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ABSTRACT

In this dissertation, several machine learning strategies are presented to advance solution ca-

pabilities for homogeneous and heterogeneous system topology design. The core contribution

is to begin bridging the gap between data science and design science. The key principle is to

extract meaningful knowledge and insights from design data, and to build machine learning

models that enable effective design exploration and lead to generalizable design insights. This

work provides an alternative perspective for system topology design, leveraging design data

instead of designer intuition derived from experience or established gradient-based topology

optimization methods.

As a preliminary study for this dissertation, the research literature for a relevant seg-

ment of the engineering design research community was analyzed using network analysis.

This study was based on a collection of 1,668 articles published in the American Society

of Mechanical Engineers (ASME) Design Automation Conference (DAC) from 2002-2015.

Several methodologies were developed and used, and useful insights were provided. These

analyses revealed several insights, including opportunities for strengthening the link between

design automation methods, such as design optimization, and machine learning. This result

serves as a basis and motivation for the remainder of the work presented here. The remainder

of the dissertation concentrates on efforts to advance understanding of how to use machine

learning effectively with design data generated using design automation methods.

A novel design framework using deep learning was developed for homogeneous system

topology optimization. The application chosen here involves heat conduction, with com-

peting objective functions of temperature and power density. Existing methods can solve

related heat conduction problems efficiently (e.g., thermal compliance), but not combined

temperature and power density. The strategy presented here seeks to use data generated

from related easy-to-solve thermal compliance problems to support efficient solution of the
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desired problem. An indirect design representation was constructed using a variational au-

toencoder (VAE), and was combined with a deep convolutional style transfer network to

improve the quality of generated designs. The VAE maps the original large-dimensional

design space onto a lower dimensional space (called the latent space). The heat conduction

problem was solved by optimizing with respect to latent variables, and system performance

was evaluated using full-dimension design representations. Several variants of the optimiza-

tion formulation have been examined, and the Pareto-optimal solutions are presented. The

method is shown to successfully navigate the design space and identify many non-dominated

designs that outperform those found using conventional topology optimization.

Topology optimization of heterogeneous systems, sometimes referred to as synthesis, re-

quires different design representations and solution techniques. Here we considered two

classes of synthesis problems where existing methods and recent advances, such as efficient

enumeration, are limited in practical solution capability. The first class of synthesis problems

(Case 1) considered is where efficient enumeration methods can be used to list all unique, fea-

sible system design topologies, but not all topologies can be evaluated in a practical amount

of time due to computational expense. Active learning is investigated here as a strategy to

select subsets of topologies for evaluation with the goal of finding high-performance designs

without the need to evaluate all candidates. Active learning is a semi-supervised learning

technique that interactively improves predictive model accuracy with strategically selected

training examples. The predictive model used here is an ensemble method called random for-

est. Several active learning strategies are considered and results indicate that active learning

is a promising strategy for solving Case 1 synthesis problems.

Case 2 synthesis problems involve systems where all topologies of interest can neither

be enumerated nor evaluated in a practical time period. Here a new approach for Case 2

problems is introduced where machine learning techniques are used to generate topologies

in a way that implicitly satisfies constraints and aids search for high-performance designs, in

essence creating a targeted design space representation for efficient search. This eliminates
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the need to enumerate all unique, feasible topologies, and supports approximate solution

of Case 2 synthesis problems. Generative adversarial networks (GANs) are investigated

as the design representation tool for this design automation process. Experiments were

conducted to explore capabilities of GAN-based synthesis methods for electronic circuit

synthesis. Multiple GAN strategies are investigated. The numerical results demonstrate that

the improved Wasserstein GAN is capable of generating feasible circuit topologies efficiently.

The GAN-based design framework may also be extended to more general design synthesis

tasks.

iv



To My Parents

v



ACKNOWLEDGEMENTS

I would like to express gratitude to my advisor, Professor James T. Allison, for giving the

opportunity to pursue my graduate study. His guidance and support helped me accomplish

the Ph.D research. I would like to thank Professors Harrison Kim, Pingfeng Wang, and

Jeremy Guest for being my committee.

A number of collaborators have contributed to success of this dissertation, including

Prof. Max Yi Ren, Dr. Neal Davis, Dr. Zhi Han, Dr. Daniel Herber, Danny Lohan, Ruijin

Cang, Jiarui Xu, Yue Sun, Yilin Dong, and Dongqi Su. The Engineering System Design Lab

(ESDL) members also provided useful insights and invaluable feedback, including Dr. Anand

Deshmukh, Albert Patterson, Yong Hoon Lee, Satya Peddada, Siyao Luan, Madhav Arora,

Andrew Blanco, Jason McDonald, Jeff Arena, Lakshmi Rao, etc. Without them, I would

not have completed this dissertation.

I am grateful to the Department of Industrial and Enterprise Systems Engineering (ISE)

at the University of Illinois at Urbana-Champaign for providing me with graduate teaching

assistantships these years. I had the opportunities to work with many instructors and TAs,

including Dr. Douglas King, Prof. Yu-Ching Lee, Prof. Masooda Bashir, Dr. Yuan Zhao,

Steven Lin, Dr. Hao Jiang, Dr. Ashish Khetan, etc. I really enjoyed working with them and

cherish the time together. The ISE staff, Prof. Rakesh Nagi, Aleta Lynch, Barb Bohlen,

Holly Tipsword Kizer (former ISE staff), and Amy Summers (former ISE staff) are kind and

thoughtful. In particular, I would like to thank Prof. Ramavarapu Sreenivas for his support

and encouragement.

vi



I would like to acknowledge internship supervisors for improving my data science skills,

including Hank Roark, Dan Peterson, Dr. Scott Ray, and Dr. Amy Wang. I truly appreciate

my friends, Rongbo Lu, Dr. Jingnan Chen, Dr. Bill Roberts, Xiou Ge, Xinchen Pan, Haohua

Wan, Dr. Meng Wang, Zihang Zhang, and many others, who have always been supportive

and making me stronger.

Finally, thanks to my parents for your continuing love.

vii



Contents

List of Figures x

List of Tables xiv

1 INTRODUCTION 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Dissertation Scope and Overview . . . . . . . . . . . . . . . . . . . . . . . . 11

2 NETWORK ANALYSIS OF DESIGN AUTOMATION LITERATURE 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Background and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Network Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 HOMOGENEOUS SYSTEM TOPOLOGY DESIGN 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Background for Augmented VAE Indirect Representation . . . . . . . . . . . 64

viii



3.4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 HETEROGENEOUS SYSTEM TOPOLOGY DESIGN: CASE 1 95

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Design Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 HETEROGENEOUS SYSTEM TOPOLOGY DESIGN: CASE 2 132

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2 Generative Adversarial Networks (GANs) . . . . . . . . . . . . . . . . . . . . 139

5.3 Circuit Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Numerical Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 CONCLUSION 164

BIBLIOGRAPHY 170

A CHAPTER 3 200

B CHAPTER 5 204

ix



List of Figures

2.1 Main topic frequency plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Sub-topic frequency plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Main topic chronological evolution . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Sub-topic chronological evolution . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Main topic correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Sub-topic correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Main topic and sub-topic correlation . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Average in-degree for main topics . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Average in-degree for sub-topics . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Citation network for sustainable energy system design . . . . . . . . . . . . . 36

2.11 Scatter plot for association rules of the main topics . . . . . . . . . . . . . . 37

2.12 Group matrix-based visualization for main topics . . . . . . . . . . . . . . . 38

2.13 Scatter plot for association rules of sub-topics . . . . . . . . . . . . . . . . . 41

2.14 Group matrix-based visualization for DAC sub-topics . . . . . . . . . . . . . 42

2.15 Top 5 clusters using PM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Design problem formulation framework for comparison of alternative design

methods; SIMP and VAE topology optimization strategies are compared here 59

3.2 A schematics of an autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Flowchart of the optimization scheme with respect to z . . . . . . . . . . . . 68

x



3.4 The VAE model augmented by a style loss . . . . . . . . . . . . . . . . . . . 71

3.5 A sample of reconstructed topologies from a 20D latent space . . . . . . . . 75

3.6 A sample of topologies generated from random samples in a 20D latent space 76

3.7 Parametric study results obtained by varying 2 of 20 latent variables . . . . 77

3.8 Locally-optimal solutions for the weighted sum method . . . . . . . . . . . . 78

3.9 Locally-optimal solutions produced by the ε-constraint method . . . . . . . . 78

3.10 Pareto-optimal solutions produced by the ε-constraint method . . . . . . . . 79

3.11 Optimal solutions produced by the hybrid method (GA followed by gradient-

based) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.12 Pareto-optimal solutions produced by the hybrid method . . . . . . . . . . . 81

3.13 Optimal solutions produced by the MOGA method (initial population = 200) 81

3.14 Select Pareto-optimal solutions produced by the MOGA method (initial pop-

ulation = 200) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.15 Optimal solutions produced by the MOGA solution method (#latent variables

= 20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.16 Four Pareto-optimal solutions produced by the MOGA solution method . . . 84

3.17 Comparison of Pareto-optimal solutions for the four methods (#latent vari-

ables = 20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.18 Optimal solutions produced by the hybrid method (less initial population) . 86

3.19 Reduced space vs. original space using population size 800 (with data) . . . 90

3.20 Reduced space vs. original space using population size 5,000 (with data) . . 90

3.21 Reduced space vs. original space using population size 800 (without data) . . 91

4.1 Conceptual design formulation space used for analyzing differences in problem

formulation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Conceptual design formulation space using different solution strategies . . . . 107

4.3 The active learning framework. . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Some potential circuit component types [109] . . . . . . . . . . . . . . . . . . 114

xi



4.5 Different representations for the same circuit [109] . . . . . . . . . . . . . . . 115

4.6 Two different circuit topologies with twelve 2-port components [109] . . . . . 116

4.7 Comparisons between the different query methods . . . . . . . . . . . . . . . 119

4.8 Predicted vs. observed sorted performance locations for different sets of cir-

cuits and their corresponding Kendall tau distances (Set 1) . . . . . . . . . . 123

4.9 Predicted vs. observed sorted performance locations for different sets of cir-

cuits and their corresponding Kendall tau distances (Set 2) . . . . . . . . . . 124

4.10 The Kendall tau distances through the active learning iterations . . . . . . . 125

5.1 A Venn diagram for GAN-based methodology . . . . . . . . . . . . . . . . . 136

5.2 Design formulation analysis of the GAN-based methodology . . . . . . . . . 137

5.3 A basic GAN framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4 Examples of the heterogeneous circuit [109] . . . . . . . . . . . . . . . . . . . 144

5.5 Two common circuit templates [109] . . . . . . . . . . . . . . . . . . . . . . 145

5.6 Procedure used to test GAN effectiveness at generating circuit topologies . . 150

5.7 The GAN circuit synthesis framework using predictive modeling . . . . . . . 151

5.8 Frequency response: generated circuit topologies (0–30 iterations) . . . . . . 152

5.9 Frequency response: generated circuit topologies (100–1500 iterations) . . . . 153

5.10 Frequency response: GAN generation performance . . . . . . . . . . . . . . . 154

5.11 Frequency response: improved WGAN generation performance . . . . . . . . 154

5.12 Frequency response: convergence of the improved WGAN . . . . . . . . . . . 155

5.13 Set 1: two high-performance circuit topologies given by the improved WGAN 161

5.14 Set 2: two high-performance circuit topologies given by the improved WGAN 162

5.15 Proposed framework using the GAN . . . . . . . . . . . . . . . . . . . . . . 163

5.16 A linear quarter-car suspension model (standard passive system shown) . . . 163

A.1 A sample of dominated points for the weighted sum method . . . . . . . . . 200

xii



A.2 Pareto-optimal solutions (#1 – #100) for the MOGA method (#latent vari-

ables = 20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.3 Pareto-optimal solutions (#101 – #200) for the MOGA method (#latent

variables = 20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.4 Pareto-optimal solutions (#201 – #258) for the MOGA method (#latent

variables = 20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B.1 Low-pass filter: generated circuit topologies (0 – 30 iterations) . . . . . . . . 205

B.2 Low-pass filter: generated circuit topologies (100 – 1500 iterations) . . . . . 206

B.3 Low-pass filter: GAN generation performance . . . . . . . . . . . . . . . . . 207

B.4 Low-pass filter: improved WGAN generation performance . . . . . . . . . . . 207

xiii



List of Tables

2.1 Summary of the co-authorship network . . . . . . . . . . . . . . . . . . . . . 25

2.2 Association rules for main topics . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Association rules for the sub-topics . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Top 10 influential articles in the DAC citation network . . . . . . . . . . . . 44

2.5 Topic clusters in the ASME DAC citation Network . . . . . . . . . . . . . . 45

3.1 Computational expense comparison . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Design space coverage analysis for the MOGA method . . . . . . . . . . . . 87

4.1 The parametric study on the number of new samples taken at each iteration 126

4.2 The parametric study on parameter A in the statistical lower bound approach 126

5.1 Frequency response: vanilla GAN . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 Low-pass filter: vanilla GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3 Frequency response: WGAN and improved WGAN . . . . . . . . . . . . . . 148

5.4 Low-pass filter: WGAN and improved WGAN . . . . . . . . . . . . . . . . 149

5.5 Frequency response: DCGAN . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.6 Low-pass filter: DCGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.7 Frequency response: Parametric study on improved WGAN parameters . . . 156

5.8 Frequency response: performance of the GAN based method with active learning157

B1 Low-pass filter: the parametric study on the parameters of the improved WGAN204

xiv



Chapter 1

INTRODUCTION

1.1 Overview

Data science is an interdisciplinary and emerging field that studies the insights and knowl-

edge extracted from data [61]. It is a complex domain that uses a wide range of techniques,

including mathematics, statistics, information theory, and computer science. In particular,

it is focused on the interface between optimization, machine learning, artificial intelligence,

databases, data mining, databases, and visualization. Data science is often associated with

terms such as “Big Data” and “Predictive Analytics” [247]. In Ref. [15], Baesens summa-

rized data science applications in various settings, including marketing, risk management,

government, Web, and logistics. Gandomi and Haider also presented analytical methods for

data science: text analytics, sentiment analysis, audio analytics, video analytics, social me-

dia analytics, and predictive analytics [84]. Recently, engineers and designers are becoming

interested in data science. Kusiak wrote an article about big data in mechanical engineer-

ing [142]. This article posited that big data could play an important role in the design of

materials, products, and systems; it could even help reconfigure industry and businesses,

including product design and development, manufacturing, and the energy industry. In

addition, data science in supply chain management has been studied in Refs. [108,247]. Rel-
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evant techniques—namely optimization, regression, classification, clustering, associations,

and model visualization—are applicable to process science and manufacturing [28,242].

Data science has been applied in several ways to engineering design and product devel-

opment, but a recent literature analysis study [100] has identified that data science is not

well-connected to many important topics within design research that stand to benefit from

its application. Here we propose a new strategy for using data science in design: utilizing

design automation methods not just to solve design problems, but to generate rich data sets

for unprecedented engineering systems that can be used with machine learning to accelerate

the generation of design knowledge.

Design Science is a relatively new research area; it aims to provide people with creative

and innovative products and services using scientific methods [197]. Papalambros proposed

three breaking developments in the future of the design research, one of which is to access

‘brain data’. Brain data is also big data in neuroscience [145, 240, 243]. The collaboration

between neuroscience and design research can be regarded as a way of delivering new research

topics and insights in the future [197]. The use of data science, including machine learning

and big data, may play an important role in design science. Papalambros also quoted several

senior researchers’ visions regarding the future of design research:

� Marco Cantamessa: “Among the scientific approaches that will probably cast a sig-

nificant influence on design research over the next few years, I see great promise in

cognitive neuroscience and in the use of big data.”

� Sean Hanna: “The advent of machine learning, big data, parallel processing and similar

computational tools on one hand, and the technology to see brain activity on the other,

provide the tools both to model and to observe this messy process.”

� Jordan J. Louviere: “Despite all the hype, so-called ‘big data’ largely applies to cur-

rent products in current markets, with the possibility that real-time and/or quasi-

continuous updating could provide feedback about markets where data are available.”
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� Chris McMahon: “The issue is again one of proprietary data and of accumulating and

sharing engineering knowledge, but it is also a ‘big data’ challenge how can we learn

from the very extensive data that we have about the performance of artifacts and the

tools used to design them?”

� Wei Chen: “Future design science research, in understanding the role of the human

(both as user and as designer), will not only build on the fundamental principles of

design but will also exploit new and exciting research opportunities in crowdsourcing,

social computing, web-based user analysis, human-centered design, network analysis,

data mining, and many other fields.”

The visions above indicate that data science may be a useful tool for design research.

The gaps between data science and design research need to be explored. It may be promising

to address the existing issues and difficulties associated with design research utilizing data

science as a “design method” such that new insights and creative designs can be delivered.

In this dissertation, sub-domains of data science, including machine learning and data

mining, are considered for fusion with design research. The first study presented here focuses

on social network analysis of the ASME Design Automation Conference (DAC) literature.

This study revealed that machine learning is not yet thoroughly integrated into the DAC

literature. This result is aligned with the researchers’ visions described above. These factors

serve as a motivation and foundation for this dissertation. Here we address challenging

topological engineering design problems using machine learning and design data generated

using optimization and efficient enumeration methods. Two important system classes are

examined: homogeneous and heterogeneous. An indirect design representation for topology

optimization using a variational autoencoder (VAE) and deep style transfer network is used to

study the homogeneous system for the heat conduction. Active learning and and generative

adversarial networks (GANs) are proposed to address important challenges identified in

heterogeneous system topology design. Two canonical circuit synthesis design problems are

used in the studies presented here.
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1.2 Research Objectives

The primary objective of this dissertation is to develop methods based on machine learning

tools that leverage design optimization data to solve challenging engineering design problems

that previously could not be solved in a practical way. To explain the motivation and

reasoning, we would like to create data-driven design methodologies with similar capabilities

to existing methods, but that are free from some important limitations (such as reliance

on human intuition or expertise, or limits on problem formulation). We are aiming to

solve problems that cannot be solved by established methods efficiently. This gives rise to

a tradeoff between problem formulation and solution accuracy. We will present relevant

theatrical framework and the tradeoff in each core chapter.

Two types of system topology design problems, homogeneous and heterogeneous systems,

are considered. Homogeneity is defined as “the quality or state of being of a similar kind or

of having a uniform structure or composition throughout” [177]. Heterogeneity refers to “the

quality or state of consisting of dissimilar or diverse elements” [176]. For instance, in a high

performance computer, homogeneous computing (also referred as CPU computing), consists

of similar cores or units while the heterogeneous computing (also generalized as CPU-GPU

computing) contains more than one type of processor or core [85].

Homogeneous and heterogeneous system design problems can be found across a wide

range of applications. A small sample of these applications is referred to in this docu-

ment. A number of studies have been carried out in microstructural materials systems

[2, 40, 206, 256–258]. The topology design for genetic regulatory circuits was also investi-

gated [96, 98]. However, the meaning of homogeneous and heterogeneous systems for topol-

ogy design has not been well defined (and is a topic of ongoing work). In this dissertation, we

define homogeneous systems to be those where each element (or node) has the same type of

properties (material, functionality, representation, etc.). Heterogeneous systems are defined

as those where two or more fundamentally distinct element types exist in the system. Several
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questions will be considered in this dissertation:

� What is the nature and structure of research within the engineering design community

(limited here to DAC)? How might machine learning be used in new ways to advance

design knowledge?

� How can machine learning be used with design data generated using design optimiza-

tion, instead of with historical design data? How might this strategy aid the more

rapid development of fundamentally new system designs as opposed to incremental

changes?

� When a design space is too large for conventional methods to be practical, how might

a predictive model support targeted sampling and evaluation of design candidates?

� How might we leverage design optimization data to develop an intelligent strategy for

generative design?

In Chapter 2, the first research question will be addressed. A collection of 1,668 articles

from the ASME Design Automation Conference (DAC) (2002-2015) were analyzed using so-

cial network analysis. This chapter focuses on exploring new opportunities for research within

the DAC community. More specifically, the DAC co-authorship network and collaboration

patterns were analyzed using centrality metrics, and the networks were found to exhibit

the small world property. Two topic modeling strategies were proposed: a frequency-based

model and Propagation Mergence (PM). The latter is a hybrid approach that utilizes natu-

ral language processing, unsupervised learning, and network structure. Descriptive statistics

are presented, such as topic trends, correlation, and citation analysis. Inductive statistics,

including association rule learning and cluster analysis, are also discussed. The results un-

cover the major research areas within DAC, and also reveal potential research gaps. One

important finding is that the DAC community has not looked comprehensively yet at the

potentially valuable links between machine learning and AI with other important design
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research topics. This observation is the starting point for this dissertation. Here it is posited

that the concept of using machine learning in conjunction with design optimization-derived

data for topological design of unprecedented systems is a promising unexplored link. While

grammar rules and other similar methods have been used to inspire new system architec-

tures, the approach proposed here is unique and may have the ability to scale well to large

system design problems. The motivation behind this work is to provide an analysis and to

identify potential research gaps between sub-domains in the design research. The proposed

suggestions and recommendations may guide community directions (keeping in mind that

changes in direction are made collectively by the community). The centrality metrics used

in the co-authorship network help identify collaboration patterns, which is especially useful

for researchers who are new to the community; topic modeling techniques reveal research

areas that have received varying levels of attention. The insights and gaps obtained from

these results helped inspire the research topics chosen for this dissertation.

Chapter 3 considers the second research question, and involves a data-driven framework

for homogeneous system topology design. Here we consider a homogeneous heat conduction

system design for compact power electronics. The objective of the proposed data-driven

methodology is to overcome the shortcomings in the existing methods, especially with re-

spect to problem formulation accuracy. For instance, the well-known density-based topology

optimization method, Solid Isotropic Material with Penalization (SIMP) [20], uses a direct

design representation to handle a large number of continuous continuous variables and mul-

tiple constraints, but often suffers from the sensitivity issues because of the zero-derivative of

the objective function with respect to the design variables. SIMP can only solve the approxi-

mate problem (thermal compliance), rather than the desired problem here (i.e., power density

and maximum temperature objectives). Generative design algorithms (GDAs) [134,161] use

an indirect representation but rely on the prior design knowledge, because design rules have

to be pre-defined for the desired topologies. Here we are seeking an efficient encoding strategy

that is independent of intuition or existing representations and avoids optimizing thousands
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of design variables. It is speculated that learning a representation for the complex systems,

with a purpose of dimension reduction, may be a good option. It is well recognized that

Principal Component Analysis [200] can be used for dimension reduction, but often results

in information loss due to the linear property. Recently, an autoencoder, as a nonlinear

encoding technique, has become one of the most powerful AI concepts in 2010s. The autoen-

coder can encode design features into a short representation (i.e., a latent vector) through

the nonlinear activation function, and these latent variables can represent the topological

design.

Here we specifically investigate an augmented variational autoencoder (VAE) for the ho-

mogeneous heat conduction design. The proposed VAE-based design methodology contains

two phases. In the first phase, the design data is produced using a density-based topology

optimization approach. Designs are represented as binary images, where each pixel is either

0 or 1. A variational autoencoder (VAE) and a deep convolutional style transfer network

were used with this design data as training data. The purpose of the VAE is to encode

the original two-dimensional (2D) image topologies into a lower-dimensional latent space.

Representations in the latent space can then be decoded back into high-dimensional images.

This dimension reduction in the latent space creates an abstract design representation that

supports efficient design space exploration. Reconstruction of the 2D topologies can be con-

ducted, and one can even generate novel 2D topologies via the decoder by sampling from

the latent space.

The second phase of this study involves multi-objective optimization based on both con-

ventional topology optimization (high-dimension), and a new strategy where optimization

is performed in the low-dimension latent space. While conventional topology optimization

methods achieve computational efficiency by exploiting problem structure, this limits their

applicability to certain classes of problems. Here we seek to extend solution capabilities to

a wider range of problem classes, while achieving computational efficiency through targeted

dimension-reduction approaches. Optimization algorithms search for optimal solutions in the
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low-dimension latent space, and performance metrics are evaluated using the full-dimension

representation after VAE decoding. The proposed framework is demonstrated using a heat

conduction topology optimization problem. The optimal (non-dominated) designs are pre-

sented in the objective function space, and the various Pareto fronts derived from alternative

solution strategies are compared. This data-driven design framework provides a new per-

spective of design process for topology optimization, which is fundamentally different from

traditional approaches such as SIMP (Solid Isotropic Material with Penalisation) [20] or

level-set methods [249].

The third question will be answered in Chapters 4. Here circuit synthesis, a type of

heterogeneous system topology design problem, is considered. Problems similar to these

have been solved using heuristic algorithms (such as evolutionary algorithms, or EAs), and

efficient enumeration strategies [109]. Neither of the these existing methods, however, are

scalable to large heterogeneous system design problems. Two challenges may arise using

the efficient enumeration method for circuit synthesis. The first challenge occurs when the

enumeration of circuit topology is achievable but quantitative evaluation of design candidates

requires an impractical amount of time. Here we refer to this situation as a Case 1 synthesis

problem. We have access to all candidate topologies, but we cannot rank them altogether,

and can only evaluate a small subset of all candidate topologies.

In Chapter 4, we introduce active learning as a strategy to solve Case 1 synthesis prob-

lems approximately. Active learning is applied to circuit synthesis. Active learning is a

semi-supervised machine learning technique where a learner can interactively query the user

to obtain more accurate prediction with fewer training samples. The active learning method

is motivated by the need to strategically select a small number of designs to evaluate to find

high-performance solutions quickly. Since the true system performance of candidate circuits

require continuous dynamic system optimization (sizing) to evaluate, obtaining a large num-

ber of system evaluations that would be required for conventional supervised learning can be

impractical. Consequently, active learning is expected to reduce the number of evaluations
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needed for effective learning. The learner used here is an ensemble method, known as ran-

dom forest. Several query strategies are compared. The results indicate that active learning

is a promising strategy in reducing the evaluation cost for the circuit synthesis problem, and

could be used as a general solution approach to similar design problems.

Several factors motivate the active learning for solving this type of problem: 1) Since

Case 1 problems involve computationally expensive topology evaluation, an inferred function

is used to estimate evaluation of topologies with low computational expense. Supervised

learning could be used to address this regression task, but it uses a set of fully-labeled or

evaluated training examples, and thus will not be practical for Case 1 problems. 2) An

alternative approach would be to utilize unlabeled or unevaluated data in conjunction with

a small amount of labeled or evaluated data. This is a semi-supervised learning scheme,

where the acquisition of labels or evaluation often requires a high cost (e.g. human agent,

physical experiment, etc.). 3) Under the semi-supervised learning setting, can we query the

labeled or evaluated data and update the small amount of the training set iteratively (i.e.,

the required number of training examples is lower than that the regular supervised learning),

but attain a good model accuracy? That is how active learning strategy comes into play.

Chapter 5 addresses the fourth research question and presents work that aims to overcome

the challenge of Case 2 synthesis problems, where it is impossible to enumerate all possible

heterogeneous topologies corresponding to a large component catalog. Current circuit syn-

thesis methods involve domain knowledge, evolutionary algorithms (EAs), and enumeration.

While these methods have been applied successfully, they either rely on human expertise,

or are difficult to navigate for the large topological design spaces. These issues motivate

exploration of an intelligent design scheme that implicitly learns the design principles from

the design optimization data and efficiently generates feasible topology designs using an in-

direct representation. Generative models have the ability to represent and manipulate the

high-dimensional data, and a number of design tasks intrinsically require sample generation

from a particular data set [90]. Consequently, it is speculated that the generative models
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may be well-suited for the Case 2 problem.

Here an abstract design representation based on generative adversarial networks (GAN)

and data derived from representative enumeration and design optimization is presented as

a solution. GANs are a class of generative models in unsupervised learning, focusing on

learning the distribution of a statistical data set. Two models are used in a GAN: one is

called the generator, and is tasked with producing new data samples (“fake” data); the

other model is a discriminator, and is tasked with evaluating sample authenticity (i.e., it

determines whether a sample comes from the real data set or not). The generator works

to produce passable samples without being caught by the discriminator. The role of the

discriminator is to identify the samples coming from the generator as fake, thus applying

pressure to the generator to improve output quality. This mechanism is equivalent to playing

a minimax zero-sum game. The GAN-based methodology for circuit synthesis is based on

design data generated using a recently-developed efficient enumeration strategy for synthe-

sis problems. The GAN is constructed using this data, and, similar to VAEs, the circuit

topologies are represented in terms of a latent vector drawn from a standard multivariate

normal distribution. A new circuit topology can be produced via the generator using this

latent vector. We explored a number of GAN architectures and focused on two case studies:

frequency response and low-pass filter circuit design. A comparative study was performed.

It was found that the improved WGAN has the ability to synthesize feasible circuit topolo-

gies efficiently. The GAN-based methodology for circuit synthesis may provide a foundation

for other circuit synthesis tasks. For example, the active learning strategy developed for

Case 1 problems could be combined GAN feasible design generation for Case 2 problems. In

addition, the GAN framework could be utilized in sizing optimization and other heteroge-

neous topology optimization applications, such as active vehicle suspensions [109] or other

mechatronic systems.
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1.3 Dissertation Scope and Overview

This dissertation focuses on using machine learning methods to advance system topology

design capabilities and understanding. One unique element is that data for these methods

is obtained through systematic numerical experiments using design optimization tools and

predictive physics-based models. Previous efforts in design research using machine learning

have often focused on extracting knowledge from historical design data (which is fixed and

unalterable) [81], whereas data obtained from design optimization is more flexible (data sets

can be designed, and new data can be generated as needed). Designers can specify targeted

design optimization studies to generate the data needed to obtain the desired knowledge.

Learning from historical data is descriptive, whereas learning from design optimization data

is normative. It addresses how engineers should design systems, as opposed to answering

how engineers have previously designed systems.

The task described here is a significant undertaking. Developing a flexible and reliable

design optimization implementation that can be used to generate a wide range of optimal

designs under a variety of design conditions by itself requires significant effort. To keep the

scope of this dissertation reasonable, the focus is on the intersection between design opti-

mization and machine learning. The case studies are based on mature design optimization

applications that have been developed by others. Readers are referred to the appropriate

references for details regarding application models, performance metrics, specialized solution

methods, and other specifics. Here these applications and solution tools created by others

are leveraged to generate the data needed for the studies presented here. In addition, a de-

tailed analysis of the distinction between homogeneous and heterogeneous topology design

problems is outside the scope of this dissertation, and is a topic of ongoing parallel work by

others.

The dissertation is organized as follows. Chapter 2 focuses on network analysis of the

design automation literature. Chapter 3 introduces a VAE-based indirect representation
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for homogeneous system topology design. Chapter 4 describes the active learning learning

strategy for evaluation cost reduction in the heterogeneous system topology design (Case 1

synthesis). Chapter 5 presents the GAN-based design methodology for intelligently gener-

ating heterogeneous circuit topologies (Case 2 synthesis). The last chapter summarizes the

dissertation, including conclusions, contributions, and future work. The appendices follow

the bibliography.
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Chapter 2

NETWORK ANALYSIS OF DESIGN

AUTOMATION LITERATURE

Collaborative Acknowledgement: As explained in the previous chapter, much of this

work has leveraged the contributions of others. At the beginning of each chapter that involved

collaboration, the contributions made by others are summarized to help make clear what

portions are independent work. This chapter in particular involved long-term contributions

from a large number of other individuals. Obtaining and analyzing literature network data

was very effort-intensive, and the overall effort lasted several years. A number of the following

contributors are co-authors in associated publications.

Jiarui Xu focused on the computation of the co-authorship network; Yue Sun helped

with model construction; Yilin Dong focused on data processing; Prof. Neal E Davis

reviewed the chapter and provided important feedback, especially with respect to network

analysis theory and research community analysis. In addition, we would like to acknowledge

UIUC undergraduate Computer Science (CS) student, Dongqi Su for developing the Prop-

agation Mergence (PM) approach and the interactive visualization application for the DAC

citation network. We also would like to acknowledge the numerous graduate and undergrad-

uate students at UIUC who contributed to this effort, including Industrial and Enterprise
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Systems Engineering (ISE) alumni Ehsan Salimi and Tuganai Borina, and computer

science (CS) alumni Ethan Chan, Arin Tsikretsis, Varun Berry, Gabby Chuchro,

Nick Nordeen, Zach Halasz, and Yijun Zhang.

