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ABSTRACT 

Advances in power density, energy storage technology, and thermal management are 

crucial to the increased electrification of vehicles, including those with high ramp rate loads such 

as heavy construction and military vehicles. In this thesis, a hybrid electro-thermal energy storage 

system is introduced which offers a power-dense electro-thermal energy storage solution for future 

electrified vehicles. This energy storage system includes energy-dense batteries and power-dense 

ultracapacitors for electrical energy storage, and phase change material thermal energy storage 

modules and coolant loops for thermal energy storage. Multi-domain graph-based modeling 

techniques are used to facilitate modeling, control, and design optimization of the energy storage 

system. Graph-based models capture multi-domain dynamics in a unified framework. A heuristic 

control strategy is used, which seeks to protect the energy storage elements while maintaining 

reference signals. Sizing and control parameters of the electro-thermal energy storage system are 

optimized using a graph-based optimization framework. Optimized designs demonstrate 

significant reductions in size while retaining a high level of performance, leading to improvements 

in power density. A multi-domain optimization formulation is compared to optimization 

subroutines which individually optimize parameters pertaining to the electrical and thermal 

domains. Additionally, the multi-domain sizing and control optimization study is compared to a 

similar study in which the control parameters are not optimized. The results accentuate the 

importance of considering multi-domain dynamics as well as control in the design process for 

dynamic systems.  
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CHAPTER 1. INTRODUCTION 

1.1 Background 

In response to worldwide concerns about climate change and air quality, governments 

across the globe are striving to reduce environmental hazards by introducing and strengthening 

regulations for vehicle emissions. With some countries targeting net-zero greenhouse gas 

emissions in the next few decades [1], [2],  these regulations have led to rapid growth of electrified 

vehicle industries. Between 2010 and 2019, the number of battery electric vehicles worldwide 

increased from 0.02 million to 4.79 million [3], as shown in Figure 1.1. Other segments of the 

electrified mobility market, such as hybrid vehicles, light commercial vehicles, electric buses, 

construction vehicles, ships, and aircraft, have also experienced a marked increase.  

 

 

Figure 1.1: Electrified vehicle stock (data from [3]) and applications. 
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 However, the fledgling electric vehicle industry is plagued by several challenges that have 

hindered the widespread adoption of electric vehicles. One of the most prominent of these 

challenges is the need for increased power density by nearly an order of magnitude [4] in order for 

electrified vehicles to achieve sustained success. In a similar vein, the shortcomings of batteries as 

the prime energy source present another significant hurdle towards widespread electric vehicle 

adoption. Particularly, vehicle range and battery lifetime are reported among the primary areas of 

concern for potential EV buyers [5]. While range is determined largely by battery energy density, 

battery lifetime is influenced by several factors, such as the magnitude of instantaneous power 

drawn by the battery and battery operating temperature [6].  Due to their relatively low power 

density, batteries can be damaged by high discharge rates, resulting in reduced lifetimes. However, 

the successful operation of many vehicles, such as city buses and heavy-duty construction vehicles, 

relies on intermittent large bursts of power that can be detrimental for battery lifetime.  

Additionally, inherent electrical inefficiencies in battery cells lead to significant heat generation, 

and improper thermal management can reduce battery lifetime or cause premature failure via 

thermal runaway. Thus, in order to enable widespread adoption of electric vehicles across the 

transportation and mobility sector, significant technological improvements are necessary to 

increase power density across vehicle systems, and specifically power density of onboard energy 

storage.  

1.2 Motivation 

To address the need for power- and energy-dense electrical energy storage, hybrid energy 

storage systems have often been considered. These systems combine multiple, dissimilar storage 

elements in a single system, leveraging the respective strengths of the individual components for 

improved system performance [7]–[9]. Particularly, battery-ultracapacitor hybrid energy storage 
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systems (HESSs) are commonly considered for vehicle applications with exceptionally high ratios 

of peak to average power [10]–[12]. Combining power-dense ultracapacitor cells with energy-

dense battery cells yields a hybrid system that is simultaneously energy- and power-dense, as 

demonstrated in Figure 1.2. However, these HESSs are subject to their own set of challenges. 

Battery-ultracapacitor HESSs necessitate control strategies which respect the operating 

requirements of the individual elements. Namely, batteries should be protected from excessively 

high discharge rates, and ultracapacitors, though subject to large voltage swings, must have their 

voltage remain within a certain range. Additionally, design of these systems is far from 

straightforward due to the inherent dissimilarities of the storage elements and the need for closed-

loop control in vehicle platforms that are subject to highly variable conditions.  

 

Figure 1.2: Ragone plot of various energy storage elements (adapted from [13]). 
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Regardless of the storage element, electronic components inevitably generate heat, and 

thermal requirements of the batteries, ultracapacitors, and included power electronics in an HESS 

may be vastly different, requiring special attention to be paid to the design of thermal management 

systems. In addition to the variation in thermal requirements between components, the variation in 

magnitude of thermal loads during a single drive cycle can be significant. In certain applications, 

such as city buses, heavy construction vehicles, and military vehicles, this variation can be even 

more extreme. Consider the example of load, haul, dump (LHD) loaders used in mining 

applications. These vehicles command a very high amount of power for brief periods while lifting 

and moving large payloads, as demonstrated below in Figure 1.3. These large power requirements, 

while present only during certain segments of the loading cycle, lead to large, intermittent thermal 

loads which can damage electronics and reduce operability of the vehicle platform.  

 

Figure 1.3: Loading cycle stages of wheel loader (illustration from [14], power command data from [15]). 
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Thus thermal management systems are critical for these applications, and there are several 

routes to designing thermal management systems that address this issue of high peak thermal loads. 

One route could be to simply increase the size of the thermal management system so that it can 

handle the maximum thermal load expected for the given mission. However this method can lead 

to an unwieldy thermal management system, as the mass of thermal management components like 

pumps and heat exchangers can be substantial. Another alternative to address this is the 

incorporation of thermal energy storage within the thermal management system. Specifically, a 

phase change material (PCM) such as paraffin wax can be used to absorb thermal energy from 

electronics subsystems during mission segments with high thermal loads, then reject this stored 

energy to a thermal management system during dormant mission segments. Utilizing the solid-

liquid phase transformation, these large bursts of thermal energy can be rapidly stored in the PCM 

with minimal temperature increase. Due to the low gravimetric density of PCMs such as paraffin 

wax compared to the materials used to make traditional thermal management components, thermal 

energy storage can provide a lightweight solution to account for peak thermal loads [16]. However, 

the ability of a solid-liquid PCM to rapidly store energy in latent form relies on the PCM remaining 

in a two-phase state; if the PCM fully melts, it will continue to store energy sensibly at a slower 

rate. After full melting, prolonged sensible heating will potentially lead to overheating of 

electronics and ensuing failures. Hence, when designing thermal management systems with PCM 

thermal energy storage, one must consider not only the differing thermal requirements of the 

various electronic components, but also the problem of actively regulating the amount of energy 

stored in the PCM using closed loop control.  

The previous discussion of electrical and thermal energy storage systems highlights two 

specific options to increase power density of certain vehicle subsystems, but in order to achieve 
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an increase in power density by an order of magnitude, significant changes must be made to 

improve upon traditional methods for system-level vehicle design. These traditional design 

methods inhibit system-level power density improvement due to their sequential nature. For 

example, a novel aircraft design might sequentially progress from structural design to mechanical 

powertrain development to electronics equipment selection to thermal management design before 

finally ending up in the control design phase. Each of these design phases will be limited by the 

requirements and outcomes of the preceding step, so that the control designer is left with little 

wiggle room to improve and optimize power density-related metrics. Thus, multidisciplinary 

system-level design techniques offer the potential to significantly increase power density of next 

generation vehicles by considering all of these domains, and the controller, simultaneously [17].  

However, multidisciplinary techniques incur several challenges that are avoided in 

traditional design methods. Multidisciplinary design techniques rely on system models that span 

multiple domains, such as mechanical, electrical, and thermal energy domains. Developing models 

that can accurately simulate system dynamics in multiple domains, which may have timescales 

that vary by orders of magnitude, is a daunting task. Additionally, in order to optimize designs 

over multiple domains, a method to systematically vary system parameters is needed, and this is 

far from straightforward for complex, multi-domain models. Furthermore, inclusion of closed-loop 

control in these systems is complicated by timescale separation and multi-domain coupling. As a 

result, when system parameters are varied to explore the design space, the performance of a 

controller may be detrimentally affected if this controller is designed for the nominal case.  

1.3  Literature Review 

There is a vast body of work in the area of multidisciplinary design optimization (MDO). 

Since originating in the field of structural optimization, MDO has expanded to find applications in 
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land, air, and sea vehicles, as well as stationary applications such as buildings and bridges [18]. 

While in some applications MDO approaches appropriately rely on static analyses to perform 

system-level optimization, many applications require careful treatment of the dynamic interactions 

within and between disciplines. If one wanted to optimize, or at the very least manipulate, these 

dynamic interactions in order to achieve improved system performance, a natural solution would 

be to incorporate a control strategy within the system as well as some method to manipulate the 

control strategy to optimize performance metrics. For this reason, control co-design has emerged 

in recent years as a subset of MDO in which combined optimization of the physical plant and 

controller is performed [19]. This optimization of the plant and controller can benefit system 

design on multiple fronts. For instance, in vehicle applications, plant design optimization can lead 

to improvements in size, weight, and cost, while controller design optimization can lead to 

improvements in reliability, performance, and efficiency. By combining these processes, control 

co-design optimization can provide simultaneous improvements in all of these fronts.  

However, the process of setting up control co-design studies, especially studies spanning 

multiple domains, is not straightforward. Broadly speaking, a control co-design methodology 

consists of three general steps: modeling, controller development, and optimization. Selecting an 

appropriate modeling strategy is perhaps the most critical step because the subsequent phases of 

controller development and optimization depend heavily on model selection. An improper 

modeling strategy will incur challenges such as fidelity mismatch, neglect or improper treatment 

of relevant dynamics, communication difficulties between domains, and long computation times, 

which can make controller development and optimization infeasible due to overwhelming 

computational demands. An appropriate modeling strategy should be able to easily handle 

dynamics within each domain as well as cross-domain dynamics, should be reconfigurable and 
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readily modifiable to enable changing designs, and should be computationally efficient. Among 

the vast body of control co-design literature, graph-based modeling techniques address many of 

these needs while offering additional benefits for vehicle design optimization, such as modularity 

and scalability [20]–[23]. Additionally, these works demonstrate that graph-based methods are 

particularly well-suited for multi-domain controller development and design optimization for 

many of the same reasons.  

The problem of control and design optimization of a hybrid electrical and thermal energy 

storage system as a case study for multi-domain control co-design is presented in this thesis. 

Several researchers have separately examined the optimization of similar electrical and thermal 

subsystems. There are several studies considering the optimal sizing of electrical energy storage 

elements within a hybrid electrical energy storage system [24]–[33], many of which also examine 

control optimization. On the other hand, there are some studies which consider design [34]–[38] 

and energy management optimization [39]–[42] for thermal energy storage. However, 

optimization of an integrated electro-thermal energy storage system has received little attention in 

the literature, especially in the context of vehicle energy storage. Some have considered the 

problem of electrical and thermal energy storage for building applications [43]–[45]. While several 

of these studies have considered design and control optimization, these studies consider the 

electro-thermal design optimization problem from a different perspective, neglecting the existence 

of electro-thermal coupling by treating the electrical and thermal storage as physically separate 

entities working together to lower electricity costs. Additionally, the methods presented within 

these studies consider much longer dynamic timescales on the order of several hours, rather than 

the seconds- or sub-seconds-long timescales on which vehicle dynamics evolve.  Thus, a careful 
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treatment of the combined electrical and thermal performance of a hybrid electro-thermal energy 

storage system for electrified mobility through design and control optimization is missing.  

1.4 Outline 

This thesis seeks to address the problem of optimizing the sizing and control parameters of 

a hybrid electro-thermal energy storage system by incorporating and generalizing existing graph-

based modeling, control, and design optimization techniques. To accomplish this multi-domain 

optimization, the electro-thermal system is first split into electrical and thermal subsystems, for 

which respective control and design optimization strategies are applied. Then, control and design 

optimization strategies for the full electro-thermal system are developed, which seek to improve 

power density of the storage system while maintaining system performance. The solutions of the 

system-level design and control optimization study are then compared to those resulting from the 

subsystem optimization routines. By applying and generalizing this graph-based framework to 

solve a multi-objective optimization problem, we aim to demonstrate the merits of the framework 

for multi-domain design and control optimization.  

The outline of the thesis is as follows. Chapter 2 summarizes the graph-based modeling 

techniques used in this work, with special attention paid to the energy storage elements considered 

herein. Chapter 3 describes the control architectures of the electrical and thermal systems. Chapter 

4 describes the optimization framework and its implementation for sizing and control parameter 

optimization of the electro-thermal energy storage system. Chapter 5 concludes the thesis and 

discusses directions for future work.  
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CHAPTER 2. MODELING 

2.1 Candidate System 

The system under study in this work is a hybrid electro-thermal energy storage system. The 

particular architecture chosen for the electro-thermal system is well suited to meet the power and 

energy demands of vehicle systems with high ramp rate electrical and thermal loading, such as an 

electromagnetic aircraft launcher that might be found on a naval ship [46]. The load profile applied 

to the energy storage system in this work is representative of an electromagnetic UAV launcher, 

as an example of a high ramp rate system.  

Before introducing the full electro-thermal system, the electrical and thermal subsystems 

will be described, starting with the electrical subsystem. The electrical subsystem, which will be 

referred to here as the hybrid energy storage system (HESS), is a battery-ultracapacitor hybrid 

energy storage system. Particularly, the HESS contains a battery pack, ultracapacitor pack, and 

two DC-DC power electronic converters, which interface with a shared voltage bus, as shown in 

Figure 2.1. This particular HESS configuration, known as the parallel active topology [47], allows 

independent control of the two storage elements. It allows the HESS to leverage the power dense 

ultracapacitor to supply transient high ramp rate power demands and the energy dense battery to 

supply the average power demands of the load. In addition to the high ramp rate load representing 

a UAV launcher, the hybrid energy storage system is assumed to be used to power other electronic 

systems with significantly slower ramp rates. With the emphasis of the work herein restricted to 

the energy storage system, the high ramp rate UAV launch load profile and other load profiles are 

aggregated into a single current load acting at the voltage bus.  
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Figure 2.1: HESS schematic. 
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architecture shown in Figure 2.2, coolant flow in the thermal management system is split between 

two sections corresponding to the two TES modules. This allows independent control of coolant 

flow rate though each cold plate, and hence allows control of the heat transfer rate from the cold 

plates. Because of their direct influence on temperature dynamics, which will be shown in the latter 

half of Section 2.3, the mass flow rates in the TESS are treated as controllable inputs.  

 

Figure 2.2: TESS schematic. 
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plate and TES module in one of the flow sections. Then, thermal loads generated by the HESS are 

split between the three TES modules such that the heat generated by the energy storage elements 

is applied to TES1, the heat generated by the electrical load is applied to TES2, and the heat 

generated by the converters is applied to TES3.  This configuration allows the energy storage 
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components, which are generally more sensitive to temperature fluctuations, to be separated 

thermally from the power converters, which are expected to undergo more significant temperature 

fluctuations. These electro-thermal couplings are illustrated by the shaded red regions and arrows 

in Figure 2.3.  

 

Figure 2.3: HETESS schematic. 

 

2.2 Graph-Based Modeling Basics 

The modeling strategy used in this thesis employs graph theoretic techniques to visualize 

and mathematically represent energy transfer within a power system. There are many advantages 

of using graph-based techniques to represent the dynamics of power systems. To start, graph-based 

models allow for the development of modular component models, which can be readily inserted 

into and removed from a larger graph. Modular component models are also self-contained in the 

sense that component models can be tested individually under known environmental conditions to 
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verify that the model behavior is true to the physical component behavior. Additionally, graph-

based models can have varying levels of fidelity, since any vertex in an energy-based graph model 

can be refined by dividing the vertex into a cluster of connected vertices to obtain higher resolution 

in the relevant quantities. At the same time, by clustering vertices, graph models can readily be 

reduced to only the most relevant physical quantities in order to maximize computational 

efficiency. The graph models used in this work are also inherently domain agnostic due to their 

basis in conservation of energy, which is invariant across different domains, such as electrical, 

thermal, mechanical, and hydraulic energy domains. Finally, a key feature of graph-based 

modeling upon which this work relies is its scalability. The particular graph-based modeling 

framework used herein allows for representation of components with varying scales, which enables 

studies on optimal sizing of components.  Previous work has shown the strengths of this modeling 

scheme for thermal, hydraulic, electrical, and mechanical systems [48]–[53]. A brief introduction 

to the graph-based modeling strategy is given here, in the context of power systems, and the 

interested reader is referred to [48], [51], [54] for more details.  

This modeling framework captures power interactions and interconnections as a directed 

graph  of order vN  and size eN  (i.e., having vN  vertices and eN  edges), such as the notional 

graph shown in Figure 2.4. Denoting by  the set of vertices and by  the set of edges, such a 

graph is denoted ( , )= . Each vertex iv   represents an energy storage element with an 

associated state ix , while each edge je   represents an associated transfer of power jP , hereafter 

referred to as a “power flow”, between two vertices. The orientation of edge je  indicates the 

assumed direction of positive power flow from the “tail” vertex 
tail

jv  to the “head” vertex 
head

Jv . 

Note that power flows can travel bidirectionally, and this assumption of positive power flow is 
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merely a convention. Applying conservation of energy to the state ix  associated with vertex 
iv  

yields the following equation 

 

   : :head tail
j i j i

j

j e

i j

e

i

j

C Px P
 

= −  , (2.1) 

where 0iC   is the energy storage capacitance of the state, 
head

i  is the set of edges for which 
iv  

is the head vertex (i.e., edges oriented into 
iv ), and 

tail

i  is the set of edges for which 
iv  is the tail 

vertex (i.e., edges oriented out of 
iv ). In the special case for which 0iC = , the associated state 

ix  

cannot be defined by a dynamic relationship, but rather an algebraic relationship between the 

incident power flows. A state having this property is referred to as an algebraic state.  

