detailed geometric

analysis, as well as navigation of formidable spatial topology (ST) decision
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spaces. Spatial topologies involve how interconnects (such as ducts, pipes or

wires) pass through or around other elements in a space, and these decisions

represent one of the most difficult elements of SPI2 problems.

Effective design automation (DA) strategies are key to meeting the demands

of present and future needs for SPI2 packing and routing problems. Au-

tomated, systematic, flexible, and efficient design methods with the ability

to explore and access new system configurations are essential for achieving

better designs across different engineering industries. Effective methods will

support adjustments that can be made easily if the product requirements

change over time. An important potential benefit of realizing such methods is

the reduction in design time and resources required to solve packing and rout-

ing problems, enabling greater tailoring of designs to enhance performance

for unique applications, while greatly reducing design effort. Applications

and potential impact of SPI2 design automation are expansive, and associ-

ated practical design methods stand to impact industry and society through:

1) drastically reducing engineering effort and time to design new SPI2s, 2)

opening the door to the design of SPI2s with new levels of complexity, with

the potential for new functionality and performance.

1.7 Research Objectives

The goal of this dissertation is to create a strong scientific foundation to

solve the grand SPI2 design problem with a systems approach. However, to

create such a foundation requires two significant efforts: 1) an in-depth study

and development of an automated design framework to address core SPI2

related topics such has component packing, interconnect routing, physics-

based optimization, etc., in a combined manner, and 2) to simultaneously

understand the broader SPI2 design problem, its attributes, existing critical

gaps, associated design challenges, and practical application areas. To fulfill

the above needs, this dissertation aims to accomplish the following major

research objectives:

RO1. To define the optimal spatial packaging problem, identify its core re-

search domains, and their interfaces that exist between them.

RO2. To develop a systematic, tractable, and an automated design frame-
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work to solve the combined packing, interconnect routing, and physics

performance problem.

RO3. To create new SPI2 design representations that can capture the SPI2

problem attributes, and are simple, flexible, and scalable to handle

larger-complex SPI2 application problems.

RO4. To develop efficient enumeration techniques to generate unique spatial

topologies of both 2D and 3D SPI2 design problems. Furthermore,

investigate techniques to help classify these topologies according to

system complexity.

RO5. Identify a collection of layout generation methods that can be uti-

lized for generating feasible (interference-free) layouts for different SPI2

problem scenarios.

RO6. Develop a design optimization framework to search design space effec-

tively, aiding both discrete and continuous decision making.

RO7. Develop a design method that can simultaneously perform physics-

based performance optimization while satisfying spatial feasibility, pack-

ing density, and geometric connectivity constraints.

RO8. Comprehensive evaluation of the 2D SPI2 design problem and automa-

tion methods as a means to develop insights and a foundation for tack-

ling the more complex 3D SPI2 problem.

RO9. To generate new design knowledge that 1) aids systems engineers to

understand the SPI2 problems comprehensively, 2)supports industry

practice, and 3) creates SPI2 software design tools that generate various

SPI2 system geometric models.

The broader goal of these above research objectives is to not only create

methods to solve the SPI2 design problem, but also attempt to answer some

larger SPI2 design research questions, identified as follows:

1. Characterization of the SPI2 design space: What are its boundaries?

How do the feasible and infeasible design space regions compare with

each other?
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2. Is the SPI2 design space generic, or does it need to be classified accord-

ing to system size (e.g., number of components), complexity, physics

performance requirements, product life-cycle cost value metrics, or

other dimensions?

3. How does SPI2 design difficulty scale with increase in the number of

components, constraints, complexity, etc?

4. What kinds of design tools does industry require to adopt SPI2 design

automation methods?

5. What unified design parameterizations/representations are needed to

solve the SPI2 optimization problems efficiently?

6. How might various product-life cycle value metrics such as mainte-

nance, upgrade, overhaul, repair, and accessibility costs be incorpo-

rated as part of the SPI2 problem formulation and automated solution?

Based on the key findings of this dissertation, a detailed discussion in the

conclusion (Chapter 6) is presented that addresses some of these above ques-

tions.

1.8 Dissertation Overview

The introduction motivates the need to systematically solve the optimal SPI2

problem to design complex engineering systems in an efficient manner and

perhaps attain much greater system-level performances than already existing

design solutions. This chapter has provided the definitions of some impor-

tant terms that will be used throughout this dissertation. The SPI2 design

problem was then defined, and its diverse problem attributes were outlined.

A detailed discussion was presented on how the SPI2 design research has

been effectively stuck for decades, impacting myriad practical industry ap-

plications. Furthermore, the complexity of the SPI2 problems was compared

with the traditional VLSI circuit design problems that have well-established

design automation methods. The need for design automation strategies for

efficiently solving the SPI2 design problems was then discussed. Finally, the

main research objectives of this dissertation were outlined. Considering the

10



diverse design elements of the SPI2 design problem solved in this dissertation,

a number of design methods addressing different aspects of this design pro-

cess are presented in the following chapters. Chapter 2 provides a broad and

in-depth review of existing SPI2 design methods in related research domains.

The focus in Chapters 3-5 is both on the generality of the proposed design

methods and on their implementation to tailored case studies that fit within

typical SPI2 design problem categories. The remainder of this dissertation

is organized as follows.

• Chapter 2 presents a state-of-the-art review in four fundamental SPI2

design related research topics: component packing, interconnect rout-

ing, physics-based topology optimization, and mathematical design rep-

resentations. A list of existing critical gaps across the interfaces of these

core research topics with respect to SPI2 design are discussed. The

later chapters of this dissertation address a majority of those gaps.

Furthermore, the associated design challenges in SPI2 design at the

intersections of these areas are also presented in Chapter 2.

• Chapter 3 concentrates on solving the 2D SPI2 design problem. The

2D SPI2 design problem is aptly framed to attain two major outcomes:

1) to comprehensively solve the real-world planar layout SPI2 design

problems, and 2) create a foundation to solve the 3D SPI2 design prob-

lem based on the insights attained from the 2D SPI2 design process.

In this chapter the similarities and differences between the 2D and

the 3D SPI2 design problems are presented. Then the proposed two-

stage SPI2 design automation framework is introduced. The bulk of

Chapter 3 is focused on the implementation of stage 1 of the two-stage

design framework to 2D SPI2 design problems. Three efficient feasible

2D layout generation methods are presented, each of them having their

own unique characteristics. A number of case studies are performed to

both compare and perform a thorough analysis of the three methods

for different kinds of 2D SPI2 problems. The results of the case studies

are used to understand the general trends of these layout generation

methods as the scale and system complexity increase. Finally, a set of

practical guidelines are provided for design engineers on how to uni-

tize these methods for generating feasible layouts for different 2D SPI2

problems.
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• Chapter 4 focuses on stage 2 of the two-stage design framework. The

geometric projection method (GPM) is applied on 2D SPI2 layouts (at-

tained from stage 1) for performing multi-physics packing and routing

optimization. A bulk of this chapter discusses the 2D layout modeling

in detail. A number of case studies are presented that address different

aspects of the 2D SPI2 problem. Stage 2 demonstrates the incorpora-

tion of physics-based objectives and constraints on multi-loop layouts

and industry-relevant applications. This chapter shows the efficacy

of the two-stage design framework when systematically applied to 2D

SPI2 design problems.

• Chapter 5 focuses on the 3D SPI2 design problem. Stage 1 of the

design problem is rigorously investigated in this chapter. Hence, a

bulk of this chapter presents a novel design framework to represent,

enumerate, and identify unique 3D spatial topologies of a given 3D

system. Spatial graph and braid theories are extensively utilized to

attain spatially-feasible 3D system designs. A number of case studies

are provided along with design guidelines to tackle the challenging 3D

SPI2 design problems. Stage 2 of the two-stage framework for the 3D

SPI2 problem is considered out of the scope for this dissertation.

• Chapter 6 presents the dissertation summary and outlines a list of

potentially impactful future research directions.
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CHAPTER 2

REVIEW: SPI2 DESIGN RESEARCH
AREAS

The SPI2 design problem consists of different intricately-related research el-

ements that are individually very challenging themselves. For example, both

the component packing and interconnect routing are two separate NP-hard

problems. Existing design methods treat the pieces of this challenging SPI2

problem separately without a fundamental systems approach and are some-

times too slow to evaluate a practical set of possible designs. Hence, there

exists an emergent need to develop efficient SPI2 design automation frame-

works for two reasons: 1) to enable the rapid generation and evaluation of

candidate SPI2 design solutions; and 2) for the development of newer com-

plex engineering systems. In Chapter 1, the holistic 3D-SPI2 design problem

with various its attributes was defined. In this chapter1, previous research

efforts in four fundamental SPI2 design research areas are reviewed, existing

critical gaps are outlined, and associated challenges are identified.

2.1 Four SPI2 Research Elements

The most important areas that are an integral part of SPI2 design research

are shown in Fig. 2.1. The SPI2 problem can be subdivided into four basic

sub-problems: 1) component packing, 2) interconnect routing, 3) physics-

based topology optimization, and 4) SPI2 mathematical design representa-

tions. It should be noted, however, that there could be other similar domains

that might interact with these areas and could impact SPI2 design research.

This dissertation focuses primarily on these above four research areas as they

fundamentally address the SPI2 problem directly. State-of-the-art-methods

and work done in each of these areas related to SPI2 design are reviewed in

the following sections.

1Some elements of this chapter are published in Ref. [26]
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Figure 2.1: Primary SPI2 design research problem elements and some
practical SPI2 industry relevant applications.

2.2 3D Packing and Component Layout Design

3D component layout is a 3D bin-packing problem that comes under the class

of optimization problems in mathematics that involves optimally placing and

orienting objects within a given 3D volume, or optimally reducing the vol-

ume within which they can fit. Packing problems are NP-hard. Typical

engineering systems products are a combination of functionally and geomet-

rically interrelated components. The spatial location and orientation of these

components affect a number of physical quantities of interest to the designer,

engineer, manufacturer, and the end user of the product. The 3D component

packing framework concerns itself with determining the optimal spatial loca-

tion and orientation of a set of components given some design objectives and

constraints. It models the layout problem as a volume minimization problem

with the objective function being a weighted sum of the design objectives

and penalties for constraint violation. The design objectives can include a

quantification of a variety of measures such as the amount of cable used

in the engine compartment of a car, or the component packing density in

an electric drill, or the center of mass of a space vehicle. The most signif-

icant constraint is the non-intersection of components and non-protrusion

of components outside the design space. Other constraints include spatial

relationships between components (e.g., co-axially mounted on a shaft) and

between a component and the design space (e.g., gravity-based orientation
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of fluid reservoirs).

The 3D packing problem in most practical cases is quite general [27], where

component geometries can be arbitrary, and multiple types of design goals

and spatial constraint satisfactions could exist. For practical purposes, the

minimization of layout cost functions is done under certain constraints im-

posed by design, fabrication, and operational requirements. Most layout

algorithms are restricted to a certain class of systems and are as a whole

intractable due to their combinatorial nature. Problem variants differ by the

particular definition of their packing constraints (presence of guillotine cuts,

balancing and stability of the packing, possible overlapping of certain items,

forbidden rotations of the items, etc.) and objective function, going by the

well-known names of knapsack, bin packing, strip packing, variable-sized pel-

let packing, container loading, etc. Design automation methods for solving

the optimal spatial packing problem have been developed and studied previ-

ously in the context of many applications, such as vehicle assembly [28], elec-

tronic module layout design [29], 3D container loading [30], bin packing [31],

computer animation [32], the layout of components in additive manufactur-

ing [33], and automotive transmission design [34]. Solution algorithms used

in previous 3D component packing research can be generally classified un-

der four categories: genetic algorithms [35], heuristic methods [36], gradient

descent algorithms [37], and simulated-annealing algorithms [38].

2.3 3D Interconnect Routing

The 3D interconnect or pipe routing problem is a common industrial prob-

lem that is solved for designing layouts in chemical process plants, oil and

natural gas refineries, water treatment and distribution plants, hydroelectric

power plants, and other applications. Designing a 3D pipe layout involves

two major tasks. First is equipment allocation, i.e., finding the 3D coor-

dinate locations of all equipment to minimize total cost and satisfy all the

equipment constraints such as maximum distances and maintenance access

requirements. In this task, conventional design strategies employ a rough

measure to evaluate the total cost based on Manhattan distances. The sec-

ond task is to find 3D routes for all the pipes connecting the equipment and
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to ensure that they are not colliding with each other.

Since the 1970s, interconnect routing design has been studied in various in-

dustrial fields, such as transportation, large-scale integrated circuits, and

computing hardware. It is one of the most important processes for system

integration. However, due to the complexity of routing systems and the di-

versity of constraints involved, it is quite time-consuming and difficult to

achieve a feasible layout using both manual experience and CAD-based de-

sign tools. Systematic studies in route path planning have been carried out by

researchers for several decades. Dijkstra’s algorithm, proposed in 1959 [39],

is a well-known algorithm for path optimization with shortest length. Based

on Dijkstra’s algorithm, another heuristic algorithm was developed to im-

prove search efficiency, and is defined in Ref. [40]. In 1961, Lee [41] proposed

a maze algorithm to solve the problem of connecting two points. Further

search efficiency developments were presented in Refs. [42, 43]. Recently,

research on route path planning has been promoted by the development of

modern optimization algorithms such as genetic algorithms [44], ant colony

algorithms [45, 46], and particle swarm optimization [47, 48]. For exam-

ple, a genetic algorithm was used to optimize routing in three-dimensional

space [44]. In addition, CAD-design based routing algorithms [49–51] were

also applied in 3D pipe routing design.

A key observation here is that many efforts have addressed the interconnect

routing problem alone, where the component layout is fixed, and do not holis-

tically incorporate other SPI2 problem elements. Especially in the electrical

engineering domain, many examples of 2D routing algorithms were devel-

oped for VLSI circuit layouts based on Manhattan rules and its variants [52].

Other 3D routing applications include aero-engine externals routing [53], ship

pipe routing [54], chemical plant pipe routing [55], electrical wire routing in

buildings [56], in developing CAD-based FPGA (field-programmable gate ar-

ray) design tools [57], unmanned aerial vehicle navigation [58], and robotic

path planning [59]. Optimization approaches have incorporated metrics such

as packaging volume and mass properties [60], and have utilized solution

methods such as simulated annealing [61, 62], pattern search [63, 64], ge-

netic algorithms [65], ant colony optimization [66], and several other heuris-

tic methods [67].
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Finally, it is interesting to note that the 3D pipe routing problem, which

aims at placing non-intersecting pipes from start locations to given target

locations in a known 3D system environment, is very similar to the multi-

agent path finding (MAPF) problem, which is a topic of active study in

robotics research. 3D MAPF methods have the potential for application to

the 3D interconnect routing problem, with the distinction that the former is

dependent on dynamics of agents, whereas the latter is a static problem.

2.4 Physics-based Topology Optimization

As mentioned earlier, an important aspect of the SPI2 design research is

to integrate the physics interactions between the various components, inter-

connect flow passages, etc., as part of the geometric packing and routing

optimization problem. Topology optimization, defined here as the optimal

placement of material in a 2D or 3D geometric domain, does take into ac-

count models of physical behavior. This method class has been used across

an extensive range of engineering domains, including to design structures

for maximum stiffness [68], multi-material properties [69], or component ge-

ometries for optimal heat conduction properties [70, 71]. Problems that in-

clude multiple distinct physics domains have also been studied. De Kruijf

et al., Takezawa et al. and Kang & James performed optimization studies

which included both structural and thermal conduction requirements [72–74].

The aerodynamic shape and internal structure of a wing have been opti-

mized simultaneously [75–77] considering the interaction between aerody-

namic loading and structural wing response. Topology optimization has also

been used to optimize the placement of components and their supporting

structure [78, 79]. This allows sections of specific geometry, such as a pat-

tern of bolt holes, to be distributed optimally within a structure. Designs

produced by topology optimization are often infeasible for traditional man-

ufacturing methods (subtractive, formative), but often can be made using

additive manufacturing [80]. The design of components that are more easily

manufactured using traditional methods motivates the development of meth-

ods that optimize designs made from standard material sizes and shapes,

typically using ground structure methods [81, 82]. The geometric projection
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methods in Refs. [83, 84] have also been suggested to optimize structures

made from stock materials. This greatly helps in preserving the rigid system

geometry while performing optimization. Previous work in manufacturing

constraint mapping [85] could complement geometric projection methods in

optimizing systems to meet process-driven manufacturing requirements in

product design.

Recent developments made in geometric projection method are highly rele-

vant to SPI2 design research. An in-depth investigation in this dissertation

involves using projection methods for 2D SPI2 design problems, and was first

presented in Ref. [86]. The simultaneous physics-based packing and routing

approach utilized in Ref. [87] makes significant system volume reduction pos-

sible. The projection method of Norato et al. [83] is extended in this disserta-

tion to allow devices of arbitrary polygonal shape to be projected. Sensitivity

analysis for this projection is provided to allow the efficient use of gradient-

based optimization methods. These methods could be extended to model

various combinations of physics; for example, fluid-thermal, thermal-electric

or structural-fluid systems.

2.5 SPI2 Mathematical Design Representations

Another very important aspect of the SPI2 engineering design optimization

problem is the design representation used for system modeling and design

decision-making. Design representations must be accurate and compatible

with other SPI2 problem elements. For example, SPI2 representations must

integrate with physics considerations, detailed geometric analysis, as well as

navigation of formidable spatial topology decision spaces via graph-based

enumeration. Spatial topologies involve how interconnects (such as ducts,

pipes or wires) pass through or around other elements in a space, and these

decisions represent one of the most difficult elements of SPI2 problems due

to their combinatorial nature. Unlike 2D systems, 3D systems contain cross-

ings and it is important to have representations that can cater to this need

directly.

It must be noted that the 3D spatial packaging problem, even without con-
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sidering physics aspects, is exceptionally difficult. In solving complex design

optimization problems, much depends on the mathematical representations

that are used to describe the various features of this system and system

classes. This dissertation identifies three important mathematical represen-

tations 1) spatial graphs, 2) braids, and 3) homotopy classes that can be used

for representing 3D SPI2 design problems in a way that facilitates enumer-

ation of different initial SPI2 designs for optimal selection processes. These

representations are summarized below:

1. Spatial graph theory: 3D engineering system networks can repre-

sented as spatial graphs. Spatial graphs are graphs in three-dimensional

space projected on a two dimensional plane. They are a natural exten-

sion of knot theory, which is the study of circles embedded in R3, as

placing vertices on a knot can transform it into a spatial graph. While

the study of knot theory has its origin in the physics of the late 19th

century [88], spatial graph theory has its roots in chemistry [89, 90]

and is different from graph theory because graph theory studies ab-

stract graphs while spatial graph theory studies embeddings of graphs

in R3 or even in other 3-manifolds [91–93]. This theory was used in

polymer stereochemistry [89, 94] and molecular biology (e.g., protein

folding) to distinguish different topological isomers. A 3D system can

be represented as a spatial graph where components are the nodes,

interconnected are the edges, and the ports as node valencies.

2. Braid theory: Mathematical braid theory [95] can be utilized to repre-

sent the interconnect network within a 3D system. This allows efficient

enumeration of various braid-based representations of the interconnect

network, thus supporting the exploration of discrete topological sys-

tem configurations. Braid and knot equivalence methods are leveraged

to weed out redundant topologies. Braid and knot theory representa-

tions have been successfully used in other applications such as protein

folding [96], and very recently in multi-agent motion planning [97, 98],

etc.

3. Homotopy classes: There are many applications in robot motion

planning [99] where it is important to consider and distinguish between

different homotopy classes of trajectories (paths followed by robots).
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Two trajectories are homotopic if one trajectory can be continuously

deformed into another without passing through an obstacle, and a ho-

motopy class is a collection of homotopic trajectories. Classification

of homotopy classes in two-dimensional work spaces has been stud-

ied in robotics literature using geometric methods [100], probabilistic

road-map construction techniques [101], and triangulation-based path

planning [102]. Reference [99] introduces a strategy for classifying and

representing homotopy classes in a 3-dimensional configuration space

using theorems from electromagnetism. BiotSavart’s Law and Am-

pere’s Law were used to define a differential 1-form, the integration of

which along trajectories gives an invariant for the homotopy classes of

trajectories. This concept of homotopy classes has been extended to

defining different classes of 3D SPI2 problems into two categories: 1)

system containing only solid components (closing infinite or unbounded

objects), and 2) systems containing both solid and hollow components

(decomposing objects with genus > 1). Such mathematical extensions

are very valuable in improving design richness and flexibility.

2.6 Existing Critical Gaps

In this section, some of the most important gaps lying at the interfaces of

the four main research topics related to SPI2 design are outlined:

1. Missing holistic treatment: The main limitation with methods used

in component packing, interconnect routing, and physics-based topol-

ogy optimization is that existing efforts address these problems sep-

arately, instead of in a combined manner that accounts for inherent

coupling. In addition, most of the methods consider only geometric as-

pects of the problem, neglecting important physical system properties

such as operating temperature, pressure drop, thermal loading, aero-

dynamic, and electromagnetic effects. Thus, existing methods may not

extend well to the general coupled problem.

2. Limits of manual design methods: In addition, the performance

evaluation of the designs obtained from existing systems is left to hu-

man designers. The amount of time required for a designer to generate
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a feasible design and analyze its performance limits the ability of en-

gineers to explore these complex design spaces within a constrained

project timeline. Existing strategies can produce feasible designs, but

they may not be optimal when considering all the system requirements

and design couplings, and the complexity of systems that can be consid-

ered is limited. In current practice, many aspects of layout and routing

problems are solved manually, which severely limits design capabilities

for systems involving complex packing and routing tasks (especially in

cases with strong physics interactions). This begs the need to develop

efficient design automation strategies through a human-centered design

approach.

3. Systematic enumeration and search of 3D topological design

space: A critical gap is the lack of methods to exhaustively search a

SPI2 design space, such as those that have recently become available

for system architecture enumeration as in Refs [103–105].

An efficient enumeration technique for navigating through the discrete

3D topology options possible for SPI2 design is required.