2.1 Introduction

In the previous chapter, a brief motivation was provided for using machine learning with

design optimization-derived data. Part of this motivation was derived from observations

made during a recent study of a subset of the engineering design research literature. In this

chapter, we present a summarized analysis of this literature. One of the observations was

that machine learning is not well-linked with other relevant topics within the engineering

design research community. This dissertation aims to address this gap in part.

In this chapter, we present the results of a study of citation and co-authorship networks

for articles published at the ASME Design Automation Conference (DAC) during the years

2002-2015. Two topic-modeling methods are presented for studying the DAC literature:

A frequency-based model was developed to explore DAC topic distribution and evolution,

as well as citation analysis for each core topic. Correlation analysis and association-rule

mining were used to discover relationships between topics. A new unsupervised learning

algorithm, propagation mergence(PM), was created to address identified shortcomings of

existing methods, and applied to study the existing DAC citation network. Influential articles

and important article clusters were identified and effective visualizations created. We also

investigated the DAC co-authorship network by identifying key authors and showing that the

network structure exhibits small-world-network properties. The resulting insights, obtained

by the both the proposed and existing methods, may be beneficial to the engineering design

research community, especially with respect to determining future research directions and

possible actions for improvement. The data set used here is limited; expanding to include

additional relevant conference proceedings and journal articles in the future would offer a
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more complete understanding of the engineering design research literature.

2.2 Background and Objectives

The ASME International Design Engineering Technical Conferences (IDETC) and Com-

puters and Information in Engineering Conference (CIE) are leading international research

meetings in design and engineering [14]. IDETC provides an opportunity for researchers to

share the latest research and to build social networks, both in academia and industry. One

conference that is part of IDETC, the Design Automation Conference (DAC), focuses on

the development and analysis of rigorous methods for designing engineered systems. The

DAC research community celebrated its fortieth anniversary recently, precipitating commu-

nity reflection on past progress and future directions [120]. Since 2012, ongoing efforts, led

by some authors of this chapter and others, have sought to understand the nature of the

DAC research community through established quantitative network analysis methods. Af-

ter initial analysis of the DAC literature, Allison presented a lightning talk at 2014 ASME

IDETC/CIE [10,45,120] during the keynote DAC session. This chapter presents a significant

extension of this work, including application of distinct frameworks for topic modeling that

are scalable and applicable to more general citation networks.

Network analysis, sometimes also referred to as structural analysis, examines social struc-

tures as a network or graph [195,253]; specifically, citation and co-authorship networks high-

light patterns and connectivities within scientific literature. A citation network represents

articles as nodes (vertices), and directed edges indicate article citations. A co-authorship

network represents authors as notes, which are connected when the two authors have co-

authored at least one article together. In a citation network, each article is represented as a

node (vertex); a directed link (edge) represents the citation of one article by another. The

citation network is directed and acyclic because an article can only cite its predecessors.

Citation analysis began in the 1960s with Price’s study of the social structure of scientific
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literature [202, 203]. His discovery that the degree of a citation network follows a power

law was the first demonstration of the scale-free network property [203]. Price’s growth

model for citation networks [202] is a special case of what is now known as the preferen-

tial attachment process [16, 188]. More recently, researchers have come to rely on citation

analysis as an index of community structure. For example, Chen and Redner investigated

the citation network of Physical Review publications from 1893–2007 and identified major

communities using modularity maximization [46]. A patent citation network was studied

to understand the mechanisms of knowledge transfer in nanoscale science and engineering

from 1976–2004 [154]. Kajikawa et al. used citation analysis to identify fifteen research clus-

ters in the field of sustainability science [128]. A subset of other fields analyzed include

medicine [37, 93], engineering [128, 129], physics [113, 210], semantics [261], and the Nobel

Prize literature [139].

A co-authorship network is distinct from citation networks in that each author is repre-

sented by a node, with an edge linking authors who co-author an article [187]. Co-authorship

network analysis has attracted interest due to its topological features. For instance, New-

man found that collaborative networks in medical research, physics, and computer science

exhibit the so-called small-world effect, present when the degree distribution of authors and

articles follow a power-law distribution [184]. Newman’s later work explored collaboration

patterns in article databases [186]. Ding focused on exposing the collaborative behavior

of productive and highly-cited authors available on the Web of Science (WOS) active from

1956–2008 [62]. Liu et al. studied author impact in digital library conferences [158]. Fur-

ther work, such as co-authorship structures and link prediction problems, can be found in

Refs. [25, 156,232,233].

A variety of approaches and algorithms are used in network analysis.Centrality mea-

sures and clustering coefficients, for example, are often used. Degree centrality was used in

macro-disciplinary evolution [191] and bipartite networks [147]. Betweenness centrality has

been applied to study wireless sensor networks [155], biological networks [183], and metro
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systems [60]. Structural or topological clustering methods were also used to study these

networks [123,169,223,259]. Newman has developed a series of algorithms for detecting and

evaluating network community structures [187, 189]. Link analysis algorithms explore asso-

ciations between nodes in web search ranking, the most well-known examples being Google’s

PageRank [32,196] and HITS (Hypertext Induced Topic Selection) [138]. Other authors have

explored path-based search algorithms (Sun et al. [233, 234]) and link prediction problems

(Liben-Nowell [156]). A wide range of other studies has addressed for analyzing network

structures [8, 52, 74, 185]. These structured-based approaches lay a foundation for develop-

ment of the proposed approaches in this chapter.

The foregoing approaches rely on network structure alone, and are limited thereby. Doc-

ument content and topical features could also be considered. Latent Dirichlet Allocation

(LDA), a Bayesian network model, is a generative statistical model that analyzes features

for topic discovery (Blei et al. [23]; Pritchard [204]), with the assumption that each document

can be represented as a mixture of different topics. The author–topic model was introduced

by Rosen-zvi et al. [215] as an extension of LDA. Similarly, a probabilistic method known as

Author-Conference-Topic (ACT) enables one to conduct topic modeling for articles, authors

and publication venues (Tang et al. [238]). Ding also utilized the ACT model for scientific

collaboration analysis [62]. Fu et. al revealed the inherent structural forms of the US patent

database using a methodology combining a Bayesian model with latent semantic analysis

(LSA) [80]. Topic analysis has also gained popularity, including the use of topic groups [17],

topic extraction [35,37], content analysis [42], and cluster analysis [128,129].

The objective of the work presented here is to address the following questions: 1) What

knowledge can we gain from the DAC literature networks? and 2) Can we generate obser-

vations and insights with the potential to benefit future efforts in this research community?

In our efforts to answer these questions, we made two core contributions: 1) We developed

two strategies for DAC topic exploration: a frequency-based model and propagation mer-

gence (PM). The latter is fundamentally different from existing strategies in that it combines
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network and textual information. 2) Using both the proposed and existing methods, we com-

pleted the first thorough (but not exhaustive) study of the DAC citation and co-authorship

networks. While similar analyses have been performed for other scientific domains, this is

the first presentation network analysis results specifically for the DAC community.

Several aspects of the ASME DAC corpus were analyzed. We identified the most col-

laborative authors using the co-authorship network, and demonstrated that the DAC co-

authorship network possesses the small-world property [8,250]. We used the frequency-based

model to study DAC topic distribution and evolution. Citation analysis within each topic

field was conducted, and topic relations were explored using correlation and association rule

learning. The second model applied was the PM approach [231]; it is distinct from existing

structure-based approaches or topic modeling techniques in that it is an unsupervised learn-

ing approach that accounts for both topology (citation structure) and text content for topic

and cluster analysis. PM was used to identify highly-influential DAC articles, as well as to

group DAC topic clusters. The creation of PM was motivated by the subjectively inadequate

results generated by existing topic modeling methods for DAC articles, such as LDA [23].

The material presented here is the result of a long-term effort that builds upon work

that was presented in 2014 [10,45], which included network visualization, a phrase timeline,

chronological streamgraphs, topic modeling and visualization, and a recommender system

based on author/article similarity. The work here explores several additional aspects of the

DAC networks, and significant improvements were made to DAC topic modeling efforts by

using new strategies, and more intuitive and precise outcomes resulted. We believe this

work is an important initial milestone for understanding the engineering design research

community via literature network analysis.

The remainder of the chapter is organized as follows. Section 2.3 describes data collection

and preparation. Section 2.4 introduces methodologies used in the chapter, including the

frequency-based model, correlation analysis, association rule learning, and PM. Knowledge

and insights gained from our DAC network analysis are reported in Section 2.5. In Sec-
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tion 2.6, we summarize the results and propose future work. Conclusions are presented in

Section 2.7, including recommendations and new potential research activities for the DAC

community. Data and code are available online [97].

2.3 Data

The American Society of Mechanical Engineers (ASME) keeps records of DAC articles, that

were presented and archived in the proceedings of IDETC/CIE since 2002 [14]. ASME

aims to archive all past proceedings, but at present published articles can only be verified

since 2002; this limits the data set available for this study. We parsed the ASME conference

proceedings website to extract bibliographical information including titles, authors, keywords

and abstracts. This website does not include lists of references for each DAC article, so

citation information was extracted directly from DAC articles using a mostly-automated

strategy. The similarity between every pair of distinct author names was measured using a

modified implementation of the Levenshtein distance [151] as a strategy to identify articles

written by the same author with slight differences in name representation (e.g., middle initials

included or not). This method considers the maximum edit distance between the two names,

as well as individual name lengths and discrepancies of name initials to avoid false positives.

If two names were identified as being from the same author using this automated approach,

these matches were then checked by a human evaluator before merging to enhance name

disambiguation accuracy. A total of 1,668 DAC articles were retrieved from the period

2002–2015. This excludes articles that were accepted, but not presented (and therefore not

published). Both citation and collaboration networks were constructed using this database

of bibliographic records and citation information.

We acknowledge the limitations of this data set. It is not a comprehensive representa-

tion of the engineering design research literature, reflecting only a specific segment of this

community. A larger effort would be required to compile a more representative data set that
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includes other important conferences (both other ASME and non-ASME design research

conferences), as well as engineering design journals (such as the ASME Journal of Mechan-

ical Design (JMD) and the Journal of Computing and Information Science in Engineering

(JCISE)). Challenges involved with a more comprehensive effort include not only signifi-

cantly larger and more heterogeneous data gathering, but also the presence of articles in

journals such as JMD that are not from the engineering design research community. Impor-

tant questions regarding the impact of design research, and influences on design research,

could be answered in part if articles citing design research articles, or external articles cited

by design research articles, were part of the data set. For this first step in literature network

analysis for engineering design research, we limited our selected dataset to DAC articles to

maintain reasonable scope while providing the possibility of useful results, and because of

familiarity with this community and recent community interest in self-reflection and analysis.

If expanded efforts are possible in the future, outcomes and methods from this initial study

could be expanded to a more comprehensive analysis.

2.4 Network Analysis Methods

2.4.1 Co-authorship Analysis

We performed co-authorship network analysis using NetworkX [102]. We found the most

collaborative authors based on node degree. Two graph metrics, the local clustering coef-

ficient and average path length, were used to analyze the small-world behavior exhibited

by the DAC co-authorship network [250]. Given a graph G, the local clustering coefficient

C(vi) is a structural property that quantifies how closely the neighbors of node vi ∈ G tend

to congregate in G. For a node vi with kvi neighbors and Γvi edges between its neighbors,

the local clustering coefficient is: C(vi)=
Γvi

kvi (kvi+1)
[127]. The average clustering coefficient

C = 1
n

∑n
i=1C(vi) is the mean value of C(vi) across all n nodes in G [250]. The average

path length L refers to the average of number of edges in the shortest path between all
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possible pairs of connected nodes in the network [250]. This robust topological metric has

been well-studied and used widely for analysis of random graphs, scale-free, and small world

networks [8].

2.4.2 Citation Analysis

Frequency-Based Model

Given a collection of 1,668 DAC abstracts, we first used ToPMine (Topic Phrase Mining)

[69] and RAKE (Rapid Automatic Keyword Extraction) [214] to discover and extract key

phrases. The ToPMine algorithm transforms a corpus into a “bag of phrases” and screens for

phrases that appear more frequently than a certain threshold. This framework supports the

high-quality production of key phrases. RAKE is an unsupervised, domain- and language-

independent algorithm that automatically extracts key phrases from individual documents.

It allows users to impose restriction on phrase frequency, the number of words in a phrase,

and the length of each word while selecting acceptable key phrases. RAKE also filters out

meaningless words as determined by the user. Each keyword is assigned a score in terms

of word frequency, word degree, and ratio of degree to frequency. A set of candidate key

phrases was generated using both approaches for the DAC abstracts.

As not every key phrase reflects topic information, human expertise can help refine the

set of key phrases. For example, the phrase “recent years”—extracted by RAKE—is too

general to convey meaningful information. The Natural Language Toolkit (NLTK) Python

library was used to standardize phrases with certain part-of-speech (POS) patterns [164],

thus transferring each key phrase to a root form. A field of ten main topics and fifty subtopics

was provided by a human expert after examining automatically generated key phrases. Each

key phrase was then assigned up to 3 topics by the human expert. Each abstract was searched

for key phrases in the topic list, and assigned corresponding topics when a match occurred.

Multiple topic assignments were allowed for each abstract. The resulting Boolean topic
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matrix catalogued 1,668 abstracts against 10 main topics and 50 subtopics.

Topic Exploration

Correlation functions as a simple but useful metric that can indicate the predictive relation-

ship between topics. We computed the correlation matrix characterizing the linear relation-

ship between the 10 main topics and 50 sub-topics. We also investigated each topic based

on the citation network structure. The average degree measures the activity of citation in

each DAC topic. (Recall that the citation network is a directed graph; the average degree

refers to the average in-degree per node in the network.)

Association rule learning (ARL) is a well-established data-mining technique that reveals

relationships between database entries [5]. In our case, ARL can be applied to topic re-

lationships. The apriori algorithm in the R software package arules was used to mine

association rules for DAC literature topics [5, 104]. Agrawal et al. summarized the prob-

lem of mining association rules as follows [4]: Let I = {i1, i2, . . . , in} denote the set of n

binary attributes (or items) and T the set of transactions (or database). Each transaction

t ∈ T is a binary vector. Define tk = 1 if transaction t contains item ik, and tk = 0

otherwise. An association rule has a form of X ⇒ Y , where item X is a subset of item

set I and Y is a single item in Y ∈ I and Y 6∈ X. Items X and Y are referred as the

antecedent (left-hand-side or LHS) and the consequent (right-hand-side or RHS) of the as-

sociation rule [4, 104]. Three critical metrics are considered in association rules: support,

confidence, and lift. For given items X, the support of X, denoted as supp(X) is the pro-

portion of transactions in the database that contains items X. The confidence of a rule is

computed as conf(X ⇒ Y ) = supp(X∪Y )
supp(X)

, where supp(X ∪ Y ) is the support of the intersec-

tion of X and Y , equivalent to the joint probability P (X ∩ Y ) [103]. The confidence is an

estimated conditional probability P (Y |X), indicating how likely item Y is to appear also

in the transactions, given the proportion of transactions that contain items X. The lift,

defined as lift(X ⇒ Y ) = conf(X⇒Y )
supp(Y )

= conf(Y⇒X)
supp(X)

= supp(X∪Y )
supp(X)supp(Y )

, measures the ratio between
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occurrences of X and Y and the support expected if X and Y were statistically indepen-

dent [103, 104]. Association rules with lift greater than one imply strong dependence, and

are deemed to be useful to predict RHS in the data set [104]. LHS and RHS are considered

independent if the lift is equal to one [103].

Propagation Mergence (PM)

The PM approach was proposed by Su as an unsupervised learning algorithm considering

both citation structure and content representation simultaneously [231]. Su also developed an

online interactive visualization application using WebGL (Web Graphics Library) [11,41,198]

in which PM was applied to the DAC citation network [230]. PM first identifies a set of most

influential articles (also referred to as source nodes) using a TF-IDF representation [150] and

a weight for the directed citation link. A PageRank-based algorithm scores the articles [196];

a set of influential articles is formed using this scoring and a user-specified threshold value.

Source nodes (articles) propagate credit and information to non-source nodes in the citation

network, leading to an initial cluster assignment; the number of initial clusters is equal

to the number of the source nodes. The merging step combines clusters as necessary to

eliminate redundancy, since a single article may be insufficient to reflect the whole cluster

correctly. Alternatively, two or more clusters may be merged. PageRank- and HIT-based

approaches have been introduced previously for network analysis [47, 63, 64]. For instance,

Yang et al. presented a strategy combining a content-based method with the multi-type

citation network and performed heterogeneous link analysis using topic PageRank, but the

main focus was to improve ranking performance and author reputation [260]. PM is distinct

because it groups DAC articles, into clusters by addressing citation network and content

representation. Further technical details about the PM approach can be found in Ref. [231].

23



2.5 Results

2.5.1 Co-authorship Network Analysis

Table 2.1 summarizes DAC statistics from 2002 to 2015. A total of 1,668 articles were

collected, associated with 2370 distinct authors, with an average of 119 articles each year.

The top five collaborative authors are Timothy W. Simpson, Wei Chen, Janet K. Allen,

Farrokh Mistree, and Panos Y. Papalambros. These were obtained using degree centrality.

No specific pattern was found in the number of articles or authors each year. The average

number of authors per article ranges from 2.20 to 2.67; this number increases slightly each

year, indicating that researchers have tended to become more collaborative over time. The

average clustering coefficient C and the average path length L are also reported. The average

clustering coefficient has increased from 0.63 to 0.79, indicating that authors tend to form

persistent cliques. One DAC author needs to communicate through fewer than two people

(except 2006) to get acquainted with another DAC author if there exists a connection.

The overall (all years) average clustering coefficient C = 0.71 and overall shortest path

length L = 5.90 were calculated. These imply that the co-authorship network exhibits

the small-world property, as C � Crand and L ' Lrand [241, 250], where Crand = 0.011

and Lrand = 4.59 were computed using a random graph with the same number of nodes

(2,370) and an average degree of k = 3.81. Albert and Barabási summarized a number of

small world networks including several types of co-authorship networks with local clustering

coefficients 0.066 ∼ 0.76 and the average path length 4.0 ∼ 9.7 [8]. The DAC co-authorship

network exhibits similar characteristics. Overall, the DAC co-author network exhibited

sparse connectivity. Many edges correspond to advisor-student research teams, with less

frequent faculty collaboration. Later analysis results in this section indicate opportunities

for additional collaborative work, which could help advance intellectual diversity and vitality

[50,163,181].
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Table 2.1: Summary of the co-authorship network

Year No. articles No. Authors Avg. No. Authors/article C L
2002 117 278 2.38 0.63 1.22
2003 143 319 2.23 0.67 1.51
2004 115 275 2.39 0.67 1.43
2005 128 281 2.20 0.63 1.61
2006 118 272 2.31 0.71 2.76
2007 125 285 2.28 0.67 1.35
2008 119 308 2.59 0.75 1.40
2009 122 307 2.52 0.70 1.75
2010 112 273 2.44 0.76 1.69
2011 110 282 2.56 0.79 1.32
2012 123 302 2.46 0.74 1.55
2013 114 266 2.33 0.72 1.43
2014 108 269 2.49 0.75 1.48
2015 114 304 2.67 0.79 1.35

Overall 1668 2370 1.42 0.71 5.90
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Figure 2.1: Main topic frequency plot

2.5.2 Frequency-Based Model

Figures 2.1 and 2.2 illustrate DAC topic frequencies. Each key phrase can be associated

both with main and sub-topics. For instance, a key phrase “optimization method” may be

connected to the main topics engineering design optimization and design method, and the

sub-topics search, numerical methods, and design process. The top five main DAC topics
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Figure 2.2: Sub-topic frequency plot

are design method, engineering design optimization, design-appropriate modeling, product

development, and design under uncertainty. Note that some topics correspond to design

methods or other general topics, whereas others correspond to specific application domains.

Research areas such as sustainable energy systems and transportation system design are

less frequent when considering the overall length of the study period (see Fig. 2.1). Either

of these topics represents less than 3% of the collection. Chronological evolution of topics
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Figure 2.3: Main topic chronological evolution

is illustrated in Fig. 2.3. From this visualization we can see that interest in sustainable

energy systems is increasing in recent years, whereas interest in transportation systems has

fluctuated. Visualizations for sub-topics are presented in Figs. 2.2 and 2.4. Aircraft design,

design rules, and equivalence became less frequent in some years, but fluid system design

and wind energy have increased in frequency in recent years. Wind energy, appearing first

in 2009, accounts already for nearly 2% of the DAC article collection.

Correlation plots are shown in Figs. 2.5 and 2.6, where each cell grayscale density indi-

cates the correlation strength between two topics. Four main topics, including design under

uncertainty, design-appropriate modeling, engineering design optimization, and large-scale

engineering system design are highly correlated with each other. Product development in-

dicates a strong correlation with design method. Dynamic and control system design and

transportation system design are also strongly correlated. It is natural to associate sustain-

able energy system design with both dynamic and control system design and transportation
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Figure 2.4: Sub-topic chronological evolution

system design, but this topic is relatively isolated from other topics in the DAC literature.

Mechanical design is relatively isolated (weakly correlated with other topics). Research gaps

and opportunities may be inferred from correlation matrices. For instance, product devel-

opment and design under uncertainty are core topics, but have weak correlation. There is

also weak correlation between transportation system design and design under uncertainty,

which could be an opportunity for further investigation. These recommendations should

be qualified; the presence of a weak correlation is a proxy for determining interfaces that

the engineering design research community should investigate further. Good reasons may

exist for not exploring a particular interface. In addition, lack of correlation in this dataset

does not necessarily mean no correlation exists in engineering design literature in general.

Additional articles that involve a particular interface may exist in other publication venues

that are more appropriate for that interface than DAC (e.g., particular applications).

Sub-topic correlations are illustrated in Fig. 2.6. A strong correlation exists between
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Figure 2.5: Main topic correlation

product family design, modularity, and graph theory. Strong correlations also exist be-

tween several pairs of subtopics, including: topology optimization/structural design, wind

energy/fluid system design, and early stage design/creativity. Several subtopics have weak

correlations, including robotics, kinematics, equivalence, design rules and aircraft design.

Some of the weak correlations were unexpected, such as machine learning. General research

interest in machine learning has increased in recent years, but only after 2015 began to
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show a more significant presence in DAC. Based on our data, engineering design using ar-

tificial intelligence—particularly neural networks and deep learning—has not been studied

extensively within the DAC community. A few strong contributors have made progress in

this area. Topics related to machine learning that appear in the data set include classifiers,

clustering, principle components analysis, and neural networks. Perhaps one of the more

interesting features of the machine learning sub-topic is that it is not yet well-connected

to other subtopics. There may be an important opportunity to create new links between

machine learning techniques and other DAC topics of interest.

Figure 2.7 illustrates correlations between main and sub-topics. The topics of trans-

portation system design, sustainable energy system design, and dynamic and control system

design are relatively specialized; only a few sub-topics are correlated with them. A few

entries with very low correlation levels (white/near-white in the figure), corresponding to

sub-topics such as customer preferences and design for manufacturing, may be important

interfaces to explore by DAC researchers.

For each topic, we calculated the average in-degree of the citation network and sorted

these in a descending order (see Fig. 2.8). Mechanical design and transportation system

design have low average in-degree values. The average in-degrees of sub-topics are plotted in

Fig. 2.9. Topology optimization and structural design are well-established topics, but their

citation strength is not high relative to topic maturity. Many optimization-based topics,

including decomposition-based optimization, multi-objective optimization, multi-disciplinary

design optimization, and global optimization, also have low average in-degrees. One factor

may be some of these articles being revised and published as journal articles, and the journal

version is cited instead of the DAC article. This cannot be verified from the current data

set.

Wind energy has the ninth highest average in-degree, even though the overall topic fre-

quency is low. In other words, DAC researchers in wind energy tend to cite DAC articles

very well. Design rules, visualization, kinematics, machine learning, automotive design, and
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Figure 2.6: Sub-topic correlation

equivalence show a low intra-DAC citation rate.

Figure 2.10 shows the citation network for just the DAC articles belonging to sustainable

energy system design. This topic has an average in-degree of 0.5, indicating a very sparse

citation network. In general, a sparse citation structure was observed across the complete

DAC literature network, indicating an opportunity for improvement. Some of this sparsity

may be due to citation of journal versions of DAC articles.
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Figure 2.7: Main topic and sub-topic correlation

2.5.3 Association Rule Learning

Association rule learning can be applied to literature networks if each topic and article are

treated as an item and a transaction, respectively. We set support and confidence thresholds

at 0.004 and 0.5 for both main and sub-topics, generating 476 association rules for the main

topics (Fig. 2.11). A grouped matrix-based visualization organizes the antecedent (LHS) and

consequent (RHS) using a grouping of rules via clustering [105]. The ball plot of Fig. 2.12
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Figure 2.8: Average in-degree for main topics

includes antecedent groups (LHS) as columns and consequent groups as rows (RHS). Note

that there are high lifts occurring at Rows 1–3, indicating a strong dependence between

transportation system design, sustainable energy design, and dynamics and control system

design. Topics in Rows 4–6 also have strong associations because of higher confidence and

lift greater than one. The lift of product development is close to one, indicating some

independence, also observed previously (Fig. 2.5).
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Figure 2.9: Average in-degree for sub-topics

Several rules with high confidence and lift are listed in Table 2.2. These rules cover topics

with fewer occurrences (transportation system design, mechanical design, and sustainable

energy system design). In Rule 4, LHS {large scale engineering design, design method,

mechanical design} implies RHS {design under uncertainty}. While the support of LHS

is only 0.0216, the confidence is 0.878, meaning 87.8% of the time LHS occurs in articles

that also contain RHS. The lift of 2.697 indicates that the LHS and RHS have a strong
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Figure 2.10: Citation network for sustainable energy system design

association. The probability of finding the RHS in articles that also contain the LHS is

greater than the probability of finding RHS only by 169.7%. In other words, when one

works on large scale engineering system design, design methods, and mechanical design, one

may likely also consider design under uncertainty. The rest of the rules may be interpreted

in a similar way.

The rules presented here can help extract insights not revealed via correlation plots. For

instance, the paired correlation between transportation system design and product devel-

opment is quite weak. Rule 1, however, implies that product development together with

transportation system design and dynamic and control system design has a strong associ-

ation with sustainable energy system design. Design-appropriate modeling (Rule 2) and

engineering design optimization (Rule 3) also exhibit dependence on dynamic and control

system design. In Rules 4 and 5, mechanical design co-occurring with certain other topics

tends to indicate design under uncertainty. Another benefit of using association rules is to
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Figure 2.11: Scatter plot for association rules of the main topics

bundle the dependence among multiple topics for ready examination. Interested readers may

find more rules extracted from the data set via corresponding online materials [97].

Sub-topics were analyzed, with the minimum support and confidence levels set at 0.004

and 0.5, respectively, for a total of 57,282 rules. Figures 2.13 and 2.14 are the scatter plots

for the sub-topics and the group matrix visualizations. Among the sub-topics, the highest

lift occurs for automotive design, wind energy, robotics, fluid system design, visualization,

and mechatronic system design. In particular, wind energy has strong association rules with

fluid system design and mechatronic system design. Machine learning associates not only

with traditional optimization-based topics, but also decision analysis, early stage design, and

process design. Design process has the least lift, but the median lift is still greater than 1,

indicating a reasonable co-dependence with the other topics. We specifically examined rules

relevant to the topics (equivalence, aircraft, design rules, kinematics, and global optimiza-

tion) that performed either poorly in the correlation plot in Fig. 2.6, or were not shown in
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Figure 2.12: Group matrix-based visualization for main topics

the grouped matrix. No rules were found on equivalence or aircraft design. A subset of 20

association rules on design rules, kinematics, and global optimization are reported in Table

2.3. Structural design can be inferred from kinematics and global optimization (Rules 1–2).

The topic of design rules is not prevalent in the DAC literature, but it can produce useful

insights by combining with other topics. For example, design rules could imply topics such

as uncertainty quantification, computational expense, surrogate modeling, and so on (Rules

4–8). A number of topics can also set up relations with global optimization, as seen in Rules

8–20, although global optimization does not exhibit strong correlations in Fig. 2.6.
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Table 2.2: Association rules for main topics

Rules Support Confidence Lift
1 {transportation system design, dynamic

and control system design, product devel-
opment} => {sustainable energy system
design}

0.005 1.000 33.360

2 {design appropriate modeling, transporta-
tion system design, sustainable energy sys-
tem design} => {dynamic and control sys-
tem design}

0.007 1.000 13.031

3 {engineering design optimization, trans-
portation system design, sustainable en-
ergy system design} => {dynamic and
control system design}

0.008 1.000 13.031

4 {large scale engineering system design,
design method, mechanical design} =>
{design under uncertainty}

0.022 0.878 2.697

5 {engineering design optimization, large
scale engineering system design, mechani-
cal design} => {design under uncertainty}

0.023 0.844 2.594

2.5.4 Propagation Mergence (PM)

Table 2.4 reports the ten most influential articles according to the PageRank-based algorithm

in the PM approach. Design under uncertainty, reliability-based design, and product family

design had strong impacts on the corpus. We also summarized twenty significant clusters

identified by PM in Table 2.5. (Clusters formed by PM were labeled based on human

judgment. While each cluster may correspond to multiple topics, we selected a consensus

“most likely” label for each.) Cluster exchange represents interactions between clusters via

the citation network.

Cluster 1 (design under uncertainty) spans a large structural space in the network.

Reliability-based design typically involves both uncertainty and optimization, and hence

this cluster is often exchanged with others.

Cluster 2 is product family design. Research efforts represented in this cluster favor a
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Table 2.3: Association rules for the sub-topics

Rules Support ConfidenceLift
1 {gradient based optimization, kinematics} →
{topology optimization}

0.005 0.900 8.628

2 {gradient based optimization, kinematics} →
{structural design}

0.006 1.000 5.579

3 {data driven methods, structural design, design
rules} → {reliability based design optimization}

0.004 1.000 13.452

4 {reliability based design optimization, design
rules} → {uncertainty quantification}

0.005 1.000 6.391

5 {problem formulation, reduced-order methods,
design rules} → {computational expense}

0.004 1.000 8.554

6 {reduced order methods, design rules} →
{surrogate modeling}

0.005 1.000 6.088

7 {design process, design rules} → {design analy-
sis}

0.010 1.000 2.421

8 {problem formulation, design rules} → {systems
engineering}

0.013 0.917 2.157

9 {reduced order methods, design process, global
optimization} → {computational expense}

0.004 1.000 8.554

10 {emergence, surrogate modeling, global optimiza-
tion} → {heuristic optimization algorithms}

0.007 1.000 8.137

11 {global optimization, computational expense} →
{surrogate modeling}

0.010 1.000 6.088

12 {global optimization, experimental validation}→
{surrogate modeling}

0.011 0.826 5.029

13 {global optimization, heuristic optimization algo-
rithms} → {emergence}

0.015 0.893 4.789

14 {multi-objective optimization, global optimiza-
tion} → {emergence}

0.014 0.857 4.597

15 {design process , global optimization, design rep-
resentation} → {early stage design}

0.013 0.808 3.310

16 {early stage design, global optimization} →
{design representation}

0.013 1.000 2.574

17 {design process, global optimization} →
{creativity}

0.017 0.806 2.281

18 {data driven methods, global optimization} →
{search}

0.012 1.000 2.245

19 {creativity, global optimization} → {design rep-
resentation}

0.015 0.862 2.219

20 {global optimization, experimental validation}→
{design analysis}

0.013 0.913 2.210
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Figure 2.13: Scatter plot for association rules of sub-topics

variety of methodologies and analyses involving product family design, such as optimization

(e.g., genetic algorithms), sensitivity analysis, data mining (e.g., cluster analysis), formal

concept analysis, decomposition-based approaches, cost modeling, and others.

