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Abstract 

 

The underlying physics of failure are critical in assessing the long term reliability of 

power packages in their intended field applications, yet traditional reliability determination 

methods are largely inadequate when considering thermomechanical failures. With current 

reliability determination methods, long test durations, high costs, and a conglomerate of 

concurrent reliability degrading threat factors make effective understanding of device reliability 

difficult and expensive. In this work, an alternative reliability testing apparatus and associated 

protocol was developed to address these concerns; targeting rapid testing times with minimal 

cost while preserving fatigue life prediction accuracy. Two test stands were fabricated to 

evaluate device reliability at high frequency (60 cycles/minute) with the first being a single-

directional unit capable of exerting large forces (up to 20 N) on solder interconnects in one 

direction. The second test stand was developed to allow for bi-directional application of stress 

and the integration of an oven to enable testing at elevated steady-state temperatures. Given the 

high frequency of testing, elevated temperatures are used to emulate the effects of creep on 

solder fatigue lifetime. Utilizing the mechanical force of springs to apply shear loads to solder 

interconnects within the devices, the reliability of a given device to withstand repeated cycling 

was studied using resistance monitoring techniques to detect the number of cycles-to-failure 

(CTF). Resistance monitoring was performed using specially designed and fabricated, device 

analogous test vehicles assembled with the ability to monitor circuit resistance in situ. When a 

resistance rise of 30 % was recorded, the device was said to have failed. A mathematical method 

for quantifying the plastic work density (amount of damage) sustained by the solder 

interconnects prior to failure was developed relying on the relationship between Hooke’s Law 

for springs and damage deflection to accurately assess the mechanical strength of tested devices.   
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1. Introduction 

The exponentially growing dependence upon electronics in many aspects of everyday life 

and in the world economy has placed great importance on electronics reliability. In the case of 

flip-chip devices such as ball-grid arrays (BGA), the critical components for determining 

reliability are most often the solder interconnects that join the die and substrate which endure 

thermomechanically induced stresses during operation. These stresses are induced through a 

phenomenon known as “coefficient of thermal expansion (CTE) mismatch”, where large 

differences in CTE for the dissimilar materials of the package result in non-uniform expansion 

rates across the device. For the interconnects, the result of this non-uniformity are induced tensile 

or compressive stresses which lead to elastic and plastic deformation within the joints. Creep and 

fatigue induced crack nucleation and propagation weakens the mechanical integrity of the joints 

while simultaneously degrading electrical performance. Extensive cracking leads to increased 

electrical resistance within the circuit and once the plastic deformation (damage) becomes 

severe, the resistance increases will exceed sustainable levels and the device will cease to 

function correctly or even at all, a situation know as device death. 

Current accelerated testing methods for assessing fatigue lifetime (useful life) of 

electronic packages focus on simulating this CTE mismatch through thermal cycling in an 

environmental chamber or power cycling induced heat generation using the device itself. In both 

cases an acceleration factor is used to simulate the manifold cycles of an operational lifetime of 

the device but on a truncated time scale. These methods have been in use for many decades and 

are well understood, however, they are also characterized by long test durations, high costs, and 

difficulty quantifying induced stress levels and mechanistic effects within the devices 

themselves. To address these weaknesses with traditional testing methods, a new testing 
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methodology was devised relying on mechanical inducement of stresses within flip-chip solder 

interconnects through quantifiable means. 

A rapidly accelerated test method was created where through the use of springs and 

cyclic linear translation, shear stresses were induced in the solder interconnects of tested devices 

to simulate the fatigue behavior of devices under operation or traditional accelerated life testing. 

Under actual operating conditions, creep and fatigue occur alongside other damage processes 

such as diffusion, recrystallization, electromigration, and current crowding. With all of these 

threat factors comingled, it is difficult to define the amount of damage attributed to any one 

mechanism and quantifying the effects temperature and stress have on damage accumulation 

behavior becomes obscure. The rapid methodology allows the isolation of stress based failure 

mechanism to allow for greater understanding of the underlying failure mechanics at work. 

Extensive reductions in total test duration were also targeted in the design of this method to 

reduce time for design feedback and costs associated with extended test duration. The ability to 

conduct tests on actual functioning devices with relevant geometries while monitoring both 

mechanical fatigue and electrical performance in situ was a primary objective for this testing 

methodology. Additionally, the in situ characterization provides a wealth of data for use in 

assessing and quantifying failure mechanisms and metrics enabling a more holistic 

understanding of the factors influencing the reliability of a given device.  

The following articles are included in this work to elaborate on current state of the art in 

accelerated testing, the methodology behind this novel accelerated testing method, and the 

performance of this new approach in practice. These articles were published or are pending 

publication and were originally written with an eye toward inclusion within this thesis and it is 

believed that they provide a comprehensive view of the field, the scope and objectives of this 

testing methodology, and the results that were achieved through its implementation.   
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2. Review of Accelerated Testing Methods for Accessing Reliability of Electronic 

Packages 

Cody J. Marbut and Dr. David R. Huitink 

Increasing demand for higher power, small form-factor devices has created new 

challenges for device reliability optimization. Smaller form factors while simultaneously 

providing higher power levels mean higher energy density which lead to higher operating 

temperatures. These temperatures have a very large impact on device reliability because of 

coefficient of thermal expansion (CTE) mismatch which induces mechanical stresses within the 

dissimilar materials of the device. These stresses are induced when the CTE of one material is 

not roughly equal to the CTE of an adjacent material. As these dissimilar materials heat up they 

will expand at different rates. This expansion will induce tensile or compressive stresses within 

the device (see Figure 2-1). Solder joints have been shown to be one of the components most 

vulnerable to these induced stresses. These stresses can cause both elastic and plastic 

deformation within these joints. The irreversible plastic deformation is predominantly due to 

creep and fatigue which ultimately leads to crack nucleation. When these cracks propagate across 

the solder material, the resistance of the joint increases until electrical failure is achieved 

rendering the device non-functional [[1]-[3]]. Ensuring mechanical reliability of power devices 

requires designers to engineer against void formation/propagation and evaluate existing devices 

for fatigue life. Evaluating the fatigue life or operating cycles-to-failure (CTF) is most often done 

through accelerated testing (AT).  
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Figure 2-1: Results of CTE mismatch. 

 

Accelerated testing experiments are conducted to collect information regarding predicted 

lifetimes and prominent failure modes within a given device. These tests are considered 

“accelerated” because test units are subjected accelerating variable levels far higher than those 

expected in real-world operating conditions using one or more accelerating variables such as 

temperature or stress [4]. This is done in an effort to acquire useful reliability data within a 

reasonable time window for an experiment (hundreds of hours rather than potentially tens-of-

thousands of hours in actual operation). Lifetime at these accelerated conditions is then used to 

predict the operating lifetime (OLT) under standard conditions. Extrapolation of OLT is typically 

conducted using physically derived or empirically fitted models when a statistically significant 

amount of previous data is collected with similar test units. The two predominate types of 

accelerated testing used in industry are “quantitative” and “qualitative” accelerated tests. 

Quantitative tests are used to obtain failure-time data and degradation distribution for validating 

prediction models. Qualitative tests are used to test for product weaknesses and to study the root 

causes of device failure [4]. 

 The primary requirements of an accelerated test are rapid results and accurate simulation 

or real-world failure mechanisms. For a testing method to yield beneficial results, it must induce 

causes and symptoms of failure congruent with those observed or expected in devices operating 
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under actual design conditions. In an effort to satisfy these requirements across a wide range of 

accelerating variables and applications, a large number of testing methods have been devised. 