4. Handling continuous and discrete elements together: It is ob-

served that this problem contains both continuous (spatial locations,

interconnect diameter, trajectory, etc.) and discrete elements (topol-

ogy options, number of components, ports, interconnects, crossings,

etc.). This is very challenging for optimization problems and therefore

there is a great need to have design optimization techniques that can

efficiently navigate the combined space. In addition, unified geometric

parameterization of both discrete and continuous variables should be

performed to enhance optimization process efficiency and to aid im-

proved problem formulations.

5. Common design language: SPI2 design research is along the inter-

faces of several engineering domains and applications. To effectively

communicate design knowledge between various practitioners and do-

main experts, there is need for common terminology and constructs to

address these problem elements.

6. Visualization tools: 3D SPI2 design problems have heterogeneous el-

ements and this makes it challenging to conceptualize the design space.
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Both CAD-based and virtual reality based tools are helpful for view-

ing and conceptualizing numerical simulations. Current tools are very

limited with respect to SPI2 demands, and mostly serve the purposes

of manual design activities.

7. Human-centered design: Human-informed design is required for

developing better quality solutions to provide competitive advantage,

improving end-user experience, increasing productivity and operational

efficiency of product design pipelines, and for achieving greater system

sustainability. Current SPI2 related research methods rarely bring hu-

man aspects to design which sometimes causes practical setbacks in

industry adoption.

8. Need for flexible design representations: Existing design repre-

sentations are developed to support specific applications and cannot

be utilized for creating general design methods. Therefore, there is a

need to develop more unified representations that are both compati-

ble for modeling and can capture the various SPI2 problem features

accurately.

9. Tailored SPI2 routing algorithms: Existing approaches widely use

Manhattan rules for pipe routing, but improved SPI2 system perfor-

mance requires flexible, and maybe deformable, pipe-shape routing rep-

resentations depending on applications. In addition, optimal trajectory

control of pipe routing has not yet been performed in the existing inter-

connect routing research. Achieving this capability could help satisfy

several practical SPI2 constraints. For example, if a pipe should pass

through some way points on its path for several practical reasons such

as cooling a hot component, fluid transfer, etc., then optimal trajectory

control plays a vital role.

2.7 Associated Design Challenges

The associated challenges related to SPI2 design research are identified below:

1. Both packing and routing are NP-hard problems. Therefore, as the

scale and complexity of the system increases, the number of possible
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solutions combinatorially explodes, increasing decision-making cost sig-

nificantly.

2. The 3D topological space is vast and challenging to navigate as there

can be infinite design options depending on the tuning parameters.

Therefore, it is essential to have sampling strategies that can cover the

design space thoroughly and efficiently.

3. The 3D-SPI problem is a highly nonlinear optimization problem that

must simultaneously address packing, routing, and physics performance

evaluation. Therefore, incorporating continuous spatial or parameter

tuning may increase the occurrence of local optima in the design land-

scape.

4. One key challenge in using gradient-based solution methods, such as

the geometric projection method [83, 87], is that changes in intercon-

nect spatial topology may impact the lumped-parameter system models

(such as fluid loops) in ways that either prevent simulation of certain

designs, or, at a minimum, introduce non-smoothness.

5. Creating design representations that can support topology, geometry,

and physics aspects of 3D SPI2 problem in a unified way is one of the

most challenging aspects. Current methods address at most a pair of

them while solving multi-physics optimization problems.

6. SPI2 design automation tools should also consider the human perspec-

tive in all steps of the problem-solving process. In particular, indus-

try practitioners who have vast experience in handling these complex

systems possess valuable design knowledge that can be applied while

developing SPI2 design automation frameworks. Incorporating human

expertise into SPI2 automation methods, however, may introduce hu-

man biases or errors.

2.8 Summary

This chapter presented an extensive literature search of the major SPI2 re-

lated areas: component packing, interconnect routing, physics-based topol-

ogy optimization, and SPI2 mathematical design representations. Existing
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critical gaps that prevent the creation and successful application of design au-

tomation methods to industry-relevant holistic SPI2 problems are outlined,

and associated challenges are addressed. Some of the key takeaways from this

chapter are discussed here. The component packing problem has solved by

experts for decades in a way that involves packing both regular and irregular

objects within restricted volumes. There are several approaches to perform

packing, such as sequential sorting, shrinking an initial unpacked arrange-

ment, and heuristic component assembly, that could be used for addressing

the holistic SPI2 problem. Promising solution techniques in the interconnect

routing area are shortest path algorithms (SPA) with optimal trajectory con-

trol utilized in aerial drone navigation and robotic arm manipulations. SPAs

are efficient, create optimal pipe routes, and can be applied either sequen-

tially or simultaneously. Geometric projection-based topology optimization

methods offer great potential as they support both complex SPI2 system

geometry and physics-based modeling capability together. The mathemat-

ical representations identified in this chapter have well established theories

in the field of low-dimensional topology which can be leveraged for searching

both the 2D and 3D SPI2 topological design spaces effectively. This disserta-

tion focuses on utilizing these above techniques among many alternatives for

several reasons that will be explained in the later chapters. However, there

could be other methods and approaches that might be powerful and highly

relevant when combined together to solve the holistic SPI2 design problem

and are considered aspects of future work.
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CHAPTER 3

THE SPI2 DESIGN FRAMEWORK:
STAGE 1

3.1 Introduction

This chapter1 presents in detail the first stage of a two-stage design framework

for performing simultaneous 2D packing and routing optimization previously

developed by the author and collaborators. Stage 1 comprises methods for

generation of spatially-feasible initial layouts where there is no overlap be-

tween components and/or interconnect network. Three newly applied, com-

putationally efficient, and practical methods are demonstrated here to pro-

duce automatically interference-free 2D layouts. First, a 2D force-directed

layout method (FDLM) is proposed that implicitly ensures non-interference

between components and/or the interconnect network by utilizing spring

force theory. Second, the A* algorithm, a well-established 2D shortest path

algorithm (SPA), is modified significantly to perform efficient routing of com-

plex interconnect systems. Third, a unique 2D spatial topology (UST) enu-

meration algorithm is presented that produces all unique interconnect rout-

ing configurations for a given multi-component system. These three methods

are analyzed with respect to average computational efficiencies and average

success rates in attaining feasible layouts for a restricted class of topologies,

including evaluation of how they scale to larger complex problems. Practi-

cal guidelines are provided to make a choice among the three methods for

application to different layout scenarios. Limitations of these methods will

be addressed in future work. This chapter serves as an important step in

the two-stage design framework for efficient navigation through discrete spa-

tial topology options that could be fed into continuous design optimization

methods as initial layouts in stage 2, in addition to scaling to more complex

problems.

1Some elements of this chapter are published in Ref. [86, 106]
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3.2 2D vs. 3D SPI2 Design Problems: Similarities and

Differences

Before introducing the proposed two-stage design framework, it is important

to understand the similarities and differences between the 2D and 3D SPI2

design problems. Both the problem domains can support similar:

1. complex component geometries (convex, concave, irregularly-shaped,

etc.), orientations, restricted regions (obstacles) etc.

2. interconnect features (curvy, straight, L/T-joints, diameter, bend radii,

etc.),

3. physics objectives/constraints (temperature, hydraulic pressure, elec-

tromagnetic effects, material stress/fatigue, etc.), and

4. spatio-geometric features: packing fraction, arbitrary bounding area/volumes,

system interconnectivity constraints, etc.

However, there are several differences between them, as follows:

1. 3D problems have crossings between interconnects. This exponentially

expands the spatial topology space and design options possible,

2. Accessibility, assembly/disassembly, maintainability, repair, etc. are

non-trivial problems in 3D, but are much less challenging in 2D due to

its planar layout features.

3. In 3D, the port locations, and how the interconnects interact with

components at their ports (at angles, with offsets, etc.) is a unique

problem aspect,

4. In 2D, objects can have voids or holes, but these features are not of

much physical significance. In 3D, however, interconnects can either go

through hollow objects or bypass the holes, thus expanding a number

of spatial design options.

5. The 3D problem is harder to conceptualize, whereas the 2D layout

problem is easier to graphically visualize which helps make optimization

search and decision making a much easier process.
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The above mentioned differences and similarities between the 2D and 3D

problem cases motivate the need to solve 2D SPI2 problem initially before

attempting to solve the 3D problem. Three major reasons are mentioned

below:

1. The 2D SPI2 design problem, although challenging, is relatively easier

to conceptualize, represent, and solve when compared to the 3D SPI2

design problem. Moreover, there are some direct 2D SPI2 applications

where this methods can be implemented.

2. The proposed sequential design framework can be thoroughly tested

on the 2D SPI2 problem. In particular, solving the combined packing,

routing, and physics-based problems in 2D can help develop valuable

insights regarding some of the challenges that may arise when attempt-

ing to solve the 3D SPI2 problem.

3. The 2D SPI problem is fundamentally different from the 3D SPI2 prob-

lem, however, there are many similarities that can be exploited for de-

veloping the two-stage design optimization framework. This provides a

platform to transition from the 2D SPI2 design methods to 3D where

there are similar design features.

Thus, the 2D SPI2 problem plays a vital role in creating a strong foundation

for building 3D design methods can be built. Hence, investigation into the

2D SPI2 design problems is one of the major contributions of this work.

3.3 The Two-Stage SPI2 Design Framework

Although discrete formulations have dominated earlier research efforts to

solve the optimal spatial packing problem, these approaches quickly become

intractable, as both the packing problem and the routing problem are NP-

hard. Rather than make incremental progress on established methods, this

dissertation proposes a novel strategy for SPI2 design using a continuous

representation applied to distinct spatial topologies. This enables the use of

gradient-based methods to efficiently search the packing and routing design

space. This methodology is centered on the use of simple geometric bars

to approximately model both the component geometry and routing paths
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(see Fig. 3.1). Bars have favorable geometric properties for both the packing

and routing problems, enabling simultaneous solution. This simple geomet-

ric representation with physics-based boundary conditions (heat source, heat

sink and forced convection) will be used as part of the two-stage framework.

Specifically, the combined physics-based packing and routing problem can be

subdivided into two important sequential stages as shown in Fig. 3.2: 1) Gen-

erate spatially feasible geometric layouts without any interference between

the components and interconnect routing (for example, pipes or ducts), and

2) to utilize these feasible layouts as initial designs for performing multi-

physics optimization to meet system-level requirements such as packaging

volume, operating temperature, fluid pressure, and cost. It is assumed here

that the continuous optimization strategy cannot make topological changes,

two classes of which are described below.

Spatial topology (ST) refers to the mathematical study of the properties that

are preserved through continuous deformations, such as stretching and twist-

ing, but not tearing or gluing. For instance, a circle is topologically equivalent

to an ellipse, but a circle and a hollow ring have different topologies. For

example, if an interconnect links ports P1 and P2, many options exist for

how this interconnect passes around various other interconnects and compo-

nents in the system. Two spatial topologies are equivalent when there is a

continuous deformation of component locations and interconnect trajectories

that takes one topology to the other. System architecture (SA) specifies what

components comprise a system, and how ports on components are connected

to specific ports on other components which represent specific technology

options to perform each function, and the flows of material, energy, and/or

information from one component to another. System architecture enumera-

tion problems were previously studied for engineering design examples such

as hybrid electric power trains [107–109], automotive vehicle suspension sys-

tems [105], and optimal cooling system layouts [103]. However, for each

system architecture, many spatial topologies (STs) may exist, each with its

own optimal geometry. Hence, the geometric optimization problem can be

simplified by decomposing the problem into identification of unique STs, and

then geometrically optimizing each one, subject to all relevant physical in-

teractions. Figure 3.3 shows three layout options for a system with three

components that have two ports each. All three have the same system archi-

28



Restricted
Domain

1

2
3

1

2

2
1

1 3
4

Fluid inlet

Variable
Thickness

Arbitrary 
component 
shapes

Variable 
Orientation

Variable
complexity

4 3

I O

Boundary
Ports

Bounding box

Unique
Ports

Fluid outlet

Fo
rc

ed
 c

o
n
ve

ct
io

n
 Fo

rced
 co

n
vectio

n
 

Heat source

Heat sink

Figure 3.1: 2D geometric layout design representation with core problem
features.

tecture (the component connectivity matrix is the same), which is one aspect

of system topology. Layouts A and B differ only in the interconnect path;

they have the same spatial topology. Layout C has a distinct spatial topol-

ogy; i.e., the red-colored interconnect cannot be continuously morphed on a

plane to achieve the spatial topology exhibited in layouts A and B without

either leaving the plane or requiring cuts or reconnections.

Continuous optimization algorithms in stage 2 require initial designs with-

out spatial interference. Specifically, feasible 2D spatial layouts here are

planar layouts where both the individual components and interconnects do

not overlap and/or intersect with each other. Such layouts can be obtained

by applying non-overlap constraints, also known as interference detection

tests. Interference detection between fixed polygons is a fundamental ge-

ometric consideration that arises in many engineering applications, such

as robotics [110, 111], computer animation graphics [112, 113], virtual re-

ality games [114], UAV navigation [115], and multi-agent coordination the-

ory [116].
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Figure 3.2: Two-stage design framework for 2D spatial packaging.

Figure 3.3: Illustration of equivalent and distinct spatial topologies.
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Spatial packing problems have been solved previously using interference de-

tection constraints across a range of applications, including 2D bin pack-

ing [117], aircraft container loading [118], non-overlapping rectangles [119],

vehicle routing and assembly [120], transportation networks [121], and inter-

connected thermal systems [122]. While sophisticated computational geom-

etry algorithms exist for interference detection, these approaches are usually

slow for multiple objects. A primary disadvantage of using explicit non-

overlap constraints is scaling, especially with respect to handling many si-

multaneous constraints. In this chapter, three strategies are investigated that

avoid the need for explicit interference constraints: 1) a force-directed layout

method (FDLM) based on spring forces to implicitly ensure non-interference,

2) an extension of shortest-path planning algorithms (SPAs), and 3) explicit

enumeration of unique 2D spatial topologies.

3.4 Chapter Aims and Contributions

The primary aim of this chapter is to demonstrate design methods that auto-

matically produce crossing-free 2D layouts for packing and routing problems.

These methods can lay a foundation for further developments that will sup-

port real-world 2D and 3D packaging and routing problems where it is possi-

ble to navigate the fundamentally discrete options for interconnect topology,

as well as scaling to more complex problems. The core contributions of this

chapter are as follows:

1. Introduction of a novel force-directed layout method (FDLM) utilizing

spring-force theory inspired by planar graph drawing algorithms [123,

124]. This method implicitly satisfies interference constraints.

2. Extension of the well-established A* (A-star) shortest path planning

algorithm (SPA) to perform sequential interconnect routing between

components while ensuring non-interference.

3. A systematic enumeration strategy for generating all unique 2D spa-

tial topologies for an interconnected multi-component system, for given

system architecture. This method serves as a baseline for design space

coverage benchmarking but does suffer from a combinatorial explosion.

4. These three methods (FDLM, SPA and UST) are separately analyzed

with respect to computational efficiency, layout design space coverage,
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and performance in arbitrarily-shaped bounding areas using relevant

case studies.

5. Practical design guidelines are provided for the application of the three

proposed layout generation algorithms to attain various feasible 2D

system layouts. The FDLM and SPA methods can be applicable from

small to medium scale systems (approximately upto 50 various sized

and shaped components). The UST at present can handle upto systems

with 20 components only because it involves an exhaustive enumeration

process.

The methods were developed keeping the ubiquitous nature of packing and

routing problems in mind. If the current method limitations are overcome,

they have the potential to be extended to produce 2D planar layouts of

various sizes and scales for applications ranging from system-level (aircraft,

automobile, marine, building architecture, water distribution networks), to

cabinet-level (automotive engines, electric machines, cooling systems, mo-

tors, turbines, etc.), and device-level (VLSI circuit board) designs.

The remainder of this chapter is organized as follows. Section 3.5 describes

the 2D layout design representation shown in Fig. 3.1. Section 3.6 demon-

strates the Force-Directed Layout Method (FDLM). The shortest path-based

layout algorithms (SPAs) utilized to perform complex interconnect routing

are presented in Sec. 3.7. Section 3.8 presents a new unique layout topology

generation algorithm to produce unique layouts. The comparative case stud-

ies for the 3 methods are presented in Sec. 3.9 with the discussion of results

in Sec. 3.10. Finally, the chapter summary is provided in Sec. 3.11.

3.5 2D SPI2 Problem Design Representation

Figure 3.1 represents a 2D layout problem with different geometric design fea-

tures: components with arbitrary shapes, interconnects (pipes/ducts, etc.)

represented as bars, and restricted regions. The aim of the layout genera-

tion methods is to generate layouts for a given system architecture that are

feasible with respect to spatial interference. It is desirable to minimize the

inputs required from the user. The following are assumed to be specified by

the user: 1) The bounding box shape and area (a region which all compo-
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(a) Initial graph (b) Final crossing-free graph

Figure 3.4: Initial and final graphs attained after force-directed layout
implementation.

nents and interconnects must fit within), 2) all component dimensions, port

locations, and initial positions, and 3) the component connectivity matrix

and interconnect geometric requirements (e.g., thickness).

3.6 2D Force-Directed Layout Method (FDLM)

Force-directed algorithms are dynamic graph-based algorithms for produc-

ing layouts of simple undirected graphs used in several applications, such as

information networks [125], social networks [126], gene networks [127], and

bio-molecular interaction networks [128]. A class of force-directed algorithms

is based on mechanical spring force models, also known as spring embedders.

Layouts drawn with these algorithms tend to exhibit symmetries, are aes-

thetically pleasing, and can produce crossing-free (nodes and edges do not

intersect) planar graphs. One of the first force-directed graph drawing meth-

ods [129] is based on barycentric representations that ensure crossing-free

layouts. The spring layout method was introduced in 1989 by Kamada et

al. [123], and then improved by Fruchtermann et al. [124] in 1991. Figure 3.4

shows a final graph obtained from an initial graph with intersecting edges us-

ing a spring-based force-direction algorithm. In this method, adjacent graph

nodes have attractive forces between them and repulsive forces with remain-

ing nodes. Here the entire graph is considered to be a system of particles

(nodes) with spring forces acting between them. The initial random graph

layout has high overall energy (stored in virtual springs), and is unstable

because of the forces between the nodes. The end goal is to position nodes
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to obtain locally-minimal potential energy. In other words, force-directed

techniques seek an equilibrium state where the sum of the forces acting on

each particle (node) is zero. Thus, any multi-component physical system can

be represented as a force-based model with its various system elements as

shown in Fig. 3.5 such as components as nodes. In this method, if v is the

node, the force on a node v, attractive factor fa, and repulsive factor fr are

calculated using the following equations, respectively:

F (v) =
∑

(u,v)∈E

fa(duv)
(u− v)

duv
−
∑

(u,v)∈V

fr(duv)
(u− v)

duv
, (3.1)

fa(duv) = k(1)
uv (duv − luv), (3.2)

fr(duv) =
k

(2)
uv

d2
uv

, (3.3)

where duv is the distance between any two graph nodes (say, u and v), and

luv, k
(1)
uv , and k

(2)
uv are the natural spring length, spring stiffness, and repulsive

force strength, respectively. The total energy of the system is then given by:

E =
n−1∑
(i=1)

n∑
(j=i+1)

1

2
kvivj(dvivj − lvivj)2, (3.4)

where lvivj corresponds to the desired distance between graph nodes (vertices)

vi and vj, and kvivj is the spring stiffness between the two vertices. Increasing

or decreasing the spring stiffness affects how rapidly or slowly the particles

move. The position of each node is expressed by x and y coordinate axes.

Taking partial derivatives of energy (E) defined in Eqn. (4) with respect to

x and y, this algorithm computes a local minimum of the energy (E) using

the regular Newton-Raphson method from an initial node position. At the

stationary point, the dynamic graph network attains an equilibrium state

where all the forces involved in Eqn. (1) are balanced at each node.

3.6.1 Force-Directed Layout Representation

To support the objective of finding feasible layouts for packing and rout-

ing problems, modifications are made to the basic FD method described

above. Figure 3.6 illustrates a detailed representation used for 2D force-

directed layout. The components are represented as polygonal shapes and
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Figure 3.5: Force representations on system components.

Figure 3.6: 2D Force-Directed Layout Representation.
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the interconnects are represented as bars (with one or more links, providing

piecewise-linear representation of curves). Both components and links are

free to move within a hard bounding box (HBB). The graph nodes are com-

ponent centroids, bar centers, and junction nodes for interconnects having

multiple bar segments. Spring forces indicated as purple lines are present

between all these nodes. To prevent overlapping between the components,

the natural (equilibrium state) spring length (l) for the algorithm is initially

set to a value greater than the maximum of the sum of radii of bounding

circles for all component pairs i.e., l > max(ri + rj). The bounding circle

radius is the distance from the component centroid to its farthest vertex.

In addition, distributed constant boundary forces (gray shaded regions) are

acting inward pushing the components and interconnect network to ensure

they do not escape the HBB.

3.6.2 FDLM for multi-component system without
interconnects

Components without the interconnects are considered first as a simplified

illustration of the FDLM. Components of various shapes are placed within a

HBB at random initial locations. Figure 3.7 shows both the initial and final

layouts for the 10-component and 15-component systems, respectively. At

the initial random states, many components typically overlap. The FDLM

then attains a final component layout without any overlaps. Springs between

the centers of the components are indicated in red. The computational time

required to attain the equilibrium state are 112.3 seconds for 10-component

system, and 186.2 seconds for 15-component system respectively. FDLM

requires more time to attain equilibrium as the number of components is in-

creased. All reported computational costs were obtained using a workstation

with an Intel Xeon E5-2660 CPU @ 2.00 GHz, 64 GB DDR4-2400 RAM,

Windows 10 64-bit, and Matlab 2019b.

To increase FDLM efficiency, a new spring connectivity network is utilized

for a multi-component system. Note that the spring connectivity network is

distinct from component connectivity. A fully-connected graph (FCG) net-

work is used in FDLM as seen in Fig. 3.7 For an FCG network, the spring
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(a) (b)

(c) (d)

Figure 3.7: Initial and final layouts for 10-component ((a) and (b)), and
15-component ((c) and (d)) systems respectively with FDLM described
under Sec.3.6.2.

forces are calculated for all node pairs at every iteration. Alternatively, the

nearest neighbor graph (NNG) is used for determining spring connectivity.