Cluster 3 (surrogate modeling) attempts to construct approximated models for use in

design. Key phrases include Kriging, evolutionary algorithms, Monte Carlo simulation,

and response surfaces. Reference [248] provided a comprehensive review of metamodeling

techniques that has been extended to various optimization formulations including global,

multi-objective, multidisciplinary design, and probabilistic optimization. Surrogate model-

ing actively interacts with a number of domains such as statistics, mathematics, computer

science, and engineering design [248].

Cluster 4 (design for market systems) focuses on marketing, user preference, demand,

and conjoint analysis. This cluster overlaps extensively with product design, as indicated by

the key phrases. In Fig. 2.15(d), Cluster 4 (in pink) is close to Cluster 2 (product family
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Figure 2.14: Group matrix-based visualization for DAC sub-topics
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(a) Cluster 1: Uncertainty quantifica-
tion

(b) Cluster 2: Product family design

(c) Cluster 3: Surrogate modeling (d) Cluster 4: Design for market sys-
tems

(e) Cluster 5: Visualization

Figure 2.15: Top 5 clusters using PM
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Table 2.4: Top 10 influential articles in the DAC citation network

Year Title Author(s) Score
2004 A Single-Loop Method for Reliability-Based

Design Optimization
J.Liang, Z.P. Moure-
latos, J. Tu

19.94

2006 Engineering Product Design Optimization for
Retail Channel Acceptance

N. Williams, S. Azarm,
P.K. Kannan

12.30

2002 On Sequential Sampling for Global Metamod-
eling in Engineering Design

R. Jin, A. Sudjianto,
W. Chen

11.42

2002 A Quantitative Approach for Designing Mul-
tiple Product Platforms for an Evolving Port-
folio of Products

C.C. Seepersad, F. Mis-
tree, J.K. Allen

9.93

2003 Reliability-Based Design With the Mixture of
Random and Interval Variables

X. Du, A. Sudjianto,
B. Huang

8.34

2007 Optimal Partitioning and Coordination De-
cisions in Decomposition-Based Design Opti-
mization

J.T. Allison, M. Kokko-
laras, P.Y. Papalam-
bros

8.00

2004 A Saddlepoint Approximation Method for Un-
certainty Analysis

X. Du, A. Sudjianto 7.55

2006 Flexible Product Platforms: Framework and
Case Study

O.L. de Weck, E.S. Suh 7.33

2002 Sequential Optimization and Reliability As-
sessment Method for Efficient Probabilistic
Design

X. Du, W. Chen 7.06

2003 Design Space Visualization and Its Applica-
tion to a Design by Shopping Paradigm

G.M. Stump, M. Yuk-
ish, T.W. Simpson,
E.N. Harris

6.36

design, in green). Due to increased weight on marketing, this cluster was separated from

product family design.

Cluster 5 represents visualization, but also has strong citation links to several other

major clusters. In Fig. 2.15(e), red citation links are connected to Cluster 2 (product family

design, in green), Cluster 3 (surrogate modeling, in yellow), and Cluster 4 (design for market

systems, in pink). Cluster 5 is fairly cross-disciplinary as it involves tools for other topics.

Additional knowledge can be obtained by inspecting Clusters 6–20. For example, Clus-

ter 6 addresses architecture design and configuration problems for product family design;

Fig. 2.15(b) also shows that it is connected to Cluster 2 (product family design). Interested
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Table 2.5: Topic clusters in the ASME DAC citation Network

No. Cluster label Exchange Extracted key phrases
1 design under

uncertainty
3,4,10 reliability, uncertainty, error, random, reliability analysis, probabilistic, inter-

val, probability, rbdo, input, confidence, variables, failure, analysis, simulation
2 product family

design
3,4,6 product family, product, product platform, redesign, commonality, market,

cost, components, variety, customer, pattern based, benchmark
3 surrogate mod-

eling
1,5 kriging model, surrogate models, model, approximation,simulation, sequential

sampling, response, expensive, computational, moga, metamodeling techniques
4 design for mar-

ket systems
1,2,7 market systems, profit, product, consumer, price, competitive, retailer, demand

model, choice, customer preferences, conjoint analysis
5 visualization 2,3,4 visualization, preference, user, content, product, user generated, interaction,

data, clustering, dimensional, consumer, family, structure matrix, preference
elicitation, efficient global

6 modularity 2, 4, 19 reconfigurable, reconfigurable system, transformation, adaptive, product, con-
cept generation, system, concept, change, theory, state, changeable, architec-
ture, sio, facilitate

7 customer pref-
erence

2,4,5 usage, buck, usage context, vehicle, seating buck, context, choice modeling,
attributes, packaging, customer, appraisal, coverage, product, legacy

8 decomposition-
based design

1,3 characteristics, assembly synthesis, decomposition, joint, deeper, product de-
sign, collaborative, in process, hierarchical, fundamental, decomposition based,
optimization, product, product design optimization, adjustability

9 design process 2,4 decentralized, architecture, process architecture, mistakes, distribution, con-
vergence, impulses, design process, process, subsystems, stability, design,
group, equilibrium, solutions

10 robust design 1,2 robust design, robust optimization, interval uncertainty, variation, computer
experiments, sequential quadratic programming, model uncertainty, sensitivity,
parameters, mcro, tolerance, blade

11 topology opti-
mization

N/A heuristic gradient projection, mems, fuzzy, hybrid, stress, space frame, solar,
frame, water, hgp, hdh, resonator, topology optimization, desalination system,
semi isolated

12 wind energy 1 wind, farm, wind farm, wind farm layout, farm layout, turbine, landowners,
land, wake, cost, onshore, power, extended, eps, shear

13 multi-
disciplinary
optimization

2 analytical target, target cascading, analytical target cascading, coordination,
atc, network, enterprise, network decomposed, complementarity, subsystems,
tolerance allocation, mdo, decomposition

14 multi-objective
optimization

N/A coordination, decomposition based, co design, plant, partitioning, wave, de-
composition, wind, control, energy, subproblems, complementarity, multistage,
optimization, power

15 structural
design

N/A meso structures, shear, pneumatic, non pneumatic, shear flexure, honeycomb,
wheel, meta material, material, chiral, layer, metamaterial, properties, cell,
wall

16 developing-
world design

2,6 developing world, principles, world, water, pump, rural, modular product, de-
mography, sustainable, village, irrigation, safe, communities, energy, alleviate
poverty

17 N/A 1 graveyard, one to, consolidation, group, robust design, hybrid, ds, unequal,
mapping, inequivalents, heterogeneous, members, heim, hypothetical, genetic
algorithm

18 human element
design

N/A population, civilians, head, anthropometry, user population, restraint, stature,
user, secular, body, virtual, dfhv, variables, dimension, accommodation

19 machine learn-
ing

3,6 Bayesian Network, classifiers, composite materials, set based, composite, pro-
tocol based, cooperative, inclusions, collaborative design, set, stiffness, satis-
factory, multi agent, negative, heuristic

20 phase transi-
tions

N/A transition, saddle, crystal, nano, phase, surface, periodic, path, metamorphosis,
search, nano design, review, energy, pathway, recent
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readers may find Ref. [72] useful, where Ferguson et al. discussed relevant concepts, summa-

rized recent approaches for this topic, and proposed open questions for reconfigurable system

design. It is not surprising to see that the key phrases in Cluster 7 (customer preference)

overlap with Cluster 4 (design for market systems) and Cluster 2 (product family design).

Clusters 8, 13, and 14 (decomposition-based design, multidisciplinary optimization, and

multi-objective optimization) are focused primarily on optimization methods. Cluster 9 (de-

sign process) often deals with convergence and stability in decentralized design processes and

large, complex systems. Cluster 10 (robust design) is very similar to Cluster 1 (design under

uncertainty), as robustness is one of several desirable properties for designs involving various

types of uncertainty. Clusters 11 (topology optimization) and 15 (structural design) address

topology and structural optimization in engineering design. It is interesting to note that

Cluster 12 (wind energy) has a citation relationship with Cluster 1 (uncertainty qualifica-

tion). Cluster 16, adjacent to Cluster 2 (product family design), is developing-world design.

An example of this topic is an article by Mattson and Wood that introduces nine design

principles for the developing world [173]. Cluster 17 is labeled “undetermined”; distinctness

in key phrases, including areas such as robust design, design process, and multi-objective

optimization, make it difficult to assign a single cluster label.

One may notice that some clusters are isolated. To understand this observation, recall

that we consider only citations within DAC. It is possible that these articles may have

cited or been cited by other articles from outside the DAC corpus. For instance, human

factors/ergonomics is well-studied in psychology. This helps to explain why Cluster 18

(human element design) is a minor cluster here. Machine learning (Cluster 19) is one of

the smallest DAC clusters. This topic has had significant impact outside of DAC (e.g.,

data science and artificial intelligence). One important recent example is Google’s Alpha

Go [226]. However, as discussed in [101], the use of specific elements of artificial intelligence

and deep learning in design is an emerging research topic within the DAC community, and

increased effort toward understanding artificial intelligence in engineering design may be a
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fruitful endeavor. More specifically, machine learning has been studied by a relatively small

group of researchers publishing in DAC, and currently it does not have strong links to other

DAC literature topics, but is emerging as a topic with increased interest and impact.

A number of clusters prefer to exchange with the top three clusters. Specifically, Cluster

2 (product design) is the most favored. The citation data reveal that DAC articles are often

influenced by product family design. It is also worth noting that the boundary between

two clusters may not be completely clear. As seen in Table 2.5, the key phrases in one

cluster may also reflect other clusters. This is not an unexpected phenomenon because

articles often involve a mixture of topics. For instance, Akundi et al. developed a multi-

objective design optimization method for product design using genetic algorithms [7]; this

article was grouped with Cluster 2 (product family design) because the most information in

product family design was passed from it into the source nodes in the PM approach. One

can determine what clusters are closer by viewing the exchange column.

2.6 Discussion

From the authorship network, we identified the five most collaborative authors using de-

gree centrality, and demonstrated that the co-authorship network possesses the small-world

property. The results show that DAC authors have become more inclined to collaborate

with others as time progressed. Identifying highly-collaborative authors here may be helpful

both to DAC newcomers (students, or scholars originally from other communities), and to

others seeking to understand DAC network structure. While identifying highly-collaborative

authors is an important feature of network structure and is an interesting result, similar

information can be obtained via discussion with individuals familiar with the DAC com-

munity; we regard other results obtainable only through network analysis as more valuable

outcomes of this study (e.g., gaps in possible links between topics, association rules, presence

of persistent cliques, nature of collaboration and citation patterns, and temporal trends).
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The topic modeling analysis revealed that DAC topics focus primarily on engineering de-

sign optimization (multi-disciplinary optimization, multi-objective optimization, decomposition-

based optimization, heuristic optimization, global optimization, surrogate modeling, etc.),

engineering design methods, product development (product family design, design for manu-

facturing, customer preferences, configuration, etc.), and design under uncertainty (reliability-

based design, robust design, etc.). The overall patterns, trends, correlations, associations,

and clustering are important observations, while the most collaborative authors and most

influential articles provide complementary insights.

The two approaches for topic modeling used here have differing strengths and weaknesses.

In the frequency-based model, human effort was required to complete the topic list. Based

only on key phrases, a human expert assigned main topics and subtopics to each phrase.

Some main and sub-topics were determined in advance, but others were created when new

key phrases were encountered that did not fit the available topics, requiring another review

of key phrases with the updated set of topics. Clearly this strategy depends on the particular

experience of the human expert making the determinations, resulting in a strong potential for

introducing bias. The advantage of the frequency-based model is that it enables simultaneous

access to all 1,668 articles, which makes possible mining the topic information and association

rules all at once. However, when new DAC articles are available, human experts must repeat

the manual process of assigning labels.

The PM approach is an automated method that uses citation relations in addition to

text content to improve results. Articles are clustered together using propagation via the

citation network. As reviewed in Section 2.2, the current topic modeling methodologies

focus mainly on either probabilistic models (natural language processing) or network-based

approaches only [187, 189]. For instance, an initial set of DAC topics were explored in our

early work using the ToPMine algorithm [69], but this approach was unable to capture the

DAC core topics [10]. This motivated us to develop a fundamentally different algorithm

(PM) that bridges the gap between natural language processing and citation networks. PM
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has been compared with the established modularity-based topic modeling method described

in Ref. [24]. Please see Refs. [230,231] for details of this comparison. One possible weakness

of PM is that it can only consider articles in the citation network. A subset of articles in the

DAC dataset do not have citations from other DAC articles, and therefore are not present

in the citation network, and cannot be considered by PM. However, this shortcoming can

be compensated for by using the proposed frequency-based model. The two strategies are

complementary to each other, providing a rich strategy for analyzing the literature from a

research community.

Future work should include expanding the literature data set. Additions ideally would

include articles from other relevant conferences and journals, as well as articles from other

disciplines that cite or are cited by the engineering design research literature. Gathering and

processing this data, as well as maintaining it, would require a much larger-scale effort than

what is represented in this chapter. Such a resource, however, could provide valuable insights

into not only internal characteristics of the engineering design research community, but also

into understanding the historical impact of other scientific communities on the engineering

design research community, and conversely, the impact that the engineering design research

community has on other disciplines. A specific complementary analysis strategy that could

be used for assessing impact of individual articles is article wake [139].

A related objective that could be supported using similar analytical tools is to learn how

ideas evolve from initial observation or concept to accepted knowledge within a scientific

community (i.e., formation of scientific consensus). For example, Herrara et al. present

idea networks, where nodes represent scientific concepts, that can be used as a tool to

understand evolution of scientific fields [113]. Centola presented techniques for understanding

how ideas, norms, and practices propagate in social networks (such as research communities)

[43]. An important element of forming scientific consensus is recognizing the possibility

that some ideas accepted by the community may not be correct. Greenberg highlighted

a pitfall of insular communities: the risk of becoming an echo chamber, wherein citation
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bias, amplification, and invention combine to bolster ”the conversion of hypothesis into fact

through citation alone” [93]. As a case of “spontaneous hypothesis generation”, the design

community has seen persistent citation of Symon and Dangerfield [237] as stating that 70–75

percent of all product costs are decided during the conceptual design stage (emphasizing the

importance of early-stage design). A detailed analysis presented by Barton et al., however,

revealed that the validity of this claim cannot be supported by evidence [18]. How can

we be confident that the design research community accepts ideas only when supported by

evidence? After learning more about how ideas evolve within design research, as a community

we could discuss whether different processes or norms could help improve research outcomes

and impact.

2.7 Conclusion

In this chapter, we analyzed the ASME DAC authorship and citation networks for the years

2002–2015. This effort revealed DAC community structure, patterns of collaboration, trends

through time, and potential opportunities for research activity. The data set was limited to

DAC articles; a more complete analysis would include other conference and journal articles

that are relevant to the engineering design research community. Such an analysis would

require a significantly larger collaborative research effort. The methods and results presented

here may serve as a foundation for future larger efforts.

We used two approaches to topic modeling. The first was a frequency-based model.

Topic frequencies and topic evolution were described. Citation analysis was also performed

for each topic. Correlation matrices and association rules helped to reveal topic relation-

ships and dependence. The second topic modeling approach, PM, was created and used to

identify influential articles and to group DAC literature topics into larger clusters, reflecting

core research interests in this research community. The work presented in this chapter is

descriptive in nature, and is intended for use by the DAC community to help inform collec-
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tive decisions. Further study is needed to arrive at more complete knowledge of the DAC

research community. These results are an early milestone in efforts to understand the nature

of engineering design research. Here we offer a few candidate interpretations for community

direction, with the caveat that these our intuitive opinions based on limited analysis, and

that these interpretations should be revised as more information emerges and community

discussion occurs.

We see trends in focusing efforts on applications and topics—such as an increased use of

DAC theory and methods to advance sustainable energy systems and design for the develop-

ing world—as important developments. DAC should continue to identify important societal

needs where advances in engineering design can enhance efforts to address these needs. We

have identified missing links between existing DAC topics and parts of the community that,

if attended to, may enhance community impact and lead to more thorough understanding of

research topics. For example, transportation system design and machine learning are topics

that have intuitive connections to other DAC areas, but at present are fairly isolated in the

literature networks. It may make sense for researchers who study design for the developing

world to collaborate with those with expertise in more general product design and devel-

opment. Human factors is another topic that does not have a strong presence in the DAC

literature, but may be important for realizing real-world impact of DAC research.

Data science is an area of intense research activity in recent years, and these advances

could be leveraged in a variety of ways to advance design methods and accelerate generation

of design knowledge. While machine learning and related topics have existed in the DAC

literature for some time, they are not well linked (at least in the DAC network) to other

topics. Efforts to integrate data-driven research efforts with both established DAC topics

as well as broader advances in data science could enhance impact and lead to a richer

understanding of engineering design. Others have identified leveraging new capabilities in

artificial intelligence and data science as a promising path toward breakthrough developments

in the engineering research community [197].
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One of the primary objectives of this work was to provide information that could be used

by DAC community members to help support collective efforts to guide community priorities

and direction, make recommendations for adjustments to research activity, and to be used

by interested individual researchers when evaluating their current and future contributions.

This and similar analyses could be used within community visioning efforts, such as the recent

NSF design and systems program workshops [70, 125]. This work is descriptive as opposed

to normative. Value judgments are outside the scope of this chapter, and may be better

addressed through collective efforts. Here we introduced new methods for topic modeling,

and acknowledge that rigorous analysis and comparison is needed before definitive statements

can be made regarding the nature and value of these methods. Literature network analysis

in design research is an emerging topic, and there are a variety of rich research opportunities

awaiting us. We hope the work here serves as a foundation for further efforts to analyze the

nature of engineering design research, and invite the community to join with us in this work.

It has been observed that machine learning is not well-linked to other research topics

within the engineering design community, as seen in Fig. 2.6 and Table 2.5. The aim of this

dissertation is to address this research opportunity in part. In the next chapter, a homo-

geneous system topology optimization problem based on hear conduction will be presented,

and it will be shown how a machine learning technique can be applied to extend design ca-

pabilities. Specifically, a variational autoencoder (VAE) will be used to develop an abstract

design representation that supports solution of a problem that cannot be solved directly

using established methods. The objective is to create a novel design framework based on

design data generated from design optimization studies, rather than the conventional design

approaches based on experience, intuition, or established optimization methods. It is hoped

that in addition to producing novel designs and solving new problem classes, this new general

approach will also help to accelerate the design process for a wider range of unprecedented

systems.
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Chapter 3

HOMOGENEOUS SYSTEM

TOPOLOGY DESIGN

Collaborative Acknowledgement: In the work presented in this chapter, Danny Lohan

provided the capabilities to generate heat conduction topological design and performance

data; Ruijin Cang helped with the literature review and augmented VAE implementation;

Prof. Max Yi Ren helped review the chapter and contributed several important ideas that

improved the technical implementation.

3.1 Introduction

Through the topic analysis in the previous chapter, one can identify research gaps and

opportunities in the engineering design research literature. While machine learning and

artificial intelligence techniques have proven to be extremely useful in both academia and

industry, they are not yet well-established in design research in an integrated way. Relatively

few links to other topics were observed within the design research literature. This chapter

addresses this gap in part by investigating a new approach for homogeneous system topology

optimization that leverages existing machine learning methods in new ways.

In this chapter we propose an indirect low-dimension design representation to enhance
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topology optimization capabilities. Established topology optimization methods, such as the

Solid Isotropic Material with Penalization (SIMP) method, can solve large-scale topology

optimization problems efficiently, but only for certain problem formulation types (e.g., those

that are amenable to efficient sensitivity calculations). The aim of the study presented in

this chapter is to overcome some of these challenges by taking a complementary approach:

achieving efficient solution via targeted design representation dimension reduction, enabling

the tractable solution of a wider range of problems (e.g., those where sensitivities are ex-

pensive or unavailable). A new data-driven design representation is proposed that uses an

augmented Variational Autoencoder (VAE) to encode 2D topologies into a lower-dimensional

latent space, and to decode samples from this space back into 2D topologies. Optimization

is then performed in the latent space as opposed to the original discretized design space.

Established topology optimization methods are used here as a tool to generate a data set

for training by changing problem conditions systematically. The data is generated using

problem formulations that are solvable by SIMP, and that are related to (but distinct from)

the desired design problem. We further introduce augmentations to the VAE formulation

to reduce unhelpful scattering of small material clusters during topology generation, while

ensuring diversity of the generated topologies. We compare computational expense for solv-

ing a heat conduction design problem (with respect to the latent design variables) using

different optimization algorithms. The new non-dominated points obtained via the VAE

representation were found and compared with the known attainable set, indicating that use

of this new design representation can simultaneously improve computational efficiency and

solution quality.
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3.2 Literature Review

3.2.1 Background

Over the past few decades, topology optimization methods have been applied to a wide

range of domains for the purpose of material layout optimization. Examples include the

early seminal work based on the homogenization approach [20], as well as various notable

extensions for engineering problems with different governing equations and responses [225].

In the domain of heat transfer, topology optimization has been implemented for problems in

conduction [88,265], convection [3,119], and conjugate heat transfer [9]. For a recent review

of heat transfer topology optimization, readers are referred to Dbouk [55], where numerous

examples of successful topological optimization studies are presented.

While topology optimization methods are becoming mature in many applications, some

important limitations remain. Some notable shortcomings are reviewed in Sigmund et

al. [225] and Deaton et al. [56]. For instance, solution performance typically depends on

the choice of the starting material distribution, the spatial discretization, and the filtering

mechanism [161, 225, 236]. In addition, efficient solution using established methods is often

limited to specific problem types (e.g., objective functions that lend well to efficient sensitiv-

ity calculations). These and other limitations motivate additional complementary strategies

for homogeneous system topology optimization.

Solid Isotropic Material with Penalization (SIMP) [20], an established density-based

topology optimization strategy, capitalizes on problem structure and elegant sensitivity cal-

culations to support efficient solution of large-scale problems. An alternative strategy to

achieve computational efficiency, while expanding the set of solvable problem types, is to

use indirect design representations. Instead of optimizing material distribution directly, we

optimize parameters that determine material distribution through a particular mapping. If

the indirect representation has lower dimension than the original direct representation, the
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resulting reduced optimization problem dimension can help reduce solution time. A draw-

back of this strategy is that reduced-dimension representations may limit the set of designs

that can be accessed, placing importance on identifying or creating mappings that provide

targeted coverage of important design space regions.

Indirect design representations have been used recently for structural and thermal sys-

tem optimization, using generative algorithms as a basis for design representation mapping.

Khetan, Lohan, and Allison introduced a design abstraction for truss topology and geome-

try optimization using a cellular division algorithm based on map L-systems [134]. Lohan

and Allison have proposed solutions to problems of scalability in design representation and

localized design dependency [133,134,159–161]. Lohan et al. presented a generative design al-

gorithm (GDA) as the design representation for generating dendritic topologies [161]. These

early examples are promising, but all rely on creative identification or construction of an

effective generative design representation. Reliance on expertise, intuition, and existing can-

didate representations limits generalizability. What happens in the case where established

methods (such as SIMP) cannot solve the desired problem, and an effective indirect design

representation cannot be readily identified? Here we propose a data-driven strategy where

new indirect design representations are constructed based on design data, independent of

intuition or existing representations.

Significant progress has been made toward extracting knowledge from design data. For

example, Matthews et al. [172] developed a method for extracting and verifying design

knowledge from design databases, including relationships between components. Fuge et

al. [81] introduced a model to predict successful design approaches from features of design

problems. Ren et al. discussed the potential to learn either a constrained design space [211],

or a more efficient optimization algorithm [222] from crowdsourced design solutions. These

previous efforts, however, are largely based on historical design data, and do not address the

problem of constructing effective indirect design representations. Here we focus on design

of potentially unprecedented systems (i.e., no historical data available), and on how to use
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data-driven methods to construct effective indirect design representations.

Strategies based on historical data are descriptive in nature. For example, knowledge or

heuristics derived from historical design data may reveal how expert designers reason through

design decisions, but cannot provide new insights into alternative designs that may perform

better. Historical data is fixed; we cannot design experiments to generate new data that

could provide better insights. Here we propose a strategy where a systematically-specified

set of design optimization problems is used to generate design data for further analysis. This

frees us from the limitations connected to data derived from existing designs, allowing us

to address unprecedented systems, and supports a process that is more normative in nature

(i.e., how should the system be designed, not how has it been designed). This strategy

also supports the use of designed experiments to generate design data, opening up more

possibilities for analysis.

The demonstration example used here involves design of a heat conduction system in a

fixed-volume domain. The desired design problem is to maximize power density while satis-

fying maximum temperature constraints. A related problem is solved efficiently using SIMP

(minimize thermal compliance, subject to conductive material volume constraints) with a

range of different boundary conditions and volume constraints to produce a wide variety of

conductive material topologies. These form a manifold in the topology space that is gov-

erned implicitly by the optimality conditions. When the number of parameters that control

the boundary conditions is limited, one may expect the manifold to be low-dimensional in

comparison with that of the topology space. An analytical characterization of the manifold

will therefore be expected to reduce optimization solution expense by circumventing the

scalability issue common to the calculation of design sensitivities with respect to a meshed

topology.

A significant assumption made here is that the SIMP problem formulation is aligned well

enough with the desired problem formulation. If this assumption holds, it is expected that

SIMP-derived data may be used to construct targeted indirect design representations that
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are useful for solving the desired problem. Results shown later in this chapter support the

validity of this assumption. Not only can solution via the indirect representation identify

non-dominated solutions obtained from the SIMP-derived data, but it is shown to result in

new non-dominated solutions for the desired problem formulation.

3.2.2 Framework for Design Method Comparison

While the existing strategies (such as SIMP) have been used widely to solve topology op-

timization problems, they have some limitations as discussed above. Here we provide a

framework that helps to relate the proposed VAE-based design method to established topol-

ogy optimization methods, with the objective of explaining the motivation and reasoning

behind this new strategy. In essence, we seek to utilize a more accurate problem formu-

lation, but maintain reasonable computational expense by making concessions in solution

accuracy.

One way of describing a design method is to explain how a design problem is formulated,

as well as how the problem is to be solved. Problem formulation and solution decisions

are coupled; the solution strategy often affects design problem formulation decisions, and

vice versa. Figure 3.1 shows a conceptual three-axis design problem formulation space.

Formulation decisions must be made along three dimensions: design representation (how

will design candidates be expressed?), comparison metrics (how will design candidates be

compared?), and predictive modeling (how can we assign values to comparison metrics for

design candidates?). This problem formulation framework was first presented in Ref. [165].

The origin of this formulation space represents the substantive rationality solution to the

ideal, but unattainable in practice, design problem formulation. Such a formulation would

require the design representation to be free of restrictions or assumptions, a perfectly realistic

comparison metric that expresses true design utility, and means to evaluate this comparison

metric in a way that matches reality perfectly. Design formulations that closer to the origin

are expected to result in better design outcomes, but are also expected to require greater
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solution expense. This framework can used as a theoretical basis for the reasoning behind

the indirect design representation method for topology optimization presented here.
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Figure 3.1: Design problem formulation framework for comparison of alternative design
methods; SIMP and VAE topology optimization strategies are compared here

In the SIMP method, binary variables that describe material existence in each spatial

voxel (or pixel for 2D problems) are transformed into continuous material distribution vari-

ables (relaxed), enabling use of efficient gradient-based methods. SIMP uses a direct design

representation (moving towards the origin, especially for high-resolution discretizations), but

the computational solution expense increases linearly with problem dimension when using

a direct design representation as described. Efficient SIMP solution also requires the un-

derlying optimization problem to have analytical design sensitivities, and thus are usually

limited to problems with differentiable models. In addition, derivation of the sensitivity for
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nonlinear problems (e.g., in their material constitutive models or due to large deformations)

can be problem dependent and time consuming, often leading to simplification of models

and thus inaccurate solutions.

Using the problem formulation framework illustrated in Fig. 3.1 as a basis for discussion,

we can say that SIMP formulations are fairly close to the origin along the design represen-

tation axis (i.e., toward the left). Due to the limitations on predictive models, and therefore

available comparison metrics, we can say also that SIMP formulations are farther away from

the origin along the other two axes. This clarifies an opportunity for new types of design

methods. Instead of making concessions on modeling and comparison metric choices, we

would like to use certain objective functions and constraints directly that are not compatible

with SIMP or other similar established topology optimization methods. In other words, we

seek a formulation that moves down and back from the location of SIMP formulations in

the conceptual formulation space. If possible it would be ideal to do this without degrading

design representation. Due to the maturity of SIMP, it is unlikely that such a (solvable)

formulation might be found.

The strategy proposed here first involves a transition from gradient-based to gradient-

free solution methods, providing far fewer restrictions on predictive models and comparison

metrics. It is well-known that such solution methods are computationally expensive for a

given problem dimension. Here we aim to maintain reasonable solution expense by utilizing a

reduced-dimension design representation that maps to the original high-dimension discretized

topology description. Any time problem dimension is reduced, design space coverage is

degraded (unless the original design representation possessed sufficient redundancy). The

underlying assumption moving forward here is that if a reduced representation provides

sufficiently targeted coverage of the original design space, high-quality design solutions can

be obtained with reasonable solution expense.

How can one ensure both sufficiently reduced problem dimension, as well as sufficiently

targeted design space coverage? Previous work relied on human expertise to identify gen-
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erative algorithms or other indirect representations that were capable of accessing desired

designs. But what if human expertise either cannot support creation of such indirect repre-

sentations, or leads to representations where non-intuitive superior designs are not accessible?

Here we introduce a data-driven strategy that overcomes these issues. Design data is gener-

ated by solving a related, easy-to-solve design optimization problem, and a machine learning

strategy is used to construct a custom design representation that does not rely on human

expertise. This move in the problem formulation space is illustrated conceptually in Fig. 3.1.

The indirect design representation and gradient-free solution method supports moving closer

to the origin from the SIMP formulation along the modeling and comparison metric axes,

at the cost of moving to the right (strategically) along the design representation axis.

Existing effective machine learning techniques for constructing reduced-dimension rep-

resentations of data, such as images and other geometric information, were reviewed as

candidates for constructing indirect design representations in this investigation. We chose

to use a variational autoencoder (VAE) that maps high-dimension training data to low-

dimension latent variables, and then for a given set of latent variable values can map back

to the original high-dimensional design space. The VAE technique is describe in detail later

in this chapter. Information from SIMP-derived design data is leveraged to construct tar-

geted indirect design representations. Other similar machine learning strategies may also be

effective for this task, but the investigation of these is outside the scope of this chapter.

3.2.3 VAE-based Design Method

The design method introduced here utilizes an indirect design representation constructed

using an augmented Variational Autoencoder (VAE), which automatically learns to generate

topologies from a low-dimensional latent space. More specifically, this purely data-driven

generative model attempts to find a two-way mapping from sample topologies (generated

using SIMP) to a set of normally-distributed points in the latent space. To learn this map-

ping, we assume that the problem to be solved has a manifold of solutions that can be
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approximated by a similar problem (called an “approximated problem”) for which design

sensitivities can be obtained with a much lower cost. For example, the problem of min-

imizing the maximum temperature of a thermal system requires subgradient calculations

due to the max operation. The problem of minimizing thermal compliance, on the other

hand, is differentiable and can be solved via SIMP easily. The solutions to these two prob-

lems, however, are similar in that both possess dendritic features that are useful for heat

dissipation, suggesting that both are embedded in similar low-dimensional manifolds in the

same topology space. With this heuristic, we propose to learn the latent space (for the

solution manifold) through VAE using solutions collected from an approximated problem to

achieve nonlinear dimension reduction. We will show that this VAE-based method offers

a computationally viable solution to topology optimization problems where design sensitiv-

ities are unavailable or impractical to calculate, provided that an approximation problem

can be leveraged. In addition, we further introduce augmentations to the VAE formulation

to prevent generation of designs with scatterings of small material clusters that do not add

value, while ensuring diversity of the generated topologies and coverage of important design

space regions. Improvement in solution efficiency is demonstrated using a multi-objective

optimization problem for heat conduction. The proposed design representation is abstract

and is difficult to interpret in a physical sense, but it targets the design search accurately

in areas that are likely to produce good performance. Leveraging information from design

data obtained from the approximated problem supports efficient solution and identification

of high-quality designs.