 

Figure 2.4: Notional graph-based model (modified from [48], [51], [54]). 

 

The associated power flow jP  for edge je  is defined as a function of the head and tail 

vertices as well as an input signal ju  associated with that edge.    

 ), ,( tail head

j j j j jP f xx u=  (2.2) 

These functions can be linear or nonlinear, depending on the linearity of the underlying physical 

mechanisms. Due to the nature of the electro-thermal systems under study, these functions often 
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consist of similar terms. Collecting all the common terms that arise within these systems, the 

following generic formulation can be introduced for the general form of the power flows 

 

2 2

1 2 3 4 5

2 2

6 7 8 9 10

11

, , ) (

),

(j j t h j t h h t t h t

t j h j h t j t j h t j

x u c c x c x x c x c x x

c

P

x u c x u c x x u c x u c x

x

c

g x

x u

+ + + +

+ + + +

+

=

+  (2.3) 

where 
tx , 

hx , and ju  are a shorthand notation for the tail state, head state, and input acting on 

edge j  respectively, jg  is a nonlinear function of 
tx , 

hx , and ju , and , 1, ,11ic i  =  , denote 

constant coefficients for each of the 11 terms.  

Disturbances to the system, or interactions with its environment, are included in the 

framework as “sink” vertices or “source” edges.  A given graph has 
tN  sink vertices, shown as 

vertices with dashed edges in Figure 2.4, representing external states 
tx  that correspond to states 

of neighboring components. Depending on the values of the states corresponding to a sink vertex 

and its neighboring vertex, a sink vertex can either supply power to the system (e.g., an electrical 

current source) or draw power from the system (e.g., a sink fluid which absorbs excess heat from 

the system). As external signals, the dynamics of the sink states corresponding to sink vertices are 

excluded from the system analysis, and so these states are not included in the state vector 

1[ ], ,
v

T

Nx xx=   defined by (2.1).  

Source edges, shown in Figure 2.4 as dashed edges whose tail vertices have dashed 

outlines, represent power flows that are directly drawn from or injected into the system (e.g., a 

heat load applied to a thermal component). Each of the sN  source edges has a corresponding 

power flow 
s

jP  representing a power interaction between the system and its environment.  

With states, power flows, sink states, and source power flows defined in this manner, the 

system dynamics can be represented in a compact matrix form. In order to do so, the structure of 
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the graph must be formulated mathematically. This is accomplished using matrices M  and D  

which define the graph structure in terms of connections between vertices and edges. The incidence 

matrix [ ] v eN N

ijM m


=  defines vertex and edge interconnections according to the following 

convention 

 

1 if is the tail of

1 if is the

l

,

,head of

0 e se.

i j

ij i jm

v e

v e

      


= −       



 (2.4) 

As mentioned previously, external state dynamics are not excluded in the system analysis, so the 

incidence matrix can be partitioned as 

 M
M

M 
=  

 
, (2.5) 

with
( )v t eN N N

M
− 

 , such that M  gives the mapping of power flows to system states x  and M

gives the mapping of power flows to sink states
tx . 

Analogously, the matrix 
( )

[ ] v t sN N N

ijD d
− 

=   defines mappings between vertices and 

source edges. Elements of the matrix D  are given by the following relation 

 
1 if is the head of

0 else.

,s

i j

ijd
v e       

= 


 (2.6) 

Finally, defining the matrix C  to be a diagonal matrix containing the capacitances of the 

system states x , the system dynamics of a generic graph-based model can be represented in the 

following form  

 
sx M DPC P= − + . (2.7) 

As a result of the domain-agnostic nature of this formulation, this framework has proven 

well-suited to capture various multi-domain dynamics, including electrical, thermal, mechanical, 
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and hydraulic dynamics. A detailed discussion of the treatment of multi-domain models is given 

in [48]. A brief discussion of multi-domain models, specifically pertaining to the electrical and 

thermal domains considered herein, is provided here, and the interested reader is referred to [48] 

for a more thorough discussion.  

In a given energy domain, it is instructive to quantify energy storage elements (states x  of 

the system) in terms of physically relevant quantities. For instance, electrical energy can be stored 

in the form of a capacitor voltage or an inductor current, so electrical graph models often consist 

of voltage and current states which quantify energy stored in capacitors and inductors. In the 

thermal domain, energy can be stored sensibly in the form of an increase in temperature of a 

thermal mass, so a thermal graph model might consist of temperature states representing 

temperatures of various thermal masses. Because energy states may represent vastly different 

physical quantities, vertices are classified by their type to distinguish the various types of energy 

storage occurring within a system. In subsequent schematics, vertex color will be used to 

distinguish the vertices by their type according to the following general scheme: voltage states are 

shaded in green, current states in yellow, and temperature states in pink. 

The formulation for the capacitance of a given state will depend on the type of its 

corresponding vertex, and for some vertex types considered in this thesis the capacitance may be 

a function of the state. Considering the capacitor example, the energy storage dynamic is given by 

in outC PVV P= − , in terms of the capacitance C , voltage V , and electrical power P entering and 

leaving the capacitive element. In the graph-based framework, this is represented by a voltage-

type vertex with corresponding state variable 
ix V=  and state-dependent capacitance 

iC VC= . 

Similarly, an inductor is represented as a current-type vertex with state variable ix I=  quantifying 

the current and state-dependent capacitance iC LI= , where L is the inductance. On the other hand, 
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considering the example of a thermal mass, the energy storage dynamic is given by 

T in outC T Q Q= − , in terms of the sensible heat capacity TC  of the thermal mass and the heat Q

transferred into/out of the thermal mass.  This is represented in the graph-based framework as a 

single vertex with state ix T=  and state-independent capacitance TC . State-dependent 

capacitances, such as the capacitances for voltage and current states discussed above, can 

complicate the tasks of simulation and analysis. However, it is often the case that the capacitances 

and dynamics of these states can be represented in a simplified manner by eliminating the state 

dependence. One method of eliminating these state dependencies, referred to as a modified graph 

formulation, is discussed at length in [48]. The modified graph formulation is used to eliminate 

state-dependent vertex capacitances in this thesis. 

2.3 Graph-based Component Models 

In order to develop the full graph-based model of the hybrid electro-thermal energy storage 

system, graph-based models are developed for each of the component models. The component 

models used in the candidate system are presented in this section, starting with the electrical 

components. For the HESS, graph-based models are presented for the battery pack, ultracapacitor 

pack, power electronics, and electrical bus. A more thorough discussion is provided for the battery 

and ultracapacitor pack to emphasize the impacts of the sizing variables on these component 

models, which will be relevant in subsequent chapters of this thesis.   

The component models for the electrical subsystem are followed by those for the TESS. 

Within this subsystem, thermal models are considered only for those components with significant 

temperature effects: TES modules, cold plates, heat exchanger, and tank. The remaining 

components – pump, valves, and pipes – are assumed to have negligible effects on the thermal 

dynamics. However, we note that modeling of the hydraulic dynamics introduced by some of these 
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components (most significantly, the pump) is crucial to ensuring that the thermal system is actuated 

with admissible flow rates. With hydraulic dynamics falling outside the scope of this thesis, we 

use the hydraulic dynamic equations as described in [53] while omitting the discussion of these 

hydraulic dynamics. Of the thermal components discussed in this section, emphasis is placed on 

the TES module model, as this model is a contribution of this thesis and the model’s incorporation 

of sizing variables will be relevant in subsequent chapters.    

2.3.1 Battery Model 

The battery in this system acts as the main power source, providing the average or filtered 

load demands. The graph-based model of the battery pack is derived from an equivalent circuit 

model, as is typical for control-oriented battery models [55]. The particular circuit chosen to model 

the dynamics of the battery pack, shown in Figure 2.5 a), offers sufficient levels of fidelity and 

computational simplicity for the control and design optimization purposes considered herein. The 

graph model associated with this circuit is introduced in [48], and is reproduced here for 

completeness. Consisting of two RC pairs, this model captures both fast and slow electrical 

dynamics. Additionally, the thermal dynamics of the battery are modeled using the thermal circuit 

shown in Figure 2.5 b.), which gives the surface and core temperatures of the battery. These circuit 

models capture electro-thermal coupling within the battery. Thermal dynamics affect the electrical 

circuit through electrical parameters such as resistance and capacitance values which are 

determined as temperature-dependent maps, while electrical losses are input to the thermal circuit 

as heat generation.  
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Figure 2.5: a.) Battery electrical circuit and b.) thermal circuit models. 

 

The graph model of the electrical circuit in Figure 2.5 a.) is derived by analyzing the 

electrical dynamics in the circuit. The voltage dynamics are given by the following. 

 
2

1
1 1 1 1 1

1

V
C VV V I

R
= − +   (2.8) 

 
2

2
2 2 2 2 2

2

V
C V V V I

R
+= −  (2.9) 

 
1ocv ocvQ q V IV = −  (2.10) 

In these equations, 
1 2,C C  are the capacitances of the respective capacitors, 

1 2,V V  are their 

respective voltages, 
1 2,R R  are the respective resistances of the RC pairs, q  is the state-of-charge 

(SOC) of the battery, Q  is the capacity of the battery, 
1I  is the battery current, and ( )ocv ocvV V q=  

is the open circuit voltage of the battery pack, dependent on its SOC.  The terminal voltage of the 

pack is then given by  

 
1 2 1T ocv sV V V V I R= − − − .  (2.11) 

 The heat generated by the battery due to resistor losses is given by 

2 2 2

1 1 1 2 2/ /e sR I RQ V V R+= + . In response to this heat generation, the thermal dynamics of the 

battery cell are determined using the following  
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 1 1 2)
1

(c e

c

C T Q T
R

T= −− , (2.12) 

 2 1 2 1 3

1 1
( ) ( )s

c u

T T TC T T
R R

= − − − , (2.13) 

where ,c sC C  are the thermal capacitances of the battery core and shell respectively, 
1 2,T T  are the 

temperatures of the core and shell respectively, 
3T  is the temperature of a thermal sink to which 

the battery rejects heat, 
cR  is the battery’s internal conduction resistance, and 

uR  is the thermal 

resistance between the battery and its thermal sink.  

 These dynamic equations are translated into the graph-based modeling framework, 

resulting in the graph-based battery model shown in Figure 2.6. Additionally, the state vector and 

capacitance vector are given below.  

 1 2 1 2[ ]Tx q V V T T=  (2.14) 

 1 1 2 2[ ]T

ocv c sC V VQV C C C C=  (2.15) 

 

Figure 2.6: Battery graph model. 

 

The preceding equations give the dynamics of a battery cell and, under certain assumptions, 

are readily adapted to model a battery pack consisting of multiple cells in series and parallel. 

Assuming that the pack is balanced and that the current in each cell is equal, the voltage dynamics 
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of each battery cell will be given by (2.8)-(2.9), with the respective resistance and capacitance 

parameters now given by 1,2 1,2 /' pRR N=  and 1,2 1,2' pC CN= , where pN  is the number of cells in 

parallel. The SOC of the pack is given by (2.10), where the pack capacity is ' pQ N Q=  and the 

open circuit voltage is 'ocv s ocvV N V= , where 
sN  is the number of cells in series. Defining 

/'s s s pR N R N= , the terminal voltage of the pack is then given by 'T s TV N V= . The heat generated 

by the battery pack is then 'e s eQ N Q= . The thermal dynamics are again given by (2.12)-(2.13), 

with the internal resistance and capacitance parameters modified as / ( )'c c s pR R N N=  and 

, ,'c s s p c sN N CC = .  

2.3.2 Ultracapacitor Model 

The ultracapacitor in this study acts as a supplementary power source to the battery, 

supplying power at high magnitudes in order to protect the battery from damagingly high discharge 

rates. Ultracapacitors are similar to capacitors in many regards, but one aspect that differentiates 

them from standard linear capacitors is their nonlinear voltage dynamics. At low currents, the 

effects of these nonlinearities may be negligible, but as current levels increase, their impact 

becomes more significant. In this work, two different models are considered for the electrical 

dynamics of the ultracapacitor. The first of these models neglects the inherent nonlinearities by 

treating the ultracapacitor as an ideal linear capacitor. In this case the graph-based model of the 

ultracapacitor reduces trivially to a single voltage state with capacitance CV , where C  is the 

ultracapacitor cell’s capacitance in Farads (assumed constant) and V  is the instantaneous voltage 

across the cell. The second model captures the nonlinearities in the ultracapacitor voltage response 

using the equivalent circuit model developed and validated experimentally in [56]. The electrical 

dynamics of each ultracapacitor cell are modeled by an electrical circuit consisting of three RC 
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branches and a parallel leakage resistance, as shown in Figure 2.7 a.). The thermal dynamics of 

the ultracapacitor are captured by the lumped first-order thermal circuit shown in Figure 2.7 b.). 

 

Figure 2.7: a.) Ultracapacitor electrical circuit and b.) thermal circuit models. 

 

The RC branches of the electrical circuit represent immediate, delayed, and long-term time 

scales, with time constants on the order of a few seconds, a few minutes, and 10 minutes 

respectively.  The time constants of these branches are chosen such that the equivalent circuit 

model accurately captures the behavior of the ultracapacitor over a 30-minute time range [56]. The 

immediate branch contains a nonlinear capacitor whose capacitance is given by  

 
1i iC KV=  (2.16) 

where K  is an experimentally determined constant and 
iV  is the voltage across the capacitor in 

the immediate branch.  All other capacitors in this equivalent circuit model are considered to be 

ideal capacitors. The dynamics of the voltages across these capacitors are given by  

 i i i i iVCV V I= − , (2.17) 

 D D D D DVC V V I= − , (2.18) 

 L L L L LVC V V I= − , (2.19) 

where 
0 1i i iC C C= + , 

DC , and 
LC  are the capacitances of the immediate, delayed, and long-term 

branches respectively, 
DV  and LV  are the voltages across the capacitors in the delayed and long-

Ri

Ci1 Ci0 CD CL

RD RL Rleak

V1,

I1

T1,

Cc

Rc

T2

Qe

Vi VD VL

a.) b.)



25 

 

term branches respectively, and
iI , 

DI , and 
LI  are the currents the respective branches. These 

currents are determined by the following algebraic functions of the capacitor voltages in each 

branch 

 1i
i

i

V
I

V

R

−
= , (2.20) 

 1D
D

D

V
I

V

R

−
= , (2.21) 

 1L
L

L

V
I

V

R

−
= , (2.22) 

where 
iR , 

DR , and 
LR  are the resistances in the respective branches and 

1V  is the terminal voltage 

of the cell. The terminal voltage is given by  

 1
1

( )

1 1( 1 1 )

leak i i D D L L

leak i D L

R I
V

V R V R V R

R RR R

−+ +

+
=

+ +
, (2.23) 

where 
leakR  is the leak resistance and 

1I  is the current demand of the ultracapacitor cell.  

The particular ultracapacitor cell considered in this study was a 100F, 2.7V Nesscap cell, 

the electrical parameters of which were parameterized by performing a constant current charging 

test [12]. These parameters are given in Table 2.1. The time constants of each branch in this 

parameterized model, calculated as RC = , are in agreement with the desired orders specified 

previously for each branch. Note that, since the capacitance of the immediate branch varies with 

voltage iV  as defined in (2.16), the time constant in the immediate branch is variable, but remains 

considerably smaller than the time constants of the other branches. Because of this, the current in 

the immediate branch provides a significantly larger portion of the total current demand than 

current in the other branches. In Table 2.1, the time constant of this branch is approximated by 

evaluating its value at 1.35ViV = , which is half of the maximum value of the cell terminal voltage.  
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Table 2.1: Ultracapacitor circuit parameters. 

Parameter Value Associated Time Constant  

iR  22.1m  

1.76i s   0iC  74.6F  

1iC  3.81F/V  

DR  49  
6.65minD =  

DC  8.14F  

LR  258  
28.3minL =  

LC  6.60F  

leakR  1.59k   

 

 The heat generated by the ultracapacitor is then determined by the following 

 
2 2 2 2

e i i D D L L leak leakQ II R R R II R++= +  (2.24) 

 where 
leakI  is the leakage current, determined by 

1 /leak leakV RI = . With this, the temperature 

dynamics of the ultracapacitor are given by  

 1 2
1c e

c

T
C Q

T
T

R
=

−
− , (2.25) 

where 
cC  is the thermal capacitance of the cell, 

1T  is the temperature of the cell, 2T  is the 

temperature of the thermal sink for the ultracapacitor, and 
cR  is the thermal resistance between 

the cell and thermal sink.  

 These dynamic equations are readily translated into the graph-based modeling framework, 

resulting in the graph-based ultracapacitor model shown in Figure 2.8. Additionally, the state 

vector and capacitance vector are given below 

 1 1[ ]T

i D L i D L leakx V V V T I I I I V=  (2.26) 

 1 1 1[ ]T

i i D D L L c i i D D L L leak leakC LV V V LI IC C T IC C L L I CV=  (2.27) 



27 

 

where we note that the states 
iI , 

DI , 
LI , 

leakI , and 
1V  are given by algebraic relationships of the 

other states, and hence their associated capacitances and inductances are zero 

1( 0)i D L leakL L L CL = = = == .  

 

Figure 2.8: Ultracapacitor graph model. 

 

For the ultracapacitor packs considered in this work, the parameters mentioned above are 

adjusted to reflect the number of cells combined in series/parallel following the same conventions 

as the battery. Assuming once more that the pack is balanced and the current in each cell is equal, 

the voltage dynamics of each cell are given by (2.17)-(2.19) with adjusted parameters 

, , , , , ,' /i D L leak i D L leak pR R N=   and , , , ,'i D L p i D LN CC = , where pN  is the number of parallel ultracapacitor 

cells. The cell currents are given by (2.20)-(2.22), with the cell terminal voltage given by (2.23), 

and the terminal voltage of the pack is then given by 
1T sV N V=  where 

sN  is the number of series 

ultracapacitor cells. The thermal parameters are adjusted similarly to those of the battery pack, 

with / ( )'c c s pR R N N=  and 'c s p cN NC C= .  