In NNGs, spring forces act between two nodes when they are within a cer-

tain radial distance from each other. In other words, each individual node

has a circle of influence, and spring forces act only when other nodes are

within its region. As the force-directed simulation progresses in NNGs, for

every individual node, its neighboring nodes slowly move out of its circle of

influence. This significantly reduces the number of node-pair spring force

computations per iteration but can introduce non-smoothness. Figure 3.8

shows initial and final layouts for the two types of graph connectivity net-

works for a 10-component system. For the NNG layout example, in the final

layout displayed, only the closest neighbor force interactions are illustrated.

The total run time for NNG to attain equilibrium was 45.3 s, and for FCG
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(a) Component Initial
layout

(b) FCG Final layout (c) NNG Final layout

Figure 3.8: Initial and final layouts attained with FDLM for a
10-component system using fully connected and nearest neighbours graph
networks.

was 106.23 s. In the NNG layout, the components are more closely packed

because they come to an equilibrium state when they do not experience forces

from the closest neighbors, unlike FCG where all forces need to be balanced.

Thus, NNGs are very efficient for solving large-scale force-directed layout

problems.

3.6.3 FDLM for multi-component system with interconnects

Here feasible layouts are generated by simultaneously removing interference

between components and untangling interconnect intersections. Once again

a multi-component interconnect network is randomly placed in an HBB. Fig-

ure 3.9 shows initial and final layouts for a 3-component system (Figs. 3.9a,

3.9b) with interconnects that do not get fully untangled. Boundary forces

are removed for a 5-component (Figs. 3.9c, 3.9d), multi-port system with

interconnects in the next study; this aids untangling, resulting in complete

untangling. The NNG network for both the 3- and 5-component systems

required 132.3 s and 242.4 s, respectively, while FCG required 243.7 s and

411.9 s, respectively. While often effective, FDLM does not always support

feasible layout generation for systems with complex routing networks. The

interconnect bars tend to intersect with each other as they have nodes only

at their centers and endpoints. Developments can be made where instead of

having forces between discrete points (nodes), there could be a continuous
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(a) Initial layout (3
components)

(b) Entangled Final layout

(c) Initial layout (5
components)

(d) Untangled Final layout

Figure 3.9: Initial and final layouts attained with FDLM in Sec.3.6.3 for a
3-component and 5-component interconnected systems.

force field throughout the entire boundary of these interconnect bars just as

components here have a circle of influence around them. This strategy is not

included in this initial study and is an important topic for future work. As an

alternative remedy to the inability of FDLM to always untangle interconnect

networks, the properties of efficient Shortest Path Algorithms (SPAs) are ex-

ploited in Sec. 3.7 to perform complex routing for a system where component

overlaps are first removed using FDLM.

3.7 2D Shortest-path based Layout Algorithms (SPA)

Shortest path algorithms are widely used in applications such as robot path

planning [130–133], obstacle avoidance [134], transportation networks [121],

the traveling salesman problem [135], and web-based geographical maps [136].

Robot path-planning algorithms use grid-based techniques where obstacles
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occupy a group of cells within the grid known as closed cells, and the aim is

to reach a target point from a source point avoiding the obstacles. To achieve

the task the robot moves towards the target through the remaining empty

cells on the grid.

Several variants of SPAs exist, such as A* and Dynamic Programming (DP)

methods. Here it is observed that interconnect routing for a fixed system

architecture can be performed via sequential application of SPA methods,

notably producing different spatial spatial topologies depending on port con-

nection sequence. Consider a multi-component interconnected system where

its components are randomly placed without any overlaps on a 2D grid. Let

two components, C1 and C2, have ports PC1 and PC2, respectively, that need

to be connected by a route (path). If PC1 and PC2 are taken as the source

and target points, respectively, a SPA can be applied to find a feasible path

between the two ports (if one exists). All components are treated as obsta-

cles. Once the SPA finds a feasible path on the grid, this process can be

repeated for other interconnections. At each iteration, previously-generated

routes are also treated as obstacles. Thus, the number of available empty

cells decreases for paths connected later in a given sequence. If there are n

interconnects in a system, then
(
n
2

)
routing sequences are possible. There-

fore, by using this method, a maximum of
(
n
2

)
feasible final topologies can

be obtained. Several routing sequences may fail to obtain feasible layouts in

between if there is no path of empty cells available for connecting 2 ports

due to an increased number of obstacles. Distinct sequences may produce

identical geometric topologies.

3.7.1 The A-Star (A*) algorithm

A* is the most popular choice for path-finding [102, 137] because it is very

flexible and can be used in a wide range of applications. The most basic

SPAs are the Dijkstra’s and Dynamic Programming (DP) algorithms [131],

upon which the A* star algorithm was developed. Dijkstra’s method works

by visiting the empty cells in a grid, beginning with the source cell. It re-

peatedly examines the closest unvisited neighbor cell, adding it to the cells to

be visited. In this way, the algorithm reaches the target from the source via

40



the shortest path. The DP algorithm works in a way similar to Dijkstra’s,

except that it uses an estimate (called a greedy heuristic) of how far from

the target any empty cell is. Instead of selecting the empty cell closest to

the source point, it selects the empty cell closest to the target. Thus DP is

not guaranteed to find the shortest path. But the advantage is that it runs

much more quickly than Dijkstra’s Algorithm because it uses the heuristic

function to guide its way towards the target.

The A* algorithm combines the pieces of information that Dijkstra’s Algo-

rithm uses (favoring empty cells that are close to the source) and information

that DP uses (greedy heuristic favoring empty cells that are close to the tar-

get). For every iteration, the A* algorithm examines the empty cell n that

has the lowest path cost f(n) = g(n)+h(n) , where g(n) represents the exact

cost of the path from the source to any empty cell n, and h(n) represents

the heuristic estimated cost from empty cell n to the target. A* balances

the two as it moves from the source to target cells. Figure 3.10 shows the

results of the A* star method for a 4-component system on 50 × 50 grid.

Each component in red has two ports (black circles), each as shown in the

initial layout. The total number of possible routing sequences is
(

4
2

)
= 6, and

hence a maximum of 6 feasible layouts are possible. The restricted domain

in blue color is also treated as an obstacle where no interconnect routing

can happen. Two final feasible layouts, shown in Figs. 3.10b and 3.10c, are

obtained with their routing sequence numbers labeled from 1 through 4. An

infeasible layout is shown in Fig. 3.10d, where ports A and B do not have a

feasible connecting path as the grid does not have empty cells available. The

computation time required for the A* method to generate feasible layouts

1 and 2 are 84.6 s and 93.5 s, respectively. Although the SPAs are highly

efficient, one major limitation is they are grid-based methods. For instance,

if there are 100s of interconnects in a highly-dense domain packed with many

components (obstacles), these algorithms might fail if enough empty cells are

not available as the interconnect sequence progresses. To overcome this lim-

itation, much finer grids can be created, hence improving the likelihood of

attaining feasible layouts, with the expense of greater computational time.

Figure 3.12 shows an example of the A* algorithm being used to generate a

feasible layout (see Fig. 3.12b) on a denser mesh. The components shown

in red are at fixed locations; restricted regions are indicated as black boxes.
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The interconnect routing sequence numbers are shown in Figs. 3.12(b, c).

Figure 3.12c illustrates an infeasible final layout because the ports P1 and

P2 shown here do not have a feasible connection path due to the coarse grid

(60 × 40 elements) that limits the availability of empty cells.

(a) Initial layout (b) Feasible final layout 1

(c) Feasible final layout 2 (d) Infeasible final layout

Figure 3.10: Initial and final layouts attained with the shortest path A*
method for a 4-component 2-port system. Sequence number of paths for
each layout are shown.

Figure 3.11: 4 Unique Spatial Topologies for a 3-component system. ST-A
is a directly connected configuration. ST-B, -C, and -D are indirectly
connected configurations.
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(a) Initial layout (b) Feasible final layout

(c) Infeasible final layout

Figure 3.12: Illustration of the shortest path A* algorithm on a denser
mesh.

3.8 2D Unique Spatial Topology (UST) Enumeration

Algorithm

Here a new layout enumeration algorithm is presented that can systematically

generate feasible unique spatial topologies (STs) for given system architec-

ture (SA). This exhaustive enumeration serves as a benchmark for assessing

spatial topology design space coverage of other strategies. Since a continuous

mapping exists between any two layouts that share a ST, the complete set

of STs is an important set of starting design points for continuous layout op-

timization. Consider a 3-component system where each component has two

ports, as shown in Fig. 3.11. Each of the 3 components is connected directly

to the other two components in ST-A. This configuration is termed the di-

rectly connected ST. Figure 3.11 also shows three other unique STs (namely

B, C, and D) for the same system architecture represented by ST-A. Note

that in these STs one interconnect circulates over a component to reach the

other component. Such a configuration is termed an indirectly connected

ST. Thus, a 3-component and 2-port interconnected system has a total of

4 unique STs (one direct and 3 indirect). Similarly, for a 4-component sys-

tem with each component having 2 ports, a single unique direct ST and four

unique indirect STs are generated, as shown in Fig. 3.13a. By mathematical

induction, for an n-component system with each having two ports each, 2D
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(a) (b)

Figure 3.13: UST method illustration: (a) Five unique spatial topologies of
a 4-component 2-port system; and (b) offset representation.

(a) Unique STs for a 3-component system with different shapes.

(b) Different component shapes with varying number of
ports.

Figure 3.14: UST method demonstration to enumerate feasible layouts with
distinct spatial topologies.
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layouts involve n + 1 unique STs. This method can also be applied to a

multi-component system with each component having different shapes and

a varying number of ports. For example, in Fig. 3.14, different cases are

demonstrated.

Algorithm 1: Unique Spatial Topology (UST) Generation Algo-
rithm

Input: Component dimensions and locations, port connectivity, and
restricted regions (if any).

Initialize - 1. Extract the vertex coordinates of all components. 2.
Specify offset distance between component center and circulation
node.;

for i = 1: total number of interconnections (say n) do
find all possible paths for ith interconnect, say p;
k = 1 : p (total number of possible paths for ith interconnect);
while k ≤ p do

if direct path then
form a direct connection;
store coordinates of feasible connection;

else
check feasible indirect paths ;
if no self-interference or interference with components or
existing paths then

form an indirect connection;
store coordinates of feasible connecLtion;

else
discard path;

end

end
k = k + 1 ;

end
i = i+ 1 ;

end
Result: All feasible interconnection combinations’ paths
Output: Plot all unique spatial topologies.

3.9 Stage 1: Case Studies

Here the FDLM, SPA, and UST methods are compared with each other

using three case studies. First, their average computational efficiency in ob-
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taining a feasible final layout and how it scales for an increasing number of

components, say n. Second, their success rate at generating all feasible STs

(design space coverage) as system dimension increases. For the case studies,

the class of topologies are restricted to only n-identical component systems

with each component having the same geometric shape and size with two

ports each (say, nC-2P). The third case study illustrates how these meth-

ods perform in an arbitrarily-shaped bounding area both with and without

restricted regions. The FDLM begins with both components and routing

overlapped. The SPA and UST methods have non-overlapping components

initially. FDL-FETS (Free-Expansion-Then-Shrinking) method: As

a strategy for more effective assessment of FDLM, a two-stage approach is

used where free expansion in a larger bounding area is allowed to promote

untangling an improve the chances of attaining a feasible layout. After free

expansion, boundary forces are applied to the expanded layout to shrink it

within the prescribed bounding-box area. A final layout is considered a fail-

ure if it contains any interference between components or interconnects after

it shrinks back to the original bounding box area. Figure 3.15 shows an il-

lustrative example of an initial, a freely-expanded, and a feasible final layout

attained using the FDL-FETS method. The FETS approach uses the nearest

neighbors graph (NNG) to enforce spring forces between its components.

3.9.1 Case Study 1: Average computational times

In this case study the average computational time taken by each method to

attain one feasible layout from a random initial layout of an n-component

2-port system is investigated. The computational time for first 200 simula-

tions that attained a final feasible layout was recorded for each n (number

of components) varying from three to ten. As shown in Fig. 3.17(a), the

average times were computed in this case study with six layout generation

methods: three force-directed layout (FDL) methods, the nearest neighbor

graph (FDL-NNG), fully connected graph (FDL-FCG), and the modified

FDL-FETS, two shortest path (SPA) methods (A* and DP), and the UST

algorithm. From Fig. 3.17(a), it can be observed that the shortest path

algorithm (SPA) and the unique geometry topology generation (UST) meth-

ods are comparable to each other and are very efficient. The force-directed
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Figure 3.15: FDL-FETS method illustration with a random 8-component
2-port system.

layout methods, however, turn out to be computationally expensive even

though they are implicit constraint methods. Two major reasons are that

the final solutions require several iterations to attain an equilibrium state.

The FDL method also contains components which are overlapped initially,

unlike the SPA and UST methods which start from non-interfering compo-

nent layouts. The FDL-NNG network implementation, however, exhibited

significant performance improvements over the standard FDL-FCG network

implementation. The FDL-FETS is slightly more efficient than the FDL-

NNG method. As the bounding box constraint is not present for FDL-FETS

initially, the minimum energy state can be attained easily, but it requires

significant computational time to shrink back to the prescribed bounding

box area as it needs to balance the internal spring forces with the external

wall forces. Figure 3.17(b) compares the computational time distribution

via a box plot for the six methods in finding a single feasible layout for a

10-component 2-port system. Figure 3.16 shows one representative final fea-

sible layout obtained using FDL-NNG, SPA and UST methods, respectively.

The initial layout for FDLM alone is shown in Fig. 3.16(a). The SPA and

UST methods initially have components at fixed locations, and routing is

performed to attain final layouts.

3.9.2 Case Study 2: Average success rates

In this case study the average success rates of the above six methods in gener-

ating a feasible layout over 500 simulations for nC-2P systems with n varying
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(a) FDL initial layout (b) FDL final layout (c) SPA final layout (d) UST final layout
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Figure 3.16: A result from Case Study 1 with a 6-component 2-port system
showing an (a) initial layout; and (b) final layout attained using FDL-NNG
method; (c) shows SPA final layout; and (d) an indirect UST final layout.

from three to ten are compared to one another. As shown in Fig. 3.21, for

these nC-2P systems, the UST has almost a 100% average success rate, fol-

lowed by SPAs success rate that gradually declines with increasing n. In

principle, the UST should have exactly a 100% success rate, but at times

the random initial layout may have component spacing small enough such

that UST fails. One resolution may be to increase the bounding box size

to prevent this failure, generate STs, and then follow-up with FDLM to at-

tempt to contain all components into the original bounding box. FDLMs

have the lowest average success rates, but it should be noted that they per-

form component and interconnect network untangling simultaneously within

a fixed bounding box area. The modified FDL-FETS approach (as shown in

Fig. 3.21) significantly improved the success rate of the FDL method with

increasing scale as it provides more space for initial untangling. Section 3.10

below lists these points in more detail.

3.9.3 Case Study 3: Arbitrarily-shaped bounding boxes

Many real-world systems may not have bounding boxes with simple geometric

shapes such as rectangles and circles. Here the individual performance of

the proposed layout generation methods are studied for arbitrarily-shaped

bounding areas, both without and with restricted regions.

Without restricted regions:

This study is performed with systems that do not have restricted regions

inside the bounding area. The FDL-NNG method, as shown in Fig. 3.18(a,
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Figure 3.17: Results for (a) Average computational times required to
attain a single feasible layout for 200 simulations for nC-2P systems; and
(b) Box plot of computational times taken by different algorithms to attain
a feasible layout for a 10C-2P system.
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d), distributes the components and the interconnect routing network in the

available arbitrarily-shaped space using spring force theory. FDL-FETS can

be used in place of FDL-NNG here. The initial and final layouts attained

with SPA and UST methods are shown in Fig. 3.19. The results obtained

here clearly indicate that the performance of the three methods (FDLM, SPA

and UST) is independent of the shape of the packing area.

With restricted regions:

The presence of restricted spaces in between the components does not affect

the performance of the SPA and UST methods, as shown in Fig. 3.20. Such

restricted regions are treated as obstacles along with other system compo-

nents. FDL-NNG performance, however, depends on the way these restricted

spaces are treated, either as movable obstacles (see Figs. 3.18(b, e)) or fixed

obstacles (see Figs. 3.18(c, f)). If the obstacles are movable, then they can

be treated as nodes in the spring network and a feasible layout is attained

as usual. But for fixed obstacles, the final solution depends on the initial

component and interconnect locations, and might result in an infeasible lay-

out in most cases, as shown in Fig. 3.18(f), due to limited space availability

between fixed obstacles.

3.10 Discussion

3.10.1 Observations from Case Studies:

The primary lessons learned from the above three case studies are discussed

below:

1. The FDL methods are expensive compared to SPA and UST but power-

ful because they have the ability to simultaneously remove overlapping

amongst components and untangle interconnects. The FDL-NNG and

FDL-FETS methods can be utilized to handle large-scale problems with

relaxed bounding area constraints. In addition, by varying the natu-

ral spring length and boundary forces, different sized layouts can be

obtained.
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Figure 3.18: Illustration of final layouts obtained using FDLM with
arbitrarily-shaped bounding boxes without and with restricted regions
respectively.

(a)  Initial layout (b)  SPA final layout (c) UST final layout

Figure 3.19: Illustration of final layouts obtained using SPA and UST
methods respectively with arbitrarily-shaped bounding boxes not
containing restricted regions.
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(a) Initial layout (b) SPA final layout (c) UST final layout

Figure 3.20: Illustration of final layouts obtained using SPA and UST
methods respectively with arbitrarily-shaped bounding boxes containing
restricted regions.
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Figure 3.21: Average success rates to a attain feasible layout over 500
simulations for nC-2P systems.
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2. The SPA method (A* algorithm) is very efficient in performing complex

routing and scales up well. Core concerns include that it may become

less efficient for finer grids required for large-scale systems and those

with complex geometries, that it may not access all STs, and that the

number of routing sequences that must be explored increases quickly

with the number of interconnects.

3. The FDLM multi-component overlap removal and SPA routing can

potentially form a powerful tool to handle large-scale problems.

4. The UST is efficient and comparable to the SPA method but is better

in terms of providing unique geometric layouts at a higher success rate

compared to the SPAs. The SPAs might fail for complex topologies, but

UST intrinsically has the potential to find all STs. However, the SPA

success rate can be improved by using a finer grid at the expense of its

computational efficiency. Alternative UST strategies may be possible

that avoid ST generation failure due to geometric limitations.

5. It must be noted that the UST was very efficient not only for the nC-2P

type of systems, but performed really well with systems having varying

ports, complex geometries, and restricted regions.

6. The FDL-FCG method, on average, has a low success rate with in-

creasing n compared to the other methods. Relaxing bounding area

constraints via the FDL-FETS method improves the success rate sig-

nificantly.

3.10.2 Practical design guidelines:

Based on our observations, some practical guidelines for application of the

proposed layout generation methods are outlined below:

1. The FDLM is a powerful method to untangle all the components and

interconnects, provided that the 2D system has no fixed obstacles inside

it or bounding box area constraints that limit complete untangling of

the routing network. The FDLM is useful when the component and

interconnect network is overlapped initially and no fixed locations are

specified.

2. SPA and UST are valuable algorithms for generating complex layouts

where the 2D system contains many components, interconnects, re-
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stricted regions inside the domain, and arbitrarily-shaped bounding

areas with tight spatial constraints.

3. SPA and UST are more effective than FDLM when component locations

are fixed initially, and when multiple layouts with different interconnect

routing networks need to be generated.

4. In cases where the interconnects may need to pass through way-points

between two connected ports, SPA and UST can be utilized. For ex-

ample, if a cooling pipe should be in contact with a particular heat

element on its path, then SPA or UST methods can be used.

3.11 Summary

In this chapter, novel and computationally efficient methods for generating

spatially-feasible 2D geometric layouts for spatial packing of interconnected

components have been presented. Final 2D design layouts attained from

these algorithms in stage 1 can be used as initial designs for performing

simultaneous physics-based packing and routing optimization in stage 2 pre-

sented in chapter 4. The proposed force-directed method presented in this

chapter showed how it effectively generates feasible initial graphs with si-

multaneous packing and routing. An important advantage of this method is

explicit interference detection constraints are not required between different

geometric elements in a multi-component interconnected system. Further-

more, very efficient extensions of the shortest path planning A* algorithm

were demonstrated that can perform complex interconnect routing for a fixed

multi-component spatial topology. Depending on the choice of the sequence

of the component to component connections, different feasible layouts and

STs can be attained. Finally, a systematic way of generating unique STs was

presented. Based on direct and indirect connections between components,

all interconnect topological configurations can be obtained. The layout algo-

rithms have been compared for their efficiency and success in generating fea-

sible layouts, and a separate example study was illustrated to showcase their

performance in complex geometric environments. Practical design guidelines

are also outlined for engineers to utilize these methods for different problem

types.
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CHAPTER 4

THE SPI2 DESIGN FRAMEWORK:
STAGE 2

4.1 Introduction

In this chapter 1, stage 2 of the SPI2 design framework is presented us-

ing physics-based topology optimization method for optimizing the layout

of component-routing systems. Gradient-based topology optimization tech-

niques are used to simultaneously optimize both component locations and

routing paths of component interconnects. In addition to geometric consid-

erations, this method supports optimization based on system behavior by in-

cluding physics-based objectives and constraints. Multiple physics domains

are modeled using lumped parameter and finite element models. A geo-

metric projection for components of arbitrary polygonal shape is developed

along with sensitivity analysis. Several thermal-fluid systems are optimized

to demonstrate the use of this method in this chapter.

4.1.1 Chapter Objectives and Contributions

The primary objective of this chapter is to demonstrate the use of gradient-

based topology optimization on fluid-thermal system layout problems. The

proposed method combines both the component placement and interconnect

routing problems, in addition to using physics-based models for design com-

parison. The core contributions of this chapter are as follows:

1. A novel technique is presented that supports simultaneous optimiza-

tion of component placement and interconnect paths, whereas existing

methods treat component layout and interconnect routing separately

(e.g., optimal routing with fixed layout).