Currently, the three most widespread AT methods used in electronic device reliability 

assessment are thermal cycling, power cycling, and thermal shock testing. Each of these methods 

has been used in industry quite successfully to develop expectations for device OLT. However, 

there are limitations to these methods such as duration and expense. To address these limitations, 

several novel AT techniques have been developed to provide much faster results at lower costs. 

This paper will examine the strengths and weaknesses of both these traditional and novel 

techniques for solder joint reliability assessment.  

2.1 Common Accelerated Testing Methods 

2.1.1 Thermal Cycling 

Thermal cycling (TC) tests are conducted to evaluate the reliability of components and 

interconnects when subjected to mechanical stresses induced by alternating temperature extremes 

as an approximation of temperature swings during operation [5]. This is done in an effort to 

simulate the rise from low temperature to high temperature as a device powers on and begins to 

heat up to peak operating temperature followed by the drop as the device cools to the initial 

temperature (power off). To conduct the test, the test unit is placed inside a closed environment 

capable of transferring the device from one zone of high temperature (high setpoint) to another 

of low temperature (low setpoint). The test unit is made to remain in each zone for a specified 

dwell (soak) time which is the total time the device is to be at a given temperature for each cycle. 

The device is subjected to the temperature range for a specified number of cycles or until failure, 

as defined by the operator, occurs. Standards such as JESD22-A104D specify temperature ranges 

and soak times for specific certifications and ratings.  
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Ramp rate, dwell time, temperature range, and total number of cycles may all impact the 

overall acceleration factor (a metric for determining severity) of the test and their influence is 

dependent on failure mechanics and material properties involved. Increases in ramp rate can 

increase the strain rate experienced within the solder joints making ramp rate a useful 

acceleration variable for detecting weaknesses in the device which have a thermal rate-

dependence [6]. Typically, a higher ramp rate will result in more damage accumulation over the 

course of the test. Dwell time serves to ensure that the test unit has reached the desire steady-

state temperature. Generally, longer dwell times correspond to higher acceleration factors, 

especially at higher temperatures. This is due to creep behavior in the solder material which 

result from the high ratio of steady-state temperature to melting point, called the homologous 

temperature. Creep can occur if the testing temperature is greater than 0.45 to 0.6 of the absolute 

melting temperature for the solder material [[7]-[11]]. Additionally, longer dwell times lead to 

longer test durations, a result that is not always desirable in an “accelerated” test. When 

conducting a temperature cycling test, it is important to note that higher ranges between 

temperature extremes induce more strain into the device. During testing, failure can be 

monitored by collecting electrical performance data like resistance, and visual inspection can be 

used to detect crack formation. Cyclic rates of 1 – 3 cycles per hour (cph) are common. 

Depending upon the desired failure mechanism, faster rates can be used. Fatigue, cracking, 

delamination, ball bond integrity failure, and creep are common among flip-chip devices 

[[12],[13]]. 
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Figure 2-2: Interfacial cracking in solder interconnect. 

 

The most commonly, fatigue cracking occurs between the bulk solder and the 

intermetallic layer in what is known as the interfacial region. Crack propagation is based upon 

the micro-structure and mechanical properties of the bulk solder [14]. Recrystallization of Sn is 

induced by thermal strain and elevated temperature, starting in the highly strained regions before 

expanding through the bulk material [12]. Due to a network of high-angle grain boundaries 

which extend through the interconnections and provide favorable propagation paths, 

recrystallization has been shown to enhance fatigue cracking [[12], [13]]. Recrystallization and 

dislocation motion are expected to be more thermally active at higher temperatures, causing a 

drastic decrease in shear strength [15]. The stress/strain distribution within the bulk material 

undergoing a thermal fatigue process has been shown to be non-uniform. Non-uniformity in the 

bulk material leads to grain slipping and plastic work accumulation with cycling [[12], [13]]. In 

moderate thermal stress states, strain can be released through plastic relaxation such as global 

recrystallization and solder exclusion. Once stress magnitude increases until plastic relaxation is 

not possible, crack initiation begins in the area of highest stress. Cracks are then propagated 
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through local recrystallization of solder grains. Thus, it can be said that the damage found in 

solder interconnections under thermal strain results from dislocation densities in the plasticized 

regions and increases with the accumulation of internal energy [[12]-[16]]. 

Thermal cycling has been used to evaluate solder reliability across a vast array of 

applications, though that list is too long to include here. Experiments of the reliability of all 

manner of devices from wafer level chip-scale packages (WLCSP) to full-scale power modules 

have been performed using thermal cycling techniques [[10],[17],[18]]. Sitek et. al. used thermal 

cycling to compare the reliability of long FR-4 and metal core PCBs, finding that solder 

interconnects on FR-4 substrates were two times more reliable than those on aluminum core 

circuit boards [19]. Singh et. al. determined that boards made using high-CTE glass had nearly 

five times the useful life (5300 cycles to 1100 cycles) of low-CTE glass substrates due to 

narrower difference between substrate and solder CTE [20]. In efforts to shorten test duration, 

more accurately simulate real-world conditions, or simply to explore new stress states, many 

researchers have begun combining thermal cycling with electrical or mechanical stress inducers. 

Such efforts are discussed in section 2.2. 

2.1.2 Thermal Shock 

Thermal shock (TS) testing is conducted to evaluate the reliability of electronic devices 

when exposed to sudden, drastic changes in temperature [21]. The device is transferred between 

extremes (hot – cold) with a transfer time not exceeding 20 seconds [21]. This ramp time must be 

short to ensure that the device experiences sudden, rapid temperature change rather than the 

more gradual temperature gradients seen in TC experiments. The test is designed to bring the 

device(s) to worst-case load temperature within a specified dwell time as measured by a 

thermocouple embedded in the body and located at the center of the heat load. The worst-case 
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load temperature is defined by the nature of the test and must adhere to standard within a 

specified range. Failure is assessed if parametric limits are exceeded, if hermeticity cannot be 

demonstrated, or if the device is non-functional after testing [21].  

Some researchers have claimed that TS tests are more efficient than TC testing because 

they exhibit higher ramp rates and shorter MTTF values [[22], [23]]. However, care should be 

taken when conducting TS tests because failure modes are highly susceptible to thermal 

gradients that arise in the material [23]. The thermal gradients that develop in TS tests are higher 

than those created in TC testing. These thermal gradients contribute to buildup of inelastic strain. 

In a comparative study of thermal cycling and thermal shock tests, de Vries et. al. found that 

1.5% of the total plastic strain in TS testing was attributed to inelastic strain [23]. In the case of 

TC testing, de Vries et. al. found no inelastic strain in the solder material. In TC testing, the 

primary source of stress is un-equal expansion due CTE mismatch between component materials. 

The presence of thermal gradients can induce additional stresses within the solder interconnects 

under TS testing conditions. The magnitude of these additional stresses will be dependent upon 

the thermal behavior of the test device under TS conditions [23].  

Failure mechanism in solder interconnects under TS conditions are similar in many ways 

to failure mechanisms observed in interconnects stressed under TC conditions. Crack initiation in 

the interfacial region propagating into the bulk solder material precipitated by intermetallic 

compound (IMC) growth [[22]-[26]]. Tian et. al. found that this IMC growth was driven 

primarily by bulk diffusion and grain boundary diffusion within the microstructure of the solder 

material [26]. The presence of both thermal gradients and diffusion within solder interconnects 

under TS conditions can obscure or alter the failure mechanisms from those seen in real-world 

conditions, negatively impacting reliability predictions. Diffusion has been shown to follow 
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thermal gradients, creating the potential for radically different diffusion paths in some cases [27]. 