VL

VD

Vi

IL

ID

Ii

V1 I1

Ileak

T1T2

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12e13



28 

 

2.3.3 DC-DC Power Converter Model 

The DC-DC power converters allow the electrical storage elements to interface with the 

shared voltage bus while providing the mechanisms to actuate the electrical system. The model 

used to represent the behavior of these converters is a time-averaged graph-based model from [48], 

which is reproduced here for completeness. The electrical circuit schematic for this component is 

shown in Figure 2.9 a.). In this work, the power converters are operated strictly in buck mode, with 

the time-averaged response given by 

 
2 2 2

1 1 1 2 1 1 1 3 1 1 1 1(1 ) (0 1 )s L DI I R I u VL II uV I VDuR I IR= = − − − −− − −  (2.28) 

where 
1V , 

2V , and 
3V  are the output, input, and diode voltages respectively, 

1I  and 
2I  are the 

inductor current and output current respectively, 
sR , 

DR , and 
LR  are the resistances of the switch, 

diode, and inductor respectively, 
1L  is the inductance, and u  is the duty cycle of the converter. 

This duty cycle is the mechanism for actuation of the converter and allows control of the electrical 

system.  

The thermal circuit of the converter takes the same form as the circuit model shown in 

Figure 2.7 b.) for the ultracapacitor. With converter heat generation given by  

 
2 2 2

1 1 1(1 )e L s DIQ u IR R u IR= + + − , (2.29) 

the temperature dynamics of the converter are as follows 

 1 1 2

1
( )c e

u

C T Q T T
R

= − − , (2.30) 

where 
cC  is the heat capacity of the converter, 

1T  is the lumped temperature of the converter, 
2T  

is the temperature of the converter’s thermal sink, and 
uR  is the thermal resistance between the 

converter and its thermal sink.  
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 The graph-based model of the DC-DC converter is shown in Figure 2.9 b.). The state and 

capacitance vector for the converter is provided below  

 1 1 1[ ]Tx I V T=  (2.31) 

 1 1 1 1[ ]T

cC L I CV C=  (2.32) 

where 
1 1 0C L= =  for the time-averaged case considered herein. Hence 

1I  and 
1V  are treated as 

algebraic states in this work.  

 

Figure 2.9: a.) DC-DC converter circuit and b.) graph model. 

 

2.3.4 Voltage Bus Model 

The last of the electrical components is a voltage bus which supplies power from the 

storage elements to the load as shown in Figure 2.1. The model used here for the voltage bus 

derives from the generic electrical bus model introduced in [48]. In this section, the HESS-specific 

version of this generic electrical bus model is presented. The circuit diagram of this version is 

shown in Figure 2.10 a.). The electrical dynamics for this component are given by  

 
2

1 1 1 2 1 1 1 1L I I V I RI V I− −=  (2.33) 
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where 
1L  and 

2L  are the inductances of electrical inputs 1 and 2 respectively, 
1I  and 

2I  are the 

currents of electrical inputs 1 and 2 respectively, 
2V  and 

3V  are the voltages of these electrical 

inputs, R  is the bleed resistance for these electrical inputs, 
1C  is the capacitance of the bus, 

1V  is 

the bus voltage, and 
3I  is the load current. Depending on the desired level of fidelity, the dynamics 

introduced by the capacitances and inductances in this circuit can be neglected by setting the 

inductance and capacitance parameters to zero and thereby treating the bus voltage and input 

currents as algebraic states. In this work, we will consider a case in which these states are treated 

as algebraic and another case in which these states are dynamic.  

 The graph-based model of this voltage bus is shown in Figure 2.10 b.). Temperature 

dynamics of the bus are neglected by assuming the bleed resistance is small. The state vector and 

capacitance matrix are given below.  

 1 1 2[ ]Tx V I I=  (2.36) 

 1 1 1 1 2 2[ ]TIL LV IC C=  (2.37) 

 

Figure 2.10: a.) Bus circuit and b.) graph model. 
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2.3.5 Thermal Energy Storage Module Model 

The electrical storage components and power converters generate a significant amount of 

heat at high ramp rates. It is further assumed that the electrical load to which the HESS supplies 

power has inherent losses which will contribute to heat generation. In this study, PCM thermal 

energy storage modules are employed as thermal sinks to absorb heat from these electronic 

components. These TES modules are placed between electrical components and cold plates to act 

as a thermal buffer between electronics and coolant loop components by absorbing energy from 

high ramp rate loads. In previous work, a graph-based model was developed to facilitate control-

oriented modeling of a PCM TES module in the latent heating mode [42]. In this work, the graph-

based model of the TES module is modified to include both latent and sensible heating modes of 

the PCM.   

To develop such a control-oriented model, several assumptions must be made to condense 

the PCM thermal dynamics into only the most relevant quantities. The TES module is 

approximated by a single lumped model, in which it is assumed that the temperature remains 

constant spatially throughout the entire module. Additionally, it is assumed that the temperature 

of the electronic component associated with each TES module is spatially invariant on the surface 

between the TES module and electronic component. Under these assumptions, performing an 

energy balance on the TES module yields the following 

 2

1
( )PCM in PCM

u

Q T
R

E T= − − , (2.38) 

where 
PCM L SE EE = +  is the instantaneous amount of total energy stored in the PCM (i.e., the sum 

of latent energy stored 
LE  and sensible energy stored 

SE ), 
inQ  is the heat generated by the 

electrical component, 
uR  is the thermal resistance between the TES module and the electrical 
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component, 
PCMT  is the lumped temperature of the TES module, and 

2T  is the temperature of the 

thermal component to which the TES module is attached (in this case, 
2T  is the temperature of the 

cold plate wall). The temperature of the TES module is clearly a function of the energy stored, and 

the phase change phenomena causes this relationship to be nonlinear. In particular, the PCM 

temperature is given by the following piecewise linear function 

 

0

1
,

( ,

1
(

if 

) if 

i) ,f 

PCM PCM

MP

c

PCM m c PC c

m PCM c PCM c

CM

T E E E
C

T E T E E E L

T E E L E E L
C


+ 


=   +


 + − −  +


 (2.39) 

where 
mT  is the PCM melt temperature, 

cE  is termed the “critical energy” at which a fully solid 

PCM first begins to melt, C  is the sensible heat capacity of the PCM, L  is the latent heat capacity, 

and 
0T  is an arbitrary temperature at which the PCM energy storage is initialized to zero. 

Graphically, this temperature profile has the shape shown in the upper plot of Figure 2.11, and we 

note that the shape is dependent on parameters C  and L . These parameters are given by pC mC=  

and L ml= , where m  is the PCM mass, pC  is its specific heat capacity, and l  is its specific latent 

heat capacity.  
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Figure 2.11: Generic form of PCM temperature and SOC profiles. 

 

 With the temperature profile defined above, the TES module model in (2.38) is readily 

translated into the graph-based modeling framework, resulting in the two variants of the TES graph 

shown in Figure 2.12. In both variants, the energy stored in the PCM is the only state, labeled 

PCME  in accordance with (2.38). The state variable is chosen to be PCM energy storage rather than 

temperature because, as demonstrated visually in Figure 2.11, the PCM temperature captures no 

information about the latent energy storage. If it were desired to choose temperature as the state 

variable, then another vertex would be necessary to capture information about latent energy storage 

and relay that information to the temperature state. We opt instead for the simpler formulation of 

a single lumped energy storage vertex, from which temperature can be determined as a piecewise 

linear mapping. Note that, while the 
PCME  vertex has been shaded pink here to reflect its thermal 

nature, this vertex does not represent a temperature but an amount of energy. In variant a.), source 

flow 1

se  represents the heat applied to the TES module by an electrical component, previously 

denoted as 
inQ . Edge 

1e  corresponds to heat transfer between the TES module and adjacent thermal 

pC mC=

L ml=
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component which is given by 
2( ) /PCM uTT R− . Because 

PCMT  is nonlinear, in order to represent this 

power flow in the form of (2.3), we define  

 2
1 2

( ( ) )
,( ) PCM PCM

PCM

u

g
T E T

T
R

E
−

=   (2.40) 

as a 2-D mapping that outputs the amount of heat transfer, given values of 
PCME  and 

2T . Setting 

the coefficient 
11c  in (2.3) equal to one and all other coefficients to zero yields the desired value 

for edge 
1e . Since 1g is piecewise linear in PCME  and linear in 2T , (2.40)  can be implemented using 

a 2-D lookup table. Note that in this variant of the graph model, the TES module is not affected by 

the temperature of the adjacent electronic component but rather by the amount of heat generated 

by the electrical component. Hence this variant is useful when the HESS is not directly modeled, 

in which case heat generation of the electrical component can be approximated as a constant 

efficiency loss.     

 

Figure 2.12: Two variants of the TES module graph model. 

  

The second variant of the TES module graph model is shown in Figure 2.12 b.). This 

variant includes a sink state 
1T  to represent the temperature of the adjacent electrical component. 

Source flow 1

se  is then replaced by edge 
2e  which is defined in the same way as 

1e . This variant 

captures electro-thermal coupling and is preferred over variant a.) when modeling the full electro-

thermal system. In both of these variants, the state vector is simply 
PCMx E=  and the capacitance 

EPCM T2

e1e1
s

EPCM T2

e1e2

T1

a.) b.)
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vector is 1C = . Note that variant b.) can be generalized for TES modules that cool multiple 

components by adding sink vertices and edges of the same form and orientation as 
1T  and 

2e .  

The upper plot in Figure 2.11 demonstrates that, in the sensible heating modes for which 

PCM cE E  or 
PCM c LE E + , the PCM temperature gives a direct mapping to the amount of energy 

stored in the PCMs. In the latent mode for which 
c PCM cE E E L  + , however, temperature has 

no correlation to the amount of energy stored. In this mode, it is useful to define a state of charge 

(SOC) metric which quantifies the amount of energy stored in the form of latent heat. In the latent 

heating mode, PCM SOC is analogous to battery SOC. However, an important distinction between 

PCM SOC and battery SOC is that energy can be stored in a PCM even when the PCM’s SOC 

reaches one through sensible heating, albeit at a slower rate. A battery, on the other hand, can only 

store energy while its SOC is less than one.  

In this work, we define SOC of the PCM according to  

 

,if 

) if , 

if
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1
( 1 ( )

0 , 

PCM c

PCM c c PM CM c

PCM c
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E E

SOC E E E E E E L
L

E E L





= − −   +


 +

 (2.41) 

which is equivalent to the mass fraction of solid PCM. Graphically, SOC has the shape shown in 

the lower plot of Figure 2.11, which is dependent on PCM mass. Though the SOC is not directly 

used in the graph-based model, this metric provides an estimate of the amount of latent energy 

storage remaining in the PCM. This knowledge of latent energy storage is critical for high ramp 

rate loading profiles, because a low SOC indicates that the PCM has little latent storage remaining 

and may overheat if large heat loads continue to be applied.  

We conclude this section by acknowledging that, because of the low thermal conductivity 

of many PCMs such as paraffin waxes, the assumptions made to develop this model may neglect 
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significant thermal gradients in the TES module. In such cases, the graph-based TES model can 

readily be refined by decomposing the single vertex model into a cluster of connected vertices, 

each having the same general structure as shown in Figure 2.12 b.), with the interconnections and 

parameters of these vertex clusters dictated by the desired spatial resolution. In the present case, it 

is assumed that the thermal conductivity of the PCM is high enough that the assumptions remain 

valid. One prominent example of a PCM with high thermal conductivity, for which these 

assumptions remain valid, is a paraffin wax embedded in metal foam.  

2.3.6 Cold Plate Heat Exchanger Model 

The cold plate heat exchangers are used to recharge the TES modules through convective 

heat transfer with circulating coolant. The graph model for the cold plate heat exchanger used in 

this work, shown in Figure 2.13, was introduced in [49] and is reproduced here for completeness.  

 

Figure 2.13: Cold plate graph model. 

 

The dynamic of the cold plate wall temperature 
wT  is given by  

 3 ) )
1

( (p w w s wT TmC T hA T T
R

= − − −  (2.42) 

where m  is the mass of the cold plate wall, pC  is the specific heat capacity of the cold plate wall, 

3T  is the temperature of the adjacent TES module, R  is the thermal resistance between the cold 

plate wall and TES module, h  is the convective heat transfer coefficient, 
sA  is the surface area 
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between the coolant and the cold plate wall, and T  is the temperature of coolant at the cold plate 

outlet. The coolant outlet temperature is given by  

 1( ) )(c p s w pA L C T hA T T mC T T = − + −  (2.43) 

where 
cA  is the cross-sectional coolant flow area, L  is the length of the flow section,   is the 

coolant density, m  is the coolant mass flow rate, and 
1T  is the temperature of the fluid entering 

the cold plate from the upstream component. Note that the second term on the right-hand side of 

(2.43) is an advective heat transfer term which depends on the mass flow rate, which is a 

controllable input of the thermal system. Similar advective heat transfer terms will be seen in 

subsequent component models, and all such terms exhibit this dependence on a controllable input. 

 The state vector and capacitance vector, respectively, are then given by  

 [ ]T

wx T T= , (2.44) 

 [ ]T

p c pC mC L CA = . (2.45) 

2.3.7 Heat Exchanger Model 

A brazed plate heat exchanger is used in this work to reject heat from the coolant loop to a 

colder sink fluid. The graph model for the parallel flow heat exchanger used in this work, shown 

in Figure 2.14, was introduced in [49] and is reproduced here for completeness. The two separate 

flows in the heat exchanger, one of which is the coolant and the other of which is a sink fluid, are 

referred to in this figure as flows on side a  (corresponding to the sink fluid) and on side b  

(corresponding to the coolant).  
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Figure 2.14: Heat exchanger graph model. 

 

The dynamic of the heat exchanger wall temperature 
wT  is given by  

 ( ) ( )p w b b b w a a w aT A T Tm h A Th TC = − − −  (2.46) 

where m  is the mass of the heat exchanger wall, pC  is the specific heat capacity of the wall, 
ah  

and 
bh  are the convective heat transfer coefficients for the fluids on sides a  and b  of the heat 

exchanger respectively, 
aA  and 

bA  are the heat transfer areas on these respective sides, and 
aT  

and 
bT  are the temperatures at the fluid outlets of sides a  and b  respectively. The dynamics of 

these fluid temperatures are given by  

 , , , , 1,( ( ))c a a a p a a a s a w a a p a a aA TL C T TTh A Cm T − += −  (2.47) 

 , , , 1, , )( ()c b b b p b b b p b b b b s b b wA L C T m TT TC h A T = − − −  (2.48) 

where ,c aA  is the cross-sectional fluid flow area of side a , 
aL  is the length of the flow section in 

side a , 
a  is the density of fluid on side a , ,p aC  is the specific heat capacity of side a , ,s aA  is the 

heat transfer surface area for side a , 
am  is the mass flow rate of fluid in side a , 1,aT  is the 
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temperature of the fluid at the inlet of side a , and each of these quantities are defined analogously 

for side b .  

 The state vector and capacitance vector for the heat exchanger are given by  

 [ ]T

b w ax T T T= , (2.49) 

 , , , ,[ ]T

c b b b p b p c a a a p aC CL C L CA m A = . (2.50) 

2.3.8 Tank Model 

The final thermal component discussed in this section is the fluid tank. As with the heat 

exchanger and cold plate, the graph model for the tank used in this work, shown in Figure 2.15, 

was introduced in [49]. In this case, however, the tank graph is modified to include the flow 

splitting which occurs downstream of the tank in the valve.  

 

Figure 2.15: Tank graph model. 

 

Neglecting heat lost to the environment, the dynamic of the tank coolant temperature T  is 

given by  

 1 1 2 3p p p pm TT m C T m C T m CC = − −  (2.51) 

where m  is the mass of coolant in the tank, pC  is its specific heat, 
1m  is the flow rate entering 

the tank, 
1T  is the temperature of the fluid entering the tank from the upstream component, 

2m  is 

the flow rate leaving the tank along edge 
2e , and 

3m  is the flow rate leaving the tank along edge 

3e . The state vector for the tank is then x T=  and the capacitance vector is pC mC= .  
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2.4  Subsystem and System Models 

 In this section the component models are combined to form subsystems and systems. The 

subsystem models are presented and discussed first, starting with the electrical subsystem and 

proceeding to the thermal subsystem. Then the full system model is presented which combines the 

two subsystems and concludes the section. The methods for combining these component models 

are presented in [48], and the interested reader is referred to this work for details on the graph 

combination process.  

 2.4.1 Hybrid Energy Storage System Model 

The graph-based models shown in Section 2.3 for the battery pack, ultracapacitor pack, 

converters, and voltage bus are combined to form the subsystem model shown in Figure 2.16. Note 

that for this subsystem, the ultracapacitor is represented as a linear capacitor rather than the third-

order model that was the focus of 2.3.2. The linear capacitor model is preferred over the third-

order model for the HESS because the effects of slower, higher order dynamics will be negligible 

for the loads considered in this work, and because the third-order model provides a more accurate 

model of heat generation that is not necessary when considering only the electrical subsystem.  

However, since the linear capacitor model does not inherently capture any heat generation in the 

ultracapacitor, a resistive loss is added on the terminal current state 
13I  to estimate heat generation. 

Note that an extra edge has been added between the bus voltage state and the thermal sink state. 

This edge is added to account for heat generation in the current load and is treated as a resistive 

loss. Each vertex in this graph is assigned a number according to a global numbering scheme, and 

these numbers are shown here as subscripts on the labels of the vertices. To clarify where the 

component models fall into the subsystem graph, Table 2.2 lists these vertex numbers along with 

a description of the state to which each vertex corresponds within the component models. 
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Additionally, the edges in Figure 2.16 are color-coded to illustrate the types of power flows 

occurring along each of the edges. The mathematical formulations for each of these edge types are 

provided in Table 2.3.  

  

Figure 2.16: HESS graph model. 

 

Table 2.2: HESS vertex labels. 

Vertex Numbers, Corresponding States, and Descriptions 

1 q1 Batt. q 11 V11 Conv. 1 V1 21 I21 Bus I3 

2 V2 Batt. V1 12 V12 UC V1 22 V22 Conv. 1 V3 

3 V3 Batt. V2 13 I13 UC I1 23 V23 Conv. 2 V3 

4 T4 Batt. T1 14 V14 Conv. 2 V1 24 T24 Conv. 1 T2 

5 T5 Batt. T2 15 V15 Conv. 1 V2 25 T25 Conv. 2 T2 

6 I6 Conv. 1 I1  16 V16 Conv. 2 V2 26 T26 UC T2 

7 T7 Conv. 1 T1 17 I17 Bus I1 27 T27 Batt. T3 

8 I8 Conv. 2 I1 18 I18 Bus I2 28 T28 Bus T1 

9 T9 Conv. 2 T1 19 V19 Bus V1    

10 I10 Batt. I1 20 T20 UC T1    
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Table 2.3: HESS graph edge definitions. 