1The geometric projection method presented in this chapter in based on work com-
pleted in Ref. [87] in collaboration with Alex Jessee (2019 MS graduate from Aerospace
Engineering, University of Illinois).
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2. Physics-based objectives and constraints were incorporated into the

optimization problem, in addition to geometric constraints that prevent

interference between components and interconnects. Both 1D lumped

parameter and 2D finite element physics models are used within a single

optimization problem to support physics-based evaluation.

3. The geometric projection method (GPM) of Norato et. al [83], which

is an alternative to the well-established SIMP (Solid Isotropic Material

with Penalization) method design parameterization [138] is utilized for

solving the optimization problem.

4. The effectiveness of the proposed GPM is demonstrated via the solution

of several test cases that utilize physics-based simulations including

industry relevant problem such as a hybrid unmanned aerial vehicle

(UAV) and the underhood of an automotive fuel-cell (AFC) packaging

system .

4.2 Geometric Projection Method

The new simultaneous approach makes significant system volume reduction

possible. The projection method of Norato et al. [83] is extended to allow

components of arbitrary polygonal shape to be projected. Sensitivity analy-

sis for this projection is provided to allow the efficient use of gradient-based

optimization methods. Examples presented later in this chapter consider

thermal conduction on the continuum level using the finite element method,

and a lumped parameter pipe flow model. The methods presented here, how-

ever, could be extended to model other combinations of physics; for example,

thermal-electric or structural-fluid systems. Section 4.3 presents the models

used to simulate the physics response of the system. Section 4.4 states the

optimization problem and presents the derived function sensitivities. Finally,

the design method is demonstrated in Sections 4.5-4.6 through the optimiza-

tion of several 2D SPI2 interconnected multi-component systems.
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4.3 Physics models

4.3.1 Steady state thermal conduction

Temperature distribution was modeled on the continuum level using the finite

element method. Two main assumptions were made for thermal modeling of

SPI2 system layouts in this dissertation:

1. Only the steady-sate temperature distribution across the design domain

and the components and fluid network is modeled, neglecting the tran-

sient thermal effects of the SPI2 system. This is because steady-state

thermal conduction and convection capture the worst-case scenario of

this class of systems in operation where maximum duration of system

activity occurs. For instance, in an aircraft flight mission, the take-off

and landing duration are negligible when compared to mid-air flight

duration where the system operating conditions are almost constant

and extreme due to lower ambient temperatures. Thus, transient ther-

mal modeling was considered out of scope of this dissertation and is an

aspect of future physics-based modeling work.

2. The effect of thermal expansion due to change in temperature on the

geometry of the domain, components, and the pipe network is assumed

to be negligible for modeling purposes.

The strong form of the boundary value problem for heat conduction is given

by:

∇ · (κ∇T (x)) +Q = 0, x in Ω (4.1)

T (x) = T ∗, x on ΓT (4.2)

n · (κ∇T (x)) = q∗, x on Γq, (4.3)

where κ is the matrix of thermal conduction coefficients, T (x) is the tem-

perature solution field, Q is heat flux per unit volume in the domain, and n

is the unit normal to the domain boundary. Temperature, T ∗, and heat flux,

q∗, boundary conditions are applied on the ΓT and Γq portions of the domain

boundary, respectively. Detailed derivation of the finite element equations

and implementation can be found in Ref. [139]. Here we will skip to the

final equation that solves for temperatures at the nodes of the finite ele-

ment mesh, which is obtained by discretizing the boundary value problem in
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Eqns. (4.1)-(4.3) using the finite element method.

KT = P (4.4)

Equation (4.4) is solved for the temperature field vector T , where K is the

global thermal stiffness matrix assembled from element stiffness matrices,

kel, defined in Eqn. (4.5), and P is the global load vector assembled from

element load vectors, pel, defined in Eqn. (4.6).

kel =

∫
Ωe

BTκBdΩ−
∫
∂Ωh

hNNTd∂Ωh (4.5)

pel =

∫
Ωe

QNdΩ +

∫
∂Ωh

hTenvNd∂Ωh. (4.6)

Here, N and B are element shape function and shape function gradients,

respectively. These equations also include convection boundary conditions

on the ∂Ωh portion of the boundary. The temperature of the convecting fluid

is Tenv, and the convection coefficient is h (assumed constant here).

Here the geometric projection method of Norato et al [83] is used. In the

original projection method work, the new parameterization approach was

used to optimize structures while ensuring that the resulting design could be

made from stock materials, such as structural beams with standard shapes

and sizes. It is discovered that this method can be extended beneficially to

the combined layout and routing optimization problem. The geometric pro-

jection method is used to create routing designs that can be manufactured

out of standard circular cross-section pipes. The geometric parameterization

involves design variables that facilitate convenient derivation of lumped pa-

rameter model (Sec. 4.3.2) sensitivities. The remainder of this section will

give a brief overview of the geometric projection method, and detail changes

made for use with the routing and packaging problem.

In the projection method, each element in the mesh is assigned a density

parameter ρi with a value between zero and one. Solid material corresponds

to ρi = 1, and void material corresponds to ρi = 0. The material properties

for each element stiffness matrix ki are scaled by 0 ≤ ρi ≤ 1. Leaving out

58



the convection boundary condition term, the element stiffness matrix is:

ki = (ρmin + (1− ρmin)ρpi )

∫
Ωe

BTκBdΩ = (ρmin + (1− ρmin)ρpi )k0, (4.7)

where p is a penalization parameter used to penalize intermediate densities

between 1 and 0, leading to a projection with less gray area between solid

and void. The convection boundary condition term is independent of ρi,

so can be omitted without loss of generality. If a regular mesh with all

elements being the same shape and size is used, then the second form of

Eqn. (4.7) can be applied to reduce computational expense, since the integral

term is the same for all elements. A minimum density, ρmin, is enforced to

prevent singularity in the global stiffness matrix. For structural problems,

the smallest ρmin that prevents ill-conditioning is used. In thermal problems,

however, a physically-meaningful minimum density can be chosen to simulate

the thermal conductivity of the surrounding medium, for example, air.

The density of each element is found by projecting geometric shapes onto

the mesh. Norato et al. proposed bars with rounded ends as a shape which

could be projected easily, and the same will be used here. Each bar involves

three parameters: segment start and end points x0 and xf , and bar width w

(Fig. 4.1). The parameter for out-of-plane thickness (that was presented in

the original formulation) is left out here because the new method presented

here requires that bars are not removed. This is important because the bars

form a flow network, and bar removal could break flow paths. The signed

distance between a bar q and an element with center at p is:

φq(dq(xq0 ,xqf ,p), w) = dq(xq0 ,xqf ,p)− w

2
, (4.8)

where dq is the distance between the segment q and point p. See Ref. [83] for

the distance calculation. A circle of radius r is placed at the element center.

The density assigned to each element is the area of the circle covered by the

bar divided by total area of the circle—see the shaded area of Fig. 4.1. The
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Figure 4.1: Bar projection

density as a function of signed distance is given by:

ρq(dq(xq0 ,xqf ,p), r) =


0 φq > r

1
πr2

[
r2 cos−1

(
φq(dq)

r

)
− φq(dq)

√
r2 − φq(dq)2

]
−r ≤ φq ≤ r

1 φq < −r
(4.9)

The radius r determines the width of the grey area projected on to the mesh

by the bar. A smaller radius will more accurately represent the bar geometry

as a projection of mostly ones and zeros. To ensure that any element which

touches a bar has a nonzero density, a radius that circumscribes the square

elements is used in this chapter. The radius must be less than half of the bar

width in order for Eqn.(9) to correctly calculate the area intersected by the

circle and bar.

In the combined layout and routing optimization problem, components must

also be included in the finite element analysis model. components are ap-

proximated as polygonal shapes with straight edges. Each component will

be defined by a reference point, cd, and a set of vectors, bi, pointing from the

reference point to polygon vertices. The component densities are calculated

by first projecting each edge of the polygon as a rounded bar, and then filling

in elements inside the polygon with density of 1 (Fig. 4.2). Densities for each

edge ρ̃e are calculated using Eqn. (4.9). End points of edge segments, xe0

and xef , are found by:

xe0 = xi = cd + bi (4.10)

xef = xi+1 = cd + bi+1. (4.11)
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Figure 4.2: component projection

The densities of all the edges in the component are then merged using a

p-norm approximation of the maximum density, as quantified in Eqn. (4.12):

ρd(cd,p) =

[
Ne∑
e=1

(ρ̃e(de(xe0 ,xef ,p)))p

] 1
p

. (4.12)

After merging edge densities, all elements with centers inside the polygon

are assigned ρd = 1. Elements with centers inside the polygon can be found

using the Matlab function inpoly(), or by using the algorithm described

in Ref. [140].

Finally, the density used in Eqn. (4.7) is calculated by merging densities of

all bars and components in Eqn. (4.13). In the temperature field solution,

heat is being conducted between the components and interconnects because

the merged density field is used to calculate the stiffness matrix.

ρi =

[
Nq∑
q=1

(ρq(dq(xq0 ,xqf ,pi)))
p +

Nd∑
d=1

(ρd(cd,pi))
p

] 1
p

. (4.13)

Section 4.3.2 introduces pipe elbows which form a smooth radius at the in-

tersection of two straight segments. These curved pipe segments are used

in the pipe flow model but are not modeled in the projection. The projec-

tion at the intersection of two segments is therefore an approximation based

on the assumption of straight pipes with an elbow radius of zero. In addi-

tion,components may also add or remove heat from the domain. The projec-

tion in Eqn. (4.12) will be used to model this effect. Rather than assuming a

constant internal heat generation Q across all components, each component

will have its own Qd value. Element load vectors are then modified using
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this Qd and the component density.

pe =

Nd∑
d=1

ρpdeQd

∫
Ωe

NdΩe =

Nd∑
d=1

ρpdeQdp0 (4.14)

The convection boundary condition term of Eqn. (4.6) is omitted again as it

will not be scaled with density.

4.3.2 Lumped parameter pipe flow model

This section presents a lumped parameter pipe flow model for the pressure

throughout the flow loop. Pressure is a factor that influences pump power

consumption, which is important to reduce. The lumped parameter model

uses empirical relations to approximate flow loop sections using only a small

number of parameters [141]. The lumped parameter model is computation-

ally inexpensive compared to computational fluid dynamics (CFD) models,

and provides suitable accuracy (important properties for design optimiza-

tion). The following assumptions have been made in the pipe flow model

presented here:

1. Flow is incompressible

2. All components are connected in series with no branches

3. Everything is in the same plane relative to ground (no height change)

4. Flow rate at the inlet is known

5. Flow is turbulent everywhere

Most of these assumptions could be relaxed if more accuracy is desired, with

the penalty of increased computational expense and more complex sensitivity

analysis.

We begin with Eqn. (4.15), which is derived in detail from an energy balance

in Ref. [141]. Each term in this equation is formulated to have units of length.

This equation relates head loss HL to pressure, P , and velocity, V , at points

1 and 2 in the flow loop.

HL =
P1 − P2

ρw
+
V 2

1 − V 2
2

2g
(4.15)

Here, ρw is the weight density, and g is gravitational acceleration. Solving

Eqn. (4.15) for the pressure difference (in terms of head) between two points
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produces:
P1 − P2

ρw
= HL −

V 2
1 − V 2

2

2g
(4.16)

The flow rate in the system is known, so fluid velocity at any point can be

calculated easily using:

Vi =
Q

Ai
. (4.17)

Here, Q is the volumetric flow rate (uniform for a series flow loop), and Ai is

the cross sectional area of the pipe at location i. Head loss is determined next,

which is a proxy metric for energy loss between points 1 and 2 for reasons

other than velocity change. Head loss, in units of length, is a standard

metric used in describing flow system properties, including pump efficiency

and system characterization curves [142]. Models for estimating head loss for

many different pipe flow system components can be found in Ref. [141], but

here only two will be of interest: 1) losses due to friction between the fluid

and pipe wall (sometimes called major loss), and 2) losses due to elbows

connecting straight segments of pipe. Each straight segment of pipe and

each elbow has a loss coefficient, K, assigned based on geometry. Total head

loss for npe pipe elements in series can be calculated by combining the loss

coefficients as follows:

HL =
ẇ2

2gρ2
w

npe∑
i=1

Ki

A2
i

, (4.18)

where ẇ is the weight flow rate.

The loss coefficient for a straight segment of pipe with length li and diameter

di is:

Ks
i = fi

li
di
, (4.19)

and for an elbow with bend angle αi and bend radius ri the loss coefficient

is:

Ke
i = fiαi

ri
di

+(0.1+2.4fi) sin
(αi

2

)
+

6.6fi

(
sin
(
αi

2

)
+
√

sin
(
αi

2

)
+ εs

)
(
ri
di

)4αi/π
−fi

2lc
di
.

(4.20)

See Fig. 4.3 for a description of elbow geometry. In Eqn. (4.20), a small per-

turbation εs has been added to make the expression differentiable at α = 0.

The first term in Eqn. (4.20) accounts for frictional losses across the elbow arc

length. The final term reduces the loss coefficient to account for the length
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Figure 4.3: Pipe elbow geometry

of straight pipe that is overlapped by the elbow, lc. Implementing loss co-

efficient calculations in this way allows each pipe section to be modular. If

the length of straight pipe were reduced directly at the straight loss coeffi-

cient calculation, information about the connecting pipe and elbow would be

needed. The bend angle is found by defining two vectors—a and b—based

on the endpoints of two connected segments:

a = xaf − xa0 (4.21)

b = xbf − xb0 . (4.22)

From the definition of the dot product, we obtain:

θ = cos−1 (v) , (4.23)

where:

v = (1− εc)
a · b
||a||||b||

. (4.24)

A perturbation εc is incorporated into Eqn. (4.24) to restrict the range such

that v ∈ [0, (1 − εc)]. This is done to prevent the derivative of θ from

being undefined when v = 1. The angle α in Eqn. (4.20) is defined as the

supplementary angle of θ:

α = π − θ. (4.25)

The clipped length is calculated using:

lc = ri

√
1 + v

1− v
. (4.26)

The friction factor (fi) appears in both loss coefficient equations. The fric-
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tion factor is a function of Reynolds number, and can also account for pipe

wall roughness. A variety of approximate models for friction factor have been

developed based on experimental results. Here, the equation for turbulent

flow in smooth pipes proposed by Blasius [143] is used to estimate fi:

fi = 0.3164Re−0.25
i , (4.27)

with Reynolds number:

Rei =
Vidiρm
µ

, (4.28)

where ρm is mass density and µ is fluid viscosity. The use of the thermal

conductivity and pipe flow models in optimization will be discussed in the

following section.

4.4 Optimization problem and sensitivity analysis

This section presents the optimization problem formulation, as well as deriva-

tions for the sensitivities needed to use gradient-based optimization methods.

The models presented in Section 4.3 lead to a specific choice of design vari-

ables which will be discussed in this section. Furthermore, this set of design

variables can be used to define geometric constraints which are needed to pre-

vent interference between different components of the system. The system

being optimized here consists of a number of components and the intercon-

nects routed between components.

The goal is to find the optimal system layout. System layout is defined as the

placement of the components, the routing of component interconnects, as well

as limited sizing parameters (such as interconnect diameter, assuming tubu-

lar connections between components). Each component and interconnect are

parameterized in a general manner to help simplify sensitivity calculations

and support object-oriented code implementation. More complex compo-

nents and routing can be modeled without significant additional work due to

the use of object-oriented programming.

In addition to cd and bi introduced in Sec. 4.3, components may have ports

with location pi relative to the reference point. Ports are the required loca-

tions for interconnect attachment to each component. As the reference point

moves, the polygon and ports will move with it. component shape, size,
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and port location are held fixed during the optimization, so the only design

variable for each component is cd. In some optimization studies, it may be

useful to omit the reference point corresponding to a component from the

set of optimization variables, holding the component fixed in a particular

location. This can also be used to specify fixed inputs and outputs of the

flow loop.

Pairs of ports are connected via physical interconnects, and component con-

nection topology is assumed to be given (and unchanging) here. Each inter-

connect is represented here using one or more straight geometric segments.

Increasing the number of segments in a connection supports consideration

of approximately curved (and more complex) interconnect geometries, but

increases computational expense. Interconnect segment i is associated with

parameters for its start and end points, xi0 and xif , respectively, as well as

width, wi. All of these quantities are optimization variables.

The models presented in Sec. 4.3 are reformulated in terms of the above pa-

rameterization to simplify sensitivity calculation. A tradeoff, however, exists

between ease of sensitivity calculation and problem conditioning. Specifi-

cally, the connection between two interconnect segments, or a segment and a

port, present a challenge. As defined above, each system element has its own

independent parameters, so connections are free to be broken. There are two

ways to solve this issue. The first method attempts to enforce constraints

between connected points. Such constraints could be implemented as either

linear equality or nonlinear inequality constraints, shown in Eqns. (4.29) and

(4.30), respectively:

xi − xj = 0 (4.29)

(xi − xj)2 − ε ≤ 0, (4.30)

where xi and xj are copies of the same parameter across two different ele-

ments. Equation (4.30) constrains a norm of the parameter error to be within

a tolerance ε, approximating the equality constraint in Eqn. (4.29).

While this may be useful for use with optimization algorithms that do not

support equality constraints, it can also help in cases where satisfaction of

equality constraints is difficult and causes optimization algorithm conver-

gence problems. Equation (4.30) is a relaxation of the original equality con-

straint. A small value of ε provides an accurate approximation, but can
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degrade problem conditioning. Using a large value of ε improves problem

conditioning, but reduces solution accuracy. Replacing linear with nonlinear

constraints can also impact computational expense. A related alternative

remedy is to increase constraint satisfaction tolerances for these consistency

constraints within optimization algorithm settings, but this may not be a

practical approach in general. In numerical experiments performed for this

study, the value of ε was observed to be a critical parameter to tune the bal-

ance between problem difficulty in satisfying constraints (problem stiffness

or conditioning), while maintaining geometric consistency.

A second approach to ensure geometric consistency is to define an implicit

parameterization, making use of two design variable vectors: the expanded

and reduced design variable vectors. Consider a system with nd components

and ns routing segments. The expanded design variable vector:

z′ := [c1, ..., cnd
,x10 ,x1f , w1, ...,xns0

,xnsf
, wns ]

T

contains all the parameters discussed above for each element in the layout.

The reduced design variable vector contains only the reference points of free

components, cfd , locations where routing segments meet, xfi , and the width

of each connection, wi. It is assumed that the width of all segments that

connect two ports are the same (e.g., representing interconnects with uniform

properties, such as electrical wiring or piping). The reduced design vector is

then:

z := [cf1 , ..., c
f
ndf
,xf1 , ...,x

f
nsf
, w1, ..., wnc ]

T ,

where ndf is the number of free components, nsf is the number of points

where routing segments meet, and nc is the number of connections between

pairs of ports. With these two vectors introduced, a mapping can be defined

from the reduced to the expanded design variable vectors, defined in matrix

form as:

z′ = Mz + P (4.31)

where M is a binary mapping (or selection) matrix. It is derived by iden-

tifying which elements of z and z′ correspond to each other. The vector

P represents fixed components that are not in the reduced design variable

vector, but have a fixed value throughout the optimization. Also, segment

endpoints that are connected to component ports are mapped to the com-

ponent reference point in the reduced design variable vector by including an
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offset corresponding to the port location pi. It should be noted that, in gen-

eral, the mapping matrix is not invertible, so the inverse mapping based on

Eqn. (4.31) may not be possible.

This mapping preserves the simplified sensitivity calculations described above,

while eliminating the need for consistency constraints. All calculations of

objective functions and constraints, and their sensitivities, are performed in

terms of the expanded design variable vector. Next, the sensitivities are

computed in terms of the reduced design variables by using the chain rule:

df

dz
=
∂f

∂z′
dz′

dz
, (4.32)

dz′

dz
= M . (4.33)

The reduced design variable vector is used as the optimization vector by

the solution algorithm. To maintain correspondence between reduced and

expanded vectors, the mapping defined in Eqn. (4.31) is applied each time

the reduced design variable vector is updated.

Now that the parameterization of the design space has been determined, the

complete optimization problem formulation can be presented:

min
x

f(x,T ) (4.34a)

s.t.: gphys(x,T ) ≤ 0 (4.34b)

gdd(x) ≤ 0 (4.34c)

gsd(x) ≤ 0 (4.34d)

gss(x) ≤ 0 (4.34e)

where: K(x)T = P (x) (4.34f)

Here f(x,T ) is the objective function and g(x,T ) are constraint functions.

In general, these functions may depend both on design (x) and state (T )

variables. The function f(·)
can be any one of the candidate objectives discussed later in Sec. 4.4.1.

The constraints gphys(x,T ) are constraints that depend both on design and

on solutions to the physics models (i.e. the value of the state vector T ).

The interference constraints gdd(x), gsd(x), and gss(x) prevent interference
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between two components, one routing segment and one component, and two

routing segments, respectively. These constraints are independent of any

physics models, so they are all explicit functions of the design variables.

4.4.1 Objective function and physics-based constraints

This section presents objective function options and their derivatives. Objec-

tive functions and physics-based constraints are discussed together because

they both depend on design and state variable values. In addition, these

functions are interchangeable as either objective or constraint functions.