The magnitude of the impact on prediction accuracy would depend on the materials under study 

and the constraints of the test. Tian et. al., reported that the observed fracture behavior of SAC 

305 interconnects transitioned from ductile fracture to brittle fracture modes as the number of TS 

cycles increased [26]. Anselm and Ghaffarian found that isothermal aging prior to thermal shock 

testing resulted in improved reliability for tin-lead solder quad flat no lead (QFN) assemblies 

[28]. 

2.1.3 Power Cycling 

Power cycling (PC) tests are conducted to evaluate the ability of a device to withstand the 

stresses generated by CTE mismatch and non-uniform temperature distributions created by the 

on-off operating cycles of the device [29]-[[30]]. Unlike the other tests described above, in PC 

testing, the device, or internal or external heat source is supplied a current to simulate operating 

behavior and temperature range in a real-world environment. The power cycle ranges used in this 

test are designed to simulate the range of usage conditions. Unlike the other traditional tests, PC 

tests are not always specifically designed as highly accelerated tests or to create harsh conditions. 

This test is used to verify the performance of the component materials within the device, 

especially the solder interconnects [29].  

The device is run through a prescribed temperature range, for a set number of cycles once 

the device is powered and the temperature extremes are calibrated. There are four main test 

types: constant power, variable power, constant cooling, and variable cooling [8]. The failure 

criteria once again include: parametric limits are exceeded, hermeticity cannot be demonstrated 

or if the device is non-functional after testing due to mechanical damage [29]. 



 

11 
 

Comparative analysis of power cycling and thermal shock tests has shown that the 

primary cause of failure was generally the same. Crack nucleation and propagation assisted by 

recrystallization resulting from energy provided by the mechanical stresses generated during 

cycling was identified as the primary failure mode for both tests [31]. More detailed analysis 

revealed some key differences. Under power cycling conditions, IMC growth was accelerated. 

Researchers linked this to electromigration of Sn and Cu in the solder matrix, resulting in higher 

Sn flux and increased Cu6Sn5 growth at the anode side of the interconnect [31]. Additionally, 

recrystallization was seen to occur earlier during power cycling testing. This was attributed to the 

higher average temperatures, localized heating, and current flow related to PC testing [31]. In 

comparison with TC testing, higher maximum stresses developed in power cycling tests. This is 

largely due to the non-uniform temperature distribution common to most devices. Generally, a 

larger amount of temperature change is experienced by the die than the PCB which is not the 

case in TC testing. Because a functioning device does not necessarily achieve steady-state 

temperature distribution, stresses in high temperature regions tend to be more acute because it is 

more localized [[32]-[34]].  

Due to the fact that power cycling typically relies on actual device operation to induce 

failure, many feel that it is a more accurate method for predicting fatigue life than TC or TS. The 

justification for this position is, that PC better simulates the real-world temperature gradients a 

device will experience in actual applications given that the non-uniform temperature distribution 

found in PC in combination with the different CTE of each component will make the solder 

material deform differently than in TC testing. PC testing is also considered a less conservative 

test because the temperature conditions are often much more mild averaged across the device.  
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2.1.4 Challenges with Common Methods 

Each of the traditional accelerated testing methods discussed above have unique 

advantages making them useful for evaluating solder interconnect fatigue life in certain 

applications. However, one must be mindful of each method’s unique weaknesses and 

limitations. All three methods are unable to evaluate CTF at rates greater than 6 cycles per hour. 

In testing that is supposed to be “accelerated”, these low cyclic rates lead to significantly long 

duration tests. Given that it is often expensive to conduct these tests, the total cost of running an 

experiment over a long period can be prohibitive. Thermal cycling tests in particular are 

generally quite long in duration with test times of up to 6 months in industry applications. 

Additionally, care must be taken when using these methods to ensure that the expected failure 

mechanisms occur according to what is expected or reported in actual applications. Thermal 

cycling tests have been shown to increase thermal gradients which subsequently cause changes 

in the diffusion pathways along which microstructural changes occur. These tests are suited to 

applications where sudden large temperature changes may occur uncommonly, however, their 

use is limited for evaluating fatigue life under standard operating conditions. TC and TS are 

generally designed to create harsher than expected conditions, often resulting in overly 

conservative estimations of device lifetime. These over estimations can lead to unnecessary 

additional design time and the inclusion of excessive redundancy which increases device 

complexity and cost. PC is seen by many as the most true-to-life AT method, despite this, its 

utility is still limited by the relatively low cyclic rate.  

 

Another weakness shared by all three traditional AT methods is less often considered. In 

each of these methods, thermal, mechanical and chemical processes are all influencing the solder 
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simultaneously. While this is accurate for simulating actual application conditions, it is nearly 

impossible to quantify what percentage of the damage was due to only one fatigue factor, and 

which occurred only as a result of a combination of factors. Physical and metallurgical 

interactions intersect in thermal environments, stress and diffusion intermingle and it becomes 

difficult to assign damage to each individual fatigue factor. In the case of power cycling, current 

effects such as electromigration (EM) also influence solder fatigue. Thus, to develop an 

understanding of what each threat factor is doing to the solder interconnects, these phenomena 

must be isolated and studied independently. Once a strong understanding of each is achieved, the 

greater thermo-electro-mechanical system can be evaluated with new found clarity. To that end, 

many alternative approaches to damage assessment and fatigue life prediction have been 

developed to enable new insight into solder interconnect reliability.  

2.2 Additional Testing Methods  

2.2.1 Thermo-Mechanical 

Thermo-mechanical methods seek to develop a better understanding of the relationship 

between temperature and stress by combining and quantifying thermally and mechanically 

induced stress in one accelerated test or comparing performance across thermal and mechanical 

tests. Tests of this nature are useful in determining the magnitude of loads which a device can 

survive prior to stress induced failure. These tests are often characterized by a multi-point data 

collection scheme whereby temperature, resistance and stress are all monitored in-situ. This 

enables real-time study of changes in material strength, electrical performance, and the effects of 

various temperature gradients such as temperature ramping. Quantifying the magnitude of all 

these factors within the device as it is induced to fail can help provide new insight into material 

properties, architectural weaknesses, and design for reliability (DFR) guidelines.  



 

14 
 

A common alternative approach is to combine a traditional AT, such as thermal cycling, 

and introduce mechanical load or shock to the device during or after thermal cycling [35]-[37]. 

Yu et. al. observed that the impact of compressive loads, such as those due to expansion 

interactions with adjacent components, on solder joint reliability was not thoroughly understood 

[37]. They designed and fabricated a fixture that applied compressive loads to the package which 

were then placed in a temperature cycling chamber and cycled from 0 °C to 100 °C with a ramp 

time of 30 min. and a 15 min. dwell at peak temperatures. Crack propagation through the die-

side interfacial region was still identified as the dominant failure mode, being observed in 66.7 % 

of all samples tested. However, diagonal cracking through the bulk solder material was identified 

only in the preloaded solder joints. The additional failure mode observed only in the preloaded 

samples indicated that the crack propagation pathways had been changed as a result of the 

compressive stress [37].  

Karppinen et. al. looked at the combined effects of mechanical shock and power cycling 

of the reliability of interconnects in handheld devices [38]. The effects of thermal aging as a 

result of PC were on mechanical shock survivability evaluated for devices ages 1000, 3000, and 

5000 power cycles. A 0.5 ms half-sine shock was generated with an initial magnitude of 1440 G. 