Edge Type Edge Definition Corresponding Edge Numbers 

Electrical transfer 
tail head

j j jP x x=  2, 3, 9, 10, 13, 16, 18, 21, 26, 27, 28, 

29, 30, 31 

Resistive losses 
2( )tail

j j jP x=  4, 5, 6, 11, 14, 19, 22, 24, 25 

Thermal transfer ( )tail head

j j j jP x x= −  7, 8, 15, 20, 23 

Battery SOC ( )tail head

j ocv j jP V x x=  1 

Electrical transfer with input 
tail head

j k j jP u x x=  12, 17 

 

2.4.2 Thermal Energy Storage System Model 

The graph-based models shown in Section 2.3 for the TES modules, cold plates, heat 

exchanger, and tank are combined to form the TESS graph model shown in Figure 2.17. In the 

TESS, the electrical component temperatures are not modeled, so the TES models considered in 

this subsystem correspond to variant a.) in Figure 2.12. As in the electrical subsystem, each vertex 

in this graph is assigned a number according to a global numbering scheme, and these numbers 

are shown here as subscripts on the labels of the vertices. Table 2.4 lists these vertex numbers 

along with a description of the state to which each vertex corresponds within the component 

models. Additionally, the edges in Figure 2.17 are color-coded to illustrate the types of power 

flows occurring along each of the edges. The mathematical formulations for each of these edge 

types are provided in Table 2.5.  Note that the conduction edges between vertices 8 and 7, 9 and 

10 represent conduction between the TES modules and cold plates. As discussed in 2.3.5 these 

edges are implemented as a 2-D mapping of the PCM energy and cold plate wall temperature. The 

source edges 1

se  and 2

se  are not included in Table 2.5 as their corresponding power flows are 

defined as surrogates for the heat generated by the HESS.  
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Figure 2.17: TESS graph model. 

 

Table 2.4: TESS vertex labels. 

Vertex Numbers, Corresponding States, and Descriptions 

1 T1 HX Tw 7 T7 CP1 Tw 

2 T2 HX Ta 8 E8 TES1 EPCM 

3 T3 HX Tb 9 T9 CP2 Tw 

4 T4 Tank T 10 E10 TES2 EPCM 

5 T5 CP2 T 11 T11 HX T2,a 

6 T6 CP1 T 12 T12 HX T1,a 

 

Table 2.5: TESS graph edge definitions. 

Edge Type Edge Definition Corresponding Edge Numbers 

Advection 
l

j j

tai

j jP u x=  7, 8, 9, 10, 11, 12, 13 

Conduction ( )tail head

j j j jP x x= −  5, 6 

Convection ( )tail head

j j j jP x x= −  1, 2, 3, 4 
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2.4.3 Hybrid Electro-Thermal Energy Storage System Model 

 With a few modifications, the electrical and thermal subsystems are combined to form the 

hybrid electro-thermal energy storage system graph model shown in Figure 2.18. A significant 

modification to the HESS model is the replacement of the ideal ultracapacitor model used 

previously with the higher-fidelity third-order model described in 2.3.2. The third-order 

ultracapacitor model is preferred in the HETESS model to obtain a more accurate formulation for 

heat generation and thermal dynamics of the ultracapacitor. Additionally, the edge connecting the 

bus voltage state 
19V  to the thermal sink state 

28T , which was introduced to account for heat 

generation of the load, is replaced by a resistive loss acting directly on the load current 
21I . Thermal 

state 
24T  is then introduced to model the temperature dynamic of the load in response to this 

resistive loss.  

In the TESS, a third TES module and cold plate are included for cooling of the power 

converters, so that the power converters can be thermally separated from the energy storage 

components. This additional TES module is represented by the vertex labeled 
25E , the wall 

temperature of the additional cold plate by 
40T , and the fluid outlet temperature of the additional 

cold plate by 
41T . Additionally, the TES modules are modeled using variant b.) of  Figure 2.12. 

For TES modules 1 and 3, the TES module model is modified as discussed in Section 2.3.5 to 

allow each of these TES modules to cool multiple components at different temperatures.  

As in Sections 2.4.1 and 2.4.2, the vertices and their respective descriptions are tabulated 

in Table 2.6. The edge numbers are omitted from Figure 2.18, but the edge types are illustrated 

using the same color-coding scheme as before.   
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Figure 2.18: HETESS graph model. 
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Table 2.6: Hybrid electro-thermal energy storage system vertex labels. 

Vertex Numbers, Corresponding States, and Descriptions 

1 q1 Batt. q 17 I17 Bus I1 33 V33 UC Vi 

2 V2 Batt. V1 18 I18 Bus I2 34 V34 UC VD 

3 V3 Batt. V2 19 V19 Bus V1 35 V35 UC VL 

4 T4 Batt. T1 20 T20 UC T1 36 T36 CP1 Tw 

5 T5 Batt. T2 21 I21 Bus I3 37 T37 CP1 T 

6 I6 Conv. 1 I1  22 V22 Conv. 1 V3 38 T38 CP2 Tw 

7 T7 Conv. 1 T1 23 V23 Conv. 2 V3 39 T39 CP2 T 

8 I8 Conv. 2 I1 24 T24 Load T 40 T40 CP3 Tw 

9 T9 Conv. 2 T1 25 E25 TES3 EPCM 41 T41 CP3 T 

10 I10 Batt. I1 26 E26 TES1 EPCM 42 T42 Tank T 

11 V11 Conv. 1 V1 27 E27 TES2 EPCM 43 T43 HX Tb 

12 V12 UC V1 28 T28 Bus T1 44 T44 HX Tw 

13 I13 UC I1 29 I29 UC Ileak 45 T45 HX Ta 

14 V14 Conv. 2 V1 30 I30 UC Ii 46 T46 HX T1,a 

15 V15 Conv. 1 V2 31 I31 UC ID 47 T47 HX T2,a 

16 V16 Conv. 2 V2 32 I32 UC IL    

 

 As discussed previously, the HESS and TESS exhibit some similarities in structure, in that 

they each contain a storage component that can provide or store energy at a very fast rate for 

intermittent periods, and another component which can store or move energy continuously at a 

lower rate. The graph model in Figure 2.18 demonstrates some relevant differences in structure 

between the HESS and TESS. The most apparent difference, apart from the difference in domains, 

lies in the general direction in which power moves: the HESS supplies electrical power to a load, 

while the TESS absorbs thermal loads generated by the HESS. Additionally, by design, the 

configuration of the “slow” and “fast” components within the two subsystems varies in terms of 

how power moves between the storage components and the load. In the HESS, the battery and 

ultracapacitor are configured such that these components move power in a parallel manner to the 

load. In the TESS, thermal loads impact the system in a serial manner, entering the subsystem in 

the TES modules, then circulating through the coolant loops to the heat exchanger where thermal 

loads are ultimately rejected to a sink fluid. This structural difference is accentuated in Figure 2.18 
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by the location of control-dependent edges. In the HESS, the control-dependent edges (shown in 

purple) are in parallel locations between the storage elements and the electrical load. In the TESS, 

the advective heat transfer edges are control-dependent, and these edges are located between the 

TES modules and the heat exchanger. Hence, in the HESS system, the control dictates how each 

storage element supplies power in parallel to the electrical load, while in the TESS system, the 

control dictates the rate at which heat is moved serially from the TES modules to the heat sink.   

Building the graph model of the hybrid electro-thermal energy storage system demonstrates 

several of the advantages of the graph-based modeling framework mentioned earlier. The 

component models, which were combined to form subsystems and then to form an integrated 

system, demonstrate the modularity of the models and the ability to “plug and play” with different 

components within the same system or subsystem.  The straightforward combination of dynamic 

electrical and thermal components in a unified modeling scheme highlights the domain-agnostic 

nature of the modeling framework. The variable fidelity capabilities of the framework were 

emphasized in Section 2.3.5, in which it was seen that the TES module model could be refined to 

obtain spatial resolution in the PCM temperature profiles, and in this section, in which 

ultracapacitor models of varying fidelity are interchanged. The scalability and computational 

efficiency aspects of the graph-based scheme will be demonstrated in subsequent chapters. 
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CHAPTER 3. CONTROL 

Controller design is a vital element of the design of electro-thermal systems, particularly 

in the context of energy storage systems which are sensitive to electrical and thermal operating 

conditions. In order to ensure adequate dynamic performance, optimal designs of these systems 

should consider not just the size of the energy storage system, but also the performance of the 

controller and the ability of the controller to achieve the particular requirements of the system or 

subsystem under study. In this work, the HESS and TESS have different control objectives and as 

such they are each equipped with their own dedicated control architecture.  

Many researchers have considered the challenge of controller development to determine 

the power split for battery-ultracapacitor HESSs. These control strategies can be divided into two 

general categories: heuristic and optimal control strategies. Rule-based HESS control strategies, 

such as [57], use logic to determine the mode of operation among a set of heuristically derived 

rules. In [57], a rule-based controller was developed with the objectives of prolonging battery life 

and maximizing the overall drive train efficiency. Filter-based HESS control strategies, such as 

[58]–[60], are heuristic strategies which seek to protect the battery from high discharge rates by 

controlling the battery to provide the low-pass-filtered value of the load power. Optimal strategies 

use optimization or optimal control techniques, such as linear programming [9], dynamic 

programming [61], [62], and model predictive control (MPC) [61], [63], [64], to optimize certain 

objectives, the most common of which are extension of battery life and minimization of power 

losses [65].    

Few researchers have examined thermal management consisting of PCM-integrated liquid 

cooling for hybrid electrical energy storage systems. Such thermal management systems have been 

considered extensively for the similar case of battery-only energy storage systems, but few have 



49 

 

considered control of the fluid flow rate. In [37], it was determined that the temperature of coolant 

through the PCM had a significant impact on the performance of the thermal management system. 

In [66], it was found that varying the flow rate of coolant, rather than holding the flow rate constant, 

can improve the temperature distribution of the battery pack, emphasizing the need for flow rate 

control. On the other hand, many works have examined control strategies for liquid/two-phase 

cooling systems with integrated TES excluding the dynamics of electrical components. A hybrid 

hierarchical MPC formulation for a similar coolant loop architecture was performed in [42], 

wherein the coolant flow rate through each loop was controlled to track a reference for the TES 

SOC. In [67], an MPC formulation is used to maximize the efficiency of the compressor in a two-

phase coolant loop, while a mix of proportional and proportional-integral controllers regulate 

component temperatures to charge and discharge the TES efficiently. Many researchers have 

applied control techniques to manage TES systems in other applications, such as buildings and 

solar plants. Some of these have examined heuristic control strategies such as proportional, 

integral, and derivative (PID) control and rule-based control to manage coolant temperatures [68]–

[70]. Other studies have applied optimal control strategies to manage TES systems for building 

applications [70]–[73].  

With the ultimate goal of this work being multi-objective design optimization, which is a 

computationally taxing process when dynamic simulations are involved, the solution time of the 

controller is an important consideration. While optimal control formulations, such as those 

discussed above for the HESS, offer improved performance over other classical control strategies, 

these formulations add significantly to the computational expense of a dynamic simulation through 

the introduction of an optimization subroutine. Incorporating optimal control formulations in a 

dynamic simulation increases the time to explore the overall design space and may render the 
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optimization routine intractable for large optimization problems. Therefore, to mitigate the 

computational expenses added by a controller, heuristic proportional-integral (PI) control 

strategies are employed in both subsystems for this work.  

For the HESS, a filter-based strategy similar to the one proposed in [58] is adopted to 

control the battery-ultracapacitor hybrid. For the TESS, a PI control strategy is developed which 

controls the fluid temperatures through the TES modules by adjusting mass flow rates. The HESS 

and TESS controllers are introduced in this chapter, followed by simulation results that 

demonstrate the operation of the controllers.  

3.1 HESS Controller Design 

The two control objectives for the HESS controller are protection of the battery from high 

discharge rates and maintaining the bus voltage. To accomplish these objectives, a control strategy 

similar to the one presented in [58] is chosen. Particularly, two decoupled PI controllers are 

employed which dictate the control inputs (duty cycles) for the DC-DC converters to meet these 

control objectives.  

3.1.1 Battery controller 

The controller for the battery subsystem prevents the battery from supplying high discharge 

rates using a filter-based strategy. The objective of this controller is to ensure that the battery pack 

provides the smoothed average value of the power requirement of the electrical load. Passing the 

power profile of the electrical load through a low-pass filter achieves this averaging of the load 

profile by attenuating high-frequency fluctuations, particularly those introduced by the high ramp 

rate load. Hence, a transfer function with a cutoff frequency of 0.0475Hz is applied to the load 

power profile to obtain the low-pass filtered value of the load power. The value of this cutoff 

frequency was selected heuristically to be smaller than 50% of the 0.1Hz frequency of the high 
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ramp rate load to significantly attenuate the high ramp rate variations. Specifically, the filtered 

value of the load power is given by  

 
2

1

20 0.95
filt loadP P

s s
=

+ +
 (3.1) 

where loadP  is the load power and filtP  is its filtered value.   

The filter’s ability to attenuate high ramp rate disturbances is examined by comparing loadP  

and filtP . For this work, a 30-minute current load profile consisting of low frequency variations 

and high ramp rate disturbances is considered. We will show in the following section that the bus 

voltage is controlled to remain near a reference value, so in the remainder of this section the load 

power is estimated as the product of this current load profile and the reference bus voltage. The 

high ramp rate disturbances to the load power profile act intermittently on the low frequency 

variations during the time periods from 9 minutes to 11.5 minutes, and from 22 minutes to 25.5 

minutes in the simulation time frame.  During these time periods, the disturbances ramp up and 

down once every 10 seconds at a rate of 55kW/s remaining at their maximum value for 0.5s, 

resembling pulses of power. With the energy demands of each of these bursts totaling around 80kJ, 

the high ramp rate disturbances are somewhat representative of the loads required by an 

electromagnetic launcher for small to medium sized UAVs, such as the prototype launcher 

described in [74]. The electrical load profile used in this work is shown in Figure 3.1 along with 

the filtered value of the load power, demonstrating the attenuating performance of the filter given 

by (3.1).  The filter attenuates the high ramp rate disturbances by 80%. This filtered load power 

gives a much safer power demand for the battery pack by significantly reducing the magnitude of 

the high ramp rate power disturbances. Note that the DC gain of the filter described in (3.1) is 
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greater than unity, causing a 5% offset between the steady-state values of the filtered and estimated 

load power. This allows for the battery pack to account for electrical losses in the HESS.       

 

Figure 3.1: Electrical load power and filtered load power. 

 

With the filtered power profile given by (3.1) and shown in Figure 3.1, the battery 

controller compares the power provided by converter 1 ( 1DCDCP ) to this reference filtered load 

profile. The error between these two signals, given by 

 1 1filt DCDCe PP= − , (3.2) 

is sent through a PI controller, which yields the following control signal  

 1 1 1 1( / )p iu K K s e= + , (3.3) 

where 1pK  is the proportional gain of the PI controller and 
1iK  is the integral gain. The resulting 

control signal 1u  is saturated between 0 and 1 and used as the duty cycle for converter 1. This 

saturation can lead to integral windup if the pre-saturated control signal greatly exceeds its bounds. 
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In this work, the amount by which the pre-saturated control signal exceeds its bounds is minimal, 

so a simple clamping strategy is sufficient to mitigate integral windup rather than a more formal 

method. This control strategy is demonstrated conceptually by the block diagram in Figure 3.2. 

 

Figure 3.2: HESS converter 1 control block diagram. 

 

3.1.2 Ultracapacitor controller 

The controller for converter 2 is then tasked with maintaining the bus voltage at a reference 

value. In this study the reference value for the bus voltage ( refV ) is chosen to be 270V to suit the 

demands of the UAV launch system. Maintaining the bus voltage at this reference value is 

accomplished simply by finding the error between the bus voltage 
busV  and reference voltage  

 2 ref buse VV −=  (3.4) 

and applying PI control, yielding the following control signal  

 2 2 2 2( / )p iK Ku s e= + , (3.5) 

where 2pK  is the proportional gain of the PI controller and 
2iK  is the integral gain. As with 

converter 1, the resulting control signal 2u  is saturated between 0 and 1 and used as the duty cycle 

for converter 2. A clamping strategy is again used to mitigate integrator windup, as the pre-

saturated control signals do not significantly exceed their bounds. This control strategy is 

demonstrated conceptually by the block diagram in Figure 3.3. 

Kp1+Ki1 / s1/(s2+20s+0.95)Pload

PDCDC1

Pfilt

+
- 0

1u1
uDCDC1
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Figure 3.3: HESS converter 2 control block diagram. 

 

3.1.3 Closed-loop HESS simulation results 

To demonstrate the performance of the HESS control strategy, the controllers defined 

above are applied to the HESS model described in 2.4.1. The particular set of values of sizing and 

control parameters for which this simulation is performed, referred to hereafter as the nominal 

values of these parameters and gains, is given in Table 3.1. The nominal HESS system is simulated 

under the same current load profile introduced in 3.1.1 for the analysis of the filtered load power.  

Closed-loop simulation results for selected signals are shown in Figure 3.4. The upper row 

of plots shows the SOC and voltage of the battery pack and ultracapacitor pack. The SOC of the 

ultracapacitor pack here is defined as the ratio of the ultracapacitor voltage to its maximum voltage. 

To maximize their energy storage capabilities without risking over-charging, the battery and 

ultracapacitor packs are initialized at SOC near but not equal to one.  The middle plots highlight 

the performance of the control strategy by comparing the reference values of the controllers to the 

simulated values. The middle left plot shows that the controller for converter 2 is maintaining the 

bus voltage within 1 volt of the reference, and the middle right plot shows that the battery power 

is closely tracking the filtered load power. The lower plots show the duty cycles applied to the two 

converters to achieve this performance and the resulting currents of each of the system 

components, with the load current shown in gray. See the appendix for magnified views of each 

of the subplots in this figure.  