In this chapter, we claim three intellectual contributions to the existing literature of gen-

erative design. 1) We demonstrate that finding and solving approximation problems can

lead to solution data that are useful for learning a solution manifold of an original problem

for which sensitivities are impractical to obtain. The lower dimensionality of the learned

manifold and the low-cost mapping from this reduced space to the original topology space

enables accelerated solution searching for the original problem. 2) The application of the
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proposed method on a heat-management problem suggests that significant dimension reduc-

tion and thus acceleration in optimization can be achieved when the underlying solutions

are highly structured (e.g., dendritic structures are ubiquitous in solutions for different for-

mulations of heat management problems). 3) The hypothesis that the reduced-dimension

indirect design representation approximately covers the true Pareto set in the original design

space is supported empirically via comparative study. Here we define a design space coverage

metric that characterizes the degree to which non-dominated solutions are identified. The

proposed methodology uses a more general solution method (i.e., multi-objective genetic

algorithm, or MOGA) that does not require special problem structure, enabling the solution

of more accurate problem formulations (i.e., closer to the origin along the comparison metric

and predictive modeling dimensions in Fig. 3.1), and achieves solution efficiency via reduced

design representation dimension.

The remainder of the chapter is organized as follows. Section 3.3 details the underlying

concepts of the VAE and style transfer network used here. Section 3.4 presents the proposed

VAE-based methodology. In this section, data is generated using SIMP, and VAE and

style transfer networks are constructed using this data. The multi-objective optimization

problem for heat conduction system design with respect to the latent space variables is

formulated. Numerical results are reported in Section 3.5: the data reconstruction via VAE is

presented; non-dominated solutions are identified using different solution methods for multi-

objective optimization; computational expense results are compared and discussed; design

space coverage is quantified and discussed using a proposed metric, including comparison

with direct design representations. The chapter then finishes with discussion and conclusion

sections. The Appendix figures follow the bibliography.
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3.3 Background for Augmented VAE Indirect Repre-

sentation

This section provides the background both for VAEs and style transfer networks used in

the proposed indirect design representation. Features of these techniques are identified that

are beneficial for constructing such representations. We also note here that other simpler

dimension-reduction strategies, such as principle components analysis (PCA) were tested,

but it was discovered that simpler linear strategies were unable to simultaneously reduce

representation dimension and support identification of high-quality design solutions. VAEs

were investigated due to their nonlinear dimension-reduction performance in other domains,

and style transfer networks were identified as a strategy to better target design space coverage

provided by VAEs.

3.3.1 Variational Autoencoder

A variational autoencoder (VAE) [137] is an extension of the standard autoencoder [21].

Both models are composed of an encoder z = f(x) that converts the input x to a latent

vector z, and a decoder x̂ = g(z) that produces a reconstruction x̂ from z. A schematic of an

autoencoder is shown in Fig. 3.2. The model is trained by minimizing the reconstruction loss

between a set of inputs and the corresponding outputs. Variants of the autoencoder (e.g.,

denoising [245], sparse [168], and contractive [212]) have been developed to learn concise

representations from high-dimensional input data, and are adopted widely for data compres-

sion [148], network pre-training [22], and feature extraction [213,255].

Autoencoders, however, do not ensure that the model distribution (the distribution of

model outputs) is congruent with the input data distribution, and thus may create outputs

with drastically different properties from the input data. VAEs address this challenge by

enforcing the distribution of the encoded inputs to match the sampling distribution in the
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Input LatentEncoder Decoder Output

Figure 3.2: A schematics of an autoencoder

latent space.

We present a brief derivation of the VAE loss below, which is a function to be minimized

with respect to encoder parameters φ and decoder parameters θ. Let the dataset be X =

{xi}Ni=1, which defines the data distribution pdata(x). Let the decoder define the probability

of an output, pθ(x|z), conditioned on the latent vector z. Matching the model distribution

with the data distribution is equivalent to maximizing the marginal likelihood ΠN
i p(xi),

where

p(x) =

∫
z

pθ(x|z)p(z)dz = Ez∼p(z)pθ(x|z). (3.1)

In general, the computation of Eq. (3.1) and its gradient with respect to network param-

eters is expensive, due to numerical integration and decoder network complexity. It is noted,

however, that for a particular x, most z will lead to pθ(x|z) ≈ 0, and thus have limited

contribution to p(x). Therefore, it is reasonable to sample only those z that are likely to

produce x, and use them to compute p(x). To do so, a new function q(z|x) (the encoder)

is introduced, which takes x and outputs a distribution of z. Ideally, the space of z that

are likely under q will be much smaller than that under the prior p(z), so that the marginal

Ez∼qpθ(x|z) becomes inexpensive to compute. Below we evaluate the difference between
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the approximation (Ez∼qpθ(x|z)) and the target (p(x)): We start by deriving the Kullback-

Leibler divergence between two distributions in the latent space: the encoder distribution

qφ(z|x) and the posterior pθ(z|x):

DKL (qφ(z)‖pθ(z|x)) = Ez∼q log qφ(z)− log pθ(z|x). (3.2)

By applying Bayes’ rule to pθ(z|x) and noticing that log p(x) is independent from z, we

have:

log p(x)−DKL(qφ(z|x)‖pθ(z|x)) = Ez∼q[log pθ(x|z)]−DKL(qφ(z|x)||p(z)). (3.3)

The left hand side has the quantity we want to maximize: log p(x), and the KL-divergence

term DKL(·) that ideally reaches 0. The right hand side of the equation contains the recon-

struction likelihood (Ez∼q[log pθ(x|z)]) and the KL-divergence between the encoder distribu-

tion and the prior distribution for sampling the latent space (DKL(qφ(z|x)||p(z))).

These RHS terms can be maximized via stochastic gradient descent. Specifically, we

model qφ(z|x) = N (z|µ(x;φ),Σ(x;φ)) as a normal distribution. The mean µ(·,φ) and

the variance-covariance matrix Σ(·,φ) comprise the encoder network. Similarly, we model

the decoder outputs to follow pθ(x|z) = N (x|f(z;θ), σ2I) with mean f(z;θ) and variance

σ2. The function f(·;θ) is thus the decoder network. σ determines the importance of the

reconstruction of x during the training of a generative model, and is set to 1 in the proposed

model.

To summarize, the training of a VAE maximizes:

L(θ, φ,x) = −Ez∼q[log pθ(x|z)] +DKL(qφ(z|x)‖p(z)), (3.4)

which represents a lower bound of the marginal p(x).
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3.3.2 Style Transfer Convolutional Neural Network

Through a preliminary study, we observed that the outputs from the VAE contain topologies

with small disconnected phases. Disconnected conductive material reduces power density,

and generally does not aid heat extraction, so it is desirable to avoid these features. Put

another way, a VAE representation that produces designs with disconnected regions is inef-

ficient because it retains access to less desirable designs. Here we improve targeted coverage

by providing better access to topologies without disconnected regions.

As an implicit strategy to prevent the generation of topologies with disconnected conduc-

tive material, we introduce an augmentation to the VAE model. This augmentation forces

topologies generated from arbitrary latent variable values to follow the topological style from

the training samples. This approach of implicitly meeting design requirements via design

representation is similar in spirit to the technique used by Khetan et al. [134] to guarantee

generation of structurally stable trusses. The style transfer network was proposed originally

to address the problem of texture transfer, i.e., to transfer image styles from source images

to target contents. Synthesis of content and style historically has been a challenge in image

processing [67, 68, 143, 251], but is now solved more easily since the recent development of

deep convolutional neural networks (CNNs) [141,227] due to their ability to extract high-level

semantic information from images. Gatys et al. [86] proposed a CNN-based style transfer

network that can separate and recombine image content and style information, and then

generate new images with the target content and styles. To be more specific, given a source

image s containing a prescribed style and a target image t, the network recovers an image

x with content similar to t and texture from s. The recovered image x can be obtained by

solving a nonlinear least-squares problem:

min
x
‖F (x)− F (t)‖2 + ‖C(x)− C(s)‖2, (3.5)

where ‖C(x) − C(s)‖2 is the content loss, and content features C(·) are represented by
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activations of deep hidden layers. Here ‖F (x)−F (t)‖2 is the style loss, where style features

F (·) are represented as the covariances among channel-wise hidden layer activations.

3.4 Proposed Method

In this section, we present a new method for solving heat conduction system topology design

problems using a reduced-dimension latent variable design representation constructed using

a VAE. This method involves two phases, as illustrated in Fig. 3.3. The first phase is to train

a VAE using training topologies; the second phase is to perform multi-objective optimization

with respect to the latent representation z learned by the VAE. Genetic, gradient-based, and

hybrid algorithms are tested here for performing optimization in the latent space.

Input x

VAE + Style Transfer

Decoder

Initialize z by sampling

Topology x

Evaluate x

Converge

YES

NO

Update design variable z

Optimal design 

GA/Gradient-based

Temperature & density

Figure 3.3: Flowchart of the optimization scheme with respect to z

3.4.1 Data Collection

To generate data for VAE training, a density-based topology optimization approach is uti-

lized. The topology optimization problem solved is:
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min
x

C(x) = UTP

s.t V (x) ≤ Vmin (3.6)

R(x) ≥ Rmin

KU = P

0 ≤ x ≤ 1,

where thermal compliance, C(x), is minimized subject to a material volume constraint,

minimum radius constraint, and Fourier’s law for heat conduction. U and P represent the

global displacement and force vectors, respectively; K is the global stiffness matrix [224].

The design variable, x, represents material density. Each element of x specifies the material

density of a corresponding voxel, and each element is bounded between 0 (void material

properties) and 1 (solid material properties). To bias element densities towards a binary

distribution, a power penalization (SIMP) is used. To enforce the minimum radius constraint,

a density-based filter is implemented. Interested readers are referred to relevant references for

more detail regarding topology optimization in heat transfer [159–161]. While 3D topology

formulation was also discussed by Liu and Tovar [157], this chapter focuses on 2D thermal

system topologies.

A set of problem parameters, including volume and radius bounds, as well as heat sink

locations, are applied to Prob. (3.6). These problems are solved to obtain a set of topologies,

each optimal with respect to the corresponding problem. The optimization process may

produce infeasible solutions, but these were removed from the data set. Only the feasible

and optimal designs were use for training the VAE. When using the SIMP method, each

element of the spatial mesh has a corresponding design variable that varies continuously

between 0 and 1. The penalty factor biases x values toward 0 or 1 during solution, but

most values after convergence are close to 0 or 1 (not exactly binary). This necessitates a
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post-processing step where a filter threshold value is used to convert each element into a

binary digit. The resulting data set was split into training and test sets. Validation was

performed by using the test data set to check image reconstruction quality.

3.4.2 The VAE and Style Transfer Network

Here multilayer perceptron (MLP) networks are used to construct the encoder and decoder

of a VAE. The encoder contains two fully-connected layers with hidden layer sizes 1,000

and 100, respectively. The decoder architecture is symmetric to the encoder. The output

dimension of the encoder is set to 5, 10, 15, 20, and 25, for the purpose of testing how

latent space dimensionality affects topology optimization results. This comparison will be

presented in the next section. Figure 3.4 illustrates an overview of the proposed model.

During training, a batch of 40 random samples are generated via the latent space. The style

transfer network has four layers, and the style loss is calculated with respect to the Gram

matrices.

The loss function for training contains the reconstruction, KL divergence, style, and

mode-collapse losses: Ltotal = Lrecon + LKL + Lcollapse + Lstyle. Reconstruction and KL-

divergence losses are standard in VAE implementations [137]; the style loss measures how

well the generated images match the training data with respect to image style [86]; the mode-

collapse loss prevents the VAE model from only producing similar samples [262], which is

important for wide design space exploration. This loss is defined as:

fcollaps(S) =
1

N(N − 1)

∑
i

∑
j 6=i

(
SlTi S

l
j

‖Sli‖‖Slj‖

)2

, (3.7)

where S denotes a batch of samples taken from the lth style transfer network.
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Figure 3.4: The VAE model augmented by a style loss

3.4.3 Heat Conduction Design Using Latent Variables

Here we discuss a topology design problem similar to Prob. (3.6), but with two key differences.

First, instead of searching in the original topology space, we do so in the latent space derived

from the VAE. Second, instead of compliance, we consider two objectives that are more

closely aligned with underlying design intent: minimizing the maximum temperature Tmax,

and maximizing the power density ρ. These objectives are conflicting: increasing power

density typically increases maximum temperature. Thus, we formulate a multi-objective

optimization problem where the objectives Tmax(z) and −ρ(z) are to be minimized with

respect to the latent variables z.

min
z∈Z

{Tmax(z),−ρ(z)} (3.8)

This problem is inspired by heat spreading devices used to extract heat generated by
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power electronic devices. It is desirable to pack as many value-added electrical components

as possible into a given volume, while ensuring that temperatures do not exceed component

or material limits. Adding in more electrical components increases the utility of the system,

but reduces the volume available for conductive material that can be used to transfer heat

from electrical components to the heat sink to keep temperatures manageable. We would

like to find an arrangement (topology) of components and conductive material that helps us

to maximize the number of useful electrical components while preventing thermal failure.

One measure of power density would be the amount of useful electrical power that can

be routed through the electrical components, divided by the overall device volume. Because

in this problem the volume is fixed, power density is proportional to the volume occupied

by electrical components. For convenience, power density ρ(z) is defined here in a unitless

manner as the number of pixels (2D) that do not contain conductive material. This quantity

is to be maximized, or equivalently, −ρ(z) is to be minimized.

The problem can be solved with gradient-based or genetic algorithms. The initial guesses

for gradient-based methods and the initial populations for genetic algorithms are drawn from

the prior p(z) defined by the VAE model.

The solution to a multi-objective optimization problem is a set of non-dominated (Pareto-

optimal) solutions that quantify the tradeoff between objective functions. Four approaches

for solving this multi-objective optimization problem are tested. The first, the weighted-

sum method, is to sum the two objectives as shown in Prob. (3.9), with a weight w. We

parametrically vary w from 0 to 1 to produce and solve a family of single-objective problems

using a gradient-based method. This produces a set of solutions that belong to the Pareto

set (non-dominated designs).

min
z∈Z

w · Tmax(z) + (1− w) · (−ρ(z)) (3.9)
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In the second solution strategy, we select −ρ(z) to use as a single objective function, and

convert the temperature objective to a constraint with bound Tallow, as shown in Prob. (3.10).

The upper bound Tallow is varied parametrically to produce a family of optimization problems,

the solution of which produces a set of non-dominated solutions. This approach is sometimes

referred to as the ε-constraint method [179].

min
z∈Z

− ρ(z)

Tmax ≤ Tallow (3.10)

The third method is a hybrid implementation of the epsilon-constraint method. More

specifically, for each value of Tallow considered, Prob. (3.10) is solved first using a genetic

algorithm (GA) to locate an approximate solution that is likely to be near the global opti-

mum. The GA result is then used as a starting point for a gradient-based method, which

then hones in rapidly on a precise local solution. On their own, gradient-based methods pro-

duce locally-optimal solutions, which may underperform globally-optimal solutions. Hybrid

strategies improve the chances of, but do not guarantee, identification of global optima.

Finally, Problem 3.8 can also be solved directly using a multi-objective genetic algorithm

(MOGA) [57] due to its population-based nature. While only one problem needs to be solved

in this case instead of a set of problems, genetic algorithms tend to be computationally

expensive. The Pareto-optimal solutions and frontier obtained using all four methods will

be presented in the next section.

3.5 Numerical Results

In this section, we evaluate the proposed method for generative design through two steps.

First, we show that the augmented VAE can learn a manifold of dendritic topologies rea-
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sonably well by performing data reconstruction. We then assess the efficacy of the proposed

dimension reduction method by quantitatively comparing the quality of the non-dominated

solutions to a multi-objective heat conduction problem. To ensure a rigorous comparison,

we employ four optimization approaches, with and without application to the reduced space

introduced by the proposed augmented VAE method. The computational cost, measured

as the number of physics-based analyses performed during the optimization, is reported for

each of the four approaches and their variants.

We prepared a total of 15,000 topologies for training the VAE model and another 2,870

for validation. Five VAE models are trained with latent dimensions 5D, 10D, 15D, 20D, and

25D. For the multi-objective optimization, hyper-parameters (e.g. latent space dimension,

initial population, etc.) were varied parametrically to more comprehensively explore design

method properties.

3.5.1 Reconstruction and Generation of Topologies

We first show that the VAE is capable of data reconstruction. Figure 3.5 compares the

original and reconstructed data for the test data set. Here a latent space of dimension 20

is used, and a sample of 30 topologies is visualized. We observed some isolated and blurry

regions in the reconstructed topologies, indicating that the loss design of the VAE still has

room for improvement.

In addition to reconstructing known topologies, the VAE can be used to generate new

ones. Figure 3.6 illustrates a set of topologies created from random samples in the latent

space. It is interesting to note that some of the generated topologies exhibit unexpected

patterns. For instance, sample #45 has several separate chunks, whereas samples #73 and

#76 resemble dendritic structures. For a particular generated topology, 2 out of 20 latent

variables were selected and varied uniformly within the range of [-3,3]. The results of this

parametric study are illustrated in Fig. 3.7, and show that significant, yet smooth, topology

changes can be achieved by adjusting the VAE latent variables.
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Orginal #1 Reconstructed #1 Orginal #2 Reconstructed #2 Orginal #3 Reconstructed #3

Orginal #4 Reconstructed #4 Orginal #5 Reconstructed #5 Orginal #6 Reconstructed #6

Orginal #7 Reconstructed #7 Orginal #8 Reconstructed #8 Orginal #9 Reconstructed #9

Orginal #10 Reconstructed #10 Orginal #11 Reconstructed #11 Orginal #12 Reconstructed #12

Orginal #13 Reconstructed #13 Orginal #14 Reconstructed #14 Orginal #15 Reconstructed #15

Orginal #16 Reconstructed #16 Orginal #17 Reconstructed #17 Orginal #18 Reconstructed #18

Figure 3.5: A sample of reconstructed topologies from a 20D latent space

3.5.2 Multi-objective Optimization Results

Multi-objective optimization results obtained using four different optimization strategies are

reported and compared here.

Weighted Sum Method

A multistart strategy was used with the weighted sum method to find the Pareto-optimal

solutions to Prob. 3.9 with an improved probability of finding global optima. Figure 3.8

shows the training data points along with the optimal solutions produced by the weighted

sum method. The vertical axis is the negative of the square root of power density
√
ρ(z),

and the horizontal axis is the maximum temperature reached by the design. The reason

for negating power density is to produce Pareto frontiers with the conventional orientation

where moving to the lower left corresponds to improved designs. The square root of power

density is taken to improve visualization. The temperature is measured in relative units of

degrees Celsius. All similar plots of the objective function space use this strategy; moving

down corresponds to increased power density, and moving to the right indicates a higher
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#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

#11 #12 #13 #14 #15 #16 #17 #18 #19 #20

#21 #22 #23 #24 #25 #26 #27 #28 #29 #30

#31 #32 #33 #34 #35 #36 #37 #38 #39 #40

#41 #42 #43 #44 #45 #46 #47 #48 #49 #50

#51 #52 #53 #54 #55 #56 #57 #58 #59 #60

#61 #62 #63 #64 #65 #66 #67 #68 #69 #70

#71 #72 #73 #74 #75 #76 #77 #78 #79 #80

#81 #82 #83 #84 #85 #86 #87 #88 #89 #90

#91 #92 #93 #94 #95 #96 #97 #98 #99 #100

Figure 3.6: A sample of topologies generated from random samples in a 20D latent space

maximum temperature within the design domain.

Many of the points overlap on the figure (i.e., more individual problems were solved than

the number of non-training points appear in the figure). The latent space dimension was

varied parametrically; results from different latent space dimensions are labeled in the legend.

The weighted-sum method did not perform well, as it did not identify points that were not

dominated in the desired objective function space by training points obtained via SIMP.
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#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

#11 #12 #13 #14 #15 #16 #17 #18 #19 #20

#21 #22 #23 #24 #25 #26 #27 #28 #29 #30

#31 #32 #33 #34 #35 #36 #37 #38 #39 #40

#41 #42 #43 #44 #45 #46 #47 #48 #49 #50

#51 #52 #53 #54 #55 #56 #57 #58 #59 #60

#61 #62 #63 #64 #65 #66 #67 #68 #69 #70

#71 #72 #73 #74 #75 #76 #77 #78 #79 #80

#81 #82 #83 #84 #85 #86 #87 #88 #89 #90

#91 #92 #93 #94 #95 #96 #97 #98 #99 #100

Figure 3.7: Parametric study results obtained by varying 2 of 20 latent variables

A sample of the local optimal solutions (dominated solutions) can be found in Appendix

Fig. A.1.

ε-Constraint Method

The results from applying the ε-constraint method are shown in Fig. 3.9. It is clearly much

more effective than weighted-sum, as it can access not only non-dominated solutions from
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Figure 3.8: Locally-optimal solutions for the weighted sum method
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Figure 3.9: Locally-optimal solutions produced by the ε-constraint method

the training data, but also new non-dominated points. The majority of the optimal solutions

are around the center of the training data cluster. A few points with red stars and black

crosses are on the Pareto frontier. Among these local solutions, eight non-dominated designs

are illustrated in Fig. 3.10.
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#1 #2

#3 #4

#5 #6

#7 #8

Figure 3.10: Pareto-optimal solutions produced by the ε-constraint method

Hybrid Method

The hybrid method uses a genetic algorithm (GA) with loose tolerances to find an approxi-

mate solution (ideally in the neighborhood of the global optimum) to use as a starting point

for a gradient-based method. This sequential solution approach is applied to each single-

objective problem defined using the ε-constraint method. An initial population size of 200

was specified, and VAE models with different latent space dimensions were compared. Fig-

ure 3.11 displays the results of the hybrid method. Compared with the ε-constraint method

without starting points found via a GA, the hybrid method tends to identify more non-

dominated designs; in particular, several new non-dominated solutions with Tmax greater

than 600 (shown using yellow circles and black crosses) were identified. These have signif-

icantly different performance from any of the training points, indicating the value of the

VAE design representation in supporting broad exploration of the design space. Six Pareto-

optimal topologies obtained using the hybrid method are shown in Fig. 3.12. While these
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Figure 3.11: Optimal solutions produced by the hybrid method (GA followed by gradient-
based)

points lie on the Pareto frontier, some could be improved. For instance, while solution #4

appears to be an intuitively reasonable design, solution #3 has several isolated material

chunks. The power density of solution #3 could probably be improved while still keeping

temperatures low by removing these chunks.

Multi-Objective Genetic Algorithm

Multiobjective genetic algorithms (MOGAs) support direct solution of multiobjective prob-

lems due to their population-based nature. The implementation here uses an elitist strategy,

a variant of NSGA-II algorithm [57]. The MOGA terminates if a metric, called spread, is

less than a user-specified value. Here the spread is a measure of the movement of solutions

on the Pareto frontier between the two most recent optimization iterations [171].

Two elements were explored using the MOGA method. First, different latent variable

dimensions were tested using the same initial population size (200), reported in Fig. 3.13. A

total of 96 Pareto-optimal solutions are shown in Fig. 3.14. They appear to be very similar

to each other, but have some minor differences (such as material density). They appear to

have three main solutions clusters: #1–#36, #37–#83, and #84–#96. The solution cluster
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Figure 3.12: Pareto-optimal solutions produced by the hybrid method
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Figure 3.13: Optimal solutions produced by the MOGA method (initial population = 200)

#84–#96 has a number of isolated elements in the right corner of the topologies.

The second element tested using MOGA was influence of population size. We varied

population size with a fixed latent variable size 20. In Fig. 3.15, the solutions with population
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#57 #58 #59 #60 #61 #62 #63 #64

#65 #66 #67 #68 #69 #70 #71 #72

#73 #74 #75 #76 #77 #78 #79 #80

#81 #82 #83 #84 #85 #86 #87 #88

#89 #90 #91 #92 #93 #94 #95 #96

Figure 3.14: Select Pareto-optimal solutions produced by the MOGA method (initial popu-
lation = 200)
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Figure 3.15: Optimal solutions produced by the MOGA solution method (#latent variables
= 20)

sizes 600, 800, and 1000 are shown. The results show that for a 20D latent space, MOGA

generally can access both non-dominated points from the training set, as well as new non-

dominated points. This is one indication of effective design space coverage. Four optimal

topologies are reported here, representing the basic topology structure; the other optimal

topologies are shown in the Appendix in Figs. A.2–A.4. In Fig. 3.16, solutions #5 and #118

were found by MOGA; neither of these solutions were identified by other methods. It is

interesting to note that a loop is formed in these solution. Solution #43 is a very dense

solution. The structure of Solution #44 is very similar to those produced by the other three

methods.

3.5.3 Solution Method Comparison

Not all four methods could identify all known non-dominated points (points on the Pareto

frontiers). Among them, MOGA seems to perform the best at finding non-dominated points

present in the training set, whereas the hybrid method performed well at identifying non-

dominated points far from the Pareto set in the objective function space. We have included
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#5 #43

#44 #118

Figure 3.16: Four Pareto-optimal solutions produced by the MOGA solution method

illustrations of the Pareto frontiers and the corresponding topologies produced by the MOGA

method in the Appendix. Here we present a comparison of the four methods using a latent

space dimension of 20 in Fig. 3.17.

An important result observed is that many new non-dominated designs were found that

go well beyond the attainable set estimated by the training data. In particular, many new

non-dominated points were found using the indirect design representation (toward the lower-

right portion of the plot). In other words, using the VAE indirect representation enabled

identification of new solutions that for some design conditions are preferable to those that

are reachable using conventional methods.

The MOGA with the indirect representation successfully identified the majority of the

Pareto-optimal solutions, while other methods found smaller subsets of them. An important

point to highlight is that several new non-dominated solutions were identified by the hybrid

method corresponding to high power density designs, with the caveat that high tempera-

ture must be tolerated (Tmax > 400, black stars). GAs appear to be effective at identifying

low-temperature solutions on the Pareto frontier, whereas the properties of gradient-based

methods are utilized by the hybrid method to find non-dominated high power density solu-

tions.
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Figure 3.17: Comparison of Pareto-optimal solutions for the four methods (#latent variables
= 20)

3.5.4 Computational Expense Comparison

The computational expense results for the four different solution methods is presented in

Table 3.1. The function count was used as the metric here, and refers to the cumulative

number of times the physics-based analysis was performed. These results are based on a

latent space dimension of 20 and an initial MOGA population of 200. The ε-constraint

method required somewhat fewer function evaluations than the weighted sum method, and

was successful in finding non-dominated solutions. The hybrid method was computationally

expensive, but found new non-dominated solutions that were distinct from the training set

and that were not accessible by any of the other methods. MOGA finds the Pareto set

directly in a single algorithm execution, and appears to have the advantage of identifying

a greater density of non-dominated points in the attainable set defined by the training set.

MOGA-derived designs also tend to have fewer disconnected chunks. MOGA, however,

did not perform well at accessing high-temperature non-dominated designs found using the

hybrid method. The best solution method depends on which objective function has higher

priority.
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Table 3.1: Computational expense comparison

Weighted sum ε-constraint Hybrid MOGA

F-count 4,351 4,303 75,905 30,601

An additional parametric study was performed to more fully explore the potential perfor-

mance of the hybrid method. Algorithm settings were varied to adjust the balance of effort

between the first and second solution phases. The GA population size and the maximum

number of iterations allowed for the gradient-based search were varied. Figure 3.18 shows the

non-dominated solutions identified by the hybrid method using the initial population 50 and

100 respectively. Both figures can still report a few non-dominated solutions (latent space

15D and 20D). In particular, the computational expenses are 9,435 and 29,782 respectively,

compared to that of 75,905 in Table 3.1. This exploration demonstrates that the hybrid

method has the potential to identify new non-dominated points with high computational

efficiency when algorithm settings are adjusted appropriately.
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(a) Initial population = 50
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(b) Initial population = 100

Figure 3.18: Optimal solutions produced by the hybrid method (less initial population)
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Table 3.2: Design space coverage analysis for the MOGA method

Init. Pop. w. Data or Not Original Reduced Evaluation
800 Yes 0.3388 0.3075 123,000

5000 Yes 0.3052 0.2712 780,000
800 No 0 0.1775 123,000

3.5.5 Pareto-Optimal Solutions Obtained via the Reduced Space

Here we test the hypothesis that the reduced design space z is an effective approximation of

the Pareto set in the original design space. The MOGA method is used for this test, as it

identified more non-dominated solutions than the others (see Fig. 3.17). Two experiments

were carried out using the MOGA method. Recall that GA solutions require an initial

population specification. The numerical experiments make comparisons in three aspects:

design space, initial population selection, and the initial population size. For the design

space, we would like to see whether there is an advantage in finding the Pareto frontier using

the reduced space (20D) compared to the original space (1,600D). The initial population

may be randomly generated (called without data) or chosen from the training data set (called

with data). The initial population size may affect the computational expense and optimal

solutions, and sizes of 800 and 5,000 were chosen for evaluating this aspect. Design space

coverage has been discussed and analyzed in structural optimization [133,161] and biological

networks [96]. Here a metric assessing design space coverage is defined as the ratio of number

of the number of non-dominated solutions found and the population size. It is used here to

measure how well different design representations cover the design space.

Figure 3.19 shows the Pareto frontiers (with data) for the reduced and the original high-

dimension spaces. Both curves result from solutions using a population size of 800, where the

initial population is sampled from the training set (with data). The computational expense

is 123,000 evaluations. As illustrated in the figure, both the reduced space and original space

approximately cover the true Pareto frontier in the training set. The design space coverages
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for both the original and reduced spaces, as shown in Table 3.2, are 0.3388 and 0.3075,

respectively. The Pareto curve for the reduced space is longer (red), but because the red

curve only approximately covers the Pareto curves in the training set (e.g. some training

points are still outside the boundary of the red curve), the design space coverage is slightly

lower. It is also interesting to observe that one training data point (100, 26) is excluded by

both curves. If the population size is increased to 5,000, as shown in Fig. 3.20, both curves

move toward the bottom left and access that point successfully. As expected, increasing the

population size improves the solution results, but with additional computational expense

(780,000 evaluations). The design space coverage metric values do not show significant

difference as a function of population size (800 vs. 5,000, reduced or original). The reduced

design representation can still support identification of high performance non-dominated

designs even with lower computational cost (123,000 evaluations), but with good design

space coverage (0.3075).

Additional observations can be made from Fig. 3.21, which shows the results based on

random initial populations of 800 (without data). A significant difference exists: the re-

duced space demonstrates a more robust ability to find the approximate Pareto frontier.

More precisely, it can still generate an accurate Pareto set even when the initial population

is less informative (with the design space coverage 0.1775 dropped from 0.3388 in Table 3.2).

In contrast, the design space coverage using the original high-dimension space and random

initial populations is 0. Several insights arise here. Under the same experimental specifi-

cations (without data and same initial population 800), the reduced design representation

(20D) makes the design space more well-behaved (Pareto frontier is closer to the origin).

Figure 3.21 indicates that using random initial populations weakens the ability to identify

the non-dominated solutions, but when using the reduced design representation a significant

number of non-dominated points are found. Both figures indicate that the reduced design

representation requires less solution effort to identify non-dominated solutions.