Mechanical shock and PC were conducted both concurrently and consecutively for both board-

level and product-level testing. The results showed that the thermomechanical loading enhanced 

the growth of the IMC layer and the coalescence of intermetallic particles inside the bulk solder. 

The aging effects of PC after 1000 cycles initially improved drop-test performance, but 

additional cycling led to degraded shock reliability. No significant difference in reliability was 

observed between the concurrent and consecutive testing method [38]. 
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 Other researchers have devoted their efforts to improving traditional AT’s themselves by 

directly addressing their inherent weaknesses such as long duration and slow ramp rates [[39], 

[40]]. In an effort to reduce the time required to conduct TC experiments, Tunga and Sitaraman 

proposed using laser moiré interferometry to examine strain contours in a pre-cross-sectioned 

solder joint [40]. Plastic and ceramic BGA’s were cycled from 0 °C to 100 °C with the 

interferometer mounted on a fixture above the test vehicle inside the temperature chamber. Using 

the Coffin-Manson predictive model and the deformations observed by the interferometer, strain 

estimates were calculated and used to assign a predicted reliable lifetime to each package. By 

reducing the solder material under study and mounting the interferometer in the temperature 

chamber, the total time to generate life time predictions was reduced [40]. Metasch et. al. 

designed a system to measure the in-plane and out-of-plane displacement of flip-chip solder 

interconnects under TC conditions in an effort to get more data out of the traditional method 

[41]. By integrating the test sample into a frame with force and displacement sensors, they were 

able to make new observations on the behavior of solder when cycled between two temperature 

ranges, 10 °C to 90 °C, and -40 °C to 125 °C respectively. Monitoring the point where the 

material was no longer able to resist 50 % of its initial peak force value, Metasch et. al., found 

that a 50 % reduction in temperature range leads to 6 times as many cycles before failure [41].  

Another common form of thermo-mechanical accelerated testing utilizes elevated 

isothermal in-situ heating or ex-situ aging to introduce thermal effects into failure mechanisms 

under more controllable conditions [[42]-[45]]. The rationale of these tests is that the peak stress 

will occur when an actual device reaches peak operating temperature. Also, solder becomes more 

vulnerable to deformation and diffusion as homologous temperature increases. So, these tests are 

designed to simulate that “worst-case” situation of high temperature and mechanical stress. 
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Fakpan et. al., utilized resistive heating elements to reach a steady-state temperature of 70 °C 

mounted near a center cracked tension (CCT) sample to evaluate the response of SAC 305 and 

Sn-37Pb solders to shear stress at elevated temperatures. The results of their experiments showed 

that the time-dependent creep crack growth rate of SAC 305 was higher than that of the Sn-37Pb 

solder for both room and elevated temperatures [44]. Lee et. al., evaluated the combined effects 

of thermal aging through TC with mechanical shock to determine the effect of fatigue life for 1 

% and 3 % silver content Sn-Ag-Cu solder materials [45]. A composite board containing nine 

test vehicles that enabled each location to experience a different shock level and strain level from 

an input shock of 1500 G with a 0.5 ms half-sine pulse duration. Some of the shock samples 

were aged isothermally at 150 °C for 500 hours. For comparison, thermal cycling was conducted 

on aged and unaged samples. They found that more grain boundaries arose from thermal cycling 

than shock deformation. This was attributed the strength of Sn at the higher strain rates which 

prevented the storage of as much energy in the microstructure as was stored under TC conditions 

[45]. 

2.2.2 Mechanical 

While some mechanical testing methods are conducted with a thermal component, many 

other purely mechanical reliability tests have been developed. Mechanical testing has the 

advantage of being very fast compared to traditional methods like TC and the characteristics of 

failure are much easier to interpret because damage is based solely of physics based first-

principles. This combination of rapid reliability assessment coupled with, in many cases, 

intuitive failure mechanisms, makes mechanical testing uniquely suited for early design 

validation through concept prototyping. The added advantage of this is that, design validation 

does not need to wait until near the end of product development to discover potential weaknesses 
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because inexpensive, mechanically congruent test vehicles can be easily produced. Several 

categories of mechanical reliability test exist including; shock, bending, vibration, lap shear, and 

cycling loading. These categories are discussed below. 

i) Mechanical Shock 

 In consumer electronics, JEDEC JESD22-B111 is used as the standard for mechanical 

shock reliability [[46], [47]].  The standard stipulates that a board containing 15 test devices with 

a footprint of 132 mm x 77 mm must be subjected to a 1500 G, 0.5 ms pulse shock. Most 

mechanical shock testing setups utilize a drop-tower to accelerate the device to achieve the 

desired acceleration prior to impact.  Mechanical shock tests are well suited to applications 

where the device may experience a sudden, high-G impact such as portable electronics and 

military applications. Lall et. al., evaluated the survivability of electronic missile components 

under extreme shock conditions of up to 50,000 g [48]. Fu et. al., used mechanical shock tests to 

compare standard Bi-Sn and resin reinforced Bi-Sn to determine if the resin could be used to 

overcome the inherent brittleness of Bi containing solder [49].  

 In their evaluation of aging effects on solder interconnect shock performance, T.-K. Lee 

et. al. conducted mechanical shock tests at 150 G, 200 G, 250 G, 300 G, and 340 G with 

isothermal aging profiles of 500 h at 75 °C, 100 °C and 150 °C [49]. Intermetallic growth 

behavior of both NSMD and SMD solder pads were studied for comparison. The greatest 

reduction in performance was seen in SMD samples that were aged for 500 H at 75 °C, with a 

decrease from 3 cycles-to-failure under 200 G shocks to 2 cycles-to-failure under 150 G shocks. 

For samples aged at 100 °C, the performance level increased to 6 CTF under 150 G loading, 

while samples aged at 150 °C showed the greatest improvement with 5 CTF under 250 G 

loadings. In the case of NSMD samples, little difference was seen in performance between aging 
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profiles and test conditions. Thus, SMD pads where more susceptible to performance changes 

due to isothermal aging. Crack initiation and propagation were found to occur mostly at the 

substrate side IMC interface where an unstable hexagonal Cu6Sn5 microstructure was found to 

form in the 75 °C aged samples. This unstable microstructure was unique to the 75 °C aging 

profile and acted as the week interface along which fast crack propagation occurred. Additional 

testing at elevated, steady-state temperature (100 °C) revealed improved CTF performance for 

SMD samples in low shock input (100 G and 150 G) regimes [49].   

ii) Bending 

Mechanical bending tests of electronic components in industry are governed by JEDEC 

standard JESD22B113. Mechanical bending tests are better suited for providing data on relative 

component performance rather than a discrete pass/fail criterion [50]. Vandevelde et. al., induced 

mechanical stress into the components by applying four-point bending to the PCB. This bending 

causes absolute displacement of the top/bottom fiber of the PCB which simulates the expansion 

mismatch seen between the die and substrate of the device that is observed in TC testing [51]. 

The dominant failure mode was found to be cracking along the interfacial region of solder joint 

on the die-side. Experiments were conducted to determine if alternate failure modes would occur 

at higher loading frequencies but the researchers concluded that bending dwell times of 10 

minutes were sufficient.  