Kp2+Ki2 / sVref

Vbus

+
- 0

1u2
uDCDC2
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Figure 3.4: Closed-loop HESS simulation results. 

 

Table 3.1: Nominal HESS sizing and control parameters. 

 

 

  

Number of Cells Controller Gains 

Series (battery) 80 Kp1 (battery) 0.00001 

Parallel (battery) 10 Ki1 (battery) 0.0001 

Series (UC) 275 Kp2 (UC) 0.004 

Parallel (UC) 15 Ki2 (UC) 0.1 
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3.2  TESS Controller Design 

The control objective for the TESS controller is to maintain the fluid temperature through 

the cold plates such that the coolant remains colder than the melt temperature of the respective 

PCM. This is accomplished by varying the mass flow rates through the flow loops to vary the rate 

at which heat is absorbed from the TES modules and subsequently rejected to the sink fluid in the 

heat exchanger. Note that the flow rates through the two flow loops (through cold plate 1 and 

through cold plate 2) are coupled in that their sum is the total mass flow rate in the system. The 

pump, which drives mass flow in the system, dictates this total flow rate. Hence the selected control 

strategy for the pump couples the temperature effects of the two flow sections. The valve setting 

is then chosen to proportion the total flow rate appropriately between the two flow sections.  

3.2.1 Pump Controller 

The controller for the pump consists of two PI controllers corresponding to each of the two 

flow sections. One controller aims to regulate the temperature at the outlet of cold plate 1 to a 

reference value, and the other aims to regulate the temperature at the outlet of cold plate 2 to 

another reference value. These references are chosen to be 10°C below the melt temperature of the 

respective PCM. Each controller compares the actual temperature at the cold plate outlet to the 

respective reference temperature and applies PI control to the error between these two values. The 

two resulting control signals are summed so that the resulting signal contains the summed 

contributions of the two controllers. This signal is used as the duty cycle for the pump, which 

dictates the total mass flow rate. The duty cycle is saturated in accordance with the physical 

limitations of the pump. In this work, the duty cycle of the pump is allowed to vary continuously 

between 0% and 65%. Prior to summing the individual contributions of the two controllers, these 

contributions are saturated between 0% and 65% as well, employing a clamping strategy to 
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mitigate windup in the integral terms of the individual controllers. The control strategy for the 

pump is demonstrated by the block diagram shown in Figure 3.5.  

 

Figure 3.5: TESS pump control block diagram. 

 

3.2.2 Valve Setting 

With the pump dictating the total flow rate through the coolant loops, the valve is 

responsible for proportioning flow appropriately between the two flow sections. The valve is 

modeled as a solenoid valve, and its dynamics are assumed to be faster than the timestep of the 

simulation. Hence the valve setting is assumed to occur instantaneously, and is defined according 

to  

 1

1 2

v

u
u

uu
=

+
, (3.6) 

where 1u  and 2u  are the saturated contributions of the two individual controllers shown in Figure 

3.5, and vu  is the valve setting. The mass flow rates through the two sections are then given by  
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where 
1m  is the flow rate through cold plate 1, 2m  is the flow rate through cold plate 2, and totalm  

is the total mass flow rate. This choice of valve setting directs a larger portion of the total flow rate 

to travel through one of the cold plates when its temperature exceeds its reference.   

3.2.3 Closed Loop TESS Simulation Results 

To demonstrate the performance of the TESS control strategy, the controller defined above 

is applied to the TESS model described in 2.4.2 under the nominal set of sizing parameters and 

controller gains given in Table 3.2. As mentioned in 2.1, the thermal loads for the TESS system 

are defined such that the load applied to cold plate 1 is a surrogate for heat generation of the storage 

elements and power converters, while the load applied to cold plate 2 is a surrogate for heat 

generation of the electronic load. Particularly, the thermal load generated by each electrical 

component is estimated as a small percentage of the magnitude of electrical power output by that 

component. This percentage is taken to be 20% for the electrical load which is assumed to be the 

most inefficient component, 10% for the battery pack and converters, and 1% for the ultracapacitor 

which is assumed to be the most efficient component due to its low internal resistance. The thermal 

load applied to cold plate 1 is the sum of the estimated thermal loads of the battery pack, converters, 

and ultracapacitor pack. Denoted 1inQ  and 2inQ , the thermal loads applied to cold plates 1 and 2 

respectively are shown in Figure 3.6. 

Table 3.2: Nominal TESS sizing and control parameters. 

 
Sizing Parameters Controller Gains 

Mass [kg] (TES1) 10 Kp1 (TES1) 20 

Melt Temp. [°C] (TES1) 45 Ki1 (TES1) 1 

Mass [kg] (TES2) 8.5 Kp2 (TES2) 20 

Melt Temp. [°C] (TES2) 50 Ki2 (TES2) 1 
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Figure 3.6: TESS load profiles. 

 

Closed-loop simulation results of the TESS system from 2.4.2 under these load profiles are 

shown in Figure 3.7.  All components in the TESS are initialized at a steady state temperature of 

30°C. The left two plots show the temperatures and states-of-charge of the PCMs in the two TES 

modules in response to the given load profiles, demonstrating the performance of the graph-based 

TES module model. Over the course of the 30-minute simulation, the PCMs are heated sensibly 

until they reach their respective melting temperatures. At this point, the PCMs continue to absorb 

energy by changing phase from solid to liquid, gradually lowering the SOC of the TES modules. 

Once the SOC of each PCM reaches zero, the PCM continues to absorb thermal energy through 

sensible heating, reaching peak temperatures of 69°C and 61°C in TES1 and TES2 respectively. 

The right two plots show the reference tracking ability of the controller and the mass flow rates 

used in order to achieve this reference tracking. The controllers are inactive during the first few 

minutes while the cold plate temperatures heat up to reach their reference temperatures. Once the 

reference temperatures are met, the pump begins to drive coolant flow through the system, with 
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more coolant being directed through CP1 because its reference temperature is lower. As the PCMs 

are heated sensibly beyond their melting temperature, this causes the cold plate temperatures to 

increase, forcing the pump to supply higher mass flow rates to bring the cold plate temperatures to 

their reference values.  See the appendix for magnified views of each of the subplots in this figure. 

 

Figure 3.7: Closed-loop TESS simulation results. 

 

3.3  Closed-Loop HETESS Simulation Results  

The closed-loop hybrid electro-thermal energy storage system is obtained by applying the 

controllers described above to the model introduced in 2.4.3. Due to intrinsic model differences 

between the HETESS and the HESS and TESS subsystem models, a different nominal parameter 
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set is considered for the sizing of the nominal electro-thermal system. These sizing parameters are 

provided in Table 3.3. The control parameters are unchanged from their prior values. 

Closed-loop simulation results of the HETESS in response to the electrical load shown in 

3.1.3 are provided in Figure 3.8. The upper half of this figure contains trajectories of HESS signals, 

while the bottom half contains trajectories of TESS signals. The top row of plots shows the voltage 

and current profiles of components in the HESS. Comparing these trajectories to the corresponding 

trajectories in Figure 3.4 highlights the differences in voltage behavior between the first-order and 

third-order ultracapacitor models. Simulated temperatures of the electronic components are shown 

in the right-hand plot in the second row. In this plot, the battery core temperature is plotted as a 

solid tan trace, while the battery shell temperature is plotted as a dashed tan trace. The temperature 

profiles in this plot demonstrate that the load is the most inefficient component, followed by the 

converters, the battery pack, and the ultracapacitor pack. The trajectories of the PCM temperatures 

and SOCs show that, for the nominal system, the temperatures of the energy storage components 

do not increase significantly. This suggests that the estimated thermal loads considered in 3.2.3 

overestimated the heat generation of the electrical components, and further motivates the 

importance of modeling the full electro-thermal system to accurately capture coupling between the 

electrical and thermal domains. See the appendix for magnified views of the subplots in this figure. 

Table 3.3: Nominal HETESS sizing parameters. 

 
Sizing Parameters 

Series (battery) 85 

Parallel (battery) 8 

Series (UC) 275 

Parallel (UC) 15 

Mass [kg] (TES1) 5 

Melt Temp. [°C] (TES1) 42 

Mass [kg] (TES2) 8.5 

Melt Temp. [°C] (TES2) 46 

Mass [kg] (TES3) 5 

Melt Temp. [°C] (TES3) 42 
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Figure 3.8: Closed-loop HETESS simulation results. 

   

The performance of the HESS controller is demonstrated in Figure 3.9 by comparing the 

simulated and reference values of the bus voltage and battery power. This figure demonstrates that 

the bus voltage is tracked sufficiently well in the electro-thermal system. The battery power is also 
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tracked sufficiently, with some deviations occurring during the high ramp rate disturbances. 

Noting the trajectory of the corresponding control input, it is clear that these deviations occur due 

to the control signal reaching the upper limit of its admissible values. By increasing the number of 

battery cells in parallel, the power capabilities of the battery pack can be increased to avoid 

deviations such as these. While this motivates the need to optimize the sizing of the battery pack, 

we note that this deviation from the reference does not interfere with the overall goal of limiting 

the power demands of the battery.   

 

Figure 3.9: HESS controller performance in HETES system. 

 

The performance of the TESS controller in the electro-thermal system is demonstrated by 

the bottom right plots in Figure 3.8. These plots show that the cold plate temperatures exceed their 

references only by fractions of a degree. Beginning 23 minutes into the simulation, PCM 2 fully 

melts, then continues to heat sensibly, which contributes to the fluid temperature in cold plate 2 

exceeding its reference slightly during this time period. At this time, a larger portion of mass flow 

rate is directed into this flow section to cool the cold plate temperature.   

These closed-loop simulation results further demonstrate the merits of the graph-based 

modeling framework. The domain-agnostic formulation enables the setup and simulation of a 



64 

 

model consisting of multi-domain signals, including coupling terms between these signals. The 

computation time for this simulation was 33 seconds, demonstrating a simulation speed around 60 

times faster than real time. This level of computational efficiency is valuable for subsequent design 

optimization trials.  

The respective control strategies for the HESS and TESS exhibit some relevant similarities 

but are structurally quite different. A notable similarity between the two control strategies is that 

both controllers use proportional-integral control to achieve their objectives. The computational 

efficiency of these heuristic control strategies is key to achieving the quick simulation speed. A 

notable difference is that the control signals of the HESS are decoupled, while the mass flow rates 

of the TESS are inherently coupled. Additionally, recalling the prior discussion of symmetrical 

“slow” and “fast” components in both subsystems, the selected control strategy ensures that the 

loads seen by the “slow” components (battery and heat exchanger) are smoothed versions of the 

high ramp rate load profiles for each subsystem. The HESS controller directly ensures that the 

battery provides the average electrical load requirement, while the TES modules indirectly filter 

the thermal load rejected by the heat exchanger by absorbing high ramp rate loads and rejecting 

heat to the cold plates at a nearly constant rate.  
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CHAPTER 4. DESIGN OPTIMIZATION 

In this work, a multi-objective optimization study is performed to simultaneously optimize 

sizing and performance of the hybrid electro-thermal energy storage system. HESS sizing is 

determined by the number of battery cells in series and parallel and the number of ultracapacitor 

cells in series and parallel. TESS sizing is determined by the mass and melting temperature of each 

of the PCMs in the TES modules. The performance of both of these subsystems is dependent on 

these sizing variables as well as the controllers and their corresponding gains. Hence in this work, 

we seek to optimize the controller gains and sizing variables simultaneously.  

This chapter begins with an introduction to design optimization for graph-based models, 

which is based on a graph-based design optimization framework developed in [23]. As mentioned 

in Chapter 2, a major benefit of the graph-based techniques used herein is the ability to 

simultaneously consider energy transfers in disparate domains. In this section, we leverage this 

ability to examine the effects of the inclusion of electro-thermal coupling in the HETESS model. 

To do so, we optimize the HESS and TESS subsystems separately, then optimize the combined 

electro-thermal system.  

4.1 Graph-Based Design Optimization Framework 

The graph-based design optimization framework introduced in [23] is used as the basis for 

this work and consists of four steps, which are described sequentially in this section. These steps 

are: (i) augmenting the graph-based model with design matrices and operators, (ii) defining the 

design objectives, (iii) defining the design constraints, and (iv) formulating and solving the 

optimization problem. We first note that the framework introduced in [23] applies to the 

optimization of both continuous and discrete variables. By nature, some of the variables considered 

in this study must take on integer values; however, since they are allowed to vary over a wide 
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range of values, these variables are treated as continuously variable in this work. Hence we 

specialize the framework for the case of purely continuous design variables, and refer the interested 

reader to [23] for a discussion of the treatment of discrete variables in the framework.  

4.1.1 Augment the Graph-Based Model  

The first step in the framework is to augment the graph-based model to include the impact 

of the design variables on the graph-based model.  A nominal graph-based model in the form of 

(2.7) can be augmented by introducing design matrices and operators that modify the nominal 

values of graph elements (vertices, edges, and source edges). The following is a discussion of these 

modifiers, starting with the design matrices. 

Design matrices scale the nominal parameter values of graph elements according to the 

values of the design variables. A graph-based model which has been augmented with design 

matrices takes the form of  

 s s

cCx M P D P = −  +  , (4.1) 

where 
c ,  , and s  are diagonal design matrices of appropriate dimensions. In this equation, 

c  defines scaling relationships between design variables and vertex capacitances,   defines 

scaling relationships for power flows, and s  defines scaling relationships for source power 

flows. The matrix 
c  is a diagonal matrix defined as follows  
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where   represents the set of continuous design variables and the function 
,c i  is defined in 

accordance with the underlying physics of the system to quantify the scaling relationship between 
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the design variables and the capacitance of the 
thi  vertex. The remaining design matrices are 

defined analogously as follows  
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where )(i   defines the scaling relationship between the design variables and the 
thi  power flow, 

and )(s

i   defines the scaling relationship between the design variables and the 
thi  source power 

flow.  

As is the case in the present study, some situations arise in which the initial conditions of 

the model vary as a function of the design variables. In such cases, a fourth design matrix 
0  can 

be introduced similarly to 
c ,  , and s   such that  

 0 0 0x x=  , (4.5) 
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where 0x  are the nominal initial conditions of the model, 0x  are the modified initial conditions, 

and 
0,i  defines the scaling relationship between the design variables and the  initial condition of 

the 
thi  state [75].  Additional design matrices can be defined to scale the nominal values of other 

elements of the closed-loop model formulation that are not explicitly included in (2.7), such as 

controller references and operating constraints. These design matrices can accomplish any 
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continuous linear or nonlinear scaling of the nominal values of model elements. In the general 

case, these additional design matrices will be denoted as H  and defined in the same way as (4.2), 

(4.3), (4.4), and (4.6), with their individual entries denoted as ( )  . 

While the design matrices are useful for capturing scaling relationships between the design 

variables and model elements, there are some rare instances in which elements of the graph model 

cannot be modified appropriately by scaling. In particular, consider the nonlinear functions 
jg  in 

(2.3). These are functions not only of the head and tail states and inputs, but also of the parameters 

of the model which may be varied in the design study. These functions may be nonlinear in the 

design parameters in a way that cannot be captured by a simple scaling relationship.  

In this work, we address this by introducing the concept of a design operator, which 

modifies the form of a nonlinear function to accurately capture the effects of the changing design 

variables. The effect of design operators is as follows 

 , ( , )( , ) , ,h t h tg xx xu x u =  (4.7) 

where )(g   is the new nonlinear function of the head state hx , tail state tx , and input u . The design 

operator ( , )   essentially generates a new nonlinear function )(g   for each set of values of the 

design variables  . To make these concepts of design matrices and design operators more 

concrete, detailed examples of each will be provided in subsequent sections of this chapter. 

4.1.2 Define the Objective Function 

The second step of the framework is to define the objective function of the optimization 

problem. For this work, we will formulate the optimization problem in the sense of minimization 

of an objective function. It is straightforward to convert this formulation to one of maximization 

of an objective function. Following the guidelines in [23], the design engineer can define this 

objective function to relate the trajectories of the dynamic system to relevant metrics, such as 
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sizing, reliability, and performance. Some common objective functions that are of use in this work 

are state tracking, power flow tracking, state constraint violation, and power flow constraint 

violation. These take the form of transfer rate-based objective functions [23], and can be 

represented generically as  

 ( )
0

1

( , )
f

N

j
t

j

j

t

J w tz dt
=

=   , (4.8) 

where J  is the value of the objective function, , )(jz t   is the instantaneous value of the relevant 

quantity to be minimized, N  is the total number of elements of z  at any time instance, and 
jw  is 

a weighting term quantifying the importance of the 
thj  element of z  relative to the other elements. 

The quantity to be minimized, ( , ),jz t   varies depending on the particular objective. For example, 

if the objective is to minimize state tracking error then ( , )jz t   can be defined as 

2

, 2
( , ) ( , )j ref jx t x t − , where ( , )jx t   is the instantaneous value of the 

thj  state and 
, ( , )ref jx t   is 

the instantaneous value of the reference for the 
thj  state. In this case, J  is a weighted sum of N  

integrated state tracking error terms.  

Objective functions are not limited to the form of (4.8). In some cases, the objectives may 

exhibit no dependence on the trajectories of the system. This is true, for example, when the design 

variables are sizing variables and the objective is to minimize size of the system, in which case the 

objective ( )J J =  may be a function of only the design variables  . Additionally, individual 

objectives can be combined to form an aggregated objective function in order to solve an 

optimization problem with multiple objectives. This can be accomplished using the weighted sum 

method [76], for example, by defining the total objective function  

 
1 1total N NJw wJ J++=  (4.9) 
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as a weighted sum of the individual objective functions 
1, , NJ J  with weights 

1, , Nw w , distinct 

from the weighting terms in (4.8).  

4.1.3 Define the Design Constraints 

In the third step of the framework, constraints are defined for the admissible values of the 

design variables. These constraints can be defined by the design engineer to enforce any problem-

specific limitations to which the design variables are subjected, or to conservatively limit the 

design space for the sake of feasibility or computation time. Design constraints are defined as  

     , (4.10) 

 )( 0g   , (4.11) 

where   and   are the minimum and maximum admissible values of the design variables 

respectively, and )(g   defines any nonlinear constraints [23].  