The first candidate function, f1(·), relates to the solution of the lumped-

parameter flow model:

f1(x,T ) = HL (4.35)

The objective is to minimize the head loss (HL) in the flow loop as calculated

in Eqn. (4.18). When head loss is used as an objective or constraint, the

radius of each pipe elbow is also included a design variable. The elbow radii

ri are appended to the end of expanded and reduced design vectors (with a

one-to-one mapping). The total derivative using the chain rule is:

dHL

dx′ =
∂HL

∂x′ +

npe∑
i=1

∂HL

∂Ki

dKi

dx′ . (4.36)

The design variable vector contains component reference point coordinates,

bar end coordinates, bar widths, and elbow radii. For each routing segment,

the pipe diameter will be equal to the bar width. The only nonzero elements

of the explicit derivative ∂HL/∂x
′ are those corresponding to bar width:

∂HL

∂di
= − πdiẇ

2

2gρ2
wA

2
i

npe∑
i=1

Ki (4.37)

For each lumped parameter element, whether a straight section or elbow, the

following equation applies:

∂HL

∂Ki

=
1

A2
i

ẇ2

2gρ2
w

. (4.38)

The final derivative in Eqn. (4.36), dKi/dx
′, depends whether the element

is a straight or elbow section. For a straight section, design variables are
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segment end points, xi0 and xif , and segment diameters di. The sensitives

are given below:

dKs
i

dxi0
=

fi
dili

(xi0 − xif ) (4.39)

dKs
i

dxif
=

fi
dili

(xif − xi0) (4.40)

dKs
i

ddi
= −fili

d2
i

+
li
di

dfi
ddi

(4.41)

dfi
ddi

= 0.25(0.3164)Re−1.25 4ṁ

πµd2
i

. (4.42)

If the lumped parameter element is an elbow, the design variables are the

four end points of connected segments, xa0 , xaf , xb0 , and xbf , diameter, di,

and radius of the elbow, ri. It is assumed that the diameters of connected

segments are the same so there is only one diameter variable. The sensitivity

of the elbow loss coefficient with respect to pipe diameter is:

dKe
i

ddi
=
∂Ke

i

∂di
+
∂Ke

i

∂fi

dfi
ddi

. (4.43)

Equation (4.42) can be used again here. The partial derivatives are:

∂Ke
i

∂di
= −fiαi

ri
d2
i

+ 6.6

(
4αi
π

)
fi

(
sin
(αi

2

)
+

√
sin
(αi

2

)
+ εs

)
r(−4αi/π)d(4αi/π)−1 + fi

2lc
d2
i

(4.44)

∂Ke
i

∂fi
= αi

ri
di

+ 2.4 sin
(αi

2

)
+

6.6
(

sin
(
αi

2

)
+
√

sin
(
αi

2

)
+ εs

)
(
r
d

)4αi/π
− 2lc
di

(4.45)

With respect to elbow radius, the sensitivity is:

dKe
i

dri
= fiαi

1

di
−6.6

4αi
π
fe

(
sin
(αi

2

)
+

√
sin
(αi

2

)
+ εs

)
r(−4αi/π)−1d(4αi/π)−2fi

di

dlc
dri

.

(4.46)

The chain rule can be used to calculate sensitivities with respect to the four

segment end points:

dKe
i

dxa0
=
∂Ke

i

∂αi

dαi
dxa0

− 2fi
di

dlc
dxa0

, (4.47)
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with:

∂Ke
i

∂αi
= fi

ri
di

+
1

2
(0.1 + 2.4fe) cos

(αi
2

)
+

26.4

π
fi

(
sin
(αi

2

)
+

√
sin
(αi

2

)
+ εs

)(
d

r

)(4αi/π)

ln

(
d

r

)

+ 6.6fi

(
d

r

)(4αi/π)
1

4

1√
sin
(
αi

2

)
+ εs

cos
(αi

2

)
+

1

2
cos
(αi

2

) . (4.48)

The derivatives of angle α are:

dαi
dxa0

=
∂αi
∂v

dv

dxa0

, (4.49)

with:
∂αi
∂v

=
1√

1− v2
. (4.50)

The required derivatives of the clipped length are as follows:

dlc
dri

=

√
1 + v

1− v
(4.51)

dlc
dxa0

=
∂lc
∂v

dv

dxa0
(4.52)

where:
∂lc
∂v

=
ri

(1− v)2

√
1− v
1 + v

. (4.53)

The calculations in Eqns. (4.49) and (4.52) require derivatives of v with

respect to the four bar end points:

dv

dxaf
= − dv

dxa0
= (1− εc)

[
b

||a||||b||
− 1

||a||3||b||
(a · b)a

]
, (4.54)

dv

dxbf
= − dv

dxb0
= (1− εc)

[
a

||a||||b||
− 1

||a||||b||3
(a · b)b

]
. (4.55)

A second objective function option is to minimize one of the component

temperatures. Temperature at the component center is used here, so the

objective function is:

f2(x,T ) = T (cd). (4.56)

This depends on the solution of the thermal conduction physics problem.
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Sensitivities of functions depending on solution of a finite element problem

can be calculated using the adjoint method [144]:

df2

dx′i
=
∂f2

∂x′i
+ ΨT dR

dx′i
, (4.57)

where Ψ is the adjoint vector, which can be calculated with the following

equation:

Ψ =

[
∂R

∂y

]−T [
∂f2

∂y

]T
. (4.58)

The residual R comes from manipulating Eqn. (4.4) so that one side is zero:

R = KT − P = 0 (4.59)

The vector y in Eqn. (4.58) is the unknown vector. In the finite element

problem the unknowns are y = [P p,T f ]T . The vector P p is the flux at

nodes where prescribed temperature boundary conditions are applied, and

T f are temperatures at all remaining nodes. Equation (4.59) is partitioned

into blocks, p and f , corresponding to the prescribed and free (unknown)

degrees of freedom, respectively. The derivative of the residual with respect

to the unknown vector results in a partitioned matrix:[
∂R

∂y

]
=

[
−I Kpf

0 Kff

]
. (4.60)

The temperature at an arbitrary location in the domain needs to be calcu-

lated by interpolation from nodal temperatures:

T (cd) = NT (ξ, η)Tel, (4.61)

where ξ and η are the location of cd in the local element coordinate sys-

tem, and Tel is the vector of element nodal temperatures. The only nonzero

derivative with respect to design variables x′ is for the component reference

point. Using the definition of the matrix B = dN/dx, explicit derivatives

of f2(·) can then be calculated:

∂f2

∂x′
= BTTel (4.62)

∂f2

∂y
= N (ξ, η) (4.63)
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The derivative of the residual with respect to design variables is calculated

using the chain rule.
dR

dx′i
=
∂R

∂ρe

dρe
dx′i

(4.64)

Finally, taking into account Eqns. (4.4) and (4.5), the total derivative is:

df2

dx′i
=
∂f2

∂x′i
+

Ne∑
e=1

p(1− ρmin)ρ(p−1)
e ΨT

e k0 Te
dρe
dx′i

+

Nd∑
d=1

Qd

Ne∑
e=1

pρ
(p−1)
de ΨT

e p0
dρde

dx′i
,

(4.65)

where Ne is the number of finite elements in the mesh, ρe is the element den-

sity from Eqn. (4.13), ρde is the component element density from Eqn. (4.12),

and Ψe and Te are the adjoint and temperature vectors corresponding to el-

ement degrees of freedom.

The derivative of the geometric projection is the final part of Eqn. (4.65).

The derivative of density resulting from the merge in Eqn. (4.13) is:

dρ

dx′i
=

Nq∑
q=1

(
ρq
ρ

)p−1
dρq
dx′i

+

Nd∑
d=1

(
ρd
ρ

)p−1
dρd
dx′i

. (4.66)

See Ref. [83] for derivatives with respect to bar ends. For components, the

derivative with respect to component centers must be calculated using:

dρd
dcd

= ρ1−p
d

Ne∑
e=1

(ρ̃e)
p−1 ∂ρ̃e

∂cd
, (4.67)

where:
∂ρ̃e
∂cd

=
∂ρ̃e
∂xe0

∂xe0
∂cd

+
∂ρ̃e
∂xef

∂xe0
∂cd

. (4.68)

Derivatives with respect to edge ends can again be found in Norato et al. [83],

and appear here as ∂ρ̃e/∂xe0 and ∂ρ̃e/∂xf0 . From the definition of edge

endpoints in Eqn. (4.10) and (4.11), derivatives ∂xe0/∂c and ∂xe0/∂c are the

identity matrix. The density derivative of any element inside the component

polygon is set to ∂ρd/∂c = 0. To justify making the sensitivity of interior

elements zero, imagine perturbing the center of the component by a small

amount. Most elements inside the polygon are still inside the polygon, so

there is no change in the density. Some elements near the edges may have

switched from being inside the polygon to in the edge bar, or vice versa.

These elements will be near the bar center and should still have full density.
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4.4.2 Geometric constraints

The interference constraint functions will be presented below along with sen-

sitivity analysis. Any constraint involving a component is not enforced on the

component boundary, but on a bounding circle with radius rb centered at the

component reference point, see Figs. 4.4a or 4.4b. The radius can be found

by calculating the maximum vertex distance from the component reference

point. The constraint between two components i and j, and its sensitivity,

are shown below (see also Fig. 4.4a for an illustration of the constraint).

gdd(x) = (rbi + rbj)
2 − ||cj − ci||2 ≤ 0 (4.69)

dgdd

dci
= 2(cj − ci) (4.70)

dgdd

dcj
= −2(cj − ci) (4.71)

For the constraint between a component i and a segment of routing j, pre-

vious results from projecting a bar onto the mesh will be used. As an inter-

mediate step in the projection, the distance between a line segment and a

point was found. Here, the distance will be found between the line segment

and a component reference point rather than a mesh element center. The

constraint function is:

gsd =
wj
2

+ rbi − dij ≤ 0. (4.72)

Sensitivities ddij/dxj0 and ddij/dxjf are already known from previous results,

as well as dgsd/dwj = 1
2
. The component reference point is a design variable,

whereas the element centers were not design variables in previous results, so

an additional sensitivity needs to be calculated:

ddij
dci

=


b
||b|| a · b ≤ 0

1
||g||

(
I − 1

||a||2 (a⊗ a)
)
g 0 < a · b < a · a

e
||e|| a · b ≥ a · a.

(4.73)

A constraint to prevent interference between two routing segments requires

finding the distance between two line segments. Reference [145] describes

an algorithm for calculating the distance between two line segments. First,
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(a) Constraint between
two components

(b) Constraint between
a component and
routing segment

(c) Constraint between
two routing segments

Figure 4.4: Geometric constraints

the two segments are extended into infinite lines, and the minimum distance

is found. If the minimum occurs at a point on the line outside of the seg-

ment endpoints, then a series of cases must be tested to find the distance

between endpoints and the other segment. Matlab code to compute the

minimum distance between two segments, and the derivative with respect to

the segment endpoints, is included in the Appendix. The constraint to avoid

interference between routing segments a and b with minimum distance dab

between them is:

gss =
(wa

2
+
wb
2

)2

− d2
ab ≤ 0. (4.74)

The squared distance is used to avoid undefined derivatives when the distance

is zero. The sensitivity with respect to segment end points can be found in the

Matlab code in the Appendix. Sensitivity with respect to the bar widths

are:
dgss

dwa
=
dgss

dwb
=
(wa

2
+
wb
2

)
. (4.75)

4.5 Stage 2 Illustration: UAV test platform

To illustrate stage 2, a notional power electronics cooling system for an un-

manned aerial vehicle (UAV) as represented in Fig. 4.5 was optimized. This

test platform has rich potential in multi-physics optimization for thermal,

fluid, and mechanical packing. Both the system architecture and the geo-

metric topology of the system are fixed during the optimization. The initial

system layout is depicted in Fig. 4.6a, and corresponding component prop-

75



erties are given in Table 4.1. The system consists of two battery packs, an

AC/DC converter, and a heat exchanger. The battery packs and AC/DC

converter add heat to the system, and the heat exchanger removes heat. A

fixed-location inlet and outlet for the fluid loop are placed on the left edge.

Boundary conditions for the thermal problem are shown in Fig. 4.7. The top

and bottom edges of the domain have convection boundary conditions with a

convection coefficient of h = 35.4 W/(m2K) and environment temperature of

0 ℃. The convection boundaries on the top and bottom edges can be related

to the surfaces of the UAV exposed to external cooling by the environment

during flight. The right edge has a fixed temperature of 100 ℃. For instance,

this could be considered as the heat coming from the engine during flight,

and the left edge is insulated. The maximum pipe diameter is allowed to

be 0.03 m. There are two free points in each connection to allow for more

complex interconnect routing paths. The optimization was solved using both

head loss and bounding box objective functions.

The optimization formulation for minimizing the system bounding box area

is given by:

min
x

A(·) = (max(x̄)−min(x̄))(max(ȳ)−min(ȳ)) (4.76a)

subject to: Tdi=1...4
≤ Tdmax (Max. component temp. constraint)

Tf ≤ Tfmax (Max. fluid temp. constraint)

Hl ≤ Hlc (Max. head loss constraint)

ggeo ≤ 0 (Geometric constraints)

where: K(x)T = P (x), (Physics-based model eqns.)

where x̄ and ȳ are the set of x and y coordinates of component reference points

and bar segment end points. The critical component temperatures, Tc, for

all components are shown in Table 4.1. Head loss constraints, Hlc , will be

used for the bounding box objective function. Here all geometric constraints

from the generic optimization formulation have been lumped together into

ggeo(·). The function in Eqn. (4.76a) represents a rectangular bounding box

containing all free components and interconnects that is aligned with the x

and y axes. Similarly, the objective function for minimizing the pressure head
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loss objective function is given by:

min
x

f(·) = Hl (4.77a)

subject to: Tdi=1...4
≤ Tdmax (Max. component temp. constraint)

Tf ≤ Tfmax (Max. fluid temp. constraint)

ggeo(·) ≤ 0 (Geometric constraints)

where: K(x)T = P (x). (Physics-based model eqns.)

Both optimization problems enforce component temperature constraints as

described in the component properties table. In addition, the optimization

for minimizing the bounding box had a head loss constraint of 1.5 m. Result-

ing layouts are shown in Figs. 4.6 (b,c), and some corresponding values from

the final layouts are listed in Table 4.2. The pressure head loss objective

improved by 37.96% from an initial head loss value of 1.452 m to 0.876 m

and the bounding box area was reduced by 49.95% from an initial value of

0.6219m 2 to 0.3112 m2. Objective function value convergence history plots

and their corresponding first-order optimalities for each iteration are shown

for head loss and bounding box functions in Figs.4.8 (a) and (b), respectively.

It should be noted here that these values will change depending on differ-

ent operating boundary conditions, fluid and component temperature con-

straints, component heat flux rates, and other relevant factors. In the head

loss optimization, component 1 and 2 temperature constraints were active.

In the bounding box optimization, the head loss constraint and the compo-

nent 1 temperature constraint were active. As expected, using sharp angles

at the elbows enables designs with smaller bounding boxes. The head loss

objective layout has a higher total piping length, but lower head loss. This

suggests that elbow geometry is the dominant contributor to head loss. To

satisfy component temperature constraints, one of the routing interconnects

touches the convection boundary. This conducts heat from the components

through the routing to the boundary where it can be dissipated. The opti-

mization finds a balance between smooth bends and reducing pipe length to

reduce head loss in a way that is best for system performance.
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component number Description Qd (W/m2) Tmax (℃)

1 Battery 5000 30
2 Battery 5000 30
3 AC/DC converter 1000 70
4 Heat exchanger -2000 -

Table 4.1: Unmanned aerial vehicle’s component properties.

Figure 4.5: 2D schematic of an unmanned aerial vehicle (UAV).

Table 4.2: Power electronics cooling system optimization results. Optimal
objective function values are highlighted in yellow.

objective Hl (m) bounding box (m2) T1 (℃) T2 (℃) T3 (℃)

pressure head loss 0.876 0.722 29.8 30.0 27.3

bounding box 1.50 0.311 30.0 22.9 17.2
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(a) (b)

(c)

Figure 4.6: Results of hybrid UAV power electronics cooling system
illustrative study: (a) Initial layout; (b) final optimal layout for head loss
objective function; (c) final optimal layout for bounding box objective
function.

4.5.1 Case study: Underhood packaging of an automotive fuel
cell (AFC) system

Stage 2 of the two-stage design framework is also demonstrated on an industry-

relevant automotive fuel cell (AFC) application. Underhood spacing of the

fuel cell system, front end electric drive system and other thermal manage-

ment components presents a complex problem for minimizing cost and weight

while delivering the required vehicle capability and performance. Of inter-

est is optimal packing and routing (PR) for thermal management with the

goals of minimizing hose lengths, coolant volumes and the total number of

connections. The schematic of the 2D AFC layout is shown in Fig. 4.10.

However, some of the components of the AFC system have been grouped

together based on functionality and proximity into subsystems for design

simplification.
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Figure 4.7: Boundary conditions for the thermal finite element analysis.

Two problem cases are solved: 1) with four subsystems, and 2) with six

subsystems, respectively. The goal is to minimize the bounding box area and

the total AFC system interconnection length of the AFC layout subject to 2D

interference constraints. The results for both the four and the six subsystem

cases are shown in Figs. 4.11, and 4.12 respectively. The decrease in bounding

box areas for the four and six subsystem layouts are 83.83% and 79.26%

respectively. Similarly, the decrease in the total interconnection lengths of

the four and six subsystem AFC layouts are 75.8%, and 47.9% respectively.

The main observations from the results are as follows: 1) an increase in the

number of components (subsystems) from four to six leads to a less significant

percentage decrease in total bounding box area and total interconnection

length, and 2) with an increase in layout complexity (number of components

and interconnects), there is an increase in final packing density. It must be

noted that this case study only shows a simple illustration of stage-2 of the

framework using an AFC system. The original AFC layout was significantly

simplified for illustration purposes and the comprehensive layout solution

will be published in future work.
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4.6 Case Studies

4.6.1 Case Study 1: Comparison of layout generation methods

In this case study the FDLM, SPA, and UST methods are compared with

each other in terms of how their resulting layouts perform as start points in

stage 2. A multi-start approach is used where all feasible layouts from stage

1 are used as initial designs for stage 2 optimization problems with bounding

box area and pressure head loss objective functions separately to see how

it scales over an increasing number of components n. For the case studies,

the class of topologies are restricted to only n-component systems with each

component having two ports each (say, nC-2P). The FDLM methods begin

with both components and routing overlapped. The SPA and UST methods

have non-overlapping components initially.

The problem specifications are as follows: The multi-component intercon-

nected system has n equally-sized square components, with each component

dissipating at least 3,000 W/m2 of heat, and with each additional compo-

nent individually dissipating 50 W/m2 more than its predecessor. For exam-

ple, a system with 10 components will have the 10th component generating

3, 000 + (10 − 1)50 = 3, 450 W/m2 of heat. The components are connected

in a single loop. Each connection has one free intersection point. A short

fixed pipe segment is attached to each port. This allows constraints between

components and all free pipe segments to be enforced. The same bound-

ary conditions shown in the UAV illustration study are enforced here. The

maximum temperature constraint on all components is set to 30 ℃. For the

bounding box objective function, the head loss constraint is set to 5 meters

for all cases of n ∈ {3, 4, . . . , 9, 10}. The optimization problem terminates

when one of the following convergence criteria is satisfied: 1) objective func-

tion step is within a prescribed tolerance, i.e., |fn+1(x)− fn(x)| ≤ δf , or 2)

design variable vector change magnitude is within a prescribed tolerance i.e.

‖xn+1 − xn‖ ≤ δx . Here, δf and δx are set to be 10−7 and 10−5, respectively.

All computations in this chapter were performed using a workstation with an

Intel Xeon E5-2660 CPU @ 2.00 GHz, 64 GB DDR4-2400 RAM, Windows

10 64-bit, and Matlab 2019b.
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Figure 4.13 shows the final optimal bounding box objective function values

for all the initial feasible layouts. Each layout is represented on the plot

using different colored circles. The direct UST is the best performer and the

average values of the indirect USTs are worse because of the longer intercon-

nects that reduce the potential to shrink. The objective function values for

the indirectly-connected USTs and the SPA layouts for a given nC-2P system

are averaged to keep it consistent with the other solutions. Figure 4.14 shows

the initial feasible and final optimal layouts of a 6-component two-port sys-

tem (6C-2P), corresponding to design points (a)-(d) in Fig. 4.13. Similarly,

Fig. 4.15 shows the final pressure head loss objective function values for all

the initial feasible layouts. Figure 4.16 shows the initial feasible and final

design layouts of corresponding to points (a)-(d) in Fig. 4.15. UST-Indirect

is the best performer for the pressure head loss objective function because

the longer interconnects it produces can help achieve smoother pipe bends.

UST-Direct does not significantly improve the head loss objective function as

it contains shorter interconnects where a greater possibility of having sharper

pipe bends exists. It should be noted that, for illustration purposes only, one

representative indirect-UST layout and one representative SPA layout are

shown in Figs. 4.14 and 4.16, although the plots in Figs. 4.13 and 4.15 show

averaged times for all indirect-USTs and SPAs, respectively. In addition, the

initial SPA layouts used in this case study are generated with some obstacles

to perform routing so that the effect of interconnect complexity can be as-

sessed during optimization. Those obstacles or restricted regions are removed

during optimization to make a fair comparison with other layout generation

methods. Section 4.7 describes the important inferences from this case study

in more detail. To achieve convergence given the prescribed tolerances, the

average computation times for solving the bounding box minimization and

the pressure head loss minimization problems were 2,345.5 s and 2,743.2 s,

respectively.

Here it is also observed that the physics-based component temperature con-

straints for all feasible layouts were either active (equal to the allowable

maximum temperature which is 30◦ C), or well within the feasible range.

For example, Table 4.3 shows the final component temperatures of the six

components from each of the four feasible layouts shown in Fig. 4.14. In the

final optimized layouts, components near the boundaries had temperatures
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Table 4.3: Final component temperatures of optimized layouts shown in
Fig. 4.14 are satisfying the physics-based temperature constraints.

Final layouts T1 (℃) T2 (℃) T3 (℃) T4 (℃) T5 (℃) T6 (℃)

(a) Direct-UST 22.4 18.6 29.8 28.9 30.0 29.9
(b) FDLM 23.2 20.7 27.7 22.6 23.4.0 29.3
(c) SPA 27 19.7 28.5 21.6 23.7 30.0
(d) Indirect-UST 29.7 28.9 26.4 23.0 24.2 29.0

well below 30◦ C, but those far from the boundaries were nearly active (or

at least hotter) due to less convective cooling from ambient conditions.