Given the fact that most solder interconnects fail at the interfacial region between the 

IMC layer and the bulk solder, Philippi et. al. utilized mechanical bending tests to evaluate the 

strength of Cu3Sn alloy (a common IMC phase) microcantilevers  shaped by focused ion beam 

milling (FIB) to common IMC layer thickness [52]. This was undertaken in an effort of estimate 

the critical defect size for Cu3Sn in based on fracture toughness in bending. The researchers 
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concluded that critical defect size corresponded to grain size, finding a critical defect size of 258 

nm for their samples [52].  

iii) Vibration 

Vibration testing is conducted to evaluate the effects vibration, such as that arising from 

transportation or operation, has on electronic devices. Vibration can induce stress in solder 

interconnects and repeated exposure or long duration can lead to fatigue failure. Studies can be 

conducted to evaluate the device under conditions similar to the end use conditions to evaluate 

long-term reliability of components in high vibration applications, such as automotive or 

portable electronics. To perform this test, the components under study are rigidly mounted or 

restrained by a case with suitable protection for the leads. The case itself is then rigidly fixed to 

the vibration platform with the leads secured to prevent excessive lead resonance [53]. Vibration 

is applied (typically with a shaker table) so as to simulate non-shipment vibration conditions to 

evaluate solder reliability. Standards such as JESD22-B103B.01 [53] dictate standard test 

conditions for peak-to-peak displacement, peak acceleration (G), cross-over frequency (Hz), and 

min/max frequencies (Hz). Typically, a complete sweep of frequency range from minimum to 

maximum and back is conducted in a logarithmic fashion in a period of 4 minutes. JEDEC 

stipulates a sweep rate of 1 decade/minute with 4 consecutive sweeps in each orientation X, Y, 

and Z for a total of 12.  

Random vibration tests are conducted to evaluate the survivability of electronic devices 

during shipment. Devices are excited with a Gaussian random vibration which is applied for 30 

minutes in each orthogonal axis for a total test duration of 90 minutes [53]. Vibration test 

parameters should be calibrated against the natural frequencies of the component. 

Accelerometers can be used to measure the natural frequencies and mode shapes of the test 
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vehicle under the boundary conditions of the test [54]. Typically, the first natural frequencies (1 

for each orthogonal axis studied) are used because those frequencies are known to accelerate 

damage the most [55]. Failure is again often assigned if the test unit ceases to function, resistance 

spikes, or various visual inspections reveal significant damage. Batieha et. al., cautioned that 

random vibration test results could be particularly difficult to relate to long term performance 

[56]. Accelerated vibration testing is known to lead to continuous resonance frequency shifts 

caused by softening of the PCB, especially at higher amplitudes. Researchers observed a 

continuous drop in resonant frequency when testing at a 6 G amplitude however at 3 G 

amplitude, there was no significant change. Batieha et. al., concluded that tests should be limited 

to amplitude levels at which resonant frequency shifts remain negligible for the duration of the 

test [56]. 

 Discerning the most common failure mode in solder interconnects under vibrational 

excitation can be more complicated than traditional thermal-based methods. Typically, fatigue 

cracking with in the interfacial regions are still the most common [[54]-[56]]. Solder pad 

cratering has been reported after even moderate cyclic vibration testing, also, intermetallic and 

bulk solder fatigue comingle. Additionally, brittle fracture was seen to vary more quickly with 

increasing load amplitude than did ductile fatigue. Due to this behavior, low amplitude testing 

can be conducted without significant PCB softening but softening occurs at high amplitudes [56]. 

Zhou et. al., recommended the use of constant amplitude harmonic excitation because the 

dynamic response of the test vehicle consists of only one mode rather multiple coupled modes 

[54]. Mode coupling can confuse assignment of failure mechanism to stress resulting from a 

specific mode shape. Additionally the strain history is harmonic, eliminating the need for cycle 

counting algorithms and damage accumulation will be constant. Using vibration testing, Chuang 
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et. al., were able to recommend the use of hypoeutectic alloys in solder applications expecting 

frequent vibration. Hypoeutectic Sn-Zn alloys did not enhance crack propagation rate unlike 

near-eutectic and hypereutectic Sn-Zn alloys when exposed to resonant frequencies in the 70 Hz 

range [57]. 

iv) Lap Shear 

Shearing tests are generally conducted to evaluate the mechanical force or number or 

cycles at a specific shear magnitude required to destroy the capacity of the interconnect to 

function electrically. Often, the goal is to simulate the CTE mismatch induced mechanical 

stresses observed in typical thermal cycles during actual operation. Many types of shear tests are 

commonly used in industry such as ball impact test  (BIT), high speed ball shear test (HSBS), 

and high speed cold ball pull test (HSCBP) [[58]-[61]]. In the test, individual solder balls receive 

a high speed mechanical loading which is often applied or even ramped up until the ball 

separates from the substrate. However, the solder balls in these tests are only joined on one side 

of the interconnect making the accuracy of predictions made about real applications where a 

solder column is fused to IMC at each end, suspect [61]. In lap-shear testing, a volume of solder 

is joined to PCB or other substrates at the top and bottom of the interconnect. These substrates 

are then pulled apart to generate shear stress within the solder while the shear force is measured 

with a load cell. The deflection of the solder column can be measured ex-situ by measuring the 

change in length of the assembly or in-situ using digital image correlation (DIC). Shear stress 

and shear strain are calculated using force, and deflection data respectively. 

 Lap-shear tests are very useful for making determinations about process quality and 

material properties such as solder creep strain response and ultimate shear strength [[61]-[63]]. 

Choudhury and Ledani evaluated the stress-strain response of Sn-3.5Ag solder which contained a 
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high fraction of Sn-3.5/Cu intermetallic compounds, finding that strain-to-failure was greatly 

affected by the presence of IMC’s within the interconnect [62]. They reported that IMC volume 

fractions in the 40 % to 60 % range resulted in a large increase in shear strength (nearly 67 % in 

the case of 60 % IMC). Additionally, an IMC fraction of 80% was observed to result in a 

decrease in shear strength compared to 60 % IMC but was still stronger than a 40 % IMC volume 

fraction [62]. In their study of creep behavior in innolot solder alloy, Tao et. al. confirmed that 

temperature and applied shear stress greatly affect the material behavior of the solder alloy when 

conducting lap-shear tests at 25 °C, 75 °C, and 125 °C [63]. Higher creep rates were seen in 

conditions of high temperature and high applied stress.  

 Lap-shear tests’ utility in assessing reliability and failure in actual applications are limited 

due to their dependence on using comparatively large volumes of bulk solder in non-practical 

solder arrangements. Additionally, most lap-shear tests do not account for the cyclic nature of 

shear stress as seen in device operation. Without the ability to test actual devices across a range 

of stress magnitudes consistent with those seen in applications due to temperature fluctuation 

during power cycling, lap-shear tests are ill-suited for providing design optimization guidance or 

rapid architecture reliability assessment in real world applications. 

v) Innovative Alternative Techniques 

 Many additional test methodologies have been devised, with more being developed all 

the time. These methods seek to achieve more consistent, more accurate, or more rapid solder 

fatigue results than can be achieved with the traditional methods or other alternative test. 

Additionally, some of these methods are designed as tools to assist in the breakdown of the 

solder fatigue system into more easily studied component failure mechanisms. One novel solder 

fatigue test was developed by J. F. Liu et. al., where small solder samples can be tested using 
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impact of tensile/compressive loading to determine the effects of mechanical loading on 

reliability [64]. Observing that standard impact tests can result in varying velocities of the impact 

plate, Liu et. al. concluded that direct impact is not the best method for testing small solder joints 

which undergo brittle fracture under tension [64]. To address this, a miniature impact test 

instrument was designed where the specimen is attached between input and output bars, and 

impact is administered using a hollow striker which impinges on the back face of the strike plate. 