4.1.4 Formulate and Solve the Optimization Problem 

The final step in the framework is to formulate and solve the optimization problem. The 

optimization problem can be set up, using results from the preceding framework steps, as  

 min ( )totalJ


  (4.12) 

subject to the constraints (4.10) and (4.11), in addition to the constraints on system trajectories and 

model elements introduced in 4.1.1.  

 The process of solving (4.12) is not straightforward due to the dependence of the objective 

function on dynamic simulations, which may be nonlinear, complex functions of the design 

variables. One solution strategy utilizes the shooting method [77]. For the graph-based methods 

considered herein, the shooting method consists of generating an augmented graph-based model 

for the current set of design variable values, then simulating the model under these conditions, and 
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finally using the simulation results to calculate the objective function. Direct transcription [78] is 

another potential solution method for optimization problems with optimal control formulations.  

4.2 HESS Design and Control Optimization 

To demonstrate the application of this optimization framework, the sizing and control 

parameters of the HES, TES, and HETES systems will each be optimized, starting with 

optimization of the HESS sizing and control parameters. HESS sizing is determined by the number 

of battery cells in series and parallel and the number of ultracapacitor cells in series and parallel. 

As is the norm for battery system sizing, the number of battery cells in series is chosen such that 

the voltage of the battery pack is near the desired bus voltage. Thus the sizing design variables in 

this study are  

 , , , }{ , ,E

p batt s UC p UCN N N = , (4.13) 

where ,p battN  is the number of parallel battery cells, and , ,,s UC p UCN N  are the numbers of series and 

parallel ultracapacitor cells respectively. Note the superscript E  is used to indicate that E  

corresponds to sizing variables in the electrical subsystem. By nature, these variables must take on 

integer values. However, since they are allowed to vary over a wide range of values, these variables 

are treated as continuously variable in this study. HESS performance is dependent upon these 

sizing variables as well as the controllers and their corresponding gains, which are each modified 

with a set of continuous scaling variables, denoted as E . The goal of this optimization will be to 

minimize sizing of the HESS while maximizing its performance, in terms of reference tracking 

and safe operation of the battery. In this section, we proceed through the steps of the framework 

introduced in the preceding section for this particular optimization problem. The methods, results, 

and analysis presented here were introduced in [75] and are repeated here for completeness. 
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4.2.1 Graph-Based HESS Model Augmentation 

In the HESS, sizing variables 
E  impact vertex capacitances, edge values, and initial 

conditions, so design matrices will be created for each of these elements. The nonlinear functions 

jg  in (2.3) are independent of the HESS design variables so design operators are not necessary 

for this system. We will now build up the design matrices corresponding to each of the graph 

elements, starting with the vertex capacitances. In 2.3.1, it was shown that several of the battery 

vertex capacitances are dependent on the design variables. In particular, capacitances Q , 1C , 
2C , 

cC , and 
sC , corresponding to vertices 1q , 2V , 3V , 4T , and 5T  respectively in the full HESS model, 

are dependent on the number of parallel battery cells according to the following relation 

 ,' p battCC N= . (4.14) 

Thus, in the design matrix 
c , the corresponding functions ,1( )E

c  , ,2 ( )E

c  , ,3( )E

c  , 

,4 ( )E

c  , and ,5 ( )E

c   are defined such that  

 , 1 ,( ) ,5, 1,E E

c i p battN i     =  = = . (4.15) 

With the ultracapacitor pack modeled as an ideal capacitor, its capacitance scales with the design 

variables as , ,/' p UC s UCC NC N= . Hence the function corresponding to the ultracapacitor voltage 

vertex 12V  is given by  

 ,12 3 2 , ,( ) / /E E E

c p UC s UCNN    == . (4.16) 

In the HESS, these are the only capacitances that are dependent on the design variables, so the 

remaining functions , ( )E

c i   are simply set to unity.  

The   design matrix, corresponding to scaling of power flows, will now be built. In the 

battery pack, edges 4e , 5e , and 6e  represent resistive losses, and 7e  represents a thermal transfer 
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with an associated thermal resistance. As discussed in 2.3.1, these resistance parameters are 

inversely proportional to the number of parallel battery cells.  The power flow corresponding to 

4e , whose tail vertex is the current vertex 
10I , is given by 

2

10 sI R , while the power flows 

corresponding to 
5 6,e e  are given by 

2

2 1/V R  and 
2

3 2/V R  respectively. The power flow of 7e  is 

defined as 4 5( ) / cTT R− . It follows that the scaling of the power flow corresponding to 4e  is 

inversely proportional to the number of parallel battery cells, while the scaling relationships of the 

power flows corresponding to 5e , 6e , and 7e  are directly proportional to the number of parallel 

battery cells. The corresponding entries of the design matrix   are thus given by  

 4 1 ,( ) 1/1/E E

p battN   == , (4.17) 

 1 , , 5, 7( ) 6,E E

i p batt iN  = =    = . (4.18) 

For the ultracapacitor, the resistive loss 22e  with tail vertex 
13I  is proportional to the corresponding 

resistance, which scales with the design variables as , ,/' s UC p UCR NR N= . The corresponding entry 

of the design matrix   is given by  

 22 2 3 , ,) / /( E E E

s UC p UCN N   = = . (4.19) 

The power flows given by (4.17)-(4.19) are the only ones dependent on the design 

variables, so the remaining entries ( )E

i   are set to unity. There are no source flows in the HESS, 

so the s  design matrix is the identity matrix.  

The design matrix pertaining to initial conditions (4.6) is now specified. The ultracapacitor 

voltage 12V  is the only vertex whose initial condition is dependent on the design variables. To 

maximize its capability as an energy source, the ultracapacitor voltage is initialized near its 
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maximum voltage. The terminal voltage of the pack scales proportionally with the number of series 

ultracapacitor cells, so the entry of 
0  corresponding to this voltage vertex is given by  

 0,12 2 ,( )E E

s UCN  = = , (4.20) 

and as this is the only design-variable-dependent initial condition, all other elements 0, ( )E

i   of 

0  are set to unity.  

 Lastly, we define design matrices for other elements of the model that are dependent on 

design variables but not explicitly shown in the graph-based representation (4.1). One such 

element, arising from the objective of safe battery operation, is a constraint on the magnitude of 

power drawn from each cell of the battery pack. To prevent cell degradation due to high discharge 

rates, a power constraint 'maxP  is defined on the battery power flow (edge 26e ) such that 

 , ,'max max s batt p battP N NP = , (4.21) 

where maxP  is the maximum power rating of an individual cell. A power constraint design matrix

1 )H ( ( )E

idiag  =  is created to reflect this dependence on the design variables. Since ,s battN  is held 

fixed in this study, the entry in 1H  corresponding to edge 26e  is given by 126 ,( )E E

p battN   == . 

This is the only maximum power constraint that is dependent on the design variables, so the 

remaining entries of this design matrix are unity. A second design matrix 2H  for the minimum 

battery power constraint is defined analogously.  

In addition to the sizing variables E , the controller gains in this study will be optimized 

to maximize performance. To do so, we introduce gain scaling variables  

 
1 1 2 2{ }E E E E E    =  (4.22) 

such that 
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 (4.23) 

where 1 1 2, , ,E E E

p i pK K K  and 
2

E

iK  are the nominal values of the controller gains given in 3.1.3. 

The translation of (4.23) to a design matrix form is straightforward.  

4.2.2 HESS Objective Function Definition 

The optimization objectives for the HESS are to minimize sizing of the energy storage 

elements and to maximize the system’s performance. The sizing objective is taken as the mass of 

the energy storage elements, given by  

 , , , ,

E

size batt p batt s batt UC p UC s UCJ m N N N Nm+= , (4.24) 

 where 0.132kgbattm =  and 0.023kgUCm =  are the masses of individual battery and ultracapacitor 

cells respectively.  

The performance objective takes into account the performance of the HESS controller as 

well as safe operation of the battery pack in terms of its adherence to the maximum power 

constraint described in 4.2.1. Note that, though the heuristic PI control strategy is not capable of 

explicitly considering constraints on the system, constraining the maximum battery power flow is 

crucial to ensure safe operation, so this constraint (4.21) is indirectly enforced with an added term 

in the optimization objective function. HESS performance is maximized by minimizing deviations 

from ideal performance. These deviations are quantified by bus voltage tracking error, battery 

power tracking error, and violations of the maximum battery power constraint. At a time instant 

,t  deviations in performance are given by  

 
22 2

1 2 1 3) ( )( ) ( ( ) ( ) ( )
battperf bus ref DCDC filt PE t w t V t w t P sV t wP t+ += − −  (4.25) 
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where 1w , 
2w , and 

3w  are weightings on each of the terms and 
battPs  is a nonnegative slack variable 

corresponding to violation of the battery maximum power constraint. These weightings are tuned 

such that all terms in (4.25) are nearly equal in magnitude. The slack variable is given by  

 
battbatt max PP P s + . (4.26) 

The total performance objective for a given simulation is obtained by integrating the 

instantaneous performance deviations throughout the simulation as follows 

 
0

( )
finalt

E

perf perfJ E t dt=  , (4.27) 

where finalt  is the final time of the simulation.  

The overall optimization objective of the HESS combines the sizing and performance 

objectives. Minimization of size and maximization of performance, however, are competing 

objectives; reducing the size of the HESS inevitably leads to poor reference tracking and increases 

the risk of the battery pack violating its maximum power constraint. Thus in this work the design 

and control optimization is formulated as a multi-objective problem, which is analyzed using an 

aggregate objective function. This objective function is defined using the weighted sum method as 

 
E E E

total perf perf size sizeJ w J w J= + , (4.28) 

where perfw  and 
sizew  are weighting terms which quantify the relative importance of the 

performance and sizing objectives respectively.  

4.2.3 Definition of HESS Design Constraints 

Upper and lower bounds are defined for the sizing variables 
E  and control variables E . 

In this study, the lower bound on ,s UCN  corresponds to the minimum number of ultracapacitor 

cells required to reach the bus voltage reference. The lower bounds on ,p battN  and ,p UCN  
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correspond to the minimum number of cells of each component needed to fulfill the load 

requirement without becoming fully depleted. The upper bounds on the sizing variables can then 

be chosen such that the total size of the HESS remains below some desired value. In this study the 

upper bounds were selected liberally to allow the optimizer more freedom in selecting values for 

the design variables.  

Determination of bounds for the controller gain scaling variables E  is ultimately up to the 

designer. These bounds can be chosen, for example, to ensure the closed loop system remains 

within admissible ranges for response time or amount of overshoot. In this work the nominal 

controller gains were tuned to achieve good performance (bus voltage deviations less than 1V), 

and the gain scaling variable bounds were chosen such that the controller gains could be increased 

or decreased by up to a factor of 10 to improve performance and maintain stability.   

4.2.4 Formulation and Solution of the HESS Optimization Problem 

The dependence of the objective function on closed-loop simulation results motivates the 

use of the shooting method to solve this optimization problem. As described previously, the 

shooting method consists of performing a dynamic simulation of the augmented graph-based 

model in closed loop for each set of design variables and then using these simulation results to 

calculate the objective function. Particularly, in this study the optimization problem is formulated 

such that the augmented graph-based model is simulated in MATLAB using ode23t under the load 

profile and control strategy shown in Figure 3.4. The closed-loop simulation results are used to 

calculate the objective function (4.28) for a given set of weightings perfw  and sizew . Stability of the 

optimization problem is ensured by setting the objective function to a large value for designs that 

result in simulation failure or unacceptable performance. Gradient-based algorithms are ill-suited 

to solve the nonconvex objective function (4.28), so a genetic algorithm (GA) is used to reduce 
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the likelihood of convergence to a local minimum. For the results presented in this section, the GA 

in the MATLAB optimization toolbox was used with a population size of 50 and function tolerance 

of 10-5. The computational efficiency of the graph-based modeling framework allowed for 

simulations to run 60 times faster than real time, keeping the solution time relatively low for the 

optimization study. 

Figure 4.1 and Figure 4.2 illustrate the improvements in HESS performance and sizing 

obtained using the design and control optimization framework for the optimization problem 

corresponding to 0.57perfw =  and 0.43sizew = [75]. These figures compare the best design from the 

initial generation evaluated by the GA to the optimized design from the final generation. The 

results in Figure 4.1 compare the final (optimal) and initial designs in terms of dynamic responses 

of the bus voltage and battery power as well as values of the design variables. The final design is 

shown to outperform the initial design in terms of voltage reference tracking, while exhibiting 

significant reductions in the number of ultracapacitor cells and achieving similar performance in 

battery power reference tracking. The sizing improvement between the initial and final designs is 

illustrated in Figure 4.2. By reducing the number of ultracapacitor cells, the mass and volume of 

the final design are significantly reduced compared to the initial design.  See the appendix for 

magnified views of the top two subplots of Figure 4.1. 

To examine the relationships between the sizing and performance objectives, a series of 

individual optimization problems are obtained by varying the relative magnitudes of weightings 

perfw  and sizew  on the performance and sizing objectives respectively. To cover a wide range of 

weighting combinations, these weightings are varied by varying perfw  between 0 and 1 and setting 

1size perfww = − .  Solving each of these optimization problems yields a set of Pareto optimal designs. 

The optimal designs obtained in this study are shown in Figure 4.3 with the Pareto frontier shown 
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in gray. The performance objective is normalized to its maximum value on the Pareto frontier. The 

color of points in Figure 4.3 corresponds to the relative magnitudes of perfw  and sizew , where dark 

blue points correspond to high sizew  and light blue points correspond to high perfw . The starred 

point in Figure 4.3 corresponds to the results shown previously in Figure 4.1 and Figure 4.2. From 

this Pareto frontier, it is observed that sizing reductions can be made with minimal degradation in 

performance in the range from 550kg to 250kg, but further reducing the size below 250kg can lead 

to undesirable performance.  

 

Figure 4.1: Comparison of initial and final HESS designs. 
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Figure 4.2: Comparison of initial and final HESS sizing metrics. 

 

 

Figure 4.3: Sizing and performance tradeoff for HESS. 
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In the results shown above, the sizing and control parameters are simultaneously optimized 

to improve characteristics of the overall system. We now examine the effectiveness of including 

the control parameters in the optimization by comparing the results shown above to a benchmark 

study performing sizing optimization only. The benchmark study varied only the sizing variables 

, , ,, , }{E

p batt s UC p UCN NN =  while holding the control gains constant at the nominal values given in 

Table 2.1. A set of Pareto-optimal designs was obtained for the sizing-only benchmark study by 

varying the weights on the sizing and performance objectives, as was done for the sizing and 

control optimization study. A comparison in Figure 4.4 of these results with the results obtained 

by the sizing and control optimization study shows a dramatic improvement in performance when 

the controller parameters are adjusted by the optimizer. This dramatic improvement underscores 

the importance of incorporating control strategies and control parameters in the design process.  

 

Figure 4.4: Performance improvement by including control parameters in HESS optimization. 
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4.3  TESS Design and Control Optimization  

In this section, the design and control parameters of the TESS are optimized. Assuming the 

coolant loop components are fixed, the sizing parameters to be optimized are the parameters of the 

TES modules. In this work, we focus on paraffin waxes for PCM thermal energy storage due to 

their high latent heat capacity and wide selection of melt temperature [79]. While the mass of these 

paraffin wax TES modules can be varied continuously, the melt temperature variation is restricted 

to the discrete set of melting temperatures of commercially available waxes. However, the 

distribution of melt temperatures of commercially available waxes is nearly continuous in the 

range between 30°C and 80°C  [80], [81]. For this reason, PCM melt temperatures are treated as 

continuously variable in this study, similarly to the treatment of battery and ultracapacitor cells in 

Section 4.2. Thus the continuous sizing variables of the TESS are  

 
1 ,1 2 ,2, , , }{T

m mT m Tm =  (4.29) 

where im  is the mass of the thi  TES module and ,m iT  is its melt temperature. Note the superscript 

T  is used to indicate that T  corresponds to thermal sizing variables. As with the HESS, the 

performance of the TESS is dependent on its controllers, so the control gains are also treated as 

design variables in this study.  These will be modified with a set of scaling variables which will be 

denoted as 
T . Paralleling the objectives of the HESS optimization, the TESS optimization 

objectives will be to minimize the mass of the TES modules while maximizing performance of the 

TES system. Minimization of the performance objective aims to maintain safe operation by 

adhering to state constraints and to minimize pump energy consumption. In this section, we 

proceed through the steps of the framework introduced in section 4.1 for this optimization problem. 
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4.3.1 Graph-Based TESS Model Augmentation 

To augment the graph-based TESS model, we first note that the parameters of all coolant 

loop components are being held constant, so the TES module models are the only portions of the 

graph model affected by modifying the sizing variables T . Referring to section 2.3.5, it can be 

noted that the PCM mass and melt temperature impact the TES module graph model only through 

the nonlinear edge map given by (2.40). As a result, the design matrices c ,  , s , and 0  

considered in (4.1)-(4.6) are all identity matrices of the appropriate dimensions. However, design 

operators must be defined for the nonlinear edge maps of the TES module graph model.  These 

nonlinear edge maps correspond to edges 5e  and 6e  in the TESS graph (see Figure 2.17).  For a 

given set of design variables T , these edge maps are given by the following piecewise linear 

functions. For clarity, the functions below are given in terms of the head and tail states 

corresponding to each edge as defined in Figure 2.17.  

 ( )

0,1 8 8 ,1

,1 ,1 8 ,1

,1 8 1

1

7 8 ,

7

,1

5 8 7 5 8 7 7 1

,1

1 1 1

,1 1

if 

, ) , ) i

1 1
,

1
( ( , ,

1 1
( )

f 

if ,

u

T

u

u

c

m c c

m c c

T E T E E
R C

g E E T T E E E L
R

T E E L T E E L
R

T

C

T 

  
 + −  
  



= −   +



 
 + − − −  + 

 

=



 (4.30) 

( )

0,2 10 10 ,2

,

2

2 ,2 10 ,2

,2 10 ,2

9

,2 2

6 10 9 6 10 9 9

0

2

,2

9 1 ,22 2

, 2

1 1
,if 

, ) , ) if
1

( ( , ,

1 1
( ) ,

 

if 

u

c

m c c

m c

u

u

c

T

T E T E E
R C

g E E T T E E E L
R

T E L

T

E T E E L
R C

T 

  
 + −  
  



= −   +



 
 + − − −  + 


=

 

 (4.31) 



84 

 

In these equations, subscripts 1 and 2 are used to denote properties of TES1 and TES2 respectively. 