4.6.2 Case Study 2: Bi-objective optimization problem

Multi-objective optimization studies are performed to analyze the trade-offs

that exist between two or more conflicting performance metrics. The epsilon-

constraint method tackles multi-objective problems by solving a series of sin-

gle objective subproblems, where all but one objective are transformed into

constraints. A Pareto front can be obtained efficiently for bi-objective prob-

lems. In this case study, the two competing objectives are bounding box area

(f1) and pressure head loss (f2) functions. The head loss objective function

f2 is treated here as a constraint, varying within the range 2.2 ≤ εi ≤ 6.2

m over 40 equally-spaced intervals, and solve the corresponding bounding

box minimization problems sequentially. The optimization is performed on

a specific 5C-2P system, and its spatially feasible initial layout is shown in

Fig. 4.17. The same physics-based boundary conditions are incorporated as

earlier, component sizes, heat dissipation rates, and temperature constraints

as specified for case study in Sec. 4.6.1. The ε-constraint optimization for-
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mulation is as follows:

min
x

f(·) = f1(x) (4.78a)

subject to: Tdi=1...4
≤ Tdmax (Max. component temp. constraint)

f2(x) ≤ εj, j = 1, ..., 40 (Head loss obj. as ε-constraint)

Tf ≤ Tfmax (Max. fluid temp. constraint)

ggeo(·) ≤ 0 (Geometric constraints)

where: K(x)T = P (x), (Physics-based model eqns.)

2.2 ≤ εj ≤ 6.2. (range of ε-constraint values)

The Pareto optimal solutions plotted in the objective function space are

shown in Fig. 4.18. As the overall bi-objective design task is to minimize

both the bounding box area and the pressure drop across interconnects, the

points in the space close to the bottom-left corner (toward the origin) are

desired.

Optimal solutions have a range of pressure drop values from 2.2 to 6.2 m,

and it results in a range of bounding box values from 0.015 to 0.072 m2.

The labels (a) through (d) that identify specific marked points in Fig. 4.18

correspond to the designs given in Fig. 4.17(a)-(d). These representative

solutions (a) through (d) were chosen subjectively such that they are evenly

distributed in the objective function space. Points (a) and (d) are the anchor

points of the Pareto front. This case study indicates how sharp pipe bends

cause more head loss across the system.

4.6.3 Case Study 3: Multi-loop optimization example

In this study, how the proposed framework also supports multi-loop optimiza-

tion problems and can be used for more complex interconnected component

layouts is demonstrated. A two-loop system optimization result is shown in

Fig. 4.19, illustrating the efficacy of this framework. The same boundary

conditions are maintained as earlier, component sizes, heat dissipation rates,

and temperature constraints as defined for the case study in Sec. 4.6.1. Opti-

mal layouts are obtained for the bounding box objective function (as shown

in Fig 4.19(a), improving by 66.03% from 0.1443 m2 to 0.04901 m2), and for
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the pressure head loss objective function (as shown in Fig 4.19(b), improving

by 40.01% from 5.98 m to 3.578 m). The two optimization studies required

1,855.4 s and 2,234.7 s of computation time, respectively, using the same

hardware defined above.

4.7 Discussion

The primary findings from the above case studies (especially from Secs. 4.6.1

and 4.6.2) are as follows:

1. The directly-connected topologies obtained from the USTs have the

best performance for the bounding box objective compared to all other

kinds of topologies. This is because they can shrink very easily since

there is no complex routing involved in such layouts. The indirectly-

connected GTs on average did not perform well for the bounding box

objective function because their interconnects have longer lengths com-

pared to the direct GTs. This restricts volume reduction significantly

because there is a greater chance of the interconnects intercepting the

components they are circulating.

2. The feasible layouts from the force-directed layout method (FDLM)

performed well for the bounding box objective function after the di-

rect GTs. The disadvantage of the FDLM is that it fails for complex

interconnects. This turns out to be a hidden advantage in that the

feasible layouts attained using FDLM are free from interconnect un-

tangling and component overlapping. They are produced by a spring

layout method that spread the system components uniformly until all

the nodes reach minimal energy. This property may not be advanta-

geous in other problem contexts.

3. The results for the SPAs with simpler topologies were good but wors-

ened for more complex networks. This might be because larger-scale

systems have interconnects that are very long, not allowing the com-

ponents to pack closely.

4. The initial feasible layouts that had longer interconnects tend to have

lower pressure (head) losses when pressure head was used as the ob-

jective. These layouts could better avoid sharp bends (the dominant

factor in head loss), expanding within the bounding box as some of the
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interconnects may not be constrained between the components.

5. The direct GTs have higher head loss results. This is because the

interconnects are constrained within the region between the compo-

nents, and sharp bends might occur while avoiding intersections with

the components.

6. The FDLM performs reasonably well for both objective functions. The

interconnect untangling is done systematically, uniformly balancing all

nodes in the FDLM. The feasible layouts that are produced are favor-

able designs and tend to be flexible in supporting both smooth bends

and volume reduction.

Finally, it is important to note that the above observations only present a

general notion of how the 2D layout generation methods perform in terms

of the start points they provide. These initial results indicate that the two-

stage design framework helps obtain a variety of solutions, each having the

potential to represent appropriate applications. In the future, work from this

chapter can be extended to investigate a more comprehensive set of system

types that can provide deeper insights.

4.8 Summary

In this chapter, stage 2 of the two-stage design automation approach was

demonstrated by utilizing the the set of feasible topological layouts of a

fluid-thermal system attained from stage 1, and then subsequently optimiz-

ing each layout via a gradient-based design optimization procedure that ac-

counts for the physics-based performance of the system. Three distinct lay-

out generation methods for generating feasible geometric layouts in stage

1 were described and demonstrated. A stage 2 physics-based optimization

method was described. A notional power electronic cooling system for an

unmanned aerial vehicle (UAV) was optimized in an illustrative study. The

example demonstrates our technique for simultaneous optimization of com-

ponent placement and interconnect routing, given a GT and initial layout

from stage 1. Starting from the initial condition, both the components and

interconnects move through the domain in search of a locally optimal so-

lution. The three layout generation methods have been compared over dif-

ferent system performance metrics. The UST-Direct method was the best
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for the minimum bounding box objective because the direct interconnects

between the components have relatively short lengths and reduced complex-

ity, thus supporting enhanced volume reduction compared to other methods.

The SPAs and UST-Indirect methods generate layouts that, in general, have

complex routing paths. Longer interconnect routing helps in minimizing the

head loss in the pipes because lengthy paths can help reduce the occur-

rence of very sharp pipe bends in the final optimized layout. A bi-objective

optimization problem with bounding box and head loss objective functions

was solved in the second case study using the ε-constraint method to attain

Pareto-optimal design solutions. The final case study demonstrated the so-

lution of a multi-loop optimization problem using the proposed framework.

Future work items for Chapter4 are mentioned in Chapter 6.
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Figure 4.8: Objective function convergence history and first order
optimality plots of (a) a pressure head loss function; and (b) bounding box
objective function.
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Figure 4.9: Initial layout of a UAV power electronics cooling system.

Figure 4.10: The 2D schematic diagram of the automotive fuel cell (AFC)
system with all its components and their interconnections.
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Figure 4.11: Initial and final optimized AFC layout with a four subsystems’
layout. The corresponding subsystems have been labelled.

Figure 4.12: Initial and final optimized AFC layout with a six subsystems’
layout. The corresponding subsystems have been labelled.
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Figure 4.13: Bounding box objective function values for nC-2P systems.

Final value = 0.0376m2 Final value = 0.0538m2 Final value = 0.0578m2 Final value = 0.0712m2 

(a) Direct-UST (b) FDLM (c) SPA (d) Indirect-UST 
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Figure 4.14: Corresponding initial and final optimal 6C-2P layouts of
designs (a)-(d) indicated in Fig. 4.13 for bounding box objective function.
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Figure 4.15: Pressure (head loss) objective function values for nC-2P
systems.

Figure 4.16: Corresponding initial and final optimal 6C-2P layouts of
designs (a)-(d) indicated in Fig. 4.15 for pressure head loss objective
function.
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Figure 4.17: Initial and final optimal layouts for a 5C-2P interconnected
multi-component system for four selected designs from the Pareto set.

Figure 4.18: Bi-objective optimization Pareto plot for a 5C-2P
interconnected multi-component system.

Figure 4.19: Initial and final optimal layouts for a two-loop interconnected
multi-component system.
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CHAPTER 5

DESIGN REPRESENTATION AND
SYSTEMATIC ENUMERATION OF

3D SYSTEM SPATIAL
TOPOLOGIES

5.1 Introduction

In Chapters 3-4, the two stages of the SPI2 design framework were discussed

in detail, relevant case studies were demonstrated and practical implemen-

tation guidelines were outlined, especially with the focus on the 2D SPI2

problem. This chapter concentrates on stage 1 of the framework for the 3D

SPI2 problem. Systematic enumeration and identification of unique 3D spa-

tial topologies of complex engineering systems such as automotive cooling

layouts, hybrid-electric power trains, and aero-engines are essential to search

their exhaustive design spaces to identify spatial topologies that can sat-

isfy challenging system requirements. However, efficient navigation through

discrete 3D spatial topology options is a very challenging problem due to

its combinatorial nature and can quickly exceed human cognitive abilities at

even moderate complexity levels. This chapter1 presents a new, efficient, and

generic design framework that utilizes mathematical spatial graph theory to

represent, enumerate, and identify distinctive 3D topological classes for an

engineering system, given its system architecture (SA) – its components and

interconnections. Spatial graph diagrams (SGDs) are generated for a given

SA from zero to a specified maximum crossing number. Corresponding Ya-

mada polynomials for all the planar SGDs are then generated. SGDs are

categorized into topological classes, each of which shares a unique Yamada

polynomial. Finally, for each topological class, one 3D geometric model is

generated for an SGD with the fewest interconnect crossings. Several case

studies are shown to illustrate the different features of our proposed ST enu-

meration framework. At the end of this chapter, design guidelines are also

provided for practicing engineers to aid the utilization of this framework for

1Some elements of this chapter are published in Ref. [146]

94



application to different types of real-world problems.

Systems engineering [147,148] often involves choosing the most suitable can-

didate among many alternative design solutions to meet specific perfor-

mance criteria using techniques such as comparative design analysis and

optimization [149, 150]. In most cases, the component technologies and the

component-to-component connectivity (system architecture) remains fixed

between different feasible designs to preserve the functionality of the system.

Figure 5.1 shows 3D systems A and B1 having two different system architec-

tures because interconnect IC1 is connected between components {1, 2} in A

but between {1, 3} in B1. In other words, component-to-component connec-

tivity is different in A and B1 respectively. Systems B1 and B2 have the same

system architecture as all the component-to-component interconnections are

the same. However, B1 and B2 have different spatial topologies because the

interconnect IC2 between the component 1 and 2 is topologically different

(please see the crossing patterns in Fig. 5.1). As both the ends of the inter-

connect IC2 are fixed, it cannot be continuously morphed between B1 and

B2. Hence, B1 and B2 are topologically different systems. The scope of this

chapter deals with enumerating such unique spatial topologies for each 3D

system architecture within a design problem. The example shown in Fig. 5.1

is kept simple for illustration purposes, but the framework can be used to

generate STs for more complex architectures and larger interconnected 3D

systems with multiple crossings.

Any systematic design process [151,152] involves four key tasks: representa-

tion, generation, evaluation, and design guidance. Representation refers to

the task of describing a system using a generic model that captures the func-

tionality of the various system elements. Depending on the design analysis

tools and application requirements, design representations can be mathemat-

ical, graphical, physics-based, or conceptual [153,154]. The generation phase

involves creating feasible design alternatives using the representation based

on design rules. Evaluation is the process of measuring the design quality in

terms of the performance criteria. Finally, design guidance is providing feed-

back for the generation task based on the evaluation output to find better

alternatives in the design space. The generation, evaluation, and design guid-

ance tasks are usually performed in an automated loop that converges finally

to a design solution. However, what actually enables high design accuracy,
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Figure 5.1: A simple illustration of 3D system architecture and spatial
topology concepts. 3D systems A and B1 have different system
architectures. Systems B1 and B2 have the same system architecture but
are two distinct spatial topologies.
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comprehensive search space navigation, and computational efficiency of the

output from the last three tasks is the design representation selected in the

first task. Hence, a design representation for 3D interconnected systems that

captures the relevant problem attributes and aligns well with a generation

computation is critical to navigate through the discrete 3D spatial topology

options efficiently.

The design elements of a three-dimensional interconnected system are its

components, their 3D spatial locations and orientations, their port valen-

cies, interconnections, and the crossings of their interconnections. Unlike 2D

system layout enumeration performed in the development of very large scale

integrated circuits (VLSI), the 3D spatial layout enumeration problem is fun-

damentally different and even more challenging. More specifically, even for a

given system architecture, options exist for how the interconnects are routed

relative to one another and to the components (e.g., say, should duct A go

over cable B or under, or should a pipe be routed through the hole in the cas-

ing, or around the edge of the casing, etc.). These are topologically discrete

design differences. To cater to that need, in this chapter, a mathematical de-

sign representation has been identified to describe 3D interconnected spatial

layouts as spatial graph diagrams (SGDs).

5.1.1 Chapter Objectives and Contributions

Complex engineering systems such as autonomous aerial vehicles [155], elec-

tric power trains [107, 156], aero-jet engines [157], or vehicle thermal man-

agement and cooling systems [103, 158] have different kinds of components

connected together either through wires, ducts, or pipes entangles with one

another in a tightly packed three-dimensional volume. Design alternatives

with distinct 3D spatial topologies may exist, with different values of met-

rics such as efficiency, spatial packaging density, maintenance costs, and de-

sign complexity. Current practice for exploring different 3D system spatial

topologies relies largely upon human expertise, design rules, modification of

existing designs, and manual adjustments. This approach precludes use of

spatial topologies for practical application to typical complex systems, and

suggests that automated methods are needed to apply spatial topologies for
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typical systems design. In addition, the realization of optimal functionality

or performance is not guaranteed with current practice due to incomplete

design space coverage. Therefore, the main objective of this chapter is to de-

velop an automated and systematic enumeration framework to both represent

3D engineering systems using spatial graph diagrams (SGDs) and efficiently

generate distinct spatial topologies (STs) for a given system architecture us-

ing a rigorous mathematical approach. Advantages of using a spatial graph

representation are: 1) simplicity, while capturing necessary system elements

and features, 2) easy to visualize, 3) flexibility to add additional geometric

features, 4) distinct topologies can be detected using polynomial invariants,

5) scalable or even decomposable into a set of smaller graphs, 6) supports

automated 3D model generation, and 7) features such as node locations, edge

diameters, edge trajectory shape functions, port locations, crossing informa-

tion, etc., can be parameterized for performing numerical optimization. For

example, items 6 and 7 can be very useful for using different 3D models as

initial start points for multi-physics packing and routing optimization.

The major contributions of the proposed design framework include:

1. A new way to represent 3D engineering systems using spatial graph the-

ory. This representation supports description of components as nodes,

interconnects as edges, multiple crossings, and variable component va-

lency.

2. Combinatorial enumeration of all SGDs for a given system architecture

up to a specified level of complexity.

3. Efficient and systematic identification of unique SGDs from the exhaus-

tively enumerated SGD set using Yamada polynomial invariants. This

serves as a foundation to remove redundant topologies and explore the

3D spatial topology design space more thoroughly.

4. Topological equivalence between spatial graphs is tested here using Ya-

mada polynomials rather than comparing diagrams directly.

5. Several case studies that illustrate the efficacy of this design automation

framework.

6. Practical guidelines to help system design engineers apply this proposed

framework to different kinds of problems.

The remainder of this chapter is organized as follows. The terminology and

notation of the proposed spatial graph representation are discussed in detail

98



in Sec. 5.2. Section 5.3 describes the characteristics of Yamada polynomi-

als and how they are evaluated for an individual SGD. Section 5.4 demon-

strates using the SGD enumeration design framework to produce unique spa-

tial graph layouts and categorize them into topological equivalence classes.

Section 5.5 presents several practical case studies based on the proposed

framework. The results are discussed in Sec. 5.6. Finally, the chapter sum-

mary is presented in Sec. 5.7.

5.2 Spatial Graphs

The study of graphs in 3-space has been mathematically formalized using

spatial graphs [159–161], which is now described here. Suppose G is a graph,

that is, a set of vertices and a set of edges, where an edge is just a pair of

vertices. (Edges are undirected and multiple edges between the same pair

of vertices are allowed.) A spatial embedding of a graph G is a set of points

(nodes) in R3 corresponding to the vertices of G, and a set of smooth arcs

(links) corresponding to the edges of G that join appropriate pairs of vertices;

here, each arc meets the vertices only at its two endpoints, and it intersects

other arcs only at these vertices. Collectively, these points and arcs form a

spatial graph with underlying (abstract) graph G. More formally, the spatial

embedding is a function f : G → R3, whose image G̃ := f(G) is the spatial

graph. See Figure 5.2(a) for a sample spatial graph. The natural topological

notion of equivalence for spatial graphs is isotopy, when two spatial graphs

G̃1 and G̃2 can be continuously deformed from one to the other without any

arc passing through another arc or itself.

Spatial graphs are a natural extension of knot theory, which is the study of

circles embedded in R3, since one can put vertices on a knot to make it into

a spatial graph. While the study of knot theory has its origin in the physics

of the late 19th century [88], spatial graph theory has its roots in chem-

istry [89,90] and is different from graph theory because graph theory studies

abstract graphs while spatial graph theory studies embeddings of graphs in

R3 or even in other 3-manifolds [91–93]. This theory was used in polymer

stereochemistry [89, 94] and molecular biology (e.g., protein folding) to dis-

tinguish different topological isomers. A folded protein can be thought of as

99



a spatial graph where residues are the nodes and edges connect the residues

in close proximity.

If a spatial graph is projected onto a plane, then some arcs (edges) may ap-

pear to cross in the projection. If information about which arc is on top at

the apparent crossings is omitted, the projection is called a shadow of the

spatial graph, as shown in Fig. 5.2(b). If the information about which arc is

on top at each apparent crossing is tracked, the projection or planar repre-

sentation is called a diagram of the spatial graph, as shown in Fig. 5.2(c). In

other words, diagrams are the images of embedded graphs under a projec-

tion R3 → R2 whose singularities are a finite number of crossings of edges

equipped with over-under crossing information. Hence, many different spa-

tial diagrams of a spatial graph G may have the same shadow. Thus, a family

of spatial graph diagrams (SGDs) can be produced by assigning all possible

permutations of overstrand or understrand information for a given shadow.

5.2.1 Reidemeister moves

Given an abstract graph G, one can use the spatial graph diagrams above

to begin enumerating spatial embeddings of G. The challenge is then to

determine which of these SGDs actually describe isotopic spatial embed-

dings (i.e., are topologically equivalent), so that later steps in the design

process consider each topological possibility only once. Fortunately, it has

been shown that two diagrams represent isotopic embeddings if and only if

they are related by a finite sequence of fundamental Reidemeister moves (R0

to R6) [162–164] as shown in Fig. 5.3. Figure 5.4 shows a simple illustration

of three diagrams where SGDs A and B are topologically equivalent under

the first Reidemeister move R1 whereas C is not equivalent to either A or B

as its edges cannot be continuously deformed using the Reidemeister moves

to attain A or B, so they represent topologically distinct spatial graphs.
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Figure 5.2: Figure (a) represents a five component interconnected 3D
system; (b) is the shadow of the 3D diagram; and (c) shows three distinct
spatial graph diagrams (SGD1, SGD2, and SGD3)
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5.2.2 Flat vertex graphs and ribbon graphs

The topological formulation of spatial graphs is quite idealized in that each

vertex has no local structure and the edges are infinitely thin. An addi-

tional, but still purely topological, structure can be imposed by considering

flat vertex graphs and ribbon graphs, which may be more suitable for certain

design applications. A flat vertex graph is a spatial graph where the vertices

correspond to flat disks in R3 as shown in Fig. 5.5. In particular, this gives

the edges coming in to each disk a cyclic order. A flat vertex graph can also

be encoded by a SGD, with the convention that each disk is rotated parallel

to the projection plane before projecting. Two SGDs represent isotopic flat

vertex graphs if and only if they differ by a series of Reidemeister moves R0

to R5; here R6 is no longer allowed since it would change the order of the

edges coming into the vertex disk.

A ribbon graph is a spatial graph whose vertices have become flat disks and

whose edges have become thin bands, depicted in Fig. 5.6. These too can be

encoded as SGDs by using the blackboard framing convention (a way to view

a knot diagram on a plane) illustrated in Fig. 5.6. This framing is obtained

by converting each component to a ribbon lying flat on the plane. Two SGDs

represent isotopic ribbon graphs if and only if they differ by a sequence of

Reidemeister moves R0 and R2 to R5. The basic notation of a spatial graph

introduced in Sec. 5.2 is sometimes referred to as a pliable spatial graph to

contrast the notion with flat vertex and ribbon graphs. This chapter only

focuses on pliable and flat vertex graphs, but note that ribbon graphs would

be useful for measuring twisting along interconnects in the final 3D system.

5.3 Yamada Polynomial Invariants

Reidemeister moves are valuable for identifying when two embeddings are iso-

topic (that is, topologically equivalent); however, finding the specific sequence

of moves between two equivalent spatial diagrams can be extremely challeng-

ing, especially when the spatial graphs have many nodes and edges. Even for

knots, which are the simplest class of spatial graphs, it is unknown whether

there exists a polynomial-time algorithm for determining when two knots are

isotopic. (It is not impossible that such an algorithm exists: the question of
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R0.

R2.

R3.

R4.

R1.

R6.

R5.

Figure 5.3: Fundamental Reidemeister moves for spatial graphs.

=

Reidemeister 
(R1) move

=

SGD A SGD B SGD C

Figure 5.4: SGDs A and B are topologically equivalent θ1 graphs under
Reidemeister-I (RI) move. C is a θ2 graph and is topologically distinct from
A and B under any fundamental R moves.