In contrast to conventional design representations such as voxel- or rule-based topology
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optimization, the VAE reduced space representation uses variational inference for latent rep-

resentation learning, and involves a strong assumption concerning the distribution of the

latent variables. The reduced space, even when containing only a few independent latent

variables (e.g., here 20D assuming multivariate normal distribution), can access the non-

dominated solutions with less effort. The VAE decoder learned helpful topological properties

during the training phase when using SIMP-derived data. This intelligence has been em-

bedded in the weights and biases of the decoder. Even if the initial population is generated

randomly, the candidate topologies are meaningful and help narrow down the feasible solu-

tion search space. Figure 3.6) provided evidence of this, exhibiting a number of reasonable

designs produced via random latent variable generation. The tradeoffs between different

reduced representation dimensions (5D–25D) and non-dominated solutions can be seen in

Fig. 3.14 (but with the initial population 200). Two few or too many dimensions (e.g. 5D,

10D, 25D) lead to challenges accessing the full Pareto frontier, but 15D and 20D represen-

tations tend to perform better. In other words, these analyses show that the reduced design

representation preserves the important independent design degrees of freedom (DOF) as the

latent variables without cutting off the meaningful and feasible candidate topologies. While

the original space also has a number of independent DOF, results indicate that some redun-

dancy in design variables exist, making the design space more difficult to navigate. Part

of this difficulty is that many disconnected (low-utility) designs are included in the design

space, making useful designs more difficult to identify.

3.6 Discussion

In this study, deep convolutional neural networks were used both as the encoder and the

decoder for thermal system design representations. A deep convolutional VAE with 16 layers

and a style transfer network with 4 activation layers was first introduced. The filter size of

the conventional layers for the encoder was 4×4, and the channel sizes were 32, 32, 64, 64, 96,
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Figure 3.19: Reduced space vs. original space using population size 800 (with data)

Figure 3.20: Reduced space vs. original space using population size 5,000 (with data)

and 96 for the six layers, respectively. A max-pooling layer was inserted after each of the two

convolution layers to reduce the number of hidden units. Two fully-connected layers were

used to encode the input x into the latent space. The decoder architecture was symmetric to
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Figure 3.21: Reduced space vs. original space using population size 800 (without data)

the encoder. While this deep convolutional VAE worked well in conjunction with the style

transfer network in the training phase, it increased the computational expense of optimization

during the second phase. The preliminary results indicated infeasibility in the solutions for

certain formulations. As a result, a multilayer perceptron was chosen in the end as the VAE.

It is important to strike a balance between a simpler (less expensive, but less accurate) and

a more complicated (more expensive, but more accurate) models.

The proposed design representation may be limited in some circumstances. The VAE

model tends to produce blurry images, and not all details are preserved in the reconstructed

or generated images due to the choice of the VAE loss function [65]. Improved models, such

as sequential VAEs [263] and the modified VAE based on adversarial training [65], have been

proposed and may help generate more realistic images (designs). Generative adversarial

networks (GANs) could be another option in the first phase to generate sharper images

[91]. Improved sampling techniques for obtaining training data may also increase method

utility. Specifically, understanding how to plan systematic exploration of design problems

for the generation of design data for unprecedented systems is an important question for
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this emerging approach. Designing our strategy for obtaining training data is an option not

available when relying on historical data, and could be an important advantage in using

design optimization to generate design data for use with machine learning.

The data set was obtained by specifying several levels of boundary conditions, volume,

and radius constraints (a full-factorial experiment was performed). Each training data point

obtained using Eq. 3.6 is the result of a single SIMP solution. Because the volume constraint

was varied, complete Pareto sets are contained in the training data shown in the figures above

for the SIMP solutions for each boundary condition specified. An important result here is

that some of the VAE results were successful in pushing down the Pareto frontier in the

objective function space, i.e., new non-dominated points were found. The gap between the

(initially) non-dominated training points and the non-dominated VAE points is relatively

large in many of the figures. The training data may correspond to local optima, so it may

be possible to narrow the gap between training data results and VAE results.

3.7 Conclusion

In this chapter, an indirect design representation based on a VAE was proposed for topology

optimization. The notion of designed experiments based on a related problem to generate

design data was presented. The VAE, augmented with a style transfer neural network, was

trained using the design data. A description of the multi-objective optimization problem

for the heat conduction, including the variants of the formulation, was discussed. The

Pareto frontiers were presented using the proposed design representation. Using MOGA

with the VAE representation was particularly effective at identifying a large majority of non-

dominated solutions (when combining all design results together), whereas the hybrid method

with the VAE representation was particularly effective at identifying new non-dominated

points far from training points (high-temperature regions). One possible explanation is that

GAs may first locate approximate solutions close to the Pareto frontier, and then gradient-
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based algorithms are particularly effective at pushing solutions toward high power density

in design space regions where temperature is high. Along the Pareto frontier, several types

of solution topologies were found (see the Appendix for details).

Optimizing in the reduced design space was demonstrated to be successful in terms of

1) solving the desired problem efficiently using an indirect design representation constructed

using training data obtained from a related (but easy-to-solve problem) problem; 2) leading

to new, previously unreachable non-dominated designs identified by the hybrid and MOGA

methods; 3) empirically supporting the hypothesis that the reduced-dimension design rep-

resentation approximately access the true attainable Pareto set in the original design space

based on the design space coverage metric.

This is a new perspective on how machine learning strategies may be utilized effec-

tively in engineering design. The proposed method is data-driven, and has the potential

to make practical the solution of topology optimization problems not amenable to estab-

lished density-based methods. This could become an important new strategy for normative

data-driven design methods, especially for design of unprecedented systems without histor-

ical data. Future work may include, but is not limited to addressing: 1) How should the

design optimization experiments be conducted to produce effective training data? This open

question is different from conventional design of experiments or sampling for surrogate mod-

eling. The process depends on specific design tasks and objectives, such as constructing

reduced design representations tailored to specific problem conditions. 2) The parametric

study presented in Fig. 3.7 shows that generated topologies are sensitive to latent variable

changes. Additional sensitivity analyses (e.g., impact on the objectives Tmax and ρ) may

provide insights into strategies for improved VAE design representations. Such sensitivity

analyses have the potential to be part of a general strategy for evaluating solution quality

and robustness with respect to the generated topologies and objectives. 3) Design coverage

quantification for indirect design representations is not yet well-studied, and should be ex-

plored further to support further advancements in approaches that rely on reduced design
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representation dimension to provide computational efficiency. Additional coverage metrics

should be proposed and evaluated.

In next two chapters, machine learning strategies will be applied to a different class of

problems: heterogeneous system topology design. This different class of problems, sometimes

referred to as synthesis, has different properties and challenges. The first heterogeneous

system design study, presented in Chapter 4, will involve an active learning strategy. A

predictive model is fit to data obtained via enumeration and simulation-based evaluation, and

this model is used to strategically select small subsets of designs to evaluate. In Chapter 5 a

generative adversarial neural network (GAN) is used to generate feasible designs, eliminating

the need for complete enumeration in synthesis studies. In both chapters cases studies

involving electronic circuit synthesis will be used. A core objective in the next two chapters

is to extend the set of synthesis problems that can be solved effectively by leveraging design

optimization data along with artificial intelligence, as well as to begin to understand the

properties of this new class of design methods.
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Chapter 4

HETEROGENEOUS SYSTEM

TOPOLOGY DESIGN: CASE 1

Collaborative Acknowledgement: Dr. Daniel Herber made contributions to the work

presented in this chapter, including creating the tools for enumeration and evaluation of

electrical circuits, contributions to graph representations, and contribution of critical insights

into ranking distance.

4.1 Introduction

Previous chapters provided motivation for the studies presented in this dissertation and

demonstrated one approach for using artificial intelligence to extend solution capabilities for

the first main class of problems: homogeneous system topology design. This and next chapter

consider heterogeneous system topology design. Case studies are drawn from the literature

on electronic circuit design synthesis. As with the thermal system topology optimization

problem from the previous chapter, candidate circuit topologies may be represented using

an undirected graph. The difference, here, however, is that nodes may be one of several

types. This is a heterogeneous system topology design problem where candidate designs can

be represented using a colored (labeled) graph. The design method presented here makes
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use of design data generated from recently-developed efficient enumeration strategies for

synthesis problems [109]. These enumeration methods have been applied recently to circuit

synthesis problems defined by circuit component catalogs, and were shown to identify not

only the topologies found earlier using GAs, but also a much richer set of design data,

including many previously unknown non-dominated designs.

When enumerating heterogeneous system topologies, often duplicate or isomorphic graphs

are generated. For example, two generated graphs that have distinct adjacency matrices may

be shown to have the same topology after node renumbering. When enumerating, it is im-

portant to ensure no isomorphisms exist, i.e., all generated graphs are topologically unique.

A second challenge involving labeled graphs that represent engineering system topologies is

that some node connectivities might not make physical sense (e.g., electrical short circuits),

or should be excluded for a variety of other reasons. During enumeration it is important

to observe such connectivity constraints, referred to here as network structure constraints

(NSCs). Finally, many engineering systems must be evaluated using a non-trivial model, and

the structure of this model usually varies with system topology. For the circuit synthesis

problems considered here, evaluation requires simulation of a system of ordinary differential

equations, and a fair performance comparison between circuit topologies requires that each

topology is optimized with respect to corresponding continuous variables (e.g., capacitance,

resistance, inductance, etc.). To solve a circuit synthesis problem using enumeration requires

automated construction of a corresponding dynamic system model for each candidate topol-

ogy, and the automated generation and solution of a circuit component sizing optimization

problem.

While recent advances in efficient enumeration have increased the size of synthesis prob-

lem that can be solved via enumeration, clear limits exist. Alternative methods are required

to solve synthesis problems when component catalogs are too large. Here we observe that

while enumeration may not be practical for these larger problems, enumeration can still be

used to generate rich design data related to these problems. New methods are presented
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here that leverage the availability of enumeration data and automated model generation/-

sizing optimization and combine these resources with machine learning techniques to enable

approximate solution of synthesis problems too large for enumeration. Consider the follow-

ing two cases where efficient enumeration alone is insufficient to solve heterogeneous system

topology design problems:

Case 1: A component catalog and set of NSCs results in topological design space where all

unique and feasible circuit topologies can be enumerated in a practical amount of time,

but evaluation (e.g., size optimization) is too computational expensive to perform for

all unique, feasible topologies.

Case 2: The topological design space is even larger, to the point that complete enumeration,

even with recent efficient enumeration algorithms, cannot be completed in a practical

amount of time.

For completeness, we refer to the situation where it is possible to enumerate and evaluate

all topologies of interest as Case 0 (i.e., efficient enumeration is sufficient). In this chapter

we introduce a new type of method for solving Case 1 synthesis problems that relies on

the availability of complete topological information. In the next chapter we address Case

2, where we do not have the luxury of access to all design topologies. Solution methods

tailored for Case 1 synthesis problems will not be applicable to Case 2 problems due to the

unavailability of the complete set of topological design data.

In this chapter, a Case 1 synthesis solution method is introduced, where an active learning

method is used to sample limited sets of candidate designs strategically with the objective

of identifying the optimal topology approximately. In other words, machine learning is used

to capitalize on topological design space structure to maximize system performance without

needing to test all designs exhaustively, reducing overall solution expense. This solution

method is demonstrated using a circuit synthesis problem.

While established circuit synthesis methods, such as efficient enumeration strategies and

97



genetic algorithms (GAs), are available, evaluation of candidate circuit topologies often re-

quires computationally-expensive simulations, limiting the scale of solvable problems. Strate-

gies are needed to explore topological design spaces more efficiently, reducing the number

of evaluations required to obtain good solutions. Active learning is a semi-supervised ma-

chine learning technique that constructs a predictive model. Here we use active learning

to interactively query topological design data as a strategy to accelerates effective design

search. Predictive model accuracy is improved incrementally using strategically-selected

training samples. The predictive model used here is an ensemble method, known as random

forest. Several query strategies are compared. A circuit synthesis problem with available

data and design automation tools is used to test the active learning strategy; this application

is of significant importance to mechatronic systems. While active learning has been used

for structured outputs, such as sequence labeling tasks, the interface between active learn-

ing and engineering design has not been well studied. Results indicate that active learning

is a promising strategy for reducing the evaluation cost for the selected circuit synthesis

problems, and provide insight into possible next steps for generalization to a wider range of

problems.

4.2 Literature Review

Synthesis of electronic circuits is a process of configuring an assembly of electronic com-

ponents to achieve a desired circuit behavior. Synthesizing a circuit is a challenging task

because it involves determining both circuit topology and component sizing. Circuit topol-

ogy is determined by component selection and connections between components. The sizing

problem is to identify the circuit component parameter values that optimize system per-

formance. A number of methodologies have been proposed for circuit synthesis. Domain

knowledge is often used [83,180,235], but requires significant expertise to apply successfully,

and has limited effectiveness for complicated circuits. Methods that require minimal initial
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design knowledge are desirable in that novel topologies can be generated without significant

human expertise requirements [53, 83, 94, 180, 235]. For example, evolutionary algorithms

(EAs) [53,54,83,89,94,140,162] and simulated annealing [192] have been applied to the cir-

cuit synthesis problem. Grimbleby used genetic algorithms to synthesize novel and effective

circuits that satisfy both frequency- and time-domain specifications [94]. Das and Vermuri

developed an automated circuit synthesis framework for an RLC circuit design problem [53].

Despite these achievements, EA-based approaches are limited because 1) a number of

algorithm parameters need to be tuned, including crossover probability and population size

[94,140,162]; 2) effective solution may depend on using initial design populations with certain

properties, resulting in potential solution convergence and robustness issues [53]; 3) direct

genotype representations are not often successful in making progress toward improved designs

for larger-scale systems [48]. It should also be acknowledged that global solutions are not

guaranteed with EAs.

One strategy that can be used to improve the scalability of EAs to larger systems it to

utilize effective mappings from indirect genotype encodings to phenotypes (detailed design

specification). Indirect generative design representations, such as grammar-rule approaches

or generative algorithms, may be used to facilitate indirect genotype encodings that map to

direct design descriptions [38, 134, 208]. Indirect design representations that utilize neural

networks [48,99] or generative algorithms [134,161] have been used successfully to reduce the

computational expense of EA solution in application domains outside of circuit synthesis.

Existing indirect encodings, however, cannot be generalized to problems where an existing

appropriate generative design algorithm does not exist, or where human expertise cannot be

used to define the generation rules.

Enumeration-based synthesis methodologies1 generate and test all possible topologies

1Strictly speaking, enumerative strategies involve generation and selection of a design topology, as opposed
to additive composition, and as a result some may argue that enumeration is not a synthesis activity.
In addition, it could be argued that EA solution methods are also not synthesis depending on genotype
definition. We acknowledge this issue, but use the term synthesis here when referring to the task of identifying
the best-performing topology due to 1) its historical use in the circuit design literature, and 2) because in
practice enumerative and EA circuit design methods have aims that are similar to design synthesis.
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under certain specifications, so global optimality is guaranteed. Enumeration-based ap-

proaches have a long history and have been used widely in electronic circuits [34,75], hybrid

powertrains [19], gear trains [58], and enzyme network topologies [166]. Näıve enumera-

tion is simple to implement, but impractical when the number of possible candidates is

significant. One example of Näıve enumeration would be to generate all possible adjacency

matrices corresponding to graphs that represent candidate system topologies. When using

näıve enumeration, the majority of designs produced are either isomorphic or violate net-

work structure constraints (NSCs). It is desirable to focus design search efforts only on

unique (non-isomorphic) designs that are also feasible with respect to component connectiv-

ity constraints (NSCs). Recent advancements by Herber et al. in efficient system architecture

enumeration theory and algorithms, based on perfect matching theory and intelligent search

methods, have made practical the use of enumeration methods for generation of all unique

and feasible topologies for certain problem classes, including for design problems that are

much larger than previously thought [112].

Efficient enumeration has been applied to circuit synthesis [109], and was shown to iden-

tify not only the topologies found earlier using EAs, but a much richer set of design data,

including many previously unknown, non-dominated designs [112]. This study supported

fair comparisons between unique, feasible topologies by using quantitative evaluation of the

candidates [109,112]. A dynamic system model was automatically generated for each candi-

date circuit topology, and then was used in solving a component sizing optimization prob-

lem [109]. Efficient enumeration strategies have been extended to other system architecture

design problems, such as active vehicle suspensions [110].

4.2.1 Framework for Design Method Comparison

While these recent advances have improved solution capabilities for circuit synthesis, they

are still limited in scale to moderately-sized component catalogs that define the topological

design space of interest. Here we provide motivating context for a new circuit synthesis
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design methodology that leverages a machine learning strategy to improve scalability, while

providing reasonable computational expense and solution quality.

One approach for defining a design method is to describe how the design problem is

formulated, as well as how the problem is to be solved. This context helps to describe

fundamental differences between design methods, and how different methods may be use-

ful in different situations. Design problem formulation and solution decisions are coupled.

For example, the intended solution method may influence problem formulation decisions to

leverage solution method properties, and different solution methods might be chosen based

on desired formulations.

Figure 4.1 illustrates one possible approach for conceptualizing a design problem formu-

lation space. Formulation decisions must be made along three dimensions: design represen-

tation (a precise way of articulating different design candidates), comparison metrics (an

explicit approach for comparing design candidates), and predictive modeling (an approach

for mapping design descriptions to comparison metric values). Moving closer to the origin

represents an improvement in accuracy of the problem formulation with respect to design

intent. The origin represents a hypothetically ideal or substantive rationality solution to the

design problem formulation problem [165]. It is not attainable in practice because it would

require a completely open-ended design representation (no restrictions or assumptions), a

perfectly accurate predictive model, and comparison metrics that express true design utility

with perfect accuracy. Moving closer to the origin is usually possible, but typically comes at

the cost of increasing solution expense. We will discuss selected circuit synthesis strategies

using this framework as a way to explain the reasoning behind the active learning circuit

synthesis method introduced here.

One advantage of both enumerative and EA-based methods is that they do not inherently

restrict comparison metric or predictive modeling choices. It is possible to use high-fidelity

predictive models, even those with non-smooth or noisy responses. That said, solution

expense may be prohibitive using these approaches. Using a reduced-dimension design rep-
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Figure 4.1: Conceptual design formulation space used for analyzing differences in problem
formulation strategies

resentation (e.g., indirect EA genotype encoding) simplifies the design space, and can be

conceptualized as moving right away from the origin in Fig. 4.1 along the design representa-

tion dimension. While solution may be easier, this modification eliminates from consideration

a number of design candidates, thus making the specified problem formulation a less accurate

approximation of the ideal problem formulation.

An important advantage of enumeration is the ability to identify a globally-optimal so-

lution with respect to a given problem formulation, whereas EAs can only solve problems

approximately. A disadvantage of enumeration, even with recent enhancements in efficient

enumeration, is that the scale of problem that can be solved in a practical amount of time

is quite limited. To define a problem that is solvable in practice using efficient enumeration,

the complexity of the topological search space must be restricted. This can be done be

reducing the number of items in the component catalog that can be used to compose topolo-

gies. This reduction, however, moves the problem to the right away from the origin in the
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problem formulation space, as illustrated in Fig. 4.1. In general, there is a tradeoff between

design problem formulation accuracy and solution accuracy. Enumeration improves solution

accuracy, but requires concessions in formulation accuracy. EAs typically can be used to

solve larger problems than can be solved using enumeration; this can improve formulation

accuracy (more comprehensive design representation), but degrades solution accuracy due

to the approximate nature of EAs with no guarantees of optimality.

It would be desirable to improve design representation (move left toward origin in the

formulation space), while still allowing for high-fidelity predictive modeling and accurate

comparison metrics (stay close to the origin in the other dimensions), and supporting high-

quality solutions in a practical amount of time. Here we propose a new design method that

does just this by combining efficient enumeration with tools from machine learning. It allows

increased topological design space complexity, high-fidelity design candidate evaluation, and

produces high-quality (approximate) solutions in a practical amount of time.

4.2.2 Active Learning Design Concept

Synthesis problems can be solved in a comprehensive way using efficient enumeration when

the topological design space is sufficiently simple. Efficient enumeration methods help to

expand the scope of problems that can be solved via enumeration, but still have limits.

Consider two classes of problems that cannot be solved completely using enumeration:

Case 1: All unique, feasible topologies can be enumerated in a practical amount of time,

but evaluation (e.g., size optimization/simulation) is too computationally expensive to

perform for all enumerated topologies.

Case 2: A component catalog and set of NSCs results in a topological design space that

is too large to enumerate all topologies in a practical amount of time.

Here we focus on Case 1. Chapter 5 addresses Case 2. Consider the case where N is the

total number of unique, feasible topologies generated using enumeration, NE is the number
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of topological design candidate evaluations that can be performed within computational

resource constraints, and N � NE. It is not possible to find the globally-optimal solution

using enumeration in this case due to evaluation limits. Here we would like to find an

approximately optimal solution for this more complex synthesis problem (i.e., we support

more accurate problem formulation by making concessions in solution accuracy). How best

can we ‘spend’ the NE design evaluations to arrive at a high-quality solution? If we choose

NE topologies to evaluate all at once, there is no way to leverage information available from

these evaluations to improve solution quality further. A different strategy is to first choose

a subset N1 < NE of topologies to evaluate, and use the obtained results to inform selection

of a new subset of N2 < NE topologies to evaluate. If Ni � NE, then this process can be

iterated several times to adaptively improve selection of designs to evaluate. This type of

iterative adaptive sampling technique has been studied in the context of other problems, and

is known as active learning.

4.2.3 Electronic Circuit Synthesis Using Active Learning

The proposed active learning synthesis strategy is demonstrated and tested using an elec-

tronic circuit synthesis problem. This application was chose because it is well-studied in

the literature, is relevant to mechatronic system design, and because recently-developed

automated design enumeration and evaluation tools are openly available [109], supporting

transparent investigation and replication. Test problems are chosen such that both complete

enumeration and evaluation can be performed to support more comprehensive analysis of

the method.

The type of circuit evaluation required here involves straightforward generation of single-

input single-output transfer functions [109], and then finding the solution of a nonlinear

fitting problem. Having a complete set of data (topologies and corresponding evaluation

metric values) allows us to study various limited-sampling strategies, and compare against

known globally optimal designs. A small extension of this test problem (e.g., inclusion of
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nonlinear circuit elements) would increase evaluation expense, resulting in a Case 1 synthesis

problem where comprehensive evaluation cannot be performed in a practical amount of time.

Further extension involving a larger catalog would result in a Case 2 problem, which is a

topic of separate ongoing work involving fundamentally different solution strategies. Here

we present an initial analysis of methods appropriate for the approximate solution of Case

1 problems. Methods for Case 2 problems have different requirements and are outside the

scope of this chapter.

Here machine learning is applied by constructing a predictive model that approximates

the mapping from topological design descriptions to performance metrics (real-valued out-

puts). This model is then used to identify, using a variety of strategies, potentially desirable

topologies to evaluate. This new data is then used adaptively to enhance the predictive

model. This iterative strategy is known as active learning, which is a semi-supervised ma-

chine learning technique that aims to achieve good accuracy with fewer training samples

by interactively sampling the data from which it learns [218]. In this situation, the dataset

contains a number of unlabeled (unevaluated) data, and labeling (classification) or evalu-

ations (regression) are relatively expensive. The learning algorithms can choose actively

which samples to label or evaluate with the goal of reducing the number of required labeling

or evaluation tasks. This strategy is distinct from conventional supervised learning, also

referred to as ‘passive learning’, that constructs a model in a single iteration. A number of

efforts have focused on investigation of active learning for a variety of applications, including

text mining [82,174,219,220,259], speech recognition [264], and computational biology [228].

Very limited research in this context has been focused on design synthesis or similar tasks,

which is an additional motivating factor for this investigation of using active learning for

circuit design synthesis.

Here the random forest algorithm is used to construct the predictive model in an itera-

tive manner, including model validation and query selection steps. As an ensemble method,

the random forest can prevent overfitting and reduce the variance by training on boot-
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strap samples of the data. Active learning, in general, uses one of three types of sampling:

membership queries, stream-based selective sampling, and pool-based sampling [218]. The

pool-based sampling scheme is used here [153]. For the task of deciding whether to query or

discard instances, several query strategies are tested here using two complete data sets from

circuit synthesis problems, and identified the most promising active learning strategies for

circuit synthesis.

Similar to adaptive surrogate modeling strategies common in design optimization [149,

248], the active learning strategy aims to find the best topologies by iteratively querying

circuit topologies. The main difference between the active learning strategy presented here

and surrogate modeling is that the inputs to the predictive model here have topological dif-

ferences, whereas in surrogate modeling the inputs typically have only continuously-varying

differences.

As discussed earlier in this section, the active learning strategy presented here aims to

support the use of accurate comparison metrics and high-fidelity models. Suppose we want to

solve a Case 1 synthesis problem where we can enumerate all unique and feasible topologies,

but we cannot enumerate them. One strategy to make our problem solvable would be to

reduce the number of topologies by reducing the component catalog size. This enables exact

solution via enumeration, but the requires a less-accurate problem formulation. It would

correspond to a move to the right away from the origin in Fig. 4.2 (A→ B). Another option

would be to keep the same design representation (component catalog), while selecting a

simpler model for design evaluation (A → C). This may make complete evaluation possible,

but would restrict available comparison metrics, and again results in a less-accurate problem

formulation (moving away from the origin in both the predictive modeling and comparison

metric dimensions). The active learning strategy allows us to remain at point A in Fig. 4.2

(close to the origin), at the cost of producing only approximately optimal solutions with no

guarantees of the global optimality. In other words, a more accurate problem formulation is

supported, but the solution is less accurate.
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Figure 4.2: Conceptual design formulation space using different solution strategies

This chapter involves three primary contributions: 1) We introduce active learning as an

effective tool for solving Case 1 synthesis problems. Using a circuit synthesis test problem,

we compare several query strategies, and demonstrate the construction of a predictive model

with fewer training samples that supports practical solution expense. 2) We generate new

insights and identify query strategies that are effective for circuit synthesis via comparative

analysis. 3) We discuss how the proposed framework could be extended to other topological

design problems, such as active vehicle suspensions [109, 110] and fluid-based thermal man-

agement systems [201]. In addition, the relationship between active learning and adaptive

surrogate modeling is clarified in this chapter.

The remainder of the chapter is organized as follows. In the next section, we detail the

active learning method for circuit synthesis. Section 4.4 describes the frequency response

circuit synthesis problem from which the dataset was obtained. Quantitative results are

presented in Section 4.5. Discussion and conclusions are presented in Sections 4.6 and 4.7,

respectively.
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Figure 4.3: The active learning framework.

4.3 Methodology

In this section, the proposed active learning strategy for circuit synthesis is described. Figure

4.3 illustrates the overall active learning framework. The strategy assumes all possible N

circuit topologies X = {xi} for i = 1, 2, . . . , N and xi ∈ Rd, are relatively easy to obtain,

but evaluation of each circuit’s performance metric Y = {yi} for i = 1, 2, · · · , N , is relatively

expensive. The mapping f : xi 7→ yi is the true response function.
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4.3.1 Initial Sampling

All unique and feasible circuit topologies are obtained using the efficient enumeration-based

methodology introduced by Herber [109,112]. Each circuit topology xi is represented by an

adjacency matrix; the value of each matrix element indicates whether the two corresponding

circuit components are connected (1) or not connected (0). A subset of Nl topologies are

sampled randomly, denoted as an initial training set Xl = {xi} for i = 1, 2, . . . , Nl. The

training set elements are then evaluated using the true response function to obtain the

performance Yl = {yi}, where yi = f(xi) for i = 1, 2, . . . , Nl. The unevaluated data set

becomes (Xu, Yu), where Xu = X \Xl and Yu = Y \ Yl, respectively.

4.3.2 Predictive Model Construction

To approximate the performance yi, a regression model is employed. Radial basis functions

(RBFs) are often used with an artificial neural network to approximate the true unknown

function [33]. Kriging is an approach for interpolation, where values are modeled using a

Gaussian process [51, 216, 246]. Other methods may include response surface methodology

(RSM) [26, 27], moving least-squares (MLS) [6, 144, 152], support vector regression (SVR)

[244], adaptive regression splines [77], and inductive learning [146]. These approaches have

been well-studied in the context of surrogate-based optimization [73, 248], an engineering

design method that uses an approximate surrogate model constructed from true response

samples as a strategy to reduce overall computational expense while maintaining solution

accuracy. Optimization is performed using the computationally inexpensive surrogate model

to make solution of an approximate problem tractable. Established surrogate modeling

methods, however, are not applicable here because the design variables in the surrogate

models are usually continuous, rather than the discrete topological variables needed for

circuit synthesis (e.g., an adjacency matrix representation).

Here we choose random forests as the model for approximating the response of the true
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circuit topology performance function. The random forest is an ensemble learning algorithm

for regression and classification that can handle both continuous and categorical variables

[31, 116, 117]. The random forest is composed of a number of decision trees at the training

phase, and the output of the final prediction (regression) or label (classification) is based on

the results given by the individual trees. The individual decision trees tend to have a low bias,

but a high variance, resulting in overfitting to the training set. The random forest averages

the output of multiple decision trees that were trained on different subsets of the training

set. This strategy helps to reduce the overall variance and prevent overfitting [107]. The

random forest uses bootstrap aggregating (also known as bagging) to improve the stability

and accuracy of the learning algorithm [30]. For the given training set T = {(xi, yi), i =

1, . . . , Nl}, bagging generates B bootstrap sample sets T b = {(xbi , ybi ), i = 1, . . . , nb, b =

1, . . . , B} by sampling nb samples from T with replacement. Datum (xi, yi) may appear

multiple times or not at all in B data sets. A total number of B regression decision trees

f̂b(·) are trained on T b. For a new instance x, the prediction ŷ takes the average of the B

individual decision trees [30]:

ŷ = f̂B(x) =
1

B

B∑
b=1

f̂b(x). (4.1)

The estimated standard deviation s reflects uncertainty of the prediction:

s =

√∑B
b=1(f̂b(x)− ŷ)2

B − 1
. (4.2)

The random forest algorithm has several tuning parameters, including the number of

trees, depth of the tree, and so on. These hyperparameters can be determined through

Bayesian optimization performed during the training phase [36,87,229].
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4.3.3 Query Synthesis

Query synthesis is an influential element of active learning methods. To determine whether

a new instance x should be queried (evaluated) or not, one needs to define a measure that

characterizes x. In other words, we should actively search the data that satisfies a certain

criterion such that the training set can be updated iteratively using the query data. The

choice of search is a process that involves the balance between exploration and exploitation

over the topology space. One way of balancing exploitation of the prediction and exploration

using estimated standard deviation is to find the instances with the smallest statistical lower

bound (LB) [73]:

LB(x) = ŷ(x)− As(x), (4.3)

where ŷ(x) and s(x) are the prediction and estimated standard deviation, respectively, given

at x quantified by Eqs. (4.1) and (4.2). Here parameter A controls the balance between

exploitation and exploration; specifically, A → 0 corresponds to pure exploitation, and

A → ∞ indicates pure exploration. Because s(x) reflects the uncertainty of the prediction,

it can be used as a utility measure for query selection, also referred to as uncertainty sampling

[218]. Expected Improvement (EI) is a quantity that computes the improvement expected

for a given mean ŷ(x) and estimated standard deviation s(x):

EI(x) = (ymin − ŷ(x)) Φ

(
ymin − ŷ(x)

s(x)

)
+ s(x)φ

(
ymin − ŷ(x)

s(x)

)
, (4.4)

where Φ(·) and φ(·) are the CDF and PDF of the standard normal distribution, respectively,

and ymin is the smallest observed value in the training set.

Leave-one-out (LOO) cross-validation is an error-based approach that measures the leave-

one-out prediction error using the training samples [175]. Given a new instance x and training
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sample (xi, yi) ∈ T , the infill function is defined as [122,131]:

v(x) = D(x) · E(x) (4.5)

where D(x) = minxi∈Xl
d(x,xi) is the distance between x and its closest training point

xc. The error estimate function is E(x) =
∣∣yc − ŷLOOc

∣∣, where ŷLOOc is the leave-one-out

prediction at xc. The query points are the ones with the largest values of v(·). Here the

distance term explains exploration, while the error function corresponds to exploitation. This

measure is likely to query points with significant prediction uncertainty, helping to improve

model accuracy [122]. Similarly, density-weighted heuristics take into account both content

information and input space region density for the new instance x [218]:

v(x) = s(x) ·

(
1

|Xu|
∑

x′∈Xu

d(x,x′)

)β

(4.6)

where |Xu| is cardinality of the current unevaluated samples. The first term uses uncertainty

sampling measured by the estimated standard deviation; the second term is the information

weight that is calculated by averaging the distances to all the instances in Xu; β is a hyper-

parameter that balances the relative importance of both terms. The distance metric can be

chosen as Euclidean distance or cosine similarity, depending on the problem.