For the thi  TES module, ,u iR  is the thermal resistance, 0,iT  is the temperature at which the PCM 

energy is initialized, iC  is the sensible heat capacity, 
,c iE  is the “critical energy”, and iL  is the 

latent heat capacity. The dependence of (4.30) and (4.31) on the design variables emerges from its 

direct dependence on design variables ,1mT  and ,2mT  as well as from these parameters. As noted in 

section 2.3.5, the sensible heat capacity depends on the PCM mass as i i iC m c= , and the latent heat 

capacity depends on the PCM mass as i i iL m l= . Additionally, from Figure 2.11 it can be seen that 

the critical energy depends on both the mass and melt temperature as , 0,

,

m i i

c i

i

T T
E

C

−
= . So, for a 

given set of design variables 
1 ,1 2 ,2, , , }{T

m mT m Tm = , the design operators 5  and 6  each generate 

a nonlinear mapping according to (4.30) and (4.31), and these nonlinear maps are used to calculate 

the values of 5g  and 6g  for instantaneous values of 8E , 10E , 7T , and 10T . Since (4.30) and (4.31) 

are piecewise linear, they can be implemented as 2-D lookup maps of the corresponding state 

variables.  

 Next we define design matrices for other elements of the model that are dependent on 

design variables, but not explicitly included in the graph model formulation. Two such elements 

are the reference signals for the TESS controllers. Recalling Section 3.2.1, the PI controllers 

dictating the pump duty cycle use a temperature reference which is set to 10°C below the melt 

temperature of the respective PCM. The temperature references correspond to fluid temperatures 

of cold plates 1 and 2, which are defined as the sixth and fifth states ( 6T  and 5T ) respectively in 

Figure 2.17. A design matrix 1 )H ( ( )T

idiag  =  is introduced to reflect the dependence of the state 

references on the design variables. We define a vector of nominal state references as 
refx , denoting 
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the thi  component as 
,irefx . In the TESS, only the references for states 6T  and 5T  are used, so the 

remaining components of 
refx  can be defined arbitrarily. Doing so, the entries of the design matrix 

1H  corresponding to cold plate fluid temperatures are given by  

 
6 2 ,6

5 4 ,5

10

1

( ) ( ) /

( ) ( ) /0

T T

ref

T T

ref

x

x

  
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= −

= −
 (4.32) 

where 2

T  and 4

T  are the melt temperatures of PCMs 1 and 2 respectively, and 
,irefx  is the value 

of the corresponding controller reference for the nominal system described in 3.2.3. The remaining 

entries of the design matrix 1H  will not affect the system, so they are set to unity. The vector of 

augmented controller references is then given by  

 
1Href refxx = . (4.33) 

The TESS controller gains, in addition to the sizing variables T , will be optimized to 

maximize performance. To do so, we again introduce gain scaling variables  

 
1 1 2 2{ }T T T T T    =  (4.34) 

such that 
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 (4.35) 

where 1 1 2, , ,T T T

p i pK K K  and 
2

T

iK  are the nominal values of the controller gains given in 3.2.3. 

These scaling relationships can readily be translated to a design matrix form. 

4.3.2 TESS Objective Function Definition 

 Similar to the objectives of the HESS optimization study, the objectives of the TESS 

optimization study are to minimize mass of the TES modules and maximize their performance. 
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Since the masses of the TES modules are design variables, the sizing objective (mass of TES 

modules) is simply given by  

 
1 2

T

sizeJ m m+= . (4.36) 

 The performance objective takes into account the performance of the TESS controller, safe 

operation of the TESS in terms of adherence to constraints on state variables, and pump energy 

consumption. The controller performance subobjective should quantify how well the cold plate 

fluid temperatures track their references. However, there should be no penalty in controller 

performance when these temperatures remain below their reference temperatures because it is 

preferable for system temperatures to remain low. For this reason, the controller performance 

subobjective is defined to quantify deviations from ideal controller performance by measuring how 

much the cold plate fluid temperatures exceed their references. This effectively turns the controller 

performance subobjective into a measure of constraint violation for states 6T  and 5T , where the 

constraints for these states are the state references given by (4.33). In addition to these temperature 

constraints, a maximum temperature constraint of 80°C is applied to other temperatures in the 

system to ensure the TESS can effectively cool electronic equipment. Because it is undesirable to 

allow the PCM to fully melt and overheat, the TES modules are also constrained by applying SOC 

constraints. The states of charge of the TES modules are not states in the TES system, so SOC 

constraint violation must be calculated by first applying (2.41) to calculate the SOC of each TES 

module as a function of the PCM stored energy states, 8E  and 10E . The final contribution to the 

performance objective is pump power consumption, which is included as a performance 

subobjective to penalize designs which cause the pump to use excessively large amounts of power. 

Note that in order to improve simulation speed, a nonzero minimum mass flow rate is enforced in 

the hydraulic model, so each design will incur a small but nonzero amount of pump energy 
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consumption. Modeling of the pump hydraulic dynamics falls outside the scope of the thesis, but 

the reader is referred to [82] for a discussion on the calculation of pump energy consumption. 

Constraint violation and pump energy constitute deviations from ideal TESS performance, so these 

terms are aggregated into the following measure of instantaneous deviations from ideal 

performance    

 2

1 2( ) ( ) ( )perf Q pumpt wE s wt tP+= ‖ ‖ , (4.37) 

where ( )s t  is a vector of slack variables corresponding to state constraint violations at time t , 

( )pumpP t  is the instantaneous amount of pump power consumption, Q  is a positive definite diagonal 

matrix used to scale the relative magnitude of state constraint violations, and 1w  and 2w  are 

weighting terms on the constraint violation and pump power consumption subobjectives 

respectively. Note that (4.37) employs the  notation 2 T

Ax Axx=‖ ‖ . The aggregate performance 

objective is obtained by integrating (4.37) over the course of the simulation as follows 

 
0

( )
finalt

T

perf perfJ t dtE=  , (4.38) 

where 
finalt  is the final time of the simulation.  

The overall optimization objective of the TESS combines the competing sizing and 

performance objectives. This is accomplished, as with the HESS, using the weighted sum method, 

resulting in the following total objective function 

 T T T

total perf perf size sizeJ w J w J= +  (4.39) 

where, as before, perfw  and sizew  quantify the relative importance of the performance and sizing 

objectives respectively in the total objective function. 
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4.3.3 Definition of TESS Design Constraints 

The next step is to define upper and lower bounds for the design variables. Bounds on the 

sizing design variables 1 ,1 2 ,2, }{ , ,T

m mmm T T =  are chosen by considering physical constraints on the 

desired vehicle platform and the selected phase change materials. The lower bounds of PCM 

masses 1m  and 2m  are both set to 0.25kg. To limit the mass of the thermal management system, 

the upper bounds of these masses are both set to 50kg. As mentioned at the start of section 4.3, the 

melt temperatures of commercially available paraffin waxes vary within the range from 30°C to 

80°C. Hence, to ensure that each TES module design could be made from commercially available 

products, the lower and upper bounds for the PCM melt temperatures ,1mT  and ,2mT  are set to 30°C 

and 80°C respectively. The upper and lower bounds for the TESS sizing design variables are thus 

given by 

 

1

2

3

4

0.25kg 50kg

30 C 80 C

0.25kg 50kg

30 C 80 C.

T

T

T

T









 

   

 

   

 (4.40) 

The control gain scaling variables 
1 1 2 2, , , }{T T T T T    =  are bounded such that the 

controller gains can be scaled up or down by a factor of 10. Since the nominal gains given in 3.2.3 

are tuned to achieve good performance for the nominal system, this allows the optimizer to 

conservatively vary the control gains to improve performance while retaining stability.  

4.3.4 Formulation and Solution of the TESS Optimization Problem 

 The final step in the TESS optimization study is to formulate and solve the optimization 

problem, which is accomplished using the shooting method. The augmented TESS graph-based 

model is simulated in Simulink using the ode23tb solver under the thermal load shown in Figure 

3.6. The resulting closed-loop simulation results are used to calculate the objective function (4.39) 



89 

 

for a given set of weightings 
perfw  and 

sizew . The objective function is set to infinity for designs 

which yield undesirable performance or cause the solver to fail. The genetic algorithm in 

MATLAB’s optimization toolbox is used to perform the optimization with a population size of 50 

and function tolerance of 45 10− . The computationally efficient graph-based model typically 

simulates around 90 times faster than real time, enabling the genetic algorithm to explore a large 

design space and arrive at an optimal solution in a reasonable amount of time.  

 Figure 4.5 and Figure 4.6 show the changes in the TESS sizing and performance resulting 

from implementing the graph-based optimization framework for the optimization problem 

corresponding to 0.52perfw =  and 0.48sizew = .   These figures compare the best design from the 

initial generation evaluated by the genetic algorithm to the optimized design from the final 

generation. The upper plot in Figure 4.5 shows the heat loads applied to the two TES modules, and 

the remaining plots in this figure show the cold plate fluid temperatures and PCM states of charge. 

For both the initial and final design, the cold plate fluid temperatures are observed to reach without 

exceeding their reference values, indicating satisfactory controller performance. The reference 

temperatures change significantly from the initial to the final design; the CP1 reference 

temperature increases from 49°C to 70°C, and the CP2 reference temperature increases from 51°C 

to 70°C. Additionally, the trajectories of the PCM states of charge show significant changes from 

initial to final design. In TES1, the PCM heats and subsequently melts very slowly in the initial 

design such that the PCM doesn’t fully melt by the end of the simulation. In the final design, the 

PCM in TES1 melts and heats at a faster rate, fully melts 22 minutes into the simulation, and 

remains fully melted for the remainder of the simulation.  In TES2, the PCM heats and melts very 

quickly for both the initial and final designs, with the final design showing the faster rate of heating 

and melting. Figure 4.6 shows the values of the sizing and performance objectives, as well as the 
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design variables, for the initial and final designs. From this figure, it can be seen that the sizing 

objective is significantly reduced between the initial and final designs, which is accomplished by 

a dramatic reduction in TES1 mass and a slight reduction in TES2 mass. These mass reductions 

explain the high rate of PCM melting, heating, and cooling for the final design. Comparing the 

initial and final performance subobjectives in Figure 4.6, it can be seen that the final design exhibits 

more constraint violation than the initial. This increase is attributed to the SOC of TES1 falling 

below its lower limit of 0.1, as shown in Figure 4.5. Finally, we note that the PCM melt 

temperatures converge to their upper limit of 80°C. Because of this, the cold plate fluid reference 

temperatures are higher, so the pump does not have to expend much energy cooling the cold plates. 

Additionally, if melt temperatures were lower, more constraint violation would be seen in the final 

design, as the PCM would begin melting sooner. See the appendix for magnified views of each of 

the subplots of Figure 4.5. 

A multi-objective optimization study is performed by systematically varying the sizing and 

performance weightings, sizew  and perfw , such that 10 perfw   and 1size perfw w= − . Solving each of 

this series of optimization problems yields a set of Pareto-optimal designs. The optimal designs 

obtained in this study are shown in Figure 4.7 with the Pareto frontier shown in gray and the starred 

point corresponding to the results shown in Figure 4.5 and Figure 4.6. The performance objective 

is normalized to its maximum value on the Pareto frontier. Following the convention of Figure 4.3, 

the color of points in Figure 4.7 corresponds to the relative magnitudes of perf
w  and sizew , where 

dark blue points correspond to high sizew  and light blue points correspond to high perf
w . From this 

figure, it can be seen that the total PCM mass can be reduced to around 5kg, but further decreases 

in PCM mass lead to large deviations from ideal performance. On the other hand, TESS 

performance can be improved considerably by increasing PCM mass, but increasing the PCM mass 
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beyond 20kg yields little improvement in performance. The ability to generate tradeoff curves such 

as Figure 4.3 and Figure 4.7 highlights the utility of the graph-based framework as a tool to perform 

multi-objective optimization for a variety of engineering systems. In the following section, we will 

show the aptitude of the framework to handle multidisciplinary optimization problems by applying 

the framework to optimize the combined electro-thermal system described in 2.4.3.  

 

Figure 4.5: Comparison of selected trajectories of initial and final TESS designs. 
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Figure 4.6: Comparison of objectives of initial and final TESS designs. 
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Figure 4.7: Sizing and performance tradeoff for TESS. 

 

4.4 Hybrid Electro-Thermal Energy Storage System 

As a final demonstration of the application of the design optimization framework, the 

sizing and control parameters of the HETESS will be optimized. Sizing of energy storage elements 

in the HETESS is determined by the combination of sizing variables E  for the HESS and T  for 

the TESS.  As mentioned in 2.4.3, the TESS is modified in this system through the addition of a 

third TES module. With this addition, the sizing variables that define the HETESS are given by  

  , , , 1 ,1 2 ,2 3 ,3p batt s UC p UC m m mN N N m T m T m T = , (4.41) 

where the first seven terms are the elements of E  and T  as described in the preceding sections, 

3m  is the mass of PCM in the third TES module, and ,3mT  is the melt temperature of PCM in the 
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third TES module. In accordance with their treatment in the previous sections, all sizing variables 

are treated as continuously variable. Controller gains in the HETESS are modified using gain 

scaling variables  E T  = , which are also treated as continuously variable. The goals of this 

optimization study will combine the goals of the HESS and TESS optimization studies: minimizing 

size of the electro-thermal system while maximizing performance. These sizing and performance 

objectives will combine the sizing and performance objectives of the HESS and TESS optimization 

studies. Much of the setup for HETESS optimization is repeated from the HESS and TESS 

optimization studies, but the modifications made in 2.4.3 to build the HETESS necessitate 

modifications to the implementation of the design optimization framework from these subsystem 

optimization studies. For this reason, we will proceed once more through the steps of the 

framework to specify the optimization methodology for the electro-thermal system.   

4.4.1 Graph-Based HETESS Model Augmentation  

To augment the graph-based HETESS model, we begin by defining design matrices as in 

(4.1), starting with the design matrix 
c  corresponding to vertex capacitances.  Since the battery 

model used for the HETESS is unchanged from the model used for the TESS, the battery 

capacitances Q , 1C , 2C , cC , and sC , corresponding to vertices 1q , 2V , 3V , 4T , and 5T  in the 

HETESS graph, will once more be given by (4.14). The corresponding entries in the capacitance 

design matrix are defined such that  

 
, 1 , , 1,( ) ,5c i p battN i     == =  . (4.42) 

The HETESS model considered for this study uses the third-order ultracapacitor model described 

in 2.3.2, with capacitances , ,i DC C  and LC  dependent on the number of parallel ultracapacitor 
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cells according to ,' p UCC N C= . The corresponding entries in the capacitance design matrix are 

given by  

 , 3 ,( ) 33,34,35,c i p UCN i     ===  .  (4.43) 

Finally, the thermal capacitance cC  of the ultracapacitor pack is given by 
, ,'c s UC p UC cN NC C= , so 

the corresponding entry in the capacitance design matrix is given by  

 ,20 2 3 , ,( )c s UC p UCN N   = = . (4.44) 

The remaining capacitances are independent of the design variables, so the remaining entries in 

c  are set to unity.  

 We next define the design matrix   corresponding to power flows. Since the battery 

model is unchanged from the model used for the HESS, the elements of   corresponding to 

resistive losses in the battery are once more given by (4.17) and (4.18). On the other hand, the 

third-order ultracapacitor model includes additional losses not accounted for in the first-order 

model used previously. These losses, represented by edges 
8 9 10, , ,e e e  and 

11e  in Figure 2.8, are each 

given by 2I R  in terms of the respective tail states , , ,i D LI I I  and 
leakI , and resistance parameters 

,, ,i D LR R R  and 
leakR . These resistance parameters are dependent upon the design variables as 

, , , , , , ,' /i D L leak i D L leak p UCR R N= , so the corresponding entries of the power flow design matrix are given 

by  

 3 ,1( ) 1/ /i p UCN   == . (4.45) 

Additionally, edge 
13e   in Figure 2.8 representing heat transfer between the ultracapacitor pack and 

TES module is given by ( )1 /PCMT T R− , with the resistance parameter given by 
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, , )' / (c c s UC p UCR R N N= . The corresponding element of the power flow design matrix is then given 

by  

 2 3 , ,( )i s UC p UCN N   = = . (4.46) 

Finally, recall that the modifications discussed at the end of section 2.3.2 give the voltage and 

temperature dynamics of cells within the pack. The edge 
12e  shown in Figure 2.8, however, should 

give the total power provided by the ultracapacitor pack, which is given in terms of the pack 

terminal voltage and current draw as 
1TV I . The terminal voltage is given by 

, 1T s UCV N V= , so the 

entry in the power flow design matrix corresponding to this edge is defined as  

 
2 ,

( )
i s UC

N  = = . (4.47) 

These are the only power flows in the HETESS model that have a design matrix representation, so 

the remaining elements of   are set to unity.  

There are no source flows in the HETESS model, so the s  design matrix is the identity 

matrix. Additionally, the third-order ultracapacitor model directly quantifies the pack terminal 

voltage as a function of the cell voltages and the number of series ultracapacitor cells, so the 

dependence of the initial ultracapacitor pack voltage on the design variables is already accounted 

for. Thus for the HETESS model the 
0  matrix is also set to unity.  

The next step towards augmentation of the HETESS graph-based model is the development 

of design operators to modify nonlinear edge maps based on the values of the design variables. 

This step is only necessary for edges having a PCM energy state as either their tail or head vertex, 

since the nonlinear edge maps describing PCM heat transfer are the only edge maps dependent on 

design variables. Referring to Figure 2.18, there are eight of these edges: two edges directed 

into/one edge out of state 
26E  representing heat loads to/from TES1, two edges directed into/one 
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edge out of state 
25E  representing heat loads to/from TES3, and one edge directed into/one edge 

directed out of state 
27E  representing heat loads to/from TES2.  A design operator is defined for 

each of these edges with the same form as (4.30) and (4.31), parameterized appropriately in terms 

of the corresponding TES module parameters.  