Figure 5.5: At left is a typical flat vertex graph. The Reidemeister R5 move
on this kind of spatial graph is shown at right.
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Figure 5.6: At left is a typical ribbon graph; notice the twists in the
topmost band. The upper-right shows how a SGD encodes a ribbon graph
via the blackboard framing, with the vertical isotopy showing how loops in
the SGD can describe twists in the ribbons.

c s+ s- s0

Figure 5.7: Class of spins for a crossing.

whether a knot is equivalent to a round circle is in NP∩coNP [165,166].) To

show that two embeddings are not isotopic requires an invariant : a function

of the embeddings whose output is not changed by isotopies, and which takes

different values on the two embeddings [167–170]. Mathematicians often use

such invariants that are computable and yet powerful enough to detect some

delicate differences of embeddings of the same graph. Over the last century,

many polynomial invariants [168, 171–173] were discovered by knot theo-

rists, such as the Alexander-Conway [174], Jones [175], Kauffmann [176], and

Yoshinaga [177] polynomials. Some of these have been extended to spatial

graph theory [178–180] using similar constructions. These invariants satisfy

nice skein relations which are mathematical tools that give linear relation-

ships between the polynomials of closely related diagrams. Relevant skein

relations are sufficient to calculate the polynomials recursively and are rela-

tively convenient to use for this purpose. The proof of invariance then relies

on using the skein relation to show the value of the invariant is unchanged

by Reidemeister moves.

5.3.1 Yamada polynomial properties

The specific polynomial invariant used here is the Yamada polynomial, which

associates to each SGD a polynomial in an indeterminate A, which is an ar-
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bitrary independent variable. For example, the Yamada polynomial for the

SGD C in Fig. 5.4 is −A−6−A−5−A−4−A−3−A−2− 1−A2 +A6. The Ya-

mada polynomial is defined in terms of a polynomial invariant H of ordinary

(non-spatial) graphs. Continuing the example, the abstract theta graph that

underlies all the SGDs in Fig. 5.4 has H(A) = −A−2−A−1−2−A−A2. First,

the polynomial invariant H and its properties P1–5 are discussed, which can

be used to recursively compute H for any graph. Then the Yamada poly-

nomial and its fundamental properties S1–4 are mentioned which similarly

allow for recursive computation of it for any SGD. After giving some helpful

additional properties Y1–8 of the Yamada polynomial, it is computed for

four different example SGDs in Sec. 5.3.2.

Let G = (V,E) be an abstract graph, where V is the vertex set and E is

the edge set of G. For two graphs G1 and G2, G1 t G2 denotes the dis-

joint union of G1 and G2, and G1 ∨ G2 denotes a wedge at a vertex of

G1 and G2, that is G1 ∨ G2 = G1 ∪ G2 and G1 ∩ G2 = {vertex}. Dis-

joint union of graphs is analogous to disjoint union of sets, is an oper-

ation that combines two or more graphs to form a larger graph. A dis-

joint union of graphs is constructed by making the vertex set be the result

of the disjoint union of the vertex sets of the given graphs, and by mak-

ing the edge set of the result be the disjoint union of the edge sets of the

given graphs. More generally, every graph is the disjoint union of connected

graphs, or its connected components. Intersection of two graphs is con-

structed by the common vertices and edges between the given graphs. For

example, if G1 s a graph with labeled vertex set {1, 2, 3} and labeled edge

set {{1, 2}, {1, 3}, {2, 3}}, and G2 is a graph with vertex set {2, 3, 5, 6} and

edge set {{2, 3}, {3, 5}, {5, 6}, {2, 6}}. So G1 ∪ G2 is a graph with vertex

set {1, 2, 3, 5, 6} and edge set {{1, 2}, {1, 3}, {2, 3}, {3, 5}, {5, 6}, {2, 6}}. As

you can see, I have simply taken the union of the vertex and the edge sets.

Similarly G1 ∩ G2 is a graph with vertex set 2,3 and edge set 2,3. Here

I have taken the intersections of the vertex and edge sets. In addition, a

graph G has a cut-edge e (also known as bridge or isthmus) if G − e has

more connected components than G. First, following Ref. [181], a polyno-

mial invariant H(G)(A) of an abstract graph G is described, where A is an

indeterminate (arbitrary independent variable); precisely, our H(G)(A) is

Yamada’s h(x, y) with x = −1 and y = −A − 2 − A−1. The polynomial
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h(G)(A) is characterized by the following properties:

P1. H(empty graph) = 1 and H(simple loop) = A+ 1 + A−1.

P2. H(G1 tG2) = H(G1)H(G2)

P3. H(G1 ∨G2) = −H(G1)H(G2)

P4. If G has a cut edge, then H(G) = 0.

P5. Let e be a non-loop edge of a graph G. Then H(G) = H(G/e)+H(G−
e), where G/e is the graph obtained from G by contracting e to a point

and G− e is G with e deleted.

Based on the above rules, a powerful and much-studied invariant of spatial

graphs is defined, which is the Yamada polynomial [180–184]. Let g be the

a spatial graph diagram. For a crossing c of g, three graph reductions are

defined as: s+, s−, and s0 (denotes a vertex), with the class of spin +1, −1,

and 0, respectively, as shown in Fig. 5.7. These graph reductions are used to

replace crossings in a spatial graph for Yamada polynomial calculation. Let S

be the planar graph obtained from g by replacing each crossing with a spin.

S is called a state on g and U(g) denotes the set of states on g obtained

by applying all possible reductions in its crossings. Set {g|S} = An1−n2 ,

where n1 and n2 are the numbers of crossings with spin of +1 and spin

of −1, respectively, and A is an indeterminate. The Yamada polynomial

R{g}(A) ∈ Z[A,A−1] is defined as:

R(g) = R(g)(A) =
∑

S∈U(g)

{g|S}H(S),

In particular, if the diagram of g does not have crossings, then R(g) = H(g).

This Yamada polynomial for a spatial graph can be computed recursively

using the following skein relations and the properties of H:

S1. R( ) = AR( ) + A−1R( ) +R( ),

S2. R( ) = R( ) +R( ), where e is a non-loop edge.

S3. R(g1 t g2) = R(g1)R(g2),

S4. R(g1 ∨ g2) = −R(g1)R(g2).

So far, the Yamada polynomial is a function of the given diagram g and one

needs an invariant of the spatial graph G̃ it describes. Yamada showed:

I1. Any two diagrams g and g′ whose flat vertex graphs G̃ and G̃′ are

isotopic have R(g′) = (−A)nR(g) for some integer n.

I2. If every vertex has valence at most three, then two diagrams g and g′
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whose spatial graphs G̃ and G̃′ are isotopic have R(g′) = (−A)nR(g)

for some integer n.

I3. Any two diagrams g and g′ whose associated ribbon graphs G̃ and G̃′

are isotopic have R(g′) = R(g).

The next set of relations for the Yamada polynomial can be derived from the

previous ones and are very useful aides for its calculation. Detailed proofs

for these relations (Y1-Y8) are provided in Ref. [181]. They are as follows:

Y1. R( ) = B, where B = A+ 1 + A−1,

Y2. R( ) = −BR( ),

Y3. R( ) = −AR( )− (A2 + A)R( ),

Y4. R( ) = −A−1R( )− (A−2 + A−1)R( ),

Y5. R( ) = −AR( ), R( ) = −A−1R( ),

Y6. R( ) = A2R( ), R( ) = A−2R( ),

Y7. Edge subdivision does not change the polynomial:

Y8. Petals to concentric self-loops:

= −B2 = −(A+ 1 + A−1)2.

5.3.2 Illustrative Examples

Yamada polynomials for a few spatial graphs are calculated by reducing the

spatial graph diagram into a linear combination of smaller elements based

on the skein relations stated above.

Example 1 - Theta (θ1) graph: The Yamada polynomial for a standard

theta graph is calculated as follows:

R

( )
= H

( )
︸ ︷︷ ︸Apply S2 on

the center

edge

→

= H

( )
︸ ︷︷ ︸
↓(Apply Y7)

+H

( )
︸ ︷︷ ︸

↓(Apply Y8)

,

=⇒ R

( )
= H

( )
+H

( )
,
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=⇒ R(θ1) = B −B2, (where B = A+ 1 + A−1)

=⇒ R(θ1) = −(2 + A+ A−1 + A2 + A−2)

Example 2: A spatial graph

( )
which is isotopic (by the R6 move)

to the standard theta graph. Its Yamada polynomial is calculated as follows,

though one could instead use property Y5 as a shortcut.

R

( )
= AR

( )
+ A−1R

( )
+R

( )
,

R

( )
= 0, (because of isthmus based on property P3)

R

( )
= H

( )
= H

( )
+H

( )
,

= B −B2, (where B = A+ 1 + A−1)

R

( )
= H

( )
= H

( )
+H

( )
,

= H

( )
+H

( )
+H

( )
,

= B3 + (−B2 +B) +−B2 = B3 − 2B2 +B,

=⇒ R

( )
= A(0) + A−1(B −B2) + (B3 − 2B2 +B),

=⇒ R

( )
= A3 + A2 + 2A+ 1 + A−1,

= −A(R(θ1)). Note the −A factor permitted in I2.

Example 3: The spatial graph is

( )
. This example involves extensive

use of Yamada polynomial skein relations (Y1-Y8). Its Yamada polynomial

is calculated as follows:

= AR

( )
︸ ︷︷ ︸
↓(Apply Y5)

+A−1R

( )
︸ ︷︷ ︸
↓(Apply Y6)

+R

( )
,
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Drop the Rs for simplicity,

= A(−A

( )
+ A−1(A−2

( )
) +

( )
︸ ︷︷ ︸
↓(Apply Y4)

,

= (−A2 + A−3) +−A−1 − (A−2 + A−1)

= (−A2 − A−2 − A−1 + A−3) − A−1 ,

= A4 + A3 + A2 + A− A−2 − A−3 − A−4 − A−5

Since taking B = A+ 1 + A−1 we have:

= + = + + ,

= +B3 + (−B2 +B) +−B2 = B3 − 2B2 +B.

Example 4: The spatial graph is

( )
. This example involves exten-

sive use of skein relations (Y1-Y8). Its Yamada polynomial is calculated as

follows:

= AR

( )
+ A−1R

( )
+R

( )
,

Drop the Rs for simplicity,

= A3 ︸ ︷︷ ︸
Example 2

+A−1

︸ ︷︷ ︸
Example 3

−A − (A2 + A) ,

= −A4 +−A−1 − A(−A−1)

− (A−2 + A−1) − (A2 + A)(−A)

= (−A4 + A−1 + 1 + A3 + A2) + A−1 +

= A6 − A2 − 1− A−2 − A−3 − A−4 − A−5 − A−6.
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5.4 3D Spatial Topology Enumeration Framework

Figure 5.9 shows the steps of the proposed design framework to represent,

enumerate and categorize unique spatial topologies of a 3D system (assuming

inter-component connectivity is fixed). The detailed steps of the enumeration

design framework are:

• 1. Define system architecture: Provide the specific 3D system ar-

chitecture (SA) for which spatial topologies must be enumerated. From

the SA, extract the number of nodes (components), their valencies, sys-

tem interconnectivity, and the corresponding edges (interconnects in

the system).

• 2. Enumerate spatial graph diagrams: Combinatorially enumer-

ate all possible spatial graph diagrams (SGDs) for the SA from zero

crossings to the maximum crossing number (k = 0, 1, ..., km) using their

corresponding shadows.

• 3. Check graph planarity: Planar diagrams (PDs) of spatial graphs

are used for the calculation of the Yamada polynomials. However, be-

fore calculation, each enumerated graph must be checked to determine

whether it is planar, for which there are linear-time algorithms [185].

The graphs start with a circular order of the edges at each vertex, mak-

ing the planarity check even easier. The algorithm shown in Fig. 5.8

recursively contracts the edges of a graph until the diagram is a bou-

quet of circles, and then use the fact that if the diagram is planar, there

must exist at least one loop edge whose endpoints come consecutively

in the cyclic ordering around the vertex, i.e., a self-loop. This self-loop

can be removed without altering planarity. The recursive steps for the

planarity check (PC) algorithm are enumerated below:

PC1. Convert all vertices to crossings, as it does not affect planarity.

PC2. Contract all non-loop edges (edges shared between two vertices)

to a vertex, as it does not affect planarity.

PC3. Remove all planar self-loops at a vertex.

PC4. Empty vertex does not affect planarity, so remove it. By doing all

these steps recursively, if the result is an empty diagram, then the

original diagram is planar. If not, the diagram is non-planar.

• 4. Evaluate Yamada polynomials: The Yamada polynomials for

all the valid planar SGDs are evaluated using the Yamada polynomial
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Figure 5.8: Identifying connected planar spatial diagrams from the
combinatorially enumerated set is performed using this procedure.

properties detailed in Sec. 5.3.

• 5. Categorize different spatial topologies: Cluster SGDs into

classes so that the SGDs in each class have the same Yamada polyno-

mial and no two classes have the same polynomial. Any pair of SGDs

that represent isotopic spatial graphs will be in the same Yamada class,

so then only one SGD per Yamada class is considered. In most engi-

neering applications, multiple crossings between a pair of interconnects

is undesirable. For example, there is no advantage to two wires inter-

twining several times unless they intentionally function as a twisted

pair. Similarly, a pair of pipes that intertwine are more costly to fabri-

cate, and more complex to install and remove. Hence, from each class

an SGD is selected having the fewest crossings, and is used to generate

a 3D geometric model.

• 6. 3D model generation: Simpler SGDs from step 5 are utilized as

underlying skeleton structures for generating various 3D system geo-

metric models.

5.4.1 Comparison to Other Methods

Steps 2–5 above follow the standard strategy in low-dimensional topology

for enumerating knots, which are a special class of spatial graphs, see [88]
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Figure 5.9: The six sequential steps of the proposed spatial graph-based
topology enumeration framework.

112



for an overview. Using additional techniques from hyperbolic geometry, it is

possible to exactly enumerate all knot topologies with less that 20 crossings,

of which there are more than 350 million [186].

Compared to such massive computations, prior work on spatial graphs where

the underlying graph is more complicated than just a loop is limited: mostly

tabulations of less than 100 topologies [187–192]. For example, the authors

in Ref. [190] generated two vertex bouquet spatial graphs with a maximum of

seven crossings. As our cases studies demonstrate, the strategy above allows

for much larger-scale enumerations, with arbitrary specified system architec-

tures. This is very suitable for representing large-scaled complex engineering

systems easily, and for enumerating their spatial topologies efficiently.

5.5 Case Studies

In this section, a number of case studies are provided to demonstrate the

proposed enumeration framework discussed in Sec. 5.4. All computations

(Yamada polynomial calculation, planarity check, etc.) in the case studies

were performed using Wolfram Mathematica 11.3 software with an Intel

Xeon E5-2660 CPU @ 2.00 GHz, 64 GB DDR4-2400 RAM, Windows 10

64-bit workstation.

5.5.1 Case Study 1: Components with equal valencies

In this case study, a 3D system with architecture as shown in Fig. 5.10 is

considered for ST enumeration. This system contains four identical triva-

lent components (nodes), and six interconnects (edges). It is found that the

unique 3D spatial topologies (STs) of the system for crossing numbers vary-

ing from zero to three. The notation used to indicate each SGD is given

by SGD k where k is the crossing number of that diagram, and the letter

refers to the specific SGD. SGD 0 is the original system architecture without

any crossings. Using the proposed framework, all the SGDs are combinato-

rially enumerated and passed through a planarity check procedure. Yamada

polynomials were then calculated for 3, 31, 118, and 231 valid planar SGDs

having 0, 1, 2 and 3 crossing numbers respectively. The SGDs having the
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Figure 5.10: Results from case study 5.5.1 for a given system architecture
for maximum crossing numbers from 0 through 3.

same Yamada polynomial or differing by a factor (−A)n under the same

topological class are grouped together based on property I2. Through this a

total of four unique Yamada classes are attained as shown in Fig. 5.10. The

Yamada polynomials for these different classes of topologies are shown in

Table 5.1. For class 1, it is observed that three distinct Yamada polynomials

exist for different crossing numbers, but they all differ by a factor (−A)n.

This strongly suggests that the SGDs shown under class 1 are isotopic to

SGD 0, and indeed this can be verified using the R6 move. In contrast, the

two SGDs in class 3 can be shown to be nonisotopic using other tools. A

sample 3D model of class 2 spatial topology candidate design solution is also

shown in Fig. 5.10. The computational time for this entire case study is 78.3

seconds (s).

5.5.2 Case Study 2: Scaling the system

The goal of this case study is to provide insight about how the number of

unique spatial topologies varies with increasing number of components and

the maximum number of crossings in a 3D system. For consistency, here all

the components are assumed to be trivalent. Table 5.2 shows the number
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Table 5.1: Yamada polynomials of diagrams shown in Fig. 5.10 (case
study 5.5.1).

Classes Yamada polynomials

Class 1 SGD 0: A−3 + A−2 + 3A−1 + 2 + 3A + A2 + A3

Class 1 SGD 1: (−A)1(A−3 + A−2 + 3A−1 + 2 + 3A + A2 + A3)
Class 1 SGD 2: (−A)2(A−3 + A−2 + 3A−1 + 2 + 3A + A2 + A3)
Class 1 SGD 3: (−A)3(A−3 + A−2 + 3A−1 + 2 + 3A + A2 + A3)

Class 2 A−4 + A−3 + A−2 + 2A−2 + 2A + 2A3 + A4 + A5 + A6

Class 3 A−7 + A−6 + 3A−5 + 3A−4 + 4A−3 + 3A−2 + 3A−1

−3A2 − 2A3 − 2A4 −A5 + A6 + A8

Class 4 A−7 + A−6 + A−5 + 2A−4 + 2A−3 + A−2 + 3A−1 + 2A−A2 −A5 + A6

of unique Yamada classes obtained for each of the component and crossing

number combinations, where here SGDs having the same Yamada polynomial

or differing by a factor (−A)n are categorized together. The computational

time increased drastically as one moves from a small-scaled (2 components

and 2 crossings) to a large-scaled (10 components and 10 crossings) system

case study from 12.3 sec to 24,256.6 sec (6.73 hrs), respectively.

Table 5.2: Case study 2: Unique spatial topology classes with increasing
number of components and crossings.

Components
Crossings

2 4 6 8 10

2 1 2 3 4 6
4 1 4 6 8 9
6 2 4 8 15 21
8 4 6 9 20 28
10 5 12 16 27 36

5.5.3 Case Study 3: Components with different valencies

Unlike case study 5.5.1, a system with four components but each with differ-

ent valencies (number of ports) is considered. In addition, flat vertex graphs

(FVGs) as described in Sec. 5.2.2 are used. As FVGs have local structures

at nodes, the edge connectivity order around the nodes is preserved, and

thus FVG representations are highly suitable for design applications where
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Figure 5.11: Results from case study 5.5.3 for a given system architecture
for maximum crossing numbers from 0 through 3 with components having
different valencies.

nodes have a specific cyclic ordering of ports. Here R0 to R5 moves are valid

but not R6. Figure 5.11 shows some of the results obtained in this study.

After computing the Yamada polynomials of hundreds of planar SGDs, a

total of 27 unique Yamada classes are obtained. For illustration purposes,

some isotopes of SGD 0 (original system architecture) are shown as class

1 isotopes. Furthermore, unique SGDs belonging to some unique Yamada

classes are shown for crossing numbers one, two, and three respectively. Two

final 3D system geometric models (referred as S1 and S2) are also shown in

Fig. 5.11. The total computational time taken for study B is 211.4 sec. It can

be observed from this study that with components with different valencies,

more unique Yamada classes are attained than those with identical compo-

nents. Thus, manually generating such designs is very challenging and the

automated enumeration framework proposed here is very valuable.
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Figure 5.12: Implementation of the circular spatial graph representation
technique in Sec. 5.5.4 to avoid unnecessary or extra twists between any
two edges of a diagram.

5.5.4 Case Study 4: Circular graph representation

While filtering out isotopic spatial graph diagrams in the previous case stud-

ies, it is observed that in a few occasions where system topologies have many

crossings, two edges in that diagram twist around each other multiple times.

Although a higher crossing number is satisfied, intertwining between edges

can often be reduced by Reidemeister moves to a smaller crossing number,

so essentially, no unique spatial topology is attained. Such intertwining is

practically not observed or desirable between pipes or ducts in most complex

systems (e.g., aero-engine externals, hydraulic systems). Some syntactic con-

straints need to be imposed to prevent more than a simple crossing between

any two edges. This requires a representation that implicitly forbids twisting

of two edges multiple times around each other. One way to get different

spatial embeddings of an input abstract graph G as shown in Fig. 5.12 is to:

1) Pick an ordering of the nodes and use that to arrange them along a circle

on the plane, 2) Connect the nodes by straight lines corresponding to the

edges of G. This gives the “shadow”, and 3) Resolve the intersections lines

of the shadow into over or under crossings.

Figure 5.12 shows the shadow of graph G based on a particular cyclic order

of nodes and one spatial graph embedding. As there are five crossings, a

total of 25 = 32 spatial embeddings are possible. The unique ones can be

identified using the proposed design framework.
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5.5.5 Case Study 5: Large-scaled system - spatial graph
decomposition approach

From the observations made in the previous case studies, it is evident that

enumerating spatial topologies for most real-world systems containing many

components and approximately hundreds of crossings is intractable with

manual processes and can become computationally expensive with automated

methods such as the one presented in this chapter. In contrast, enumerat-

ing spatial topologies of each subsystem of components can be a simple and

efficient process. A complex spatial graph can thus be converted to a set of

sub-graphs, and the unique spatial topologies of these sub-graphs can then be

enumerated separately. The sub-graphs can be decoupled and can be consid-

ered as super-nodes. This decouples the task into two subtasks: 1) Enumer-

ate STs of the system graph with only the subsystems as super-nodes, and

2) enumerate unique STs within each sub-graph. This presents fewer design

candidates about which to make decisions, which greatly reduces the overall

computational expense. Figure 5.13 shows a random complex spatial graph

with 14 nodes, 20 edges and allowing at most 10 edge crossings. Approxi-

mately 1.134 × 104 SGDs are attained for this entire system that fall under

434 unique Yamada polynomial categories. As this is a very large set, decom-

position of the graph into sub-graphs (as super-nodes) is appropriate. First,

a unique spatial topology of the super-nodes graph is found. Case study 1 in

Sec. 5.5.1 is utilized as a sub-graph for demonstration purposes. Note that

while enumerating STs for the spatial sub-graph, the rest of the system is

condensed as an extra node in the sub-graph to preserve spatial connectivity

information. Finally, using the proposed design framework, unique STs of

the sub-graph can be plugged into the original system to attain system con-

figurations. The scope of this chapter only deals with enumerating unique

STs, hence research related to how each of these unique topologies affect

overall system performance in considered part of future work.