Long, thin bars are used to accommodate small samples, and allow for moderate strain rates 

because a sustained loading pulse is required [64]. Upon impact of the striker, the impact plate 

achieves a common velocity which generates a tensile pulse in the input bar. As compression 

commences, a velocity at the impact plate-specimen interface generates a compressive pulse. The 

recorded input wave is thus the superposition of the two pulses and is measured using strain 

gauges [64]. 

 Dynamic compressive tests were conducted on small cylindrical 4043 Al specimens for 

comparison with a traditional Hopkinson bar system, and the results of the miniature impact 

tester correlated well with the results using the traditional system [64]. In addition to single 

impact testing, this test apparatus is capable of conducting pure shear testing of devices with the 

installation of specially designed adaptors. Adaptors were also created to test solder 

interconnects at loading angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90°. The adaptors can be 

threaded to the input and output bars and the solder joint specimens are bonded to the adapters 

using cyanoacrylate adhesive [64]. 

 In an effort to address the need for lap-shear testing machines which were more 

reasonably scaled to actual solder interconnects, Tao et. al., designed a miniature lap-shear 

testing unit with a load capacity suited to small samples (such as CSP) with a maximum tensile 
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force of 2.0 kN and a wide range of cross-head speeds (39 nm/s minimum) [65]. The machine 

has the capability to conduct tensile and compressive lap-shear tests, as well as, a cyclic loading 

ability. The sample is attached at one end to a bar which is fixed, and at the other to a motorized 

bar which provides the stroke that induces stress in the material. The stress is measured by a load 

cell attached to the fixed end and the shear stress is calculated. Evaluating lap joints of Innolot 

and SACBiNi solder alloys at different strain rates and temperatures using this setup, Tao et. al., 

observed decreases in ultimate shear strength (USS) for both alloys. At room temperature with a 

strain rate of 2.0 x 10-2 s-1, USS values of 58.9 MPa and 61.1 Mpa were reported for SACBiNi 

and Innolot respectively, while at 125 °C with a strain rate of 2.0 x 10-4 s-1, USS was decreased 

to 26.6 MPa and 29.5 MPa for SACBiNi and Innolot repectively [65]. Examining the 

microstructure of these joints, rupture was seen to start in the bulk solder material and 

propagated towards the interface with the thinnest IMC layer. Some vacancies were observed 

locally at the interface between IMC layers and the solder joint [65]. Higher quantities of Ni and 

Sb were seen to reduce strength and improve elongation to rupture. 

 Ohguchi et. al., utilized stepped ramp wave cyclic mechanical loading to evaluate the 

low-cycle fatigue life of SAC305 and Sn-37Pb solders [67]. Using stepped ramp waves (SW), 

the researchers were able to quantify creep strain in tensile and cyclic tensile-compressive 

loading without conducting creep tests. Fatigue tests were conducted using cyclic tension-

compression loadings with different periods for a total strain amplitude of ±5 % at ambient 

temperature [67]. For comparison with other fatigue tests, triangular wave (TW) loading was 

also used. The SW tests were used to obtain stress-strain relations that were then used to evaluate 

the creep strains generated during the TW tests. Cylindrical ingots of SAC305 (gauge length 18 

mm, gauge diameter 8mm) were subjected to a two-step fatigue process. First, TW loading was 
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used to determine the effect of period on fatigue life of the test units under tension-compression 

cycling. The tested units were then subjected to SW loading to identify creep deformation strain 

generated during the TW tests [67].  

 Four test conditions were selected to evaluate effects of time-in-tension and time-in-

compression on the stress amplitude and the symmetry between stress-strain response in 

compression versus in tension [67]. Condition 1 stipulated a time-in-tension of 2 seconds with a 

time-in-compression of 20 seconds; for condition 2, these values were reversed. Conditions 3 

and 4 alternated times of 2 seconds and 200 seconds between tension and compression. The 

results showed that larger differences in period result in larger differences in maximum absolute 

stress. Conditions 2 and 4 were seen to have higher stress on the compressive side while 

conditions 1 and 3 had higher stress on the tensile side. Conditions 3 and 4 were found to exhibit 

hysteresis loops that had a high degree of asymmetry [67]. Ohguchi et. al., concluded that creep 

strain accumulated on the side in tension greatly affects fatigue life in solder materials. These 

tests were performed in a manner quite useful for materials characterization studies, however, the 

test samples utilized did not adequately represent solder interconnects commonly found in device 

applications. If the method could be adapted to work with full-scale electronic devices, it may 

prove a useful method for predicting creep strain response of solder joints.   

2.3 Summary of Techniques 

 Table 2-1 shows a comparison of all the accelerated testing methods outlined above. Of 

the methods presented here, power cycling is seen by many as the most true-to-life method for 

generating failure modes consistent with actual operating cycles. This makes PC an attractive 

option for predicting operating fatigue lifetime. However, PC is still slower than mechanical 

testing methods. Temperature cycling and thermal shock tests are uniquely susceptible to 
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diffusion due to the high thermal gradients involved in reaching test temperatures. Additionally, 

for all three testing methods, understanding the causes behind failure mode characteristics is 

made difficult because thermal, chemical, mechanical (and in PC electrical) threat variables are 

involved in interconnect fatigue simultaneously. The lack of this key understanding often results 

in test parameters which are intentionally pessimistic, creating harsher conditions than those seen 

in actual operation, leading to overly-conservative lifetime estimates. Thermo-mechanical 

methods are typically faster due to the use of combined mechanical and thermal stress 

inducement, leading to higher total stresses. These methods are perhaps the most useful for 

studying the effects of combined thermal and mechanical threat variables on fatigue lifetime. 

However, this approach can only produce accurate predictions if the specific mechanical and 

thermal conditions and how they will interact are known prior to testing so that proper test 

parameters can be selected. Due to the increased stress state of the system, coupled with mixing 

stress sources can result in unusual or false failure modes rarely (if ever) seen in actual working 

devices. Like TC, TS and PC, these methods often report “worst-case”, overly-conservative 

lifetime estimations. 

Table 2-1 

* Bending tests can be used to examine bending fatigue lifetime specifically, or to simulate 

stresses induced by CTE mismatch for comparison with TC or PC methods. 

Method
Mech. Stress 

Inducer
Test Duration Cyclic

Device Relevant 

Samples
Design Guidance Lifetime Prediction Type

Temp. Cycling CTE Mismatch Slow    General Fatigue

Therm. Shock CTE Mismatch Moderate   General Fatigue

Pwr. Cycling CTE Mismatch Slow    General Fatigue

Mech. Shock

Mech. 

Shock/Impact Rapid   Shock Fatigue

Bending

Shear/Tension/C

ompression Moderate General and/or Bending*

Vibration 

Shear/Tension/C

ompression Moderate   Vibration Fatigue 

Lap Shear Shear Moderate

Mech. Cycling Shear Rapid    General Fatigue

TABLE 2

Comparison of Accelerated Testing Methods
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 Mechanical testing methods generally have the benefit of shorter test duration which can 

significantly lower costs and product lead times. In the case of mechanical tests like mechanical 

shock, vibration, and bending, often the fatigue lifetime predictions are specific to a unique type 

of stress rather than the more general types of stress found due to CTE mismatch, Mechanical 

shock is an excellent way to evaluate the ability of a device to survive repeated large impact 

events. However, using MS to make predictions on general fatigue lifetime of a device due to 

CTE mismatch when under real-world power cycling or to compare predictions with TC for 

example is problematic. Impact testing generally creates unique failure modes that are not 

represented in CTE mismatch failures. Making CTE mismatch fatigue predictions using bending 

tests can give good results for general fatigue lifetime or for the more specific bending fatigue 

lifetime depending upon the parameters and intentions of the test. Bending has been used to 

simulate the stress conditions found in devices under PC and TC conditions to induce the same 

types of failure mechanisms. When conducted this way, the resulting fatigue life predictions can 

be considered as more accurate that making the same prediction using MS or vibration. 