 With design matrices and operators defined for the main elements of the graph model, we 

proceed to define design matrices for other elements of the model. This includes the design 

matrices modifying battery power constraints and temperature references for the controllers in the 

TES subsystem. These design matrices are constructed exactly as before in sections 4.2.1 and 

4.3.1, albeit with additional ones on the diagonals accounting for the additional states introduced 

by integrating the HES and TES subsystems.   

 Lastly, the controller gain scaling variables will be used to modify the nominal values of 

the controller gains. For the HETESS, the set of gain scaling variables is obtained by concatenating 

the gain scaling variables for the two subsystems as  

    1 1 2 2 1 1 2 2

E T E E E E T T T T          = = . (4.48) 

These gain scaling variables modify the nominal controller gains according to (4.23) and (4.35) in 

the same way as before, and these modifications can be readily translated into a design matrix 

form.  

4.4.2 HETESS Objective Function Definition 

The objectives of HETESS optimization are to minimize size and maximize performance 

of the closed-loop system. The sizing objective is taken as the total mass of the electrical and 

thermal energy storage elements, given by  

 , , , , 1 2 3

E T

size size size batt p batt s batt UC p UC s UCJ m N N NJ N m mJ m m= = ++ ++ + . (4.49) 
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The performance objective of the HETESS combines the state reference tracking, power reference 

tracking, and power constraint violation subobjectives of the HESS optimization study with the 

state constraint violation and pump energy subobjectives of the TESS optimization study. The total 

performance objective is obtained as a weighted sum of the performance objectives (4.27) and 

(4.38) of the HESS and TESS optimization studies, given by  

 
E E T T

perf perf perf perf perfJ J J J J= +  (4.50) 

where 
E

perfJ  and 
T

perfJ  are normalization constants used to ensure the HES and TES subsystems 

provide nearly equal contributions to the overall performance objective [83]. Note that the 

weightings of electrical subobjectives (i.e., 
1 2, ,w w  and 

3w  in (4.25)) are kept at the same values 

used in the HESS optimization study. The same is true regarding the weightings of the thermal 

subobjectives in (4.37).  

 The sizing and performance objectives are aggregated into a single objective function using 

the weighted sum method, yielding the following overall optimization objective 

 tot size size perf perfwJ w J J= +  (4.51) 

where 
perfw  and 

sizew  quantify the relative importance of the performance and sizing objectives 

respectively on the total objective function. 

4.4.3 Definition of HETESS Design Constraints 

Constraints on the HETESS sizing variables   are obtained by concatenating the 

constraints used for the HESS and TESS optimization studies. Upper and lower bounds for the 

HESS design variables E  are obtained as described in 4.2.3. Upper and lower bounds for TESS 

design variables T  are the same as those provided for TES1 and TES2 in (4.40), with two 

analogous constraints added for TES3.  
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Constraints on HETESS gain scaling variables   are defined exactly as described in 4.2.3 

and 4.3.3, allowing each gain scaling variable to vary up or down by up to a factor of 10.  

4.4.4 Formulation and Solution of the HETESS Optimization Problem 

The shooting method is used to formulate and solve the HETESS optimization problem. 

The augmented HETESS graph-based model is simulated in Simulink using the ode23tb solver 

under the same electrical load introduced in Figure 3.1, with a run time averaging around 30 

seconds for the 30-minute simulation (around 60 times faster than real time). Given a set of design 

variables and weightings 
perfw  and 

sizew , the closed-loop simulation results are used to calculate 

the total objective function (4.51). A genetic algorithm is used to arrive at an optimal design for 

each set of weightings. For this study, the genetic algorithm function tolerance is set to 810−  and 

the population size is set to 50. The crossover fraction is lowered, to varying extents, from its 

default value of 0.8 to promote diversity within the populations.  

The results in Figure 4.8, Figure 4.9, and Figure 4.10 compare the best designs from the 

initial and final generations of the genetic algorithm for 0.12perfw =  and 0.88sizew = , and Table 

4.1 shows the values of the design variables for these designs. These two designs can be compared 

by considering the changes in each of the objectives from the initial design to the final design. The 

upper left plot of Figure 4.8 shows that, while both designs track the reference bus voltage well 

within 0.05V, the initial design provides more optimal state reference tracking. State constraint 

violations are minimal for both designs; as demonstrated in the middle two plots, temperatures are 

kept well within limits in both designs, and PCM SOCs remain above their lower bounds. In these 

plots, it appears that the cold plate fluid temperatures remain at their references. In fact, the fluid 

temperatures of cold plate 2 exceed their reference by <0.01°C for the initial design and 0.2°C for 

the final design. For this reason, the state constraint objective is very small in both designs but 
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larger for the final design, as shown in the tabulated values in Figure 4.9. Similarly, while the 

battery power tracking error is very small in both designs, the upper right plot of Figure 4.8 shows 

that battery power deviates slightly more from the reference in the final design. Neither design 

results in battery power exceeding its max constraint, since this subobjective is highly penalized 

in the overall objective function. It is interesting to note that pump energy consumption, while less 

than 1J for both designs, is larger for the final design than the initial design. In the initial design 

both cold plate fluid temperatures remain colder than their references, so the pump provides mass 

flow at its minimum level throughout the simulation. However, in the final design the fluid 

temperature of cold plate 2 meets its reference value early in the simulation, so the flow rates 

increase above their minimum level to track the reference. The lower value of pump energy in the 

final design suggests that the pump energy objective is nonconvex. Finally, the sizing metrics 

shown in Figure 4.10 demonstrate a significant improvement in the sizing objective from the initial 

to the final design. The sizing objective, total mass of energy storage elements, is reduced by 70%. 

Additionally, the volume of energy storage elements, although not explicitly considered in the 

optimization problem, is reduced by 60%. Note that if the selected final designs of the individual 

HESS and TESS designs were combined to form a hybrid electro-thermal system, the resulting 

system would exhibit poorer state tracking, increased state constraint violations, and higher mass 

than the final HETESS design shown in this analysis. This finding demonstrates the importance of 

incorporating multi-domain dynamics into the optimization formulation. Magnified views of the 

subplots of Figure 4.8 are provided in the appendix. 
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Figure 4.8: Comparison of selected trajectories of initial and final HETESS designs. 
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Figure 4.9: Comparison of performance objectives of initial and final HETESS designs. 

 

 

 

 

 

Figure 4.10: Comparison of initial and final HETESS sizing metrics. 

 

 

 

 

Initial Final

State Tracking 0.00171 0.0135

SC Violation 3.23E-17 5.82E-12

Power Tracking 0.002149 0.00319

PC Violation 0 0

Pump energy 0.314 1.09E-5

Pump energy [J] 

(unweighted) 0.349 1.21E-5
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Table 4.1: Comparison of initial and final values of HETESS design variables. 

Design Variable Initial Design Final Design 

,p battN  15 9 

,s UCN  356 245 

,p UCN  32 13 

,p battK  3.7 4.1 

,i battK  7.8 8.0 

,p UCK  9.8 10.0 

,i UCK  10.0 9.8 

1TESm  [kg] 43.6 8.7 

2TESm  [kg] 44.5 28.5 

3TESm  [kg] 32.9 39.3 

,1mT  [°C] 78 72 

,2mT  [°C] 70 42 

,3mT  [°C] 65 36 

1pK  9.1 6.0 

1iK  4.2 8.2 

2pK  5.0 9.3 

2iK  5.2 2.0 

 

 

 The objective weightings 
perfw  and 

sizew  are systematically varied to obtain a Pareto 

frontier quantifying tradeoffs between the sizing and performance objectives. Shown in Figure 

4.11 is the Pareto frontier identified for the HETESS. In this figure, as before, lighter blue points 

correspond to higher values of perfw  while darker blue points correspond to higher values of 
sizew , 

and the gray line denotes the identified Pareto frontier. The starred point in this figure denotes the 

design corresponding to the preceding analysis. Note that in this study, the performance objective 

magnitudes are very low in comparison to the previous results for individual domain optimization 

studies. To ensure that the sizing and performance objectives contribute to the overall objective 
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function with similar magnitudes, the performance objective weight 
perfw  is scaled to a 

significantly larger value than its counterpart 
sizew .  

 

Figure 4.11: Sizing and performance tradeoff for HETESS. 

  

As shown in Figure 4.11, there are some cases in which the optimizer converges to points 

lying far from the Pareto frontier. The emergence of these points indicates a nonconvex objective 

function consisting of strong local minima. To investigate the existence of these local minima, the 

HETESS optimization formulation was solved using the gamultiobj function in the Matlab 

optimization toolbox. Figure 4.12 shows the results obtained from this analysis. In the upper plot, 

all designs explored by the gamultiobj function are shown in black (referred to as GAMO 

Designs), and the points lying on the Pareto frontier identified by this function are starred in pink. 

Additionally, the designs from Figure 4.11 obtained using the weighted sum method are plotted 
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using their previously used coloring scheme (referred to as WS Designs), along with their Pareto 

frontier. The GAMO designs shown in this figure confirm the existence of strong local minima in 

the nonconvex performance objective. The lower plot shows the weighted contributions of each of 

the performance subobjectives – state tracking, state constraint (SC) violation, power tracking, 

power constraint (PC) violation, and pump energy – to the overall performance objective perfJ . 

These are plotted with respect to the sizing objective. From the lower plot it is clear that pump 

energy is nonconvex as a function of the sizing objective, and that pump energy dominates the 

objective function in this region. Note that, with such a highly nonconvex objective function, other 

multi-objective optimization methods, such as compromise programming, could be more effective 

than the weighted sum method used herein.  

 

Figure 4.12: Weighted sum and gamultiobj optimization results for HETESS. 
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Finally, we compare the optimization results obtained by the sizing and control 

optimization study described in this section to a sizing-only optimization study. In the sizing-only 

study, the control gains are held constant at their nominal values given in Table 3.3, while the 

sizing variables are optimized. A significant improvement in the performance objective is noted 

when the control gains are included in the optimization formulation. This highlights the value of 

including control parameters in the system design process, in addition to the value added by 

incorporating multi-domain dynamics as discussed previously in this section.   

 

Figure 4.13: Performance improvement by including control parameters in HETESS optimization. 
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CHAPTER 5. CONCLUSION 

5.1 Summary of Contributions 

Increased electrification of vehicles, including those with high ramp rate loads such as 

heavy construction and military vehicles, will rely on significant advances in onboard energy 

storage. Higher power density and efficient thermal management are key enablers to improve 

range and lifetime of onboard electrical energy storage, and the hybrid electro-thermal energy 

storage system introduced in Section 2.1 offers a power-dense solution for vehicles with high ramp 

rate loading cycles. The HETESS includes energy-dense batteries and power-dense ultracapacitors 

for electrical energy storage, and PCM thermal energy storage modules and coolant loops for 

thermal energy storage. In designing multi-domain systems such as this, optimization formulations 

should consider multi-domain dynamics and control to maximize the added benefit.  

The graph-based energy modeling techniques employed in this work provide a unified 

framework to model multi-domain dynamics. A brief introduction to these graph-based techniques 

is given in Section 2.2. In Section 2.3, graph-based models are described for each of the electrical 

and thermal components considered in this work, including novel graph models of the 

ultracapacitor pack and TES modules. The graph models considered in this work consist of vertices 

representing current, voltage, temperature, and PCM stored energy, as well as edges representing 

electrical power transfer, resistive losses, and heat transfer. Component graph models are grouped 

to form the electrical (HESS) subsystem and the thermal (TESS) subsystem, and finally the two 

subsystems are merged to form the hybrid electro-thermal energy storage system. The HETESS is 

subjected to a current load with high ramp rate fluctuations. 

Chapter 3 describes the control strategies employed for closed-loop control of the HETESS 

and its subsystems. Proportional-integral controllers are selected for their computational 
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efficiency. The HESS controllers seek to maintain bus voltage and prevent the battery pack from 

supplying damagingly high discharge rates. The latter is accomplished by regulating the battery 

pack power output to the low-pass-filtered value of the load power. The TESS controllers seek to 

cool the TES modules by regulating the cold plate fluid temperatures to reference values which 

are determined using the PCM melt temperatures. Simulation results demonstrate the effectiveness 

of these control approaches in both the subsystems as well as the HETESS.   

Chapter 4 describes the graph-based optimization framework used in this work, building 

upon the multi-domain graph-based modeling framework described in Chapter 2. The first step in 

the optimization framework is to augment the graph-based model to capture the effects of the 

changing design variables on elements of the graph. The next step is to define the objective 

function, which may be a function of the design variables themselves or of simulation results for 

the augmented graph-based model, or a combination of multiple objectives. In the third step of the 

framework, constraints are defined for the design variables. The final step in the framework is to 

formulate and solve the optimization problem. The optimization framework is demonstrated step-

by-step for the HESS and TESS subsystems as well as for the HETESS. In each of these studies, 

sizing and control parameters of the energy storage systems are optimized to minimize mass and 

maximize performance. Results of these demonstrations highlight the utility of the optimization 

framework as a tool to determine relationships and tradeoffs between competing objectives, such 

as the sizing and performance objectives considered herein. In the HESS and TESS optimization 

studies, it is noted that optimized designs retain a high level of performance while achieving 

significant reductions in mass compared to their respective initial designs. These improvements 

are further increased in the HETESS optimization study, which simultaneously varies sizing and 

control parameters of the electrical and thermal subsystems. Finally, it is noted that the inclusion 



109 

 

of control parameters in the optimization formulation leads to significant improvements in 

performance metrics.  

5.2 Future Work 

 The design optimization studies in this thesis demonstrate applications of a design 

optimization framework for multi-domain systems and their controllers. Future work will consider 

further applications of the framework and the inclusion of more advanced controllers. Regarding 

the former, future work will include application of the framework to more complex systems and 

systems-of-systems. Future work will also focus on experimental validation of the optimization 

framework for sizing and control optimization of energy storage systems. In addition to these 

applications of the framework, an important future step is to include more advanced optimization 

techniques and algorithms within the design optimization framework. While a conventional 

genetic algorithm is used to optimize the weighted-sum objective function in this thesis, more 

advanced techniques such as hybrid optimization methods or surrogate modeling could have been 

used to arrive at optimal solutions with a higher degree of accuracy or in a more computationally 

efficient manner. Regarding the inclusion of more advanced controllers, optimal control strategies 

as discussed in Chapter 3 promise improved performance metrics in comparison to the heuristic 

control strategies used in this thesis. Future work will apply some of these optimal control 

strategies, such as model predictive control, to systems designed using the optimization 

framework. Due to the longer solution time of optimal control strategies compared to heuristic 

strategies, this step will likely rely on the inclusion of computationally efficient optimization 

algorithms within the optimization framework.  
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APPENDIX: SELECTED FIGURES FROM TEXT 

This appendix provides larger versions of selected figures from the text in the following 

order: Figure 3.4, Figure 3.7, Figure 3.8, Figure 4.1, Figure 4.5, and Figure 4.8.  

Figure 3.4: Closed-loop HESS simulation results.  

 

Figure 3.4 a) SOC of energy storage elements.  

 

 

 

Figure 3.4 b) Voltage of energy storage elements.  
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Figure 3.4 c) Bus voltage tracking performance of HESS.  

 

 

 

 

Figure 3.4 d) Battery power reference tracking performance of HESS.  
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Figure 3.4 e) HESS control inputs (converter duty cycles). 

 

 

 

 

Figure 3.4 f) Currents of HESS components.  
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Figure 3.7: Closed-loop TESS simulation results. 

 

Figure 3.7 a) Temperatures of TES modules 1 and 2 in TESS.  

 

 

 

 

 

Figure 3.7 b) Fluid temperatures and reference temperatures of cold plates in TESS.  
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Figure 3.7 c) States of charge of PCMs in TES modules 1 and 2 in TESS.  

 

 

 

 

 

Figure 3.7 d) TESS control inputs (mass flow rates).  
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Figure 3.8: Closed-loop HETESS simulation results. 

 

Figure 3.8 a) Voltages of electronic components in HETESS.  

 

 

 

 

 

Figure 3.8 b) Currents of electronic components in HETESS. 

 



123 

 

 

Figure 3.8 c) Converter duty cycles in HETESS. 

 

 

 

 

 

 

Figure 3.8 d) Temperatures of electronic components in HETESS. 
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Figure 3.8 e) PCM temperatures of TES modules in HETESS.  

 

 

 

 

 

Figure 3.8 f) Fluid temperatures and reference temperatures of cold plates in HETESS.  
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Figure 3.8 g) PCM states of charge of TES modules in HETESS.  

 

 

 

 

 

Figure 3.8 h) Flow rates in HETESS.  
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Figure 4.1: Comparison of initial and final HESS designs. 

 

Figure 4.1 a) Comparison of voltage tracking performance of initial and final HESS designs. 

 

 

 

 

Figure 4.1 b) Comparison of battery power tracking performance of initial and final HESS designs. 
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Figure 4.5: Comparison of selected trajectories of initial and final TESS designs. 

 

Figure 4.5 a) Heat load applied to TES modules in TESS.  

 

 

 

 

 

Figure 4.5 b) Cold plate 1 fluid temperature and reference temperature in initial and final TESS designs. 
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Figure 4.5 c) Cold plate 2 fluid temperature and reference temperature in initial and final TESS designs. 

 

 

 

 

 

Figure 4.5 d) State of charge for PCM in TES module 1 in initial and final TESS designs. 
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Figure 4.5 e) State of charge for PCM in TES module 2 in initial and final TESS designs. 

 

 

 

 

Figure 4.8: Comparison of selected trajectories of initial and final HETESS designs. 

 

Figure 4.8 a) Comparison of voltage tracking performance of initial and final HETESS designs. 
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Figure 4.8 b) Comparison of battery power tracking performance of initial and final HETESS designs. 

 

 

 

 

 

Figure 4.8 c) Cold plate 1 fluid temperature and reference temperature in initial and final HETESS designs. 
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Figure 4.8 d) Cold plate 2 fluid temperature and reference temperature in initial and final HETESS designs. 

 

 

 

 

 

Figure 4.8 e) State of charge for PCM in TES module 1 in initial and final HETESS designs. 
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Figure 4.8 f) State of charge for PCM in TES module 2 in initial and final HETESS designs. 

 