To explain this decomposition concept using a concrete engineering design

example, suppose that the complex network represents the spatial topology

of a hybrid-electric vehicle powertrain; one possible subsystem could be a

fluid-thermal cooling circuit. Each distinct circuit topology can be geomet-

rically optimized for fair comparison, revealing how the topological features

contribute to the overall system efficiency, fuel economy, thermal loss man-
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Figure 5.13: Demonstration of spatial graph diagram decomposition
approach discussed in case study 5.5.5.

agement, and other figures of merit due to physical interactions between

components, interconnections, and the environment. The best candidate ST

can then be chosen according to the desired performance requirements as in

Refs [103, 105] where same procedure was followed but for ranking different

system architectures (SAs).

5.5.6 Braid-based representations

Braids refer to a collection of strings crossing each other between two planes.

Each braid can be represented using a braid word that provides informa-

tion about the crossings (either under or over) and their locations within

the braid. Initial progress was made in enumeration of braid-closure based

spatial graphs for 3D system design representation. Braids are very good

mathematical forms for representing crossing between strands. In the 3D
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PR problem, these can be considered as interconnects passing under or over

each other. Developments include:

• An efficient enumeration algorithm that can generate all braid represen-

tations for N strands and K crossings using braid word combinations.

• Nodes, branches and merges are created outside the braid boxes to

convert general braid representations to spatial graphs. Nodes can be

considered as components in a 3D system.

• Simple geometric shapes were used as nodes with varying valencies

(number of ports) to mimic a PR problem.

• Spatial graph invariants are successfully extracted from an exhaustive

enumeration set by checking for braid equivalency using lexicographic

braid word comparisons.

• Unnecessary spatial topologies with different system architectures are

eliminated by checking the port connectivity matrices of all the enu-

merated braid-based graphs.

• Inspiration derived from asteroid field theory are used to cover with

more topological aspects of the design representation.

Some of the results are shown in figures below. Figure 5.14 shows braid words

and corresponding braid representations for a braid enumeration method

with N = 4 strands and maximum K = 3 crossings. Corresponding braid

words are shown on top of each braid. Figure 5.15a shows 20 randomly

generated braid-closure based spatial graphs for a N = 5 strands, K =

6 crossings with two tri-valent and two bi-valent nodes. The red cherries

represent the nodes. The next Fig. 5.15b shows nodes with simple geometric

shapes for the same example shown in Figure 5.15a. These are just simple

demonstrations of how braids can be very useful representing interconnect

interaction between components of a 3D system. Similar to spatial graphs,

polynomial invariants can be used to identify unique braid topologies and

braid-based enumeration can be implemented to study large-scale systems.

But these topics are out of scope of this dissertation and will be investigated

in future work.

120



Figure 5.14: First 30 braid words for a set of 4-braid with maximum
3-crossing representations.

5.6 Discussion

This section summarizes a list of important observations from the five case

studies as follows:

1. From the above case studies, especially 5.5.1, and 5.5.2, it can be ob-

served that the number of unique spatial topologies finally attained

for a given interconnect crossing complexity are much smaller than the

combinatorially enumerated set of spatial graph diagrams as most of

them are isotopic to each other under the Reidemeister moves.

2. Case study 5.5.3 presents another contribution of this work as the pro-

posed method enumerates and identifies newer spatial topologies for

components with different valencies in contrast to existing work that is

mostly limited to two or three equivalent vertices. [187–191].

3. The circular graph representation method, presented in case study 5.5.4,

is a simple way to enumerate and realize SGDs and avoid edge inter-

twining, although Yamada polynomials should still be used for identi-

fying unique STs. Furthermore, specific syntactic constraints can be
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added to significantly reduce the initial set of SGDs obtained for pla-

narity checking and Yamada polynomial evaluation. For example, by

adding constraints on total crossings allowed between two edges of a

system, there is greater control on the type of spatial topologies finally

obtained. This will be studied more in future work.

4. As seen in case study 5.5.5, for large-scaled systems, the best way to

achieve different STs and search effectively is by graph decomposition.

The spatial graph of the subsystem, which plays a critical role in per-

formance impact, can be extracted to find its unique topologies. This

avoids the need to enumerate thousands of diagrams of a complex net-

work, compute their polynomials and compare them. Moreover, sub-

graph designs can be optimized for performance independently and

then combined with the remaining system.

5. Another very impactful aspect of this framework is that for one sys-

tem architecture, there can be a range of spatial topologies from zero

to many crossings. The spatial embeddings with fewer interconnect

crossings are generally more useful for practical engineering purposes.

Therefore, for existing, complex real-world system designs with 10s of

crossings, using the proposed design framework, a simpler spatial topol-

ogy can be found for that network with a much lower crossing number,

but still keeping the same system connectivity.

In this chapter, it is more important to illustrate different topological designs

than to analyze the difference in the corresponding Yamada polynomials,

hence, the polynomials for all the diagrams shown in these case studies are

not listed.

5.7 Summary

The design representation presented in this chapter greatly enhances the

study of 3D engineering system spatial topologies in a systematic manner

and is supported by rigorous mathematical foundations in spatial graph

theory. Topologies of complex engineering systems, designed for particu-

lar applications, are conventionally created manually. But for more effective

performance and efficiency, systematic identification, enumeration, and clas-

sification of possible system topologies is necessary. A framework for repre-
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senting three-dimensional interconnected engineering systems using spatial

graph embeddings is presented. Initially, all the combinatorial spatial graph

descriptions up to some fixed topological complexity are enumerated for an

input system architecture. A polynomial invariant, the Yamada polynomial

is then calculated for the set of all the spatial graphs attained from the combi-

natorial permutations. The Yamada polynomial helps identify the duplicate

spatial graph topologies from the exhaustive set and a smaller set of unique

spatial embeddings (equivalent topological classes) is obtained. This smaller

set of spatial graphs can be used for generating three dimensional geometric

system models. Five case studies have been demonstrated using the pro-

posed enumeration strategy. The results show that this method is efficient,

scalable, applicable to all general 3D interconnected system networks, allows

comprehensive exploration of the design space, and greatly aids in the design

and development of unprecedented system topologies. Details on future work

are presented in Chapter 6.
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(a) First 20 random braid-closure based spatial graphs.

(b) Simple geometric shapes embedded into the spatial
graphs

Figure 5.15: Braid-closure based spatial graph representations for N = 5
strands and K = 6 crossings system with two bivalent and trivalent
components.
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CHAPTER 6

CONCLUSIONS AND FUTURE
WORK

6.1 Dissertation summary

In this chapter the dissertation is summarized in addition to highlighting the

main contributions that have been made. A number of interesting future

work items that could be performed are also outlined. The optimal spa-

tial packaging of complex engineering systems is a challenging multi-faceted

problem. To tackle the different research elements of SPI2 together requires

an innovative design automation framework. The two-stage sequential design

framework proposed in this dissertation has been effectively used to solve the

SPI2 problem by combining component packing, interconnect routing, and

physics performance evaluation sub-problems together. Chapters 2-5 contain

the core design method contributions of this dissertation.

Chapter 2 focuses on reviewing four key SPI2 design research areas compre-

hensively. The interfaces that exist between component packing, intercon-

nect routing, design representations, and physics-based topology optimiza-

tion have been addressed in that chapter. A list of critical gaps are outlined

and some of them have been presented in this dissertation. For example, the

continuous and discrete elements of the SPI2 design problem were separately

addressed in the two stages of the design framework. Similarly, a holistic

systems approach was adopted to combine the pieces of the SPI2 problem

together in stage 2. Furthermore, several associated SPI2 design challenges

were pointed out in Chapter 2. This chapter sets a technical foundation

that helps in building practical design methods that are presented in the

remaining chapters.

In the next chapter, the major similarities and differences between the 2D
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and 3D SPI2 design problems are outlined. The bulk of Chapter 3 focuses

on the description and implementation of stage 1 of the two-stage sequential

design framework to 2D SPI2 problems. Three novel and computationally

efficient methods: force-directed layout generation, shortest path algorithms,

and unique spatial topology enumeration algorithms for generating spatially-

feasible 2D geometric layouts have been presented. Final 2D design layouts

attained from these algorithms in stage 1 can be used as initial designs for

performing simultaneous physics-based packing and routing optimization in

stage 2 presented in Chapter 4. The proposed force-directed method pre-

sented in this chapter showed how it effectively generates feasible initial

graphs with simultaneous packing and routing, especially when utilizing the

FDLM-FETS approach. An important advantage of this method is that ex-

plicit interference detection constraints are not required between different

geometric elements in a multi-component interconnected system. Further-

more, very efficient extensions of the shortest path planning A* algorithm

were demonstrated that can perform complex interconnect routing for a fixed

multi-component spatial topology. Depending on the choice of the sequence

of the component to component connections, different feasible layouts and

STs can be attained. In addition, greater success in attaining feasible lay-

outs using SPAs can be possible by using finer grids. Finally, a systematic

way of generating unique STs was presented. Based on direct and indirect

connections between components, all 2D interconnect topological configura-

tions can be obtained. The layout algorithms have been compared for their

efficiency and success in generating feasible layouts, and a separate example

study was illustrated to showcase their performance in complex geometric

environments. Practical design guidelines are also outlined for engineers to

utilize these methods for different problem types.

Chapter 4 presents stage 2 of the sequential design framework. Initially, the

physics-based topology optimization method is discussed in detail. Contin-

uous optimization with a gradient-based method combines both the compo-

nent placement and interconnect routing problem together, in addition to us-

ing the physics-based models. The optimization problem formulation shown

in this chapter supports both physics-based (overall system temperature,

pressure head loss, etc.) and spatial (packing density, overall interconnec-

tion length, etc.) performance objectives. Geometric constraints of different
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types such as device shapes, voids, 2D interference, pipe diameter, minimum

distance between two components, maximum possible pipe length, pipe bend

radius range, etc. can be employed as part of the optimization formulation.

Physics-based constraints include maximum component temperature, maxi-

mum fluid flow rate, head loss, etc. Different kinds of boundary conditions

were also illustrated that support both fixed temperature at boundaries or

convection currents for cooling purposes. The 2-stage method has been illus-

trated on an unmanned aerial vehicle (UAV) test platform and an underhood

automotive fuel cell (AFC) packaging system. Furthermore, a number of case

studies were performed with different spatial layouts obtained from stage 1.

Multi-loop optimization problems were also illustrated that can be extended

to more complex system architectures in future work.

Chapter 5 concentrates on the 3D SPI2 design problem. As described earlier

in Chapter 2, the 3D SPI2 topological space is very challenging to navigate

in a systematic manner. In Chapter 5, a design framework to explore the

3D design space thoroughly has been identified. First, a given 3D system

architecture was represented using spatial graphs. SGDs for a given system

architecture are systematically enumerated upto a maximum crossing num-

ber. The SGDs are then categorized into equivalent Yamada classes if they

share the same Yamada polynomial or a multiple of it by a factor An. The

enumeration framework was implemented through different case studies and

was very efficient in enumerating unique SGDs for small-scaled systems up

to 10 components with 5 to 8 crossings. In addition, this framework was also

very useful with large-scale systems through the implementation of a graph

decomposition approach. Currently, 3D spatial topologies of systems with

10-15 components and approximately 20 interconnects can be easily enu-

merated using the framework proposed in this dissertation. However, most

real-world SPI2 applications have a much larger number of components and

interconnects. In such cases, it might not be a possible practice to exhaus-

tively enumerate all of the 3D spatial topologies. For simplification, a group

of components can be clustered together either based on functionality or their

relative spatial proximity to reduce the number of nodes in the graph repre-

sentation, enabling enumeration for large-scale problems that is not compre-

hensive, but still useful. This can help reduce explore the complexity of the

3D spatial design space of the system more efficiently. In addition, within the
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small-sized clusters, enumeration can be performed. Several practical design

strategies (for example, using design heuristics based on the SPI2 applica-

tion) can be used to handle such large-scale systems. Data-driven strategies

may also be effective in scaling to large SPI2 systems, enabling significant

improvement even if global optimality is not assured. These aspects will be

thoroughly investigated in future work.

6.2 Contributions

The dissertation has provided the following significant and novel intellec-

tual contributions that address the research objectives (Sec. 1.7) outlined in

Chapter 1:

1. Introduction of a newly-applied 2D force-directed layout method (FDLM)

in Chapter 2 utilizing spring-force theory inspired by planar graph

drawing algorithms [123,124]. This method implicitly satisfies interfer-

ence constraints between the components, interconnects and other sys-

tem elements. An extension to FDLM-FETS (Free-Expansion-Then-

Shrinking) method improved the success rate of the original FDLM

method by allowing more untangling of interconnects in the 2D layout.

2. Extension of the well-established A* (A-star) 2D shortest path plan-

ning algorithm (SPA) to perform sequential interconnect routing while

ensuring non-interference. This can be utilized to perform complex

interconnect routing both in 2D and 3D spatial layouts generation.

3. A systematic enumeration strategy for generating all unique 2D spatial

topologies for a multi-component system, for given system architecture

was presented in Chapter 2. This UST method serves as a baseline

for design space coverage benchmarking for the 2D PR (packing and

routing) problem.

4. The 2D geometric projection method (GPM) described in Chapter 2

was inspired by Norato et. al [83], which is an alternative to the well-

established SIMP (Solid Isotropic Material with Penalization) method

design parameterization [138], and is used for solving the combined

physics-based PR optimization problem.

5. Physics-based objectives (bounding box volume, total head loss, and

maximum component temperature, etc.) and constraints are incor-
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porated into the optimization problem, in addition to geometric con-

straints that prevent interference between devices and interconnects.

Both 1D lumped parameter and 2D finite element physics models are

used within a single optimization problem to support physics-based

evaluation.

6. The effectiveness and the computational efficiency of the SPI2 two-

stage sequential design framework was demonstrated with the help of

rigorous numerical experiments, and design method comparison studies

over different system performance metrics. Numerical simulation ex-

periments were also performed on challenge problems and case studies

created with generic design representations that cover several engineer-

ing design and industry-relevant practical applications.

7. Novel 3D spatial topology enumeration algorithms were developed that

greatly support the representation of complex 3D engineering systems

inspired by mathematical braid and spatial graph theories. Classes

of spatial topologies attained can be utilized for different engineering

design applications.

8. Most importantly, for each design method presented in this disserta-

tion, a set of practical design guidelines were listed. These discussions

can help design engineers to implement the SPI2 design framework

in expanding design capabilities across many relevant application do-

mains.

It should be noted that this work is applicable only for systems that satisfy

the assumptions made for developing these methods. However, the goal is

to lay a foundation to aid design practitioners and engineers to gain deeper

insights and to further develop the theory and methods required to tackle

the most challenging real-world 3D packing and routing problems.

6.3 Future Work

The following future work items have been identified where significant re-

search contributions can be made:

• Future work in Force-directed layout method (FDLM): The

existing method only supports straight interconnect segments. Curved

interconnected segments can be incorporated to provide more flexibility
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for the layout to untangle itself. Furthermore, an interesting aspect as

mentioned earlier would be to use a continuous force field along the

boundaries of the components and the interconnect routing network

instead of springs between components and interconnects. This will

enforce no contact between any two geometric elements in the system.

An extension of this concept to 3D SPI2 problem is commonly known as

the artificial potential field (APF) algorithm. In an APF approach, the

components and interconnects would be 3D objects and their surfaces

would have a potential that induces repulsive forces, allowing systems

elements to untangle until they attain a natural equilibrium state by

balancing the 3D wall forces. Another aspect of application of FDLM is

for large-scaled systems, where clusters of components can be grouped

together as subsystems within a given 3D space and the FDLM can

be applied to the set of clusters. Clusters can be categorized based

on number of components, functionality of sub-systems (e.g., electrical

subsystem, thermal subsystem, etc.).

• 2- and 3-D Shortest-path algorithms (SPA): The A* and Dijk-

stra’s SPAs are utilized here as an initial step to demonstrate the ca-

pability of SPAs in this dissertation. Existing literature contains more

efficient and precise interconnect routing methods that can be leveraged

in the future with very fine meshes. In addition, this dissertation only

demonstrates a sequential method to use SPAs for creating intercon-

nect paths between components. However, simultaneous interconnect

routing methods, such as 2D multi-agent path finding methods, exist

which could help produce further improvements of 2D interconnected

spatial layouts. Similarly, 3D MAPF methods are promising and are

very efficient, and already well developed in areas such as 3D robotics

path planning, aerial vehicle guidance, navigation, and control. Both

grid-based and tree-based 3D routing algorithms could be utilized, each

having their unique potential benefits.

• Unique 2D Spatial Topology (UST) Enumeration: The UST

enumeration method for generating unique 2D spatial topologies can

be further improved and scaled for very large-scale systems using ma-

chine learning techniques. The data obtained from enumeration can be

utilized as described in Ref. [193] for the synthesis of larger-scale de-

sign problems where exhaustive enumeration may become practically
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intractable. Another future work item could also include identifica-

tion of patterns or number series of how many different USTs can be

obtained with increasing number of components having identical port

valencies.

• Component rotation: 2D packing and routing while allowing for ro-

tation of geometric elements is another aspect of future work. This will

provide more design freedom for optimization to attain better solutions.

• Identifying more SPI2 related design research areas: As already

noted at the end of Chapter 2, there are still several SPI2 research areas

that need to be investigated thoroughly, such as unified geometric pa-

rameterization methods, 3D physics-based topology optimization, ma-

chine learning techniques, methods to estimate product life-cycle costs,

reliability estimation methods, and other topics.

• Further investigation into 2D physics-based geometric projec-

tion: GPM in 2D SPI2 problem can include more physics aspects such

as electrical effects, material stress, and thermoelastic models. Multi-

domain modeling and analysis is important to attain more realistic

optimal solutions. Other future work items would be to incorporate

the concept of irregularly-shaped bounding boxes and complex com-

ponent shapes, multiple flow loops, pumps, fluid storage tanks, heat

sinks, etc., to accommodate more complex system architectures.

• Transition to 3D geometric projection: A core challenge with ex-

tending this SPI2 effort to 3D PR problems involves a transition to 3D

GPMs, which use plates as geometric primitives, whereas 2D GPMs use

bars. Optimization should be performed with respect to plate location,

shape, and orientation parameters as opposed to discretized design rep-

resentations (e.g., element-wise densities or node-wise level set values

of conventional topology optimization approaches).

• Chapter 5 future work: Future work based on Chapter 5 includes

adding more geometric features to these spatial graph embeddings, such

as representing nodes with geometric shapes and ports. A deeper inves-

tigation of braid-based representations of interconnect networks is also

anticipated. As the system becomes larger, evaluating Yamada poly-

nomials for many SGDs is very time-consuming. This can be overcome

by implementing a mix of Reidemeister moves to eliminate isotopic

diagrams quickly to produce a smaller set of diagrams that require
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Yamada calculations. Other application aspects include utilizing the

unique spatial topologies obtained here as starting points for physics-

based packing and routing optimization of 3D systems. Furthermore,

research areas that can benefit from SGD representations are 3D pipe

routing, topological 3D path planning for robotic operations, aerial

drone navigation, generation of new automotive cooling system con-

figurations, 3D integrated circuit interconnect technology, and many

others. This initial work serves as a foundation to bridging the gap be-

tween engineering design and mathematical low-dimensional topology.

There are many interesting aspects which are yet to be explored and

can have a great impact when applied to classical engineering design

problems.

• Extension of 3D spatial topology enumeration framework to

industry applications: Although case studies were presented in Chap-

ter 5 to demonstrate the effectiveness of the spatial graph enumeration

framework, it was not demonstrated on real-world industry applica-

tions. Future work on this topic will include studying 3D spatial topolo-

gies of examples such as automotive cooling systems, wind-turbines,

aero-engines, etc.

• Computational design optimization software tools: The SPI2

design automation methods could be developed into commercial pack-

ing and routing optimization tools in collaboration with engineers/practical

personnel to enable industry adoption of SPI2 design automation, help-

ing to realize significant societal impact of enhanced SPI2 system design

capabilities.

• The SPI2 design framework in this dissertation handles the discrete

and continuous elements of the problem in two separate stages. Stage

1 explores the unique, spatially-feasible discrete design options of the

system via enumeration, while stage 2 optimizes the continuous de-

sign parameters of the layouts to meet specific performance objectives

within geometric and physics-based constraints. However, the cover-

age of the design space using this framework might be inefficient when

considering very large-scaled systems. To develop a simultaneous op-

timization method to combine these two stages when using gradient-

based methods, we need a continuous relaxation technique that can

generate smooth gradients and is compatible with physics-based finite
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element analysis. This way the components and interconnects might

pass through each other without disrupting the physics analysis. Im-

plementing this approach, however, will require a significant effort, and

should be addressed as a topic for future work to compare it against

the proposed sequential design framework. Furthermore, in stage 1, effi-

cient exploration techniques, such as Latin hypercube sampling (LHS),

coupled with strategic enumeration can be utilized to search the dis-

crete design space in a more robust manner. This, however, requires

deeper investigation into estimating the design space and relationships

between the discrete and continuous design parameters.

• Lastly, a subset of the best 2D or 3D SPI2 designs identified as supe-

rior based on comparative performance analysis can be validated using

simple bench-top experiments. This can both provide feedback to fine-

tune the design framework and improve the technology readiness level

(TRL) of the SPI2 design automation design methods.

• One long term goal is to provide engineers practical design guidelines

based on this work to support the development of unprecedented SPI2

systems that enable future applications.

The future work items listed are only a sampling of the vast research scope

both 2D and 3D SPI2 domains encompass. It is hoped that the fundamental

breakthroughs presented here, such as new mathematical SPI2 design repre-

sentations and their incorporation into practical design methods, catalyzes a

surge of research activity in this domain.
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