4.3.4 Model Evaluation

The predictive model should be evaluated before updating the training set. Cross-validation

is a model validation method for parameter and accuracy estimation. It partitions the sam-

ples into two subsets: the analysis is performed on one subset (training set), and the analysis

is validated using the other subset (validation set). Cross validation measures how the model

will generalize to an independent set and prevents overfitting. Due to the random forest prop-

erties, out-of-bag (OOB) error is used instead. OOB is computed as the average prediction
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of those trees in which instance (xi, yi) did not appear in their bootstrap samples [107,124].

The OOB error can be used to perform parameter estimation in the Bayesian optimization.

The measure for model accuracy here is root mean square error (RMSE) [118]:

RMSE =

√∑m
i=i(yi − ŷi)2

m
(4.7)

where m is the number of validation points. Other metrics such as maximum absolute error

and R2 may also be considered [248]. The true RMSE for the random forest model is ap-

proximated using a test set, composed of additional circuit topologies and the corresponding

true performances. The error between the true outputs and the predictions given by the

random forest approximates the true prediction error. In other words, the test set provides

an unbiased evaluation of the final random forest model fit on the entire training set.

4.3.5 Training Data Set Update

Once the query data (Xq, Yq) have been determined in the previous step, the training set

and unevaluated set can be updated:

(Xl, Yl) := (Xl, Yl) ∪ (Xq, Yq) (4.8)

(Xu, Yu) := (Xu, Yu) \ (Xq, Yq) (4.9)

The stopping condition is either 1) RMSE falls below ε, or 2) the active learning process

reaches a predefined iteration number niter.
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4.4 Design Problem

4.4.1 Problem Statement

Here we present the case study for circuit design synthesis. A set of circuit elements shown in

Fig. 4.4 with replicates can be combined construct a circuit, such as the one shown in Fig. 4.5.

Resistors (R), capacitors (C ), and inductors (L) are 2-port components, meaning that they

must have connections to two other components. The required 1-port components include the

input (I ), the output (O), and the ground (G ). Various multiport (>2) common-voltage nodes

are also available (e.g., the 4-port common-voltage node N4). Other component types are

possible, but many circuits of practical importance, such as analog filters, can be constructed

using this type of component catalog. Example circuit topologies are shown in Figs. 4.5

and 4.6. Figure 4.6(a) incorporates three 1-port nodes (I, O, G ), one 7-port voltage node

(N7), two 4-port voltage nodes (N4), and twelve 2-port nodes (R, C ).

In the circuit synthesis problem, the circuit components (I, O, G ) are fixed. A model

may be constructed for a complete circuit by identifying the transfer function G between the

input and output. We would like to synthesize practical circuits that satisfy the following

target frequency response [94]:

|F (jω)| =
√

2π

10ω
(4.10)
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Figure 4.5: Different representations for the same circuit [109]
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(a) Example #1

(b) Example #2

Figure 4.6: Two different circuit topologies with twelve 2-port components [109]
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where the frequency range of interest is:

0.2 ≤ ω

2π
≤ 5, (4.11)

evaluated over 500 logarithmically-spaced points.

Herber successfully enumerated and evaluated circuits for this problem with up to 6

general impedance elements and only (R, C ) 2-port components [109]. All circuit topolo-

gies represented as labeled graphs were enumerated under a set of specifications using the

enumeration algorithms in Ref. [112]. To evaluate the performance given a desired circuit

topology, we consider the following minimization problem [109]:

min
z

E =
∑
|rk(z)|2 (4.12a)

subject to: l ≤ z ≤ u (4.12b)

where z is the vector of optimization variables, representing the coefficients for the 2-port

elements (R, C ); the individual residual rk = g(ωk, z) − f(ωk) is the difference between the

transfer function magnitude g(ωk, z) and desired circuit magnitude response f(ωk) specified

in Eqn. (4.10); (l, u) are the upper and lower bounds for z.

4.4.2 Design Data

To test the active learning framework, we first obtained two sets of the circuit synthesis data

by specifying different simple bounds on the resistors and capacitors [109]:

(set 1) R ∈ [10−2, 100] Ω, C ∈ [10−2, 100] F

(set 2) R ∈ [10−2, 105] Ω, C ∈ [10−10, 100] F

The circuit structure space was predefined by a collection of vectors, including distinct

component types, the number of ports for each component type , the lower and upper
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bounds of replicates for each component type. Network structure constraints (NSCs) were

used to define the feasibility for the graphs. A collection of 43,249 circuit topologies (denoted

as X) with unique transfer functions were enumerated, and thus the corresponding circuit

performance could be evaluated. For more details see Refs. [109,112].

4.4.3 Data Preprocessing

Each circuit topology xi can be represented as a labeled-vertex graph and has a correspond-

ing adjacency matrix. For a given catalog, the number of chosen components may vary

across topology candidates. As a result, the adjacency matrix dimension can vary as well.

Figures 4.6(a) and 4.6(b) share the same complexity number (12, computed from the num-

ber of 2-port components), but the total number of components is different. The adjacency

matrices have dimensions 18 × 18 and 16 × 16, respectively. In addition, adjacency matrix

representation is not as compact as other representation possibilities. To address this, a pre-

processing step was performed. We identified all possible components using a fixed-dimension

adjacency matrix (large enough for the maximum number of each of the component types).

However, this results in the corresponding matrix representation (feature space) being fairly

sparse. Feature hashing, an efficient method for vectorizing features, is used to overcome this

issue, turning the adjacency matrix feature space into a compact vector representation [254].

Feature hashing has been used widely to perform document classification tasks by hashing

the features to their hash values. In other words, the hashing-trick transforms the high

dimensional vector into a lower dimensional feature space [252].
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(a) Set 1

(b) Set 2

Figure 4.7: Comparisons between the different query methods
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4.5 Results

4.5.1 Comparison of Query Strategies

We randomly selected an initial training set of 10,000 circuits that were then each evaluated

to obtain corresponding true responses. Because the true response ranges from 10−5 to

102, the natural logarithm was applied to scale performances. A set of 500 data points

were queried from the training set in each iteration according to the criteria specified in

Eqs. (4.3)–(4.6). The learning process is terminated after Niter = 20 iterations. We then

compare the different query strategies against a benchmark random sampling strategy. In

random sampling, a set of 500 data points are obtained via random sampling and added to

the training set during each iteration. In the lower bound, A was chosen as 2 to minimize

the lower bound of the 95% confidence interval, and in the density weighted method, β = 1

was used.

Figure 4.7(a) presents the learning curve for Set 1. In the figure, the blue solid line

corresponds to the random sampling benchmark. The RMSEs for two of the query strategies

in consideration, lower bound and expected improvement, are almost identical to random

sampling after 20 iterations. The number of training samples needed is about 15,000 at

RMSE = 2.55 at Iteration 10 for uncertainty sampling and weighted, but random sampling

may require 17,000 samples at Iteration 14. Using one of these two more successful query

methods can therefore reduce the number of true function evaluations by 2,000 to achieve

the same desired RMSE. It is observed that the uncertainty and density weighted sampling

methods are better than the others. The statistical lower bound and EI rely on both the

prediction and variance, but perform worse than uncertainty sampling with the variance

only. It may indicate that the prediction itself is less critical to the circuit synthesis problem.

The space region information in the weighted density method may be useful in improving

the model accuracy. Figure 4.7(b) in Set 2 exhibits different behaviors. Only uncertainty
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sampling outperformed random sampling. The other strategies, lower bound and expected

improvement, perform worse than random sampling for Set 2. Because both sets were

obtained by specifying different bounds on the components, these results also indicate that

query strategy performance depends on data set properties. Later in this section additional

parametric studies are performed to test the generality of these results.

4.5.2 Ranking Distance

While RMSE is a frequently used measure for the difference between the predicted and true

observed values, the ordering or ranking of the predictions are also important. In the circuit

synthesis problem, accurate ranking of the predicted values would facilitate the process of

identifying high-performance circuit topologies. Here we specifically investigated the rank

distance between the predicted values and observed values.

Kendall tau rank distance K(τ1, τ2) is a metric that measures the number of pairwise

disagreements or dissimilarity between two ranking lists (τ1, τ2) of size n [132]. If two lists

are identical, then K = 0; and if two lists are opposite to each other, then K = n(n− 1)/2.

Often K is normalized by dividing by n(n − 1)/2 so the normalized distance K̃ lies in the

interval [0, 1]. A value of K̃ = 0.5 implies that the ordering of one of the lists was completely

randomized.

Figures 4.8 and 4.9 report the normalized Kendall tau distances for both data sets with

uncertainty sampling applied to the active learning strategy. The distances include the

training set, test set, and all set. The training set contains the samples after 20 iterations,

and the remainder of the data set is termed the test set. We are also interested in how

well the predictive model performs on the ordering of all available 43,249 circuit designs

(termed the all set); it is useful for designers to to be able to select the best designs, which

is possible if the rankings are preserved. In Set 1, a large portion of the ranking is kept,

with the Kendall tau distances between 0.17077 and 0.24021 for the different sets. Similar

observations can be found for Set 2 in Fig. 4.9. The Kendal distances through the iterations

121



were also investigated in Figs. 4.10(a) and 4.10(b). In both sets, the training process remains

stable at Iteration 15, indicating a particular convergence property. One may further improve

the training process by increasing the number of iterations, but in practice it will require

more true circuit evaluations during the model construction. A cost-effectiveness analysis

should be performed to assess potential benefit when considering the use of this synthesis

method.

4.5.3 Parametric Studies

We conducted a parametric study on the number of new samples taken at each active learning

iteration. The motivation for this study is to explore how these parameters affect the active

learning performance, provide more fair assessments, and generate additional insights for

practical application of the active learning synthesis strategy. A subset of 10,000 samples

was obtained via random sampling of the initial training set. The number of new samples

per iteration tested were: 250, 500, 750, and 1,000. Because the training set was enlarged at

each iteration, we terminated the active learning after the training set neared 20,000 total

circuits. For example, it required 11 iterations to reach a total of 20,000 circuits using 1,000

new samples per iteration, but only 15 iterations were needed to obtain 20,500 circuits and

please note the total of circuits in the final training set may not be identical but are similar.).

The remaining circuits were used as the test set. Again, we use the normalized Kendall tau

distance K̃ as the metric. Table 4.1 summarizes the results. The number of samples taken

per iteration does not significantly affect K̃. However, it was found that using a sample size

of 750 slightly outperforms the other levels.

In addition to a parametric study on sample size, we investigated parameter A used

in the statistical lower bound approach defined in Eq. (4.3). The results, based on 750

samples per iteration, are shown in Table 4.2. Recall that A controls the balance between

exploitation and exploration. Values of 0.1, 2, and 10 for A were examined, and compared

with uncertainty sampling (the best-observed sampling strategy for both sets). For instance,
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Figure 4.8: Predicted vs. observed sorted performance locations for different sets of circuits
and their corresponding Kendall tau distances (Set 1)
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Figure 4.9: Predicted vs. observed sorted performance locations for different sets of circuits
and their corresponding Kendall tau distances (Set 2)
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(a) Set 1

(b) Set 2

Figure 4.10: The Kendall tau distances through the active learning iterations
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Table 4.1: The parametric study on the number of new samples taken at each iteration

K̃
Sample Size Training set Test set All set

Set 1

250 0.1703 0.2382 0.2044
500 0.1708 0.2402 0.2061
750 0.1690 0.2378 0.2020

1000 0.1703 0.2403 0.2049

Set 2

250 0.1739 0.2131 0.1951
500 0.1732 0.2132 0.1950
750 0.1734 0.2117 0.1935

1000 0.1731 0.2129 0.1944

Table 4.2: The parametric study on parameter A in the statistical lower bound approach

K̃
Method Training set Test set All set

Set 1

A = 0.1 0.1750 0.3208 0.2438
A = 2 0.1660 0.2912 0.1917
A = 10 0.1643 0.2204 0.1681

Uncertainty Sampling 0.1690 0.2378 0.2020

Set 2

A = 0.1 0.1885 0.3118 0.2386
A = 2 0.1901 0.3094 0.1965
A = 10 0.1776 0.2461 0.1757

Uncertainty Sampling 0.1734 0.2117 0.1935

the K̃ with A = 10 in the test and all sets are significantly less than those of values at

0.1 and 2. The uncertainty sampling strategy performs better in the test sets, consistent

with the results presented in Figs. 4.7(a) and 4.7(b). Therefore, the result of A = 10 being

preferred reveals that more weight should be placed on exploration to improve the active

learning performance.
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4.6 Discussion

The numerical results show that, for some query strategies, active learning can reduce evalu-

ation cost compared to random sampling for the circuit synthesis problem. Among the tested

query methods, uncertainty sampling performs the best. Here the estimated standard devi-

ation given by the random forest algorithm captures the information for the query points. A

number of other query strategies could be investigated with the potential for further design

evaluation cost reduction. For instance, query by disagreement (QBD) [49,106] and query by

committee (QBC) [76,221] may be appropriate for the ensemble method. A clustering-based

method could also be considered [130,190]. It might be useful to cluster the evaluated data

Xu before applying either uncertainty sampling or the density weighted approach to each

cluster. These methods in the past have been used primarily for classification problems in

text mining. It may be worth exploring whether these methods are applicable to certain

engineering design problems, such as circuit synthesis.

One drawback to consider is the additional computational cost required by active learn-

ing during the query phase; this cost may not be worth the gains. For instance, the LOO

error in Eq. (4.5) is computationally expensive to evaluate (a topic of ongoing work) because

an additional Nl random forest models must be retrained to obtain leave-one-out prediction

in each loop. Variance reduction, often known as optimal experimental design, is also lim-

ited [44, 71]. It can only be applied to certain types of models such as linear/nonlinear and

logistic regression, and hence is not generalizable. Whether or not the variance reduction

method can be extended to tree- or nearest neighbor-based machine learning algorithms is

still an open question [218]. Moreover, the variance reduction method involves inversion and

manipulation of the Fisher information, and it turns out to be slow and inefficient when a

large number of parameters are to be estimated.

While the normalized Kendall tau distance indicates that a large portion of ordering has

been preserved, improvements may be possible, as Kendall tau distances for both training
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sets are only around 0.17. Similar to the RMSEs, it is speculated that more query strategies

or learners could be studied to further analyze the appropriateness of different methods

for learning in engineering synthesis problems. For example, gradient booting is another

ensemble method with the goal of reducing bias [29, 78, 79]; other learners such as a radial

basis function network may be applicable [33]. These studies and analysis are left as future

work.

It is observed here that active learning has some similarities with surrogate (or meta)

modeling methods for design optimization. Wang and Shan summarized three classes of

metamodel-based design optimization (MBDO) strategies [248]. The MBDO techniques

also require sampling and construction of approximation models. In particular, adaptive

MBDO and direct sampling approaches use an iterative mechanism to build, validate, and

optimize metamodels. MBDO strategies have been extended to multi-objective surrogate

modeling [1, 149,209]. However, there are also some distinctions. First, the vector of design

variables x in MBDO are often assumed to be composed of continuous real variables, and

they serve as the solutions to the global optimization problem. In active learning, instance x

is an observation drawn from a certain probability density distribution and the feature space

could be either numerical or categorical. Second, in machine learning or active learning, it is

often assumed that observations (X, Y ) are available (i.e., they exist in terms of data, rather

than design variables), or at least X is easy to obtain but Y involves a high computational

expense. An initial set of training samples can be drawn from available data. Surrogate

modeling often generates initial samples via space-filling design methods, such as Latin

hypercube sampling [199,216], and uses them as the training samples for approximate model

construction. Finally, query selection in active learning samples points from the unevaluated

data pool based on the predictions. Adaptive MBDO performs the optimization and validates

the model in the loop to determine re-sampling (or obtain additional samples) and update

the metamodels. The direct sampling approach samples toward the optimal solution given

by the metamodel. Surrogate modeling utilizes the optimization in the loop to aid the re-
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sampling scheme and construction of the metamodel, whereas active learning updates the

approximation model iteratively using information from the unlabeled or unevaluated data

in the pool.

As part of Chapter 5 to address Case 2 synthesis problems discussed in Section 4.1, we are

investigating techniques for generating circuit topologies that implicitly satisfy NSCs. This

eliminates the need to enumerate all unique, feasible topologies, supporting approximate so-

lution of synthesis problems where the catalogs are impractically large for enumeration. This

approach narrows the search space through an intelligent mapping. A generative model is a

probabilistic model capable of producing both the observations and targets in the data set.

Restricted Boltzmann machines [115], variational auto-encoders (VAEs) [137], and generative

adversarial networks (GANs) [91] are generative models used for modeling observations and

targets drawn from a certain joint probability distribution. Guo et al. developed an indirect

design representation for topology optimization in heat conduction design using VAEs [99].

For the circuit synthesis problem, GANs could be a promising option to generate circuit

topologies.

4.7 Conclusion

In this chapter, we presented an active learning strategy for reducing topology evaluation

cost for a circuit synthesis problem. We aimed to address the problem where it is possible to

enumerate all unique and feasible topologies, but exhaustive evaluation is impractical (Case 1

synthesis problem). Here we constructed a predictive model using a random forest to approx-

imate true circuit topology performance. The active learning strategy interactively queried

informative samples from the training set to construct iteratively-improved approximations,

while reducing the number of training samples required. A number of query strategies were

tested and compared. The active learning strategy helps reduce the evaluation cost for circuit

synthesis because 1) we can avoid using the true evaluation function for each circuit topol-
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ogy; 2) we can make more accurate predictions using active learning than the conventional

passive learning scheme (i.e., random sampling). The numerical experiments indicate that

the uncertainty sampling query strategy is most effective among the tested methods for the

tested circuit synthesis problem. Through the active learning experiments, we found that

uncertainty and topology structure may play critical roles in improving the appropriation

model accuracy and make a significant contribution to reducing the system evaluation costs.

There are some shortcomings and limitations in the results. For instance, we can only

predict the rankings with moderate accuracy in Figs. 4.8 and 4.9. Figures 4.10(a) and 4.10(b)

also indicate slow convergence behavior. There could be other methods that better predict

the Kendall tau distance. Other metrics such as Sperman’s rank correlation coefficient [182],

could be used to characterize the ranking predictions. It is speculated that improving the

effectiveness of the query strategy and learner may alleviate these issues.

Future work should involve the exploration of more robust and efficient query criterion.

While a number of query strategies have been presented, not all of the strategies outperform

the random sampling benchmark (i.e., passive learning). Recent studies indicate that no

query selection strategy is consistently or clearly the best across a general range of prob-

lems [218] because success relies heavily on the learners and applications. For example, Jin

et al. compared different metamodeling techniques and observed that the robustness and

accuracy of various surrogate models depend on the non-linearity of the problems [126]. As

a result, it is worth further investigation into the selection of the learners, as well as under-

standing the circuit synthesis and other heterogeneous topology optimization problems more

deeply with respect to active learning solution methods.

While only a single test problem was investigated, it is clear that the active learning

strategy is promising, and it appears that it could be extended to other system topology

design tasks. For instance, the active learning strategy is applicable to the low-pass filter

problem given in Ref. [109] as it has the same problem structure as the test problem presented

here. Active vehicle suspension design can also be posed as a similar problem using labeled
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graphs, and this active learning strategy may be suited for evaluation cost reduction [110].

In addition, other well-established methods, such as Bayesian inference and MBDO, have

contributed to important advancements within and outside the design research community.

A comprehensive comparison may be conducted where these methods are applied to the

same circuit synthesis problem. The active learning strategies for circuit synthesis and other

similar engineering problems have not yet been well-studied and we hope the work presented

here will serve as a basis for productive future research.
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Chapter 5

HETEROGENEOUS SYSTEM

TOPOLOGY DESIGN: CASE 2

Collaborative Acknowledgement: Dr. Daniel Herber provided circuit synthesis data,

including both design specifications and evaluation results, using efficient enumeration for

both the frequency response and low-pass filter design problems.

5.1 Introduction

In this chapter, we introduce a solution strategy for Case 2 synthesis problems and demon-

strate this strategy using two different circuit synthesis problems. Recall that for Case 0

problems, it is possible to enumerate and evaluate all unique and feasible design topologies.

In the previous chapter, active learning was used for Case 1 problems where we could enu-

merate all of the topologies of interest, but could only evaluate performance for a subset of

them. Case 2 is more challenging; the topological design space is too large for enumeration,

so different methods are needed.

The Case 2 synthesis solution strategy presented here is based on the concept of creating

an indirect design representation that implicitly satisfies NSCs. Thus, infeasible topologies

could be avoided when exploring candidate topologies. Existing efficient enumerative meth-
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ods can solve Case 0 problems, but are limited by problem size, and cannot solve Case 2

problems (i.e., all topologies cannot be enumerated in practice). Evolutionary algorithms

(EAs) are an alternative solution strategy that could be attempted, and do not require

comparison metric properties such as differentiability, but when EAs with simple direct de-

sign encodings are tested for problems with a vast topological design space, they generally

fail to produce meaningful results [48]. Direct encodings usually are high-dimension, and

can lead to intractable problems if structure cannot be leveraged. Low-dimension abstract

design representation strategies, including genotype-to-phenotype mappings, can help ease

solution difficulties. Construction or identification of generative algorithms [134] or grammar

rules [38] can aid creation of effective indirect encodings (genotype-to-phenotype mappings)

to help improve EA solution effectiveness for large-scale topological design problems. So far,

however, generative algorithms rely on human expertise to identify appropriate mappings,

and grammar rules most often have been used in an exploratory way to support human

creativity, as opposed to use for topology optimization.

More generalizable data-driven indirect representations have been proposed, but for re-

stricted types of topology optimization problems. For instance, Cheney et al. successfully

applied computational pattern-producing networks (CPPNs) to design of soft robots with

materials [48]. While the combinatorial design space was large, the ground structure net-

work that served as the basis of the design representation was sparsely connected compared

to the types of dense ground structures considered in this chapter. More specifically, ele-

ments could only be connected to geometrically close neighbors, whereas in more general

heterogeneous topology optimization problems elements can be connected to a wider range

of other elements. In addition, the work by Cheney et al. did not consider NSCs other than

geometric proximity. More general problems must manage several classes of NSCs.

An indirect representation may be chosen as a possible remedy for reducing the compu-

tational expensive. Recall that in the previous chapter, a reduced-dimension design repre-

sentation could simplify the design space (see Fig. 4.1), but typically reduces the number of
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design candidates that may be considered, resulting in a less accurate design formulation.

If design space coverage is reduced, it would be ideal to reduce it in a targeted way that

eliminates infeasible or other undesirable designs from consideration. For example, an indi-

rect generative design representation was introduced by Khetan et al. where certain design

constraints were guaranteed to be satisfied in an implicit manner [134]. This resulted in

a more efficient design space search (i.e., higher-quality solutions and lower computational

expense), but was developed only for a specific homogeneous topology optimization prob-

lem. All nodes represent the same material with the same type of functionality and allowed

connectivity, and are parameterized by the same continuous variables for size optimization.

Here, we would like to solve more general synthesis problems where nodes can represent fun-

damentally different components, and overcome the limitations of EAs with direct encodings

(reviewed in the previous chapter), reliance on human expertise for creating generative en-

codings (e.g., [134]), and the limitation of existing methods based on data-driven encodings

to simpler topology optimization problems (e.g., [48]).

As a strategy to remove reliance on human expertise, a data-driven strategy is intro-

duced where targeted, indirect design representations are constructed in an automated way

from design data derived from smaller representative component catalogs. Here we focus

on techniques for generating circuit topologies in a manner that implicitly satisfies NSCs,

improving the probability that generated circuits are feasible. This capability is particularly

important for Case 2 synthesis problems because, without implicit constraint satisfaction,

arbitrarily generated candidate topologies are highly unlikely to satisfy NSCs (see Ref. [109]

for a discussion of the ratio of infeasible to feasible unique architecture candidates for a typ-

ical synthesis problem, which provides evidence for this unlikeliness). In other words, this

targeted mapping narrows the search space and supports significantly more efficient search

compared to a direct GA implementation or other available strategies for Case 2 synthesis

problems.

It is proposed here to utilize a generative model to produce circuit topologies for use
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in Case 2 circuit synthesis problems. A generative model, using language from the ma-

chine learning literature, is a probabilistic model that describes how data was generated.

Variational autoencoders (VAEs) and generative adversarial networks (GANs) are two im-

portant types of generative models. VAEs have been applied to topology optimization and

microstructure design. For instance, Guo et al. developed an indirect representation for

heat spreader design using VAEs and style transfer in topology optimization [99]. Cang et

al. predicted physical properties of heterogeneous materials via a deep VAE-based model [39].

However, it is well-recognized that VAEs tend to generate blurry samples due to the maxi-

mum likelihood training paradigm [66]. In contrast, GANs adopt a generator-discriminator

mechanism in an adversarial manner and have exhibited a number of advantages over other

generative models. For example, the generator requires few restrictions (e.g., no Markov

chains or variational bounds are needed), and GANs are better at generating sharp samples

than VAEs [90].

In a GAN, the generator attempts to produce “fake” samples generated from a low-

dimensional latent vector that avoid being detected as fake by the discriminator. This

adversarial mechanism is equivalent to a zero-sum game. GANs have been used to synthesize

a number of realistic objects for design, such as interior design [207] and 3D objects [254].

However, GANs in engineering design, particularly circuit synthesis, have not been studied

thoroughly. Here we utilize GANs as an indirect design representation for circuit synthesis

problems. We design several numerical experiments to investigate the effectiveness of GANs

in this context, including several GAN variants. As highlighted above, one objective here

is to generate feasible topologies in a manner that implicitly satisfies circuit constraints to

support more efficient Case 2 synthesis problem design search. The case studies presented

here are frequency response and low-pass filter analog electric circuit design problems.

We designed the numerical experiments to test the efficiency of generating circuit topolo-

gies for the GAN-based method. Figure 5.1 is a Venn diagram that helps illustrate the

rationale behind the use of GANs for Case 2 indirect encodings. In practice, it would be
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Figure 5.1: A Venn diagram for GAN-based methodology

impossible to obtain all possible unique and feasible circuit designs (i.e., set Ω) via enumera-

tion. Only a statistical sample X that represents Ω can be obtained in a practical amount of

time. Here we train different GAN models using X, and generate a new design set called M

through the generator. Suppose there are T out of M designs that are feasible. It is desir-

able to have the feasibility ratio T/M as large as possible. The numerical experiments help

quantify the effectiveness of various GAN models via this ratio, with the expectation that

larger T/M ratios will support more efficient topological design space exploration. Other

factors will also have an impact, such as indirect encoding dimension, feasible design space

(Ω) properties, and search algorithm properties.

It should be noted here that GANs have been used successfully in a similar way using

images of human faces [91,207]. For example, from a small set of human faces X, GANs have

been trained to generate new faces not in X that appear to be realistic. One could define

realistic appearance to be a feasibility requirement. Generated faces that look realistic would

then be the set T , and unrealistic faces would be M\Ω. The discriminator improves quality

of generated faces by detecting fake ones. This established use of GANs in realistic synthetic

human face generation from limited real data was observed to be parallel to the needs posed

by Case 2 synthesis problems, and provides the rationale for choosing to investigate GANs

for this purpose.
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Using the GAN-based method (or other similar indirect encodings) for Case 2 synthesis

problems involves a tradeoff between formulation and solution accuracy. As illustrated in

the previous chapter, enumeration-based methods find exact solutions to Case 0 synthesis

problems1 (perfect solution accuracy), but only for simplified topological design spaces. As

a result, enumerative strategies lie fairly far to the right along the design representation axis

(see point A in Fig. 5.2). Solution is exact, but formulation is inexact. Can we improve

formulation accuracy by giving up some solution accuracy? Would this result in a better

overall design solution?
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Figure 5.2: Design formulation analysis of the GAN-based methodology

1A Case 0 synthesis problem is one where it is possible to enumerate and evaluate all topologies defined
by the problem formulation.
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If we improve the comprehensiveness of the design representation to expand the set of

topologies considered, we can move to the left toward the origin (point B), but this problem

is no longer solvable via enumeration (Case 2 synthesis2). Please observe that reducing

predictive model fidelity or comparison metric realism will not make a Case 2 problem

solvable because the complete set of topologies cannot be enumerated. We could attempt to

solve such a problem using an EA with a direct encoding, this is unlikely to be successful for

such problems. Introducing a GAN as an indirect encoding reduces design representation

dimension, and moves the formulation to point C, which is the right of point B, but not as far

right as point A. We recognize that a GAN-based encoding will not cover the design space

as comprehensively as point B (some formulation inaccuracy/greater distance from that

origin compared to B), but gives up some design coverage in return for practical solvability.

In summary, by expanding the topological design space (moving from A → B) and then

representing this expanded design space approximately using a GAN (moving from B → C),

we create a net improvement in problem formulation, producing a more accurate formulation

that may be solvable using indirect EA encodings. The formulation is more accurate than

the Case 0 synthesis problem (point A), but the solution is approximate (not exact) due to

the nature of EAs or other solution methods that would apply here.

Similar to the VAE-based design representation in Chapter 3 (see Fig. 3.1), the GAN-

based method presented here, in essence, restructures the design space in terms of an abstract

design representation. It may permit either low-or high-fidelity comparison metrics and pre-

dictive models, but more importantly directly tackles the challenge of not having enumerative

data from the desired problem directly available for use in the solution strategy.

The contributions in this chapter include: 1) a new GAN-based synthesis strategy that

entails a new perspective in designing electronic circuits that is fundamentally distinct from

established circuit design methodologies. Specifically, artificial intelligence and design data

2Recall that Case 1 synthesis problems are not solvable via enumeration alone because of evaluation
expense, not because the topologies cannot be enumerated. Here we focus on cases where the topological
design space is too large to support enumeration; this property is independent of evaluation expense.
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are leveraged to restructure topological design spaces to support efficient exploration. 2)

Several GAN models are tested, and the improved WGAN is shown to be the most effective

in identifying the feasible circuits using the reduced-dimension design representation. This

indirect representation supports the execution of an active learning strategy by facilitating

the generation of high-performance circuit topologies in an efficient manner. To our best

knowledge, this is the first work where adversarial learning is applied to electronic circuit

synthesis design.

The remainder of this chapter is organized as follows. The next section introduces the

basics of the GANs. Section 5.3 describes the heterogeneous circuit synthesis design problems

and associated design data. Section 5.4 outlines the numerical experiments. The numerical

results are reported in Section 5.5. The discussion and conclusion are presented at end of

this chapter.

5.2 Generative Adversarial Networks (GANs)

A generative adversarial network (GAN) is a class of unsupervised learning models intro-

duced by Goodfellow et al. [91]. The GAN is composed of two artificial neural networks, a

generator and discriminator. Figure 5.3 illustrates a basic GAN framework. Let Xr = {x}Ni

for i = 1, 2, . . . , N and xi ∈ Rd denote the real data samples drawn from a probability den-

sity distribution Pr. A latent vector z ∈ Rm is pre-defined with a prior density distribution

pz(z); here pz(z) is often chosen as a multivariate normal or uniform distribution. The role

of the generator G(z; θG) is to produce samples xg with a probability density Pg that approx-

imates Pr. Given a random sample z, the generator maps the latent space Z to the original

data space X, i.e., G : Z → X. The goal is to find parameter values θG for the generator

G(z; θG) such that Pg is as close to Pr as possible. Discriminator D(x; θD) takes a sample

x ∈ X as the input and outputs the probability of x being real. Both D(x; θD) and G(z; θG)

can update iteratively in such a way that the generator produces “fake” samples capable of
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Figure 5.3: A basic GAN framework

“fooling” the discriminator, while the discriminator aims to distinguish the “fake” samples

given by the generator from the real. The process is equivalent to a minimax two player

game and eventually a Nash Equilibrium is reached [194]. The discriminator maximizes the

probability of assigning the correct label to the samples from Pg and Pr; the generator is

trained to minimize log(1−D(G(z)). The value function V (G,D) is written as [91]:

min
G

max
D

V (D,G) = Ex∼Pr [logD(x)] + Ez∼Pz(z)[1− logD(G(z))] (5.1)

where G(z) is the sample produced by the generator. Because x is real, D(x) will be close

to 1. D(G(z)) outputs the probability for sample G(z). The generator expects value of

D(G((z)) to be large for a fixed discriminator G, and therefore a minimization over G is

used. As a powerful discriminator, D(x) tends to be larger and D(G(z)) should be smaller.