Moreover, if a device is expected to the subjected to bending frequently during its lifetime, 

bending tests are critical to gaining insight into the overall reliability of the device by 

considering the impact of the bending itself, but this is less important for non-dynamic situations 

where bending in not the most prominent stress inducing phenomenon. Similarly, vibration tests 

are critical if a device is expected to endure vibration often during its useful lifetime but these 

tests do not create the conditions necessary to produce shear magnitudes and direction consistent 

with CTE mismatch, unlike mechanical cycling and temperature cycling methods.  

 Lap shear methods are perhaps the most useful methods for evaluating solder material 

properties and the effects of the solder processing procedure on interconnect microstructure 
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because all the damage is due to stresses which are easily understood using physics first 

principles. This makes damage assessment and responsibility assignment much easier, especially 

when coupled with the simplistic structure of most lap shear test specimens. Unfortunately, these 

methods are typically incapable of testing full-scale electronic devices, making them of limited 

value for generating fatigue lifetime predictions and certainly inferior to mechanical cycling 

methods where the microstructural changes, as well as actual device lifetime, can both be 

monitored in situ. The method developed by Liu et. al. is perhaps the most versatile approach 

discussed given the extensive versatility in testing configurations for generating different types 

of stress (including shear, tension/compression, and impact) but can only be used on a single 

small solder interconnect. The stepped ramp-wave approach is particularly useful in examining 

creep behavior within solder interconnects to determine its effect on fatigue life. It is also 

capable of providing some guidance as to design considerations, with [67] determining that creep 

strain accumulated on the side in tension had the greatest impact on lifetime, indicating that 

special care must be taken in designing the tension-side architecture.  

 The method discussed throughout the rest of this work was developed to address the 

weaknesses and limitations of the above reliability evaluation methods. The mechanical cycling 

method presented in this paper was designed to mimic the cyclic behavior of stresses induced in 

normal operational power cycling, with the aim of improving accuracy over single cycle tests 

like lap shear. Additionally, by cycling at high frequency (60 cycles/minute), test duration is 

significantly reduced enabling a reduction is associated costs. Another goal of this time saving 

strategy was to create a testing system that could be used to evaluate very early stage device 

designs to provide reliability analysis of prototypes to enhance the design decision-making 

process. Designed to test fully functional chip-scale devices and mechanically analogous dummy 
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chips, the method was designed with device specific adaptation capabilities in mind. The 

following section presents a paper published in the IEEE Transactions on Device and Materials 

Reliability [68], which details the methodology behind the testing procedure. 
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3. Rapid Solder Interconnect Fatigue Life Test Methodology for Predicting 

Thermomechanical Reliability 

Cody J. Marbut, Mahsa Montazeri, and Dr. David R. Huitink 

3.1. Abstract 

A rapid reliability test methodology was devised for simulating mechanical stresses 

induced from thermal expansion induced shear in temperature cycling of flip-chip devices in 

order to de-convolute shear stress from thermal effects in typical environmental tests. Using 

controlled force application according to spring deflection, a test stand was created to 

mechanically apply shear stress to solder interconnects in flip chip devices at isothermal 

conditions. The shear stress was applied cyclically using a tribometer to simulate the mechanical 

stresses induced in the interconnects of a device during a thermal cycle while in operation or 

accelerated testing. In the mechanical application of shear, the control of loading and cyclic rate 

can be precisely controlled while monitoring key factors for observing crack propagation and 

damage. In doing so, this novel approach introduces the ability to directly correlate shear stress 

and plastic work accumulation (damage) to fatigue life in a generic device, utilizing help from 

finite element models alongside data acquisition. Using the obtained correlations, lifetime 

predictions through early stage design analysis are possible, paving the way for a-priori 

optimized design for thermomechanical reliability in flip-chip devices. The methodology 

presented herein creates the opportunity to eliminate costly lifetime testing on multiple electronic 

device designs/configurations, while also expediting any data collection needed for new 

materials or process related impacts to reliability. 
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3.2. Introduction 

Reliability of electronic devices finds increasing importance with the electrification of 

transit, in addition to everyday tools, and entertainment devices. During normal operation, these 

devices regularly experience temperature cycling between ambient and operating temperatures. 

These thermal cycles induce stresses due to thermal expansion which may lead to failures such 

as interfacial cracking, void formation, reduced electrical performance, and delamination. Crack 

formation/propagation in interconnects is one of the leading causes of failures in Ball-Grid-Array 

(BGA) devices, particularly in high temperature applications [1]. Mechanical shear stresses 

caused by mismatched thermal expansion primarily cause this cracking and void formation 

among assembly materials such as solder interconnects. While selecting materials with similar 

coefficients of thermal expansion (CTE’s) can improve reliability of a device be reducing these 

stresses, the increasing complexity of electronic packages, higher temperature operation of SiC 

and GaN-based power devices and their associated cost considerations necessitate certain 

materials and processes where stresses are unavoidable, such that methodologies for managing 

reliability are required.  

3.2.1 Accelerated Environmental Testing 

 Most commonly, accelerated environmental testing methods are used to evaluate 

reliability of electronic devices and systems in order to demonstrate sufficient lifetime operation, 

or to down-select possible material or process candidates for a given device design. These 

environmental stress tests are aimed at evaluating time to failure (TTF), which can be 

extrapolated to device operating conditions using reliability acceleration models. Common 

thermomechanical packaging tests include temperature cycling (TC) (JESD22-A104 and 

IPC9701), thermal shock (TS) (JESD22-B106), and power cycling (PC) (JESD22-B105) [2-13]. 
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Each of these methods offers some benefits and drawbacks, as illustrated in Table 3-1, but care 

must be taken that the failures induced are relevant to the actual operating environment of the 

evaluated electronic system 

In thermomechanical testing, solder interconnect fatigue, cracking, delamination, ball 

bond integrity failure, and creep are common among flip-chip devices [3,4].  Fatigue cracking is 

most commonly found in the interfacial regions between the bulk solder and the intermetallic 

layer. These fatigue cracks propagate based upon the micro-structure and mechanical properties 

of the bulk solder [5]. Recrystallization of Sn is induced by thermal strain and elevated 

temperature starting in the highly strained regions before expanding through the bulk material 

[3]. Recrystallization has been shown to enhance fatigue cracking due to a network of high-angle 

grain boundaries which extend through the interconnections and provide favorable propagation 

paths [3,4]. Researchers have found that the stress/strain distribution within the bulk material 

undergoing a thermal fatigue process is not uniform. This non-uniformity leads to grain slipping 

and plastic work accumulation with cycling [3,4]. Thus, it can be said that the damage found in 

solder interconnections under thermal strain results from dislocation densities in the plasticized 

regions increasing with the accumulation of internal energy [3-6]. 
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Table 3-1 

COMPARISON OF COMMON RELIABILITY 

TESTING METHODS 

  
Thermal 

Shock 

Thermal 

Cycling 

Power 

Cycling 

Ramp Rate 

(°C/min) 
15+ 10 - 15 3.8 - 11.5 

Cycles/hr 1.8 - 6 1 - 3 2 - 6 

Prim. stress 

source 

CTE 

mismatch* 

CTE 

mismatch 

CTE 

mismatch 

Thermal 

gradient risk 
High Moderate Moderate 

* Additional stresses due the thermal gradients can impact fatigue behavior and even alter 

observed failure mechanisms. Collated from sources [1-5, 8-10]. 

 

J.W.C. de Vries, et. al., found that this inelastic strain was caused primarily by increases 

in creep strain [7]. When comparing TC and TS results, they concluded that the TC tests 

exhibited no plastic strain while in TS testing, the inelastic strain accounted for 1.5% of the total 

plastic strain [7]. The primary source of stresses in TC testing is CTE mismatch between 

component materials. Additional stresses can be created by thermal gradients when testing the 

same system under TS conditions. The magnitude of these additional stresses in TS depends 

upon the thermal behavior of the device under study. Thus, for the same tested device, the MTTF 

could be significantly different for each test method. The principle failure modes may even differ 

between the two methods [7].  Even so, comparative analysis of power cycling and thermal 

shock tests has shown that the primary cause of failure was generally the same. Crack nucleation 

and propagation assisted by recrystallization resulting from energy provided by the mechanical 

stresses generated during cycling was identified as the primary failure mode for both tests [9], 

yet under power cycling conditions, IMC growth was accelerated along with recrystallization. 

Researchers linked this to electromigration of Sn and Cu in the solder matrix, resulting in higher 
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Sn flux and increased Cu6Sn5 growth at the anode side of the interconnect in addition to the 

higher average temperatures, localized heating, and current flow related to PC testing [9]. 

3.2.2 Acceleration Models for Life Prediction 

Acceleration models intended to translate low-cycle fatigue damage induced during 

accelerated testing into estimates of actual lifetimes are often used when attempting to qualify 

electronics and prove robustness [1, 3-4]. Traditional models like Coffin-Manson power 

relationships often attempt to relate temperature ranges to lifetimes, however, become 

problematic when translating across differing designs which may have vastly different strain 

energies or plastic work density in failure risk materials. Notably, strain rate and energy cannot 

be directly accounted for in an extrinsic property like temperature delta, and so these models 

often vastly under predict lifetimes. The Norris-Landzberg model (or “modified Coffin-

Manson”) builds onto Coffin-Manson by compensating for anomalies of time-dependent and 

kinetic effects [4], yet it has been shown that the exponents in this equation are not consistent 

among package type, material, and geometries [4,10]. 

The net effect of these inconsistencies shows a need for the development of better 

mechanistic models that can more accurately describe failure acceleration and risk through 

applying a physics of failure approach. Some have offered FEA-based approaches to evaluating 

failure risk, such as Darveaux [11] and Engelmaier [12], however, these have issues with 

requiring extensive test validation in thermal cycling, which may not be adequately represented 

in FEA approaches which use simplifying assumptions about isothermal components and 

associated boundary conditions. As a result, an understanding of the effects of these stresses on 

interconnects, independent of the thermal aspects of the thermomechanical system, is required to 

best inform design to optimize device reliability. To achieve this, the physics of failure within a 
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given package must first be understood, particularly within the context of accelerated reliability 

testing. One of the major challenges with conventional accelerated testing methods is their 

dependence on temperature. In a thermal environment, there exist both physical and 

metallurgical interactions which impact fatigue life. Stress and diffusion are intermingled, and it 

becomes difficult to quantify what damage is due to which threat factor. Through removing the 

thermal factor and relying solely on mechanical stress, the chemical aspects of the threat 

environment are removed. This de-convolution of shear stress from temperature allows rigorous 

study of the physics-based material response to stress. Once a strong understanding of the stress 

response is achieved, the thermal impact on fatigue can then be reexamined with a strong 

foundation for determining what failure characteristics are unique to the thermal environment.  

Additionally, the ability to expediently demonstrate reliability based on physical 

principles alone, which can then be extracted for incorporation into design analyses, as opposed 

to the typical design-specific reliability validation near the end of product development, is 

essential for rapid time-to-market with design for reliability as a priority.  Moreover, wide 

bandgap power devices incur significant cost for reliability validation, so developing methods 

that are centered on the specific risk (such as solder fatigue) is important in reducing the 

development costs associated with qualification activities, especially where high temperature 

operation applies. In this work, a mechanistic approach is presented wherein high rate 

mechanical cycling data can be used for identifying physics of failure and translating into the 

thermomechanical reliability expectations for any given design. 

3.3. Materials and Methods 

The goal of this testing method is to replicate thermomechanically induced cyclic stresses 

through direct shear force application to a given flip-chip die as per Figure 3-1, and relate back to 
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thermally induced stresses in flip-chip assemblies. In this work, we have adapted a tribometer to 

interface directly with electronic test vehicles for applying a reciprocating load via spring forces. 

The tribometer operating in linear mode can be used to deflect the spring a fixed amount while 

measuring the resultant spring force applied to the device. Correspondingly, the average shear 

stress (𝜏) can be calculated using the relationship between the applied force and cross-sectional 

area of the solder interconnects supporting the die, and then related back to time to failure and 

any plastic strain created by the applied force.  

 

Figure 3-1:   Loading condition for cyclic reliability tests. 

 

 In this demonstration, a test chip built to mechanically replicate a SiC MOSFET [13] 

made out of Si on a FR4 substrate is utilized for illustrating the methodology.  The 3 mm x 4.4 

mm test chip has thirteen 0.381 mm (15 mil) interconnects with 0.305 mm (12 mil) solder resist 

openings. 

An adapter to facilitate this testing method had to meet several criteria. It needed to be 

capable of interfacing with the tribometer, the springs and the test chip such that only the solder 

interconnects of the test chip would oppose the motion. Additionally, the adapter was designed 

with the goal of being able to support multiple test chip designs.   With these limitations in mind, 
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the final adapter concept was designed to be configured around chips of many different 

dimensions, by utilizing 3D printed device jigs for gripping the substrate and die, respectively. 

The applied load is calibrated by using a 3D printed cartridge that takes the place of the 

substrate carrier (Figure 3-1). This cartridge has a raised rectangular prism located on the top 

center surface which has the same dimensions as the die. The load distributor cap interfaces the 

same way and the calibration test is carried out according to the same procedure. The magnitude 

of the load is then set to the proper value by changing the displacement setting on the tribometer. 

This requires multiple calibration runs until the desired load is achieved. The advantage of the 

dummy cartridge is that there virtually no deflection of the rigid ABS polymer component during 

the first several cycles. This means that the load reported for the first cycle with the dummy 

cartridge will be the peak reported for the first few cycles on a real device. Use of the 3D printed 

cartridge also ensures that there are no extraneous or unrecorded cycles on a test sample due to 

calibration before a test. The force values recorded for the calibration cycles are used to calculate 

the spring constant of the system by dividing each of them by the set stage displacement and 

taking an average. Once the proper load is set, the dummy cartridge is removed and the substrate 

carrier holding a device is inserted into the rail assembly. The same approach can be used at the 

end of a test to ensure that the stage displacement and spring constant remained the same 

throughout the test. 

 Using the data collected with the tribometer, characteristics of stress, deformation, and 

plastic work can be determined.  Assuming the springs are not being plastically deformed 

(verified to be true) by the cyclic extensions and the displacement of the tribometer stage is set at 

a fixed value, such that any change in peak force values over cycling must be associated with the 

deflection of the test coupon and specifically the interconnects. An example plot of such data is 
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shown in Figure 3-2, showing the force vs cycle count