Consequently, the value function V (D,G) is maximized over D. In practice, minG[1 −

logD(G(z))] often is replaced by maxG logD(G(z)), because 1− logD(G(z)) saturates when

G is poor, and D can reject confidently the samples that are different from x used in the

earlier training [91].
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5.2.1 Standard GAN Shortcomings and Resolutions

While GANs have significant advantages, they are extremely difficult to train. One challenge

is that the algorithm used to find the Nash equilibrium, usually a gradient-based method,

may fail to converge [92, 217]. GANs also suffer mode collapse, i.e., cases where the gener-

ator maps several different latent vectors to the same output sample [90]. Because the loss

function given in Eqn. (5.1) measures the Jensen–Shannon divergence between Pr and Pg,

this metric is insufficient when Pr and Pg do not overlap. Arjovsky and Bottou explained

that supports of Pr and Pg lying on the lower dimensional manifolds contribute to training

instability [12]. Several strategies have been proposed to improve stability [12, 178, 217].

For instance, Deep convolutional generative adversarial networks (DCGANs) apply convo-

lutional layers to the discriminator and deconvolutional layers to the generator [121]. The

convolutional filters extract features from the previous layer, and transforms x to the class

label (probability). The generation of the DCGAN in essence flips the direction from z to

x through multi-layer filters. The DCGAN is well-known for its stability and robustness

properties, and are thus used widely. Other variants of GANs are also available, such as

LAPGANs [59], AdaGANs [239], least square GANs [170], loss-sensitive GANs [205], and

others.

5.2.2 Wasserstein GANs (WGANs)

Wasserstein GANs (WGANs) have attracted much attention recently [13, 95]. Rather than

using JS divergence, The WGAN adopts Wasserstein Distance (also known as Earth Mover’s

distance) as the metric quantifying the similarity between Pr and Pg:

W (Pr, Pg) = inf
γ∼Π(Pr,Pg)

E(x,y)∼γ[||x− y||] (5.2)

where Π(Pr, Pg) refers to the set of all possible joint distributions. The Wasserstein distance

can give a meaningful and smooth representation of the distance between Pr and Pg, even if
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there exist no overlaps between the lower dimensional manifolds of both distributions. The

WGANs makes the training process stable, and ensures diversity of the generated samples.

Even multilayer perceptions (i.e., fully-connected layers) are sufficient to produce realistic

samples. Arjovsky et al. proposed a transformation for the intractable term infγ∼Π(Pr,Pg) in

Eqn. (5.2) [13]:

W (Pr, Pg) =
1

K
sup
||f ||L≤K

Ex∼Pr [f(x)]− Ex∼Pg [f(x)] (5.3)

where ||f(·)||L ≤ K is the K-Lipschitz continuous condition. If function f(·) is a family of

K-Lipschitz continuous functions {fw(·)}w∈W parameterized by w, the loss function using

Wasserstein distance can be re-written as [13]:

L(Pr, Pg) = W (Pr, Pg) = max
w∈W

Ex∼Pr [fw(x)]− Ex∼PG
[fw(G(z))]. (5.4)

Here the discriminator no longer identifies the probability of a sample being real, but is

instead trained to compute the Wasserstein distance by learning the K-Lipschitz continuous

function fw(·). The distance becomes smaller as the loss function decreases, implying that

the generator is producing samples that are close to the real samples. To maintain the K-

Lipschitz continuity of fw(·), weight clipping, a simple but practical trick, is available: w

is restricted to a compact parameter space [−c, c]. WGANs do have shortcomings. Weight

clipping may result in unstable training, slow convergence, and vanishing gradients. To

overcome the issues, a gradient penalty has been introduced [95]. A soft version of a penalty

on the gradient is included in the loss function to enforce the K-Lipschitz constraint [95]:

L(Pr, Pg) = max
w∈W

Ex∼Pr [fw(x)]− Ex∼Pg [fw(G(z))] + λEx∼Px̂
[||∇xD(x)||p −K]2 (5.5)

where x̂ = εxPr + (1− ε)xPg . This strategy is also called improved training of WGANs [95].
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5.3 Circuit Synthesis

5.3.1 Problem Statement

In the circuit synthesis problem presented here, each electrical circuit component is repre-

sented as a node in an undirected graph. A representative set of components that could be

used in a RLC analog electrical circuit is illustrated in Fig. 5.4(a). This illustration shows an

example of an electrical circuit component catalog, including 1-port components (the input

I, the output O, and the ground G ), two-port components (resistors R, capacitors C, and

inductors L), and multiports (> 2 ports for connecting to other components). Here the only

multiports specified are common-voltage nodes (3- or 4-port common-voltage nodes N3 and

N4). N5 and even higher multi-port Nx components may also be used in a circuit synthesis

problem.

A circuit topology consists of components used and their connectivity. Circuit topologies

can be represented as labeled graphs, where edges indicate connections between component

ports. Figure 5.4(b) shows the labeled graph that corresponds to the circuit presented in

Fig. 5.4(c). In this chapter, the adjacency matrix corresponding to labeled graphs is used as

the circuit topology representation.

Here we consider two canonical circuit synthesis problems: 1) a frequency response match-

ing problem, and 2) a low-pass filter realizability problem. In both of these cases, {I, O, G}

are required. Figures 5.5(a) and 5.5(b) illustrate the relationship between these specified ele-

ments and portion of the overall system to be designed (i.e., the circuit synthesis domain). In

both cases, candidate topologies must satisfy NSCs that govern what types of connections

are allowed between components. Herber defined a set of vectors that specifies a desired

circuit structure space [109], as well as an efficient enumeration strategy that successfully

identified all possible circuit topologies for given component catalogs and NSCs. Although

this enumeration-based strategy is feasible for larger catalogs than originally expected, it
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Figure 5.4: Examples of the heterogeneous circuit [109]

still is limited in practice to component catalogs within a certain size limit. Enumeration

is important for obtaining the solution of Case 0 (all feasible and unique topologies can be

enumerated and evaluated) and Case 1 synthesis problems. This has been performed in

previous recent studies for both the frequency matching and filter design examples. Here we

use this previously-developed enumeration and evaluation capability to generate design the

data needed to execute the proposed GAN strategy for solving Case 2 problems.

5.3.2 Data

In the frequency response problem, a complete circuit is constructed using a transfer function

between input I and output O. More desirable circuits will better satisfy the following target
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frequency response [94]:

|F (jω)| =
√

2π

10ω
, (5.6)

where the frequency (Hz) range of interest is:

0.2 ≤ ω

2π
≤ 5, (5.7)

evaluated over 500 logarithmically-spaced points. All circuits containing {R,C} with up

to 6 impedance elements were explored previously via the efficient enumeration strategy

developed by Herber [109]. A collection of 43,249 unique circuit topologies were identified

with unique transfer functions.

The low-pass filter (LPF) problem is often used as the test example for the meta-heuristic

methods discussed earlier. The design task is to generate LPFs using the circuit template

(Fig. 5.5(b)) under different specifications and variable bounds. A total of 1,804,496 unique

graphs were found, out of which 123,156 had up to 7 components and unique transfer func-

tions. A smaller subset also satisfies NSCs [109].

Because the size of the adjacency matrices vary as circuit topologies change, a data-

processing step was used to convert the adjacency matrix to a fixed-length vector that is

more amenable for machine learning strategies. Two complete data sets with all the possible

circuit topologies will be used for numerical experiments.

5.4 Numerical Experiment Design

5.4.1 Network Architecture Specifications

In this section, a comparative study is presented that quantifies how efficient various strate-

gies are at generating circuit topologies. Different variants of GANs are trained, including

vanilla GANs, WGANs, improved GANs, and DGGANs. The generator and discriminator

146



may be chosen either as a multilayer perceptron (i.e. fully connected layers), or a model

using convolutional layers. The generator and discriminator have the same number of layers.

Tables 5.1–5.6 summarize various GAN architectures considered for both design problems.

Here BS (batch size) is an input to the network. The pre-defined latent vector nz is drawn

from a standard multivariate normal distribution.

In the vanilla GAN (Tables 5.1 and 5.2), two fully connected hidden layers are used. The

upper adjacency matrix was flattened to a vector 465 × 1 and 630 × 1, respectively, as the

input for the two design problems. The output has the same size as the input. To stabilize

convergence of the vanilla GANs, the ratio of network updates between the discriminator

and generator was set to 5:1. Leaky Rectified Linear Unit (LReLU) [167] and tanh are used

to produce circuits in the last layer of the generator (additional transformation to the input

is needed as tanh requires the input to be in [-1,1]).

There are four fully-connected layers in the WGANs and improved WGANs (Tables 5.3

and 5.4), where the loss function is replaced by the Wasserstein distance. The sigmoid

activation in the last layer of the discriminator is eliminated; the logarithm in the generator

and discriminator is no longer needed; the weights in both networks are truncated in [-0.01,

0.01]. Finally, RMSProp is used to train the networks [114]. The regularization term λ is set

to 100 for the improved WGANs. The hidden layer sizes are 128, 256, and 512, respectively.

For the DCGANs (Tables 5.5 and 5.6), the filters are assigned symmetrically. The filter

with a size of 4 × 4 and stride 2 × 2 results in a (or an approximately) scalar of 2 in each

layer. In the first three layers of the discriminator, convolution, batch-normalization, and

LReLU activation are connected between the layers, and the last convolutional-sigmoid layer

outputs the probability. The generator has the de-convolutional, batch normalization, and

LReLU activation function appended to each of the first three layers sequentially, followed

by the de-convolutional-tanh in the last layer. The Adaptive Moment Estimation (Adam)

optimizer is used for the training [135].
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Table 5.1: Frequency response: vanilla GAN

Layer Dimension
Random Tensor z BS × nz
Generator Layer 1 BS × 256
Circuit Topology BS × 465
Discriminator Layer 1 BS × 256
Discriminator Layer 2 BS × 1

Table 5.2: Low-pass filter: vanilla GAN

Layer Dimension
Random Tensor z BS × nz
Generator Layer 1 BS × 256
Circuit Topology BS × 630
Discriminator Layer 1 BS × 256
Discriminator Layer 2 BS × 1

Table 5.3: Frequency response: WGAN and improved WGAN

Layer Dimension
Random Tensor z BS.× nz
Generator Layer 1 BS × 128
Generator Layer 2 BS × 256
Generator Layer 3 BS × 512
Circuit Topology BS × 465
Discriminator Layer 1 BS × 512
Discriminator Layer 2 BS × 256
Discriminator Layer 3 BS × 128
Discriminator Layer 4 BS × 1

5.4.2 Evaluation of the GANs

Since complete data sets (denoted as Ω) are available for both circuit synthesis problems,

numerical experiments will be designed to test how likely a GAN is to produce a feasible

circuit topology. The complete set Ω is not available for Case 2 synthesis problems; only
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Table 5.4: Low-pass filter: WGAN and improved WGAN

Layer Dimension
Random Tensor z BS.× nz
Generator Layer 1 BS × 128
Generator Layer 2 BS × 256
Generator Layer 3 BS × 512
Circuit Topology BS × 630
Discriminator Layer 1 BS × 512
Discriminator Layer 2 BS × 256
Discriminator Layer 3 BS × 128
Discriminator Layer 4 BS × 1

Table 5.5: Frequency response: DCGAN

Layer Dimension
Random Tensor z BS × 1 × 1 × nz
Generator De-Conv. Layer 1 BS × 4 × 4 × 128
Generator De-Conv. Layer 2 BS × 8 × 8 × 64
Generator De-Conv. Layer 3 BS × 16 × 16 × 32
Circuit Topology BS × 32 × 32 × 1
Discriminator Conv. Layer 4 BS × 16 × 16 × 32
Discriminator Conv. Layer 4 BS × 8 × 8 × 64
Discriminator Conv. Layer 4 BS × 4 × 4 × 128
Discriminator Conv. Layer 4 BS × 1 × 1 × 1

Table 5.6: Low-pass filter: DCGAN

Layer Dimension
Random Tensor z BS × 1 × 1 × nz
Generator De-Conv. Layer 1 BS × 5 × 5 × 128
Generator De-Conv. Layer 2 BS × 9 × 9 × 64
Generator De-Conv. Layer 3 BS × 18 × 18 × 32
Circuit Topology BS × 36 × 36 × 1
Discriminator Conv. Layer 1 BS × 18 × 18 × 32
Discriminator Conv. Layer 2 BS × 9 × 9 × 64
Discriminator Conv. Layer 3 BS × 5 × 5 × 128
Discriminator Conv. Layer 4 BS × 1 × 1 × 1
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Figure 5.6: Procedure used to test GAN effectiveness at generating circuit topologies

a representative sample X is available. In the experiments, the subset X ⊂ Ω is randomly

selected as the training set. A new collection of samples, denoted as M , will be obtained

using the generator. Suppose T out of M samples are in Ω. A metric P , defined as:

P = |T |/|M | (5.8)

is the ratio of the number of feasible generated topologies to the total number of generated

topologies. Here we make the assumption that the larger the ratio of feasible topologies

to generated topologies is, the better the performance of the GAN. A perfect GAN would

generate the circuit topologies satisfying T = M ⊂ Ω (i.e., P = 1). We acknowledge that P

is a proxy objective function for GAN performance, but postulate that it is aligned with the

objective of improve Case 2 synthesis problem solution performance. Figure 5.6 illustrates

the procedure used to test GAN effectiveness at topology generation.

Predictive modeling can also be incorporated into the GAN framework to enable solution

of the synthesis problem. While the GANs can to generate feasible topologies, the circuit

synthesis problem also requires topology evaluation and identification of high-performance

circuits. One strategy for solving the synthesis problem that combines active learning (using

a predictive model) with GAN-based topology generation is depicted in Fig. 5.7. After

circuit generation, NSCs are used to filter out any remaining infeasible topologies. The

predictive model (e.g., random forest from the previous chapter) is used to approximate

the performance of feasible circuits. This strategy may be particularly appropriate in cases

where circuit evaluation is computationally expensive.
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Figure 5.7: The GAN circuit synthesis framework using predictive modeling

5.5 Numerical Results

5.5.1 Comparison of GAN Models

An initial 20,000 samples drawn from Ω were used as the training sets for both design prob-

lems. The latent vector size was 64. Here we plot the adjacency matrices (symmetric) as a

means to visualize circuit topologies. In the adjacency matrix, white entries indicate con-

nected corresponding components (value 1), whereas black entries indicate no connection

(value 0). Figure 5.8 shows a set of 16 randomly generated circuit topologies using the DC-

GAN for the frequency response problem. At the beginning (Fig. B.1(a)), because generator

weights are assigned randomly, the generated topologies are essentially noise. However, as

the training progresses, the generator has learned more about the training set, and starts

to produce reasonable circuit topologies (Fig. B.1(d)). Furthermore, the generator has the
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ability to produce sharper and symmetric circuit topologies by 1,500 iterations (Fig. B.2(d)).

Similar visualization for the low-pass filter problem can be found in the Appendix (Figs. B.1

and B.2.)

(a) 0 iterations (b) 10 iterations

(c) 20 iterations (d) 30 iterations

Figure 5.8: Frequency response: generated circuit topologies (0–30 iterations)

Figures 5.10 and 5.11 illustrate how the GAN iteratively works toward feasible generated

circuit topologies. A randomly selected M = 10, 000 new data samples were obtained using

the generator. Each generated circuit topology was verified to be in the complete design data

set (sizes 43,249 and 123,156 for the two problems, respectively). We recorded the number

of feasible topologies T for different GAN architectures and then computed the metric P .
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(a) 100 iterations (b) 500 iterations

(c) 1000 iterations (d) 1500 iterations

Figure 5.9: Frequency response: generated circuit topologies (100–1500 iterations)

Figure 5.10 reports the result for the frequency response problem. It is observed that the

improved WGAN performs the best with respect to P , with 1,990 out of 10,000 generated

samples being feasible. The WGANs follows next, but the likelihood of the feasible topologies

is decreased significantly, with only 3.44%. The vanilla GAN and DCGAN perform least well,

with 1.51% and 0.36%, respectively. We specifically investigated how the training time affects

the metric P . Figure 5.11 indicates that the likelihood of obtaining feasible samples using

the improved WGAN is highly related to the number of iterations. In particular, 3,049 out

of 10,000 are feasible (with iteration number 25,000). However, if we allow more iterations
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Figure 5.10: Frequency response: GAN generation performance

Figure 5.11: Frequency response: improved WGAN generation performance

(i.e. 50,000), the feasibility percentage is increased to 42.66%, implying a longer training

time greatly improves generation efficiency. Figure 5.12 shows that both the generator and

discriminator losses have become stable after a sufficient number of iterations. Similar results

were obtained for the low-pass filter problem, and are presented in the Appendix (Figs. B.3–

B.4).
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Figure 5.12: Frequency response: convergence of the improved WGAN

5.5.2 Parametric Studies of the Improved WGAN

Since the improved WGAN demonstrated efficient generation, we conducted a parametric

study regarding two important parameters: the number of latent variables and λ. The pur-

pose of the parametric study is to provide insights about the improved WGAN’s capabilities

for circuit synthesis. Here the frequency response problem is considered. The number of la-

tent variables was varied across the following levels: 16, 32, 64, and 128 (with a fixed λ = 10).

The value of λ was varied across the levels: 0.1, 1, 10, and 100 (with a fixed number of latent

variables: 64). For illustrative purposes, all the experiments were carried out using 5,000

iterations. Table 5.7 summarizes the results. We observe that using 64 latent variables and

λ = 10 significantly outperforms the other parameter values (with a feasibility percentage

of 19.90%). Too few latent variables (e.g. 16 and 32) result in inadequate learning of the

improved WGAN, but too many latent variables (128) did not perform well, perhaps due

to overfitting and more difficult training (i.e., more weights and bias must be learned). As
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Table 5.7: Frequency response: Parametric study on improved WGAN parameters

Value Percentage

Latent variable

16 10.95%
32 12.13%
64 19.90%
128 10.7%

λ

0.1 9.16%
1 9.69%
10 19.90%
100 10.48%

a penalty term, the values of λ = 10 is found to be an appropriate value for enhancing the

capabilities of the improved WGAN for this problem. The parametric study for the low-pass

filter problem can be found in Table B1.

5.5.3 The GAN Framework with Active Learning

Here we use active learning strategy in combination with GAN-based topology genera-

tion.The frequency response problem is tested here, where two data sets were used for the

active learning tasks (see Section 4.4.2). Following the procedures in Fig. 5.7, the numerical

experiment was implemented as follows: 1) solved Case 0 problem to obtain a statistical

circuit topology sample X; 2) trained an improved WGAN using sample X; 3) applied the

active learning strategy to sample X to construct a predictive model; 4) used the generator

to output a collection of 10,000 circuit topologies, and used NSCs to filter out remaining

infeasible circuit topologies; 5) the final predictive model given by the active learning strat-

egy predicts feasible circuit topology performance. In this study, 2,973 of the 10,000 circuit

topologies were feasible.

Similar to the previous chapter, RMSE quantifies the average performance of the pre-

dictions, while the normalized Kendall tau distance K̃ measures the ranking order between

the predicted values and true observations. Table 5.8 summarizes the RMSE and K̃ for
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Table 5.8: Frequency response: performance of the GAN based method with active learning

RMSE K̃
Set 1 2.4942 0.2631
Set 2 2.9266 0.2557

both data sets (with 2,973 feasible circuit topologies produced by the improved WGAN).

It is interesting to observe that the RMSEs are significantly different. Different bounds on

the component values may account for this sensitivity (see Section 4.4.2). The normalized

Kendall tau distance K̃ shows that the majority of predictions is kept, meaning that design

engineers using this technique could identify feasible circuit topologies with high-performance

by simply sorting the prediction list. Figures 5.13 and 5.14 report the generated circuits

with high predicted performance for both sets. This combined framework addresses Case

2 problems with high evaluation cost, facilitating identification of high-performance circuit

topologies.

5.6 Discussion

The numerical results show that the improved WGAN can efficiently produce feasible circuit

topologies in circuit synthesis. Here the Wasserstein distance in the loss function overcame

the instability and mode collapse issues. One possible reason for the poor performance

of the DCGAN could be insufficient training. Because all experiments were carried out

using TensorFlow CPU implementations, DCGAN required a significant amount of time to

complete the training. GPU computing could speed up the training process, enabling the

generation of more robust results. However, it is still observed that even the improved WANs

with fully connected layers (simpler network architecture) outperforms the DCGAN with

convolutional layers (complicated network architecture). It might be helpful to implement

a deep convolutional WGAN (DC-WGAN) architecture to gain more insights about the
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generative design.

While this work demonstrates initial promising results for the use of GANs in synthesis,

a number of improvements and further investigations should be performed. A number of

factors affect GAN performance. For example, 4 hidden layers in the vanilla GAN were

initially implemented. However, it turned out that the vanilla GAN experienced instability

and mode collapse with this architecture. Replacing two hidden layers improved performance

(see Tables 5.1 and 5.2).

Further investigations could be conducted to better understand the randomly generated

sample produced by the GAN-based method. In the numerical experiment, because each

generated circuit topologies used a fixed-size adjacency matrix, this could result in graph

isomorphisms. In other words, the portion of the circuit identified as infeasible may be

isomorphic to another feasible circuit in the complete data set. Recall that the improved

WGAN can achieve as high as 42.66% feasibility percentage for the frequency response

problem; the isomorphism check would potentially increase metric P further. On the other

hand, it is also worth exploring properties of the randomly generated circuit topologies,

including uniqueness, component combination, frequency, and other aspects.

The GAN-based method could be extended to other research tasks in circuit synthesis.

The numerical results imply that the improved WGAN could be a good option for generating

high quality circuit topologies. Once the circuit topology x is available, the circuit perfor-

mance must be assessed via sizing optimization. Figure 5.15 illustrates a possible workflow

where the GAN framework can incorporated with sizing optimization. Additional detail

regarding sizing optimization can be found in Ref. [109,111].

The GAN-based methodology could be applied to other heterogeneous system topology

design problems with similar properties. This assertion is based on recent work in enumer-

ation and evaluation of various automotive suspension architectures, where different com-

binations of passive and active components are combined to improve comfort and handling

metrics [109]. Figure 5.16 illustrates a simplified passive suspension model [10]. It represents
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a single wheel suspension, and hence is referred to as a quarter-car model. The unsprung

mass mus (or U) represents the inertia of the wheel and other components that move with

the wheel. The stiffness and damping of the tire that connects U to the road surface z0

are modeled by the spring and damping coefficients, kt and ct, respectively. As the vehicle

moves forward with velocity v, the road surface elevation changes, inducing displacement and

vibration of the unsprung mass. The sprung mass ms (or S) represents the vehicle body,

i.e., all vehicle mass that is to be isolated from disturbances from road imperfections. In a

conventional passive suspension system, the sprung and unsprung masses are connected by

a spring and damper, modeled here using linear coefficients ks and cs, respectively. Alterna-

tive architectures may be explored, where active force elements are included in between the

sprung and unsprung masses, or additional passive components, such as vibration absorbers.

Figure 5.16 illustrates a standard passive suspension model; active components and addi-

tional passive components are not pictured. This system architecture can be represented as

a colored (labeled) graph. According to Ref. [109], one possible component catalog, based

on terminology from bond-graph modeling, for this problem is defined by:

� {S, U,M}: Inertial (I) energy storage nodes (sprung, unsprung, and additional masses)

� K: Capacitance (C) energy storage node (springs)

� B: A subsystem that combines a spring and damper in parallel

� F : An effort source (Se), i.e., an active force actuator

� Px: a node with x ports

Similar to the circuit synthesis in this chapter, the each suspension component is regarded

as a node, and the system topology can be represented in terms of an adjacency matrix. These

properties would support GAN training, and subsequent generation of feasible suspension

topologies.
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5.7 Conclusion

In this chapter, adversarial learning was presented as a new solution strategy for Case 2

heterogeneous circuit synthesis design. The generative adversarial network (GAN) is a gen-

erative model that learns to simulate data distribution. The GAN is trained iteratively

such that the generator produces circuit topologies that are accepted by the discriminator.

A lower-dimensional latent space can represent the circuit topology indirectly. A random

sample drawn from a normal distribution is mapped to a circuit topology via the generator

network. We studied the efficiency of generating feasible samples using different GAN mod-

els, including vanilla GAN, DCGAN, WGAN and improved WGAN. The frequency response

and low-pass filter problems, containing complete topological design data, were used as the

case studies. The numerical results indicate that the generator of the improved WGAN has

a higher likelihood to generate feasible circuit topologies. A parametric study was carried

out to identify the best parameter values for the improved WGAN. The GAN framework

combined with active learning makes predictions for generated circuit performance, and the

resulting normalized Kendall tau distance indicates that the performance ranking is similar.

This is a promising approach for searching for high-performance circuit topologies, as well as

other Case 2 synthesis problems. This work leverages design data and artificial intelligence,

not only providing an indirect representation that generates the feasible circuit topologies in

an automated manner, but also may be transferable, as the pre-trained discriminator may

facilitate the development of the circuit property prediction model.

Future work for improving the GAN capabilities includes, but is not limited to, the use

of both the DCGAN and improved WGAN, other generative models such as VAEs [136],

PixelCNNs [242], and PixelRNNs [193]. One option to extend the functionality of the GAN

framework would be to use it to support sizing optimization. An example of a distinct

synthesis problem (active vehicle suspension design) was presented and shown to have the

properties needed for solution via the methods presented here.
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Figure 5.13: Set 1: two high-performance circuit topologies given by the improved WGAN
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Figure 5.14: Set 2: two high-performance circuit topologies given by the improved WGAN
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Figure 5.15: Proposed framework using the GAN
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Figure 5.16: A linear quarter-car suspension model (standard passive system shown)
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Chapter 6

CONCLUSION

In this chapter, a summary of the dissertation is presented. The core contributions and

future research opportunities are be outlined.

In this dissertation, several data-driven approaches for system topology design have been

studied. The motivation for these machine learning based strategies is to provide new solution

methods that complement existing optimization, synthesis, enumeration, and other methods,

and make possible the solution and understanding of new classes of system topology design

problems.

Chapter 2 presented preliminary work that motivated deep investigation into new ma-

chine learning strategies for design. Literature network analysis has been used to analyze a

number of research domains, but has not been applied before now in an extensive way to the

engineering design research community. Here we studied a total of 1,668 articles published

at the American Society of Mechanical Engineers (ASME) Design Automation Conference

(DAC) during the years 2002–2015. A number of meaningful insights were identified via

analysis of co-authorship and citation networks. Through analysis of the co-authorship net-

work, we learned collaboration patterns existence of small-world-network properties. Other

insights were obtained through two topic modeling approaches. The first topic modeling ap-

proach, the frequency-based method, was used to capture frequencies, evolution, correlation,
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and association of research topics within the DAC community. The second topic modeling

approach, PM, determined highly influential articles and performed cluster analysis using a

propagation and mergence mechanism across the citation network. Several research recom-

mendations and research opportunities were presented. One opportunity identified is more

comprehensive use of machine learning and data science in design research, especially in

ways that connect with existing design capabilities.

In Chapter 3, a data-driven design approach was developed for homogeneous system

topology design. A deep learning strategy was developed and applied to heat conduction

system design. An indirect low-dimension design representation was proposed based on

a VAE and style transfer. As a generative model, the VAE makes a strong assumption

regarding the distribution of latent variables, and uses a variational approach for latent rep-

resentation learning. The VAE encodes 2D topologies into a low-dimensional latent space

variable, and decodes samples from this space back to the original space. The first step of the

proposed approach was to train a VAE, together with a deep style transfer network, using

the design data given by solutions to a related topology optimization problem. The objective

of the style transfer augmentation was to prevent occurrence of isolated material elements

in topology generation. The second step involved multi-objective optimization for heat con-

duction with respect to the low-dimensional latent variables. Several different optimization

solution strategies were investigated. The Pareto frontier (non-dominated solutions) was

obtained using the reduced-dimension representation, and results showed improvement in

both computational efficiency and solution quality. The core contribution of this chapter

was a method that utilizes the capabilities of established topology optimization methods

to generate design data based on a problem that is related to (but distinct from) the de-

sired design problem, and then utilizes a machine learning strategy with this design data to

solve the desired design problem directly. This is a promising and fundamentally new design

approach.

While Chapters 4 and 5 concentrated on the heterogeneous circuit synthesis design, the re-

165



search objectives were distinct. Heterogeneous system topology design (synthesis) is different

from homogeneous system topology design in that design candidate are be represented using

a colored (labeled) graph. Recent developments in enumeration for design synthesis have

improved design capabilities, but are limited to moderately-sized synthesis problems [109].

These new enumeration capabilities, however, are used as a basis for learning-based synthesis

methods presented here. Two types of synthesis problems that go beyond the capabilities

of enumeration were identified (Case 1 and Case 2) in Section 4.1, and these problem types

are treated in Chapters 4 and 5, respectively. Electronic circuit synthesis case studies were

used in both chapters.

Chapter 4 addressed Case 1 synthesis problems, where enumeration of all topologies is

possible, but evaluation is impractical. An active learning strategy was introduced to reduce

the number of topology evaluations required to obtain approximate solutions. Instead of

evaluating the circuit performance directly for all candidates, we constructed a predictive

model that approximates the mapping from topological inputs to real-valued outputs (perfor-

mance metrics). This was used as a type of surrogate model to identify promising topologies,

and to be strategic about what topologies to invest resources into evaluating. The active

learning strategy was applied in an iterative manner, where new evaluations were added to

the training set to improve prediction accuracy. Random Forest was chosen as the predictive

model. Criteria for querying new topologies were examined, and the results indicate that

uncertainty sampling is the most effective of the strategies tested. The objective of this

work was to reduce the number of (computationally-expensive) evaluations required to ob-

tain a good approximate solution. Active learning is distinct from the conventional machine

learning in that normally a complete training set is chosen all at once (passive learning).

Chapter 5 addressed Case 2 synthesis problems. We aimed to create a general data-

driven approach using generative adversarial networks (GANs) for the circuit synthesis that

did not rely on intuition or domain knowledge. A reduced-dimension indirect design rep-

resentation based on enumerated design data was constructed in an automated way. This
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design representation could then support more rapid design space exploration using methods

such as evolutionary algorithms in a reduced (and targeted) design space. GANs contain a

discriminator and generator: the generator synthesizes data samples with the objective of

“fooling” the discriminator, i.e., where the discriminator is tricked into accepting a gener-

ated sample as real instead of identifying it as fake. The role of the discriminator is to learn

to more accurately to distinguish the real data from the fake. The generator and discrim-

inator keep updating and competing with each other until an equilibrium is reached. To

produce a circuit topology, the generator draws a random sample from the latent space, and

maps it original circuit space. However, many topologies in this original circuit topological

design space violate NSCs. It is inefficient to explore these infeasible designs. GANs are

trained here to satisfy NSCs implicitly, resulting in a more targeted design space search.

Two case studies are investigated here: frequency response and low-pass filter design prob-

lems for electric circuits. Several different GAN models (vanilla GANs, DCGANs, WGANs

and improved WGANs) were compared using these case studies with respect to generation

of feasible designs. The improved WGAN was demonstrated to be the most effective model.

This finding may be important, because it allows for an automated and fast generation of

feasible designs only by sampling from the latent space. The active learning strategy was also

incorporated into the improved WGAN topology generation strategy to help select high per-

formance circuit topologies. The GAN-based methodology is fundamentally distinct from

existing circuit synthesis methods, including those based on direct EAs or comprehensive

enumeration. This methodology may be extended to other design tasks, such as sizing opti-

mization and performance prediction, other application domains (such as active automotive

suspension architecture design), and has potential for being combined with other existing

synthesis methods to enhance their capabilities.

In this dissertation, we also derived new insights from the numerical studies, especially re-

garding design method properties. For instance, through the comparative study, the MOGA

and hybrid methods were able to identify non-dominated designs in the homogeneous sys-

167



tem topology design example. The improved WGAN turned out to be the most efficient for

generating feasible circuit topologies. The parametric studies may provide useful insights

to help design engineers who might consider using them for the design problems (e.g., the

VAE-based methodology, active learning strategy, and GAN-based strategy). Iterative ques-

tioning and testing was performed to obtain both improved methods and deeper insights. In

the early stages of the homogeneous system topology design study, PCA was tested first for

dimension reduction, but it was determined to have too much information loss to be useful

as an indirect design representation. As a nonlinear mapping, the VAE was then tested but

suffered from scatters in the generated topologies. With the underlying reasoning behind the

phenomena, it was found the style transfer networks would solve the issue. A quantitative

hypothesis was supported empirically using a design space coverage metric that the reduced

space representation approximately covers the true Pareto curve (see Figs. 3.19–3.21). In

Chapter 2, knowledge was extracted using associate rule learning to discover the relation-

ships between the core topics in the DAC research. In Chapter 3, we posit that additional

systematic design optimization experiments should be performed where more than one heat

sink is used, and possibly other problem conditions varied to obtain a more general data

set for the machine learning strategies. Future work should address systematic approaches

for designing design optimization experiments for generating data to be used in machine

learning.

Each chapter identifies open questions and other opportunities for future work, such as

enhancements to the DAC literature network analysis, extension to 3D problems for VAE-

based topology optimization, design of design optimization experiments, more robust active

learning methods for Case 1 synthesis problems, extension of the GAN method to other

Case 2 synthesis problems, and deeper study of the complete solution process for Case 2

problems. In addition to items already identified, broader open questions related to the

use of machine learning with data derived from design optimization include: 1) Given the

inherent flexibility afforded to data generation via design optimization, what systematic
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strategies could be used to generate rich, effective data sets with limited resources? 2) If the

objectives in developing design optimization methods are no longer focused only on solving

harder problems more efficiently, but now also include effectiveness as a tool for generating

design data to learn from, how should design optimization tools be developed differently?

3) How else might machine learning be used with design optimization to support design

synthesis besides reduced-dimension, targeted design representations? Could other more

general or insightful forms of knowledge, such as design rules or procedures, be extracted

from data obtained using design automation methods?
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[4] Agrawal, R., Imieliński, T., and Swami, A. Mining Association Rules Between

Sets of Items in Large Databases. SIGMOD Rec. 22, 2 (June 1993), 207–216.

[5] Agrawal, R., and Srikant, R. Fast Algorithms for Mining Association Rules in

Large Databases. In Proceedings of the 20th International Conference on Very Large

Data Bases (San Francisco, CA, USA, 1994), VLDB ’94, Morgan Kaufmann Publishers

Inc., pp. 487–499.

[6] Aitken, A. C. On Least Squares and Linear Combination of Observations. Proceed-

ings of the Royal Society of Edinburgh 55 (1936), 42–48.

[7] Akundi, S. V., Simpson, T. W., and Reed, P. M. Multi-objective Design Opti-

mization for Product Platform and Product Family Design Using Genetic Algorithms.

170



In ASME 2005 International Design Engineering Technical Conferences and Comput-

ers and Information in Engineering Conference (2005), American Society of Mechan-

ical Engineers, pp. 999–1008.

[8] Albert, R., and Barabási, A.-L. Statistical Mechanics of Complex Networks.

Reviews of Modern Physics 74, 1 (2002), 47.

[9] Alexandersen, J., Sigmund, O., and Aage, N. Large Scale Three-dimensional

Topology Optimisation of Heat Sinks Cooled by Natural Convection. International

Journal of Heat and Mass Transfer 100 (2016), 876–891.

[10] Allison, J. T. Literature Network Analysis, 2014.

https://www.youtube.com/watch?v=rFGD7YWqFYQ.

[11] Anyuru, A. Professional Webgl Programming: Developing 3D Graphics for the Web.

John Wiley & Sons, 2012.

[12] Arjovsky, M., and Bottou, L. Towards Principled Methods for Training Gener-

ative Adversarial Networks. arXiv preprint arXiv:1701.04862 (2017).

[13] Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein GAN. arXiv preprint

arXiv:1701.07875 (2017).

[14] ASME. International Design Engineering Technical Conferences & Computers & In-

formation in Engineering Conference, 2017. https://www.asme.org/events/idetccie.

[15] Baesens, B. Analytics in a Big Data World: The Essential Guide to Data Science

and its Applications. John Wiley & Sons, 2014.

[16] Barabási, A.-L., and Albert, R. Emergence of Scaling in Random Networks.

Science 286, 5439 (1999), 509–512.

171



[17] Barnett, G. A., Huh, C., Kim, Y., and Park, H. W. Citations Among Comu-

nication Journals and Other Disciplines: A Network Analysis. Scientometrics 88, 2

(2011), 449–469.

[18] Barton, J., Love, D., and Taylor, G. Design Determines 70% of Cost? A

Review of Implications for Design Evaluation. Journal of Engineering Design 12, 1

(2001), 47–58.

[19] Bayrak, A. E., Ren, Y., and Papalambros, P. Y. Topology Generation for

Hybrid Electric Vehicle Architecture Design. Journal of Mechanical Design 138, 8

(2016), 081401.

[20] Bendsøe, M. P. Optimal Shape Design as a Material Distribution Problem. Struc-

tural and Multidisciplinary Optimization 1, 4 (1989), 193–202.

[21] Bengio, Y., et al. Learning Deep Architectures for AI. Foundations and Trends®

in Machine Learning 2, 1 (2009), 1–127.

[22] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. Greedy Layer-

wise Training of Deep Networks. In Proceedings of the 19th International Conference

on Neural Information Processing Systems (Cambridge, MA, USA, 2006), NIPS’06,

MIT Press, pp. 153–160.

[23] Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent Dirichlet Allocation. Journal

of Machine Learning Research 3, Jan (2003), 993–1022.

[24] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. Fast

Unfolding of Communities in Large Networks. Journal of Statistical Mechanics: Theory

and Experiment 2008, 10 (2008), P10008.

172



[25] Börner, K., Maru, J. T., and Goldstone, R. L. The Simultaneous Evolution

of Author and Paper networks. Proceedings of the National Academy of Sciences 101,

suppl 1 (2004), 5266–5273.

[26] Box, G. E., and Draper, N. R. Empirical Model-building and Response Surfaces.

John Wiley & Sons, 1987.

[27] Box, G. E., and Wilson, K. B. On the Experimental Attainment of Optimum

Conditions. In Breakthroughs in statistics. Springer, 1992, pp. 270–310.

[28] Braha, D. Data Mining for Design and Manufacturing: Methods and Applications,

vol. 3. Springer Science & Business Media, 2013.

[29] Breiman, L. Arcing the Edge. Tech. rep.

[30] Breiman, L. Bagging Predictors. Machine learning 24, 2 (1996), 123–140.

[31] Breiman, L. Random Forests. Machine learning 45, 1 (2001), 5–32.

[32] Brin, S., and Page, L. Reprint of: The Anatomy of A Large-scale Hypertextual

Web Search Engine. Computer Networks 56, 18 (2012), 3825–3833.

[33] Broomhead, D. S., and Lowe, D. Radial Basis Functions, Multi-variable Func-

tional Interpolation and Adaptive Networks. Tech. rep., Royal Signals and Radar

Establishment Malvern (United Kingdom), 1988.

[34] Bruccoleri, F., Klumperink, E. A., and Nauta, B. Generating All Two-MOS-

transistor Amplifiers Leads to New wide-band LNAs. IEEE Journal of Solid-State

Circuits 36, 7 (2001), 1032–1040.

[35] Buitelaar, P., and Eigner, T. Topic Extraction from Scientific Literature for

Competency Management. In the 7th International Semantic Web Conference (2008).

173



[36] Bull, A. D. Convergence Rates of Efficient Global Optimization Algorithms. Journal

of Machine Learning Research 12, Oct (2011), 2879–2904.

[37] Cambrosio, A., Keating, P., Mercier, S., Lewison, G., and Mogoutov, A.

Mapping the Emergence and Development of Translational Cancer Research. European

Journal of Cancer 42, 18 (2006), 3140–3148.

[38] Campbell, M. I., Rai, R., and Kurtoglu, T. A Stochastic Graph Grammar Al-

gorithm for Interactive Search. In ASME 2009 International Design Engineering Tech-

nical Conferences and Computers and Information in Engineering Conference (2009),

American Society of Mechanical Engineers, pp. 829–840.

[39] Cang, R., Li, H., Yao, H., Jiao, Y., and Ren, Y. Improving Direct Physical

Properties Prediction of Heterogeneous Materials from Imaging Data via Convolu-

tional Neural Network and a Morphology-Aware Generative Model. arXiv preprint

arXiv:1712.03811 (2017).

[40] Cang, R., Xu, Y., Chen, S., Liu, Y., Jiao, Y., and Ren, M. Y. Microstructure

Representation and Reconstruction of Heterogeneous Materials via Deep Belief Net-

work for Computational Material Design. Journal of Mechanical Design 139, 7 (2017),

071404.

[41] Cantor, D., and Jones, B. WebGL Beginner’s Guide. Packt Publishing Ltd, 2012.

[42] Casper, W. J., Eby, L. T., Bordeaux, C., Lockwood, A., and Lambert, D.

A Review of Research Methods in IO/OB Work-family Research. Journal of Applied

Psychology 92, 1 (2007), 28.

[43] Centola, D. The Social Origins of Networks and Diffusion. American Journal of

Sociology 120, 5 (2015), 1295–1338.

174



[44] Chaloner, K., and Verdinelli, I. Bayesian Experimental Design: A Review.

Statistical Science (1995), 273–304.

[45] Chan, E. DAC Citation Network, 2014. https://dac-

network.herokuapp.com/#/home.

[46] Chen, P., and Redner, S. Community Structure of the Physical Review Citation

Network. Journal of Informetrics 4, 3 (2010), 278–290.

[47] Chen, P., Xie, H., Maslov, S., and Redner, S. Finding Sientific Gems with

Googles PageRank Algorithm. Journal of Informetrics 1, 1 (2007), 8–15.

[48] Cheney, N., MacCurdy, R., Clune, J., and Lipson, H. Unshackling Evolution:

Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding.

In Proceedings of the 15th annual conference on Genetic and evolutionary computation

(2013), ACM, pp. 167–174.

[49] Cohn, D. A. Neural Network Exploration Using Optimal Experiment Design. In

Advances in Neural information Processing Systems (1994), pp. 679–686.

[50] Collins, R., and Restivo, S. Development, Diversity, and Conflict in the Sociology

of Science. The Sociological Quarterly 24, 2 (1983), 185–200.

[51] Cressie, N. Spatial Prediction and Ordinary Kriging. Mathematical geology 20, 4

(1988), 405–421.

[52] Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A. Comparing Commu-

nity Structure Identification. Journal of Statistical Mechanics: Theory and Experiment

2005, 09 (2005), P09008.

[53] Das, A., and Vemuri, R. An Automated Passive Analog Circuit Synthesis Frame-

work Using Genetic Algorithms. In VLSI, 2007. ISVLSI’07. IEEE Computer Society

Annual Symposium on (2007), IEEE, pp. 145–152.

175



[54] Das, A., and Vemuri, R. Topology Synthesis of Analog Circuits Based on Adap-

tively Generated Building Blocks. In Proceedings of the 45th Annual Design Automa-

tion Conference (2008), ACM, pp. 44–49.

[55] Dbouk, T. A Review about the Engineering Design of Optimal Heat Transfer Systems

Using Topology Optimization. Applied Thermal Engineering 112 (2017), 841–854.

[56] Deaton, J. D., and Grandhi, R. V. A Survey of Structural and Multidisciplinary

Continuum Topology Optimization: Post 2000. Structural and Multidisciplinary Op-

timization 49, 1 (2014), 1–38.

[57] Deb, K. Multi-objective Optimization using Evolutionary Algorithms, vol. 16. John

Wiley & Sons, 2001.

[58] Del Castillo, J. M. Enumeration of 1-DOF Planetary Gear Train Graphs Based

on Functional Constraints. Journal of Mechanical Design 124, 4 (2002), 723–732.

[59] Denton, E. L., Chintala, S., Fergus, R., et al. Deep Generative Image Models

Using a Laplacian Pyramid of Adversarial Networks. In Advances in neural information

processing systems (2015), pp. 1486–1494.

[60] Derrible, S. Network Centrality of Metro Systems. PloS one 7, 7 (2012), e40575.

[61] Dhar, V. Data Science and Prediction. Commun. ACM 56, 12 (Dec. 2013), 64–73.

[62] Ding, Y. Scientific Collaboration and Endorsement: Network Analysis of Coauthor-

ship and Citation Networks. Journal of Informetrics 5, 1 (2011), 187–203.

[63] Ding, Y. Topic-based PageRank on Author Cocitation Networks. Journal of the

American Society for Information Science and Technology 62, 3 (2011), 449–466.

[64] Ding, Y., Yan, E., Frazho, A., and Caverlee, J. PageRank for Ranking

Authors in Co-citation Networks. Journal of the American Society for Information

Science and Technology 60, 11 (2009), 2229–2243.

176



[65] Dosovitskiy, A., and Brox, T. Generating Images with Perceptual Similarity

Metrics based on Deep Networks. In Advances in Neural Information Processing Sys-

tems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds.

Curran Associates, Inc., 2016, pp. 658–666.

[66] Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Ar-

jovsky, M., and Courville, A. Adversarially Learned Inference. arXiv preprint

arXiv:1606.00704 (2016).

[67] Efros, A. A., and Freeman, W. T. Image Quilting for Texture Synthesis and

Transfer. In Proceedings of the 28th annual conference on Computer graphics and

interactive techniques (2001), ACM, pp. 341–346.

[68] Efros, A. A., and Leung, T. K. Texture Synthesis by Non-parametric Sampling.

In Computer Vision, 1999. The Proceedings of the Seventh IEEE International Con-

ference on (1999), vol. 2, IEEE, pp. 1033–1038.

[69] El-Kishky, A., Song, Y., Wang, C., Voss, C. R., and Han, J. Scalable Topical

Phrase Mining from Text Corpora. Proceedings of the VLDB Endowment 8, 3 (2014),

305–316.

[70] Fadel, G., Mocko, G., and Summers, J. NSF Sponsored Engineering De-

sign and Systems Engineering Foundations Workshop (November 14-17, 2015), 2015.

http://www.clemson.edu/centers-institutes/design/workshop/index.html.

[71] Fedorov, V. V. Theory of Optimal Experiments. Elsevier, 1972.

[72] Ferguson, S., Siddiqi, A., Lewis, K., and de Weck, O. L. Flexible and Recon-

figurable Systems: Nomenclature and Review. In ASME 2007 International Design

Engineering Technical Conferences and Computers and Information in Engineering

Conference (2007), American Society of Mechanical Engineers, pp. 249–263.

177



[73] Forrester, A. I., and Keane, A. J. Recent Advances in Surrogate-based Opti-

mization. Progress in Aerospace Sciences 45, 1-3 (2009), 50–79.

[74] Fortunato, S. Community Detection in Graphs. Physics Reports 486, 3 (2010),

75–174.

[75] Foster, R. M. Geometrical Circuits of Electrical Networks. Transactions of the

American Institute of Electrical Engineers 51, 2 (1932), 309–317.

[76] Freund, Y., and Schapire, R. E. A Dcision-theoretic Generalization of On-line

Learning and an Application to Boosting. Journal of computer and system sciences

55, 1 (1997), 119–139.

[77] Friedman, J. H. Multivariate Adaptive Regression Splines. The annals of statistics

(1991), 1–67.

[78] Friedman, J. H. Greedy Function Approximation: a Gradient Boosting Machine.

Annals of statistics (2001), 1189–1232.

[79] Friedman, J. H. Stochastic Gradient Boosting. Computational Statistics & Data

Analysis 38, 4 (2002), 367–378.

[80] Fu, K., Cagan, J., Kotovsky, K., and Wood, K. Discovering Structure in

Design Databases Through Functional and Surface Based Mapping. Journal of Me-

chanical Design 135, 3 (2013), 031006.

[81] Fuge, M., Peters, B., and Agogino, A. Machine Learning Algorithms for Rec-

ommending Design Methods. Journal of Mechanical Design 136, 10 (2014), 101103.

[82] Fujii, A., Tokunaga, T., Inui, K., and Tanaka, H. Selective Sampling for

Example-based Word Sense Disambiguation. Computational Linguistics 24, 4 (1998),

573–597.

178



[83] Gan, Z., Yang, Z., Shang, T., Yu, T., and Jiang, M. Automated Synthesis of

Passive Analog Filters Using Graph Representation. Expert Systems with Applications

37, 3 (2010), 1887–1898.

[84] Gandomi, A., and Haider, M. Beyond the Hype: Big Data Concepts, Methods,

and Analytics. International Journal of Information Management 35, 2 (2015), 137–

144.

[85] Gao, Y., and Zhang, P. A Survey of Homogeneous and Heterogeneous System

Architectures in High Performance Computing. In Smart Cloud (SmartCloud), IEEE

International Conference on (2016), IEEE, pp. 170–175.

[86] Gatys, L. A., Ecker, A. S., and Bethge, M. A Neural Algorithm of Artistic

Style. arXiv preprint arXiv:1508.06576 (2015).

[87] Gelbart, M. A., Snoek, J., and Adams, R. P. Bayesian Optimization with

Unknown Constraints. arXiv preprint arXiv:1403.5607 (2014).

[88] Gersborg-Hansen, A., Bendsoe, M. P., and Sigmund, O. {Topology Opti-

mization of Heat Conduction Problems Using the Finite Volume Method}. Structural

and Multidisciplinary Optimization 31 (mar 2006), 251–259.

[89] Goh, C., and Li, Y. GA Automated Design and Synthesis of Analog Circuits with

Practical Constraints. In Evolutionary Computation, 2001. Proceedings of the 2001

Congress on (2001), vol. 1, IEEE, pp. 170–177.

[90] Goodfellow, I. NIPS 2016 tutorial: Generative Adversarial Networks. arXiv

preprint arXiv:1701.00160 (2016).

[91] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,

D., Ozair, S., Courville, A., and Bengio, Y. Generative Adversarial Nets. In

Advances in Neural Information Processing Systems (2014), pp. 2672–2680.

179



[92] Goodfellow, I. J. On Distinguishability Criteria for Estimating Generative Models.

arXiv preprint arXiv:1412.6515 (2014).

[93] Greenberg, S. A. How Citation Distortions Create Unfounded Authority: Analysis

of a Citation Network. BMJ: British Medical Journal (2009), 210–213.

[94] Grimbleby, J. B. Automatic Analogue Network Synthesis Using Genetic Algo-

rithms. In Genetic Algorithms in Engineering Systems: Innovations and Applications,

1995. GALESIA. First International Conference on (Conf. Publ. No. 414) (1995),

IET, pp. 53–58.

[95] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville,

A. C. Improved Training of Wasserstein Gans. In Advances in Neural Information

Processing Systems (2017), pp. 5769–5779.

[96] Guo, T. Design of Genetic Regulatory Networks. M.S. Thesis, University of Illinois

at Urbana-Champaign, Urbana, IL, USA, May 2014.

[97] Guo, T. Network Analysis of Design Automation Literature, 2017.

https://github.com/TinghaoGuo/Network-Analysis-of-Design-Automation-

Literature.

[98] Guo, T., and Allison, J. T. On the Use of Mathematical Programs with Comple-

mentary Constraints in Combined Topological and Parametric Design of Biochemical

Enzyme Networks. Engineering Optimization 49, 2 (2017), 345–364.

[99] Guo, T., Lohan, D. J., Cang, R., Ren, M. Y., and Allison, J. T. An Indirect

Design Representation for Topology Optimization Using Variational Autoencoder and

Style Transfer. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and

Materials Conference, AIAA SciTech Forum (Jan. 2018), no. AIAA 2018-0804.

180



[100] Guo, T., Xu, J., Sun, Y., Dong, Y., Davis, N. E., and Allison, J. T.

Network Analysis of Design Automation Literature. Journal of Mechincial Design

(2017). Reference to be added by copyeditor after DOI assigned for the main paper

hosted by ASME JMD.

[101] Guo, T., Xu, J., Sun, Y., Dong, Y., Davis, N. E., and Allison, J. T. Network

Analysis of Design Automation Literature. In Proceedings of the ASME 2017 Inter-

national Design Engineering Techincal Conferences & Computers and Information in

Engineering Conference (Cleveland, Ohio USA, Aug 2017).

[102] Hagberg, A. A., Schult, D. A., and Swart, P. J. Exploring Network Structure,

Dynamics, and Function Using NetworkX. In Proceedings of the 7th Python in Science

Conference (SciPy2008) (Pasadena, CA USA, Aug. 2008), pp. 11–15.

[103] Hahsler, M. A Probabilistic Comparison of Com-

monly Used Interest Measures for Association Rules, 2015.

http://michael.hahsler.net/research/association rules/measures.html.

[104] Hahsler, M., Grün, B., and Hornik, K. Arules - A Computational Environment

for Mining Association Rules and Frequent Item Sets. Journal of Statistical Software

14, 15 (2005), 1–25.

[105] Hahsler, M., and Karpienko, R. Visualizing Association Rules in Hierarchical

Groups. Journal of Business Economics (2017), 1–19.

[106] Hanneke, S. Theoretical Foundations of Active Learning. PhD thesis, Carnegie

Mellon University, 2009.

[107] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learn-

ing: Data mining, Inference and Prediction, 2 ed. Springer, 2009.

181



[108] Hazen, B. T., Boone, C. A., Ezell, J. D., and Jones-Farmer, L. A. Data

Quality for Data Science, Predictive Analytics, and Big Data in Supply Chain Manage-

ment: An Introduction to the Problem and Suggestions for Research and Applications.

International Journal of Production Economics 154 (2014), 72–80.

[109] Herber, D. R. Advances in Combined Architecture, Plant, and Control Design.

Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, USA,

Dec. 2017.

[110] Herber, D. R., and Allison, J. T. A Problem Class with Combined Architecture,

Plant, and Control Design Applied to Vehicle Suspensions. In (submitted to) ASME

2018 International Design Engineering Technical Conferences (Quebec City, Canada,

Aug. 2018).

[111] Herber, D. R., and Allison, J. T. A Problem Class with Combined Architecture,

Plant, and Control Design Applied to Vehicle Suspensions. In ASME 2018 Interna-

tional Design Engineering Technical Conferences (to appear) (Quebec City, Canada,

Aug. 2018), no. DETC2018-86213.

[112] Herber, D. R., Guo, T., and Allison, J. T. Enumeration of Architectures with

Perfect Matchings. Journal of Mechanical Design 139, 5 (2017), 051403.

[113] Herrera, M., Roberts, D. C., and Gulbahce, N. Mapping the Evolution of

Scientific Fields. PloS one 5, 5 (2010), e10355.

[114] Hinton, G., Srivastava, N., and Swersky, K. Neural Networks for Machine

Learning Lecture 6a Overview of Mini-batch Gradient Descent.

[115] Hinton, G. E., and Salakhutdinov, R. R. Reducing the Dimensionality of Data

with Neural Networks. Science 313, 5786 (2006), 504–507.

182



[116] Ho, T. K. Random Decision Forests. In Document analysis and recognition, 1995.,

proceedings of the third international conference on (1995), vol. 1, IEEE, pp. 278–282.

[117] Ho, T. K. The Random Subspace Method for Constructing Decision Forests. IEEE

Transactions on Pattern Analysis and Machine intelligence 20, 8 (1998), 832–844.

[118] Hyndman, R. J., and Koehler, A. B. Another Look at Measures of Forecast

Accuracy. International journal of forecasting 22, 4 (2006), 679–688.

[119] Iga, A., Nishiwaki, S., Izui, K., and Yoshimura, M. Topology Optimization

for Thermal Conductors Considering Design-Dependent Effects, Including Heat Con-

duction and Convection. International Journal of Heat and Mass Transfer 52, 11-12

(2009), 2721–2732.

[120] Ilies, H., Parkinson, M., Seepersad, C. C., Kokkolaras, M., Ragsdell,

K., Papalambros, P. Y., Mistree, F., Williams, C., Rai, R., Panchal,

J., Ferguson, S., DuPont, B., and Allison, J. T. New Perspectives on De-

sign Automation: Celebrating the 40th Anniversary of the ASME Design Automation

Conference. ASME Journal of Mechanical Design 137, 5 (May 2015), 050301.

[121] Ioffe, S., and Szegedy, C. Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167

(2015).

[122] Iuliano, E. Adaptive Sampling Strategies for Surrogate-based Aerodynamic opti-

mization. In Application of Surrogate-based Global Optimization to Aerodynamic De-

sign. Springer, 2016, pp. 25–46.

[123] Jain, A. K., Murty, M. N., and Flynn, P. J. Data Clustering: A Review. ACM

Computing Surveys (CSUR) 31, 3 (1999), 264–323.

183



[124] James, G., Witten, D., Hastie, T., and Tibshirani, R. An Introduction to

Statistical Learning, vol. 112. Springer, 2013.

[125] Jiao, R., and Choi, S.-K. NSF ESD/SYS Program Workshop and Grantees

Meeting: Future Directions in Engineering Design and Systems Engineering, 2017.

http://nsfworkshop.gatech.edu/.

[126] Jin, R., Chen, W., and Simpson, T. W. Comparative Studies of Metamodelling

Techniques under Multiple Modelling Criteria. Structural and multidisciplinary opti-

mization 23, 1 (2001), 1–13.

[127] Kaiser, M. Mean Clustering Coefficients: the Role of Isolated Nodes and Leafs on

Clustering Measures for Small-world Networks. New Journal of Physics 10, 8 (2008),

083042.

[128] Kajikawa, Y., Ohno, J., Takeda, Y., Matsushima, K., and Komiyama, H.

Creating an Academic Landscape of Sustainability Science: An Analysis of the Citation

Network. Sustainability Science 2, 2 (2007), 221–231.

[129] Kajikawa, Y., and Takeda, Y. Citation Network Analysis of Organic LEDs.

Technological Forecasting and Social Change 76, 8 (2009), 1115–1123.

[130] Kang, J., Ryu, K. R., and Kwon, H.-C. Using Cluster-based Sampling to Se-

lect initial Training Set for Active Learning in Text Classification. In Pacific-Asia

Conference on Knowledge Discovery and Data Mining (2004), Springer, pp. 384–388.

[131] Kato, H., and Funazaki, K.-i. POD-driven Adaptive Sampling for Efficient Sur-

rogate Modeling and Its Application to Supersonic Turbine Optimization.

[132] Kendall, M. G. A New Measure of Rank Correlation. Biometrika 30, 1/2 (1938),

81–93.

184



[133] Khetan, A., and Allison, J. T. Large-Scale Topology Optimization Using

Parametrized Boolean Networks. In ASME 2014 International Design Engineer-

ing Technical Conferences (Buffalo, NY, USA, Aug. 2014), no. DETC2014-34256,

p. V02AT03A006.

[134] Khetan, A., Lohan, D. J., and Allison, J. T. Managing Variable-Dimension

Structural Optimization Problems Using Generative Algorithms. Structural and Mul-

tidisciplinary Optimization 50, 4 (Oct. 2015), 695–715.

[135] Kingma, D. P., and Ba, J. Adam: A Method for Stochastic Optimization. arXiv

preprint arXiv:1412.6980 (2014).

[136] Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling, M. Semi-

supervised Learning with Deep Generative Models. In Advances in Neural Information

Processing Systems (2014), pp. 3581–3589.

[137] Kingma, D. P., and Welling, M. Auto-encoding Variational Bayes. arXiv preprint

arXiv:1312.6114 (2013).

[138] Kleinberg, J. M. Authoritative Sources in a Hyperlinked Environment. Journal of

the ACM (JACM) 46, 5 (1999), 604–632.

[139] Klosik, D., and Bornholdt, S. The Citation Wake of Publications Detects Nobel

Laureates’ Papers. PloS one 9, 12 (2014), e113184.

[140] Koza, J. R., Bennett, F. H., Andre, D., Keane, M. A., and Dunlap, F.

Automated Synthesis of Analog Electrical Circuits by Means of Genetic Programming.

IEEE Transactions on evolutionary computation 1, 2 (1997), 109–128.

[141] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet Classification with

Deep Convolutional Neural Networks. In Advances in neural information processing

systems (2012), pp. 1097–1105.

185



[142] Kusiak, A. Big Data in Mechanical Engineering, 2015. https://www.asme.org/career-

education/early-career-engineers/me-today/big-data-in-mechanical-engineering.
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Appendix A

CHAPTER 3
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Figure A.1: A sample of dominated points for the weighted sum method
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#25 #26 #27 #28 #29 #30 #31 #32

#33 #34 #35 #36 #37 #38 #39 #40

#41 #42 #43 #44 #45 #46 #47 #48

#49 #50 #51 #52 #53 #54 #55 #56

#57 #58 #59 #60 #61 #62 #63 #64

#65 #66 #67 #68 #69 #70 #71 #72

#73 #74 #75 #76 #77 #78 #79 #80

#81 #82 #83 #84 #85 #86 #87 #88

#89 #90 #91 #92 #93 #94 #95 #96

Figure A.2: Pareto-optimal solutions (#1 – #100) for the MOGA method (#latent variables
= 20)
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#97 #98 #99 #100 #101 #102 #103 #104

#105 #106 #107 #108 #109 #110 #111 #112

#113 #114 #115 #116 #117 #118 #119 #120

#121 #122 #123 #124 #125 #126 #127 #128

#129 #130 #131 #132 #133 #134 #135 #136

#137 #138 #139 #140 #141 #142 #143 #144

#145 #146 #147 #148 #149 #150 #151 #152

#153 #154 #155 #156 #157 #158 #159 #160

#161 #162 #163 #164 #165 #166 #167 #168

#169 #170 #171 #172 #173 #174 #175 #176

#177 #178 #179 #180 #181 #182 #183 #184

#185 #186 #187 #188 #189 #190 #191 #192

Figure A.3: Pareto-optimal solutions (#101 – #200) for the MOGA method (#latent vari-
ables = 20)
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#193 #194 #195 #196 #197 #198

#199 #200 #201 #202 #203 #204

#205 #206 #207 #208 #209 #210

#211 #212 #213 #214 #215 #216

#217 #218 #219 #220 #221 #222

#223 #224 #225 #226 #227 #228

#229 #230 #231 #232 #233 #234

#235 #236 #237 #238 #239 #240

#241 #242 #243 #244 #245 #246

#247 #248 #249 #250 #251 #252

#253 #254 #255 #256 #257 #258

Figure A.4: Pareto-optimal solutions (#201 – #258) for the MOGA method (#latent vari-
ables = 20)
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Appendix B

CHAPTER 5

Table B1: Low-pass filter: the parametric study on the parameters of the improved WGAN

Value Percentage

Latent variable

16 9.18%
32 9.06%
64 14.55%
128 10.26%

λ

0.1 7.03%
1 8.89%
10 14.55%
100 9.87%
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(a) 0 iterations (b) 10 iterations

(c) 20 iterations (d) 30 iterations

Figure B.1: Low-pass filter: generated circuit topologies (0 – 30 iterations)
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(a) 100 iterations (b) 500 iterations

(c) 1000 iterations (d) 1500 iterations

Figure B.2: Low-pass filter: generated circuit topologies (100 – 1500 iterations)
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Figure B.3: Low-pass filter: GAN generation performance

Figure B.4: Low-pass filter: improved WGAN generation performance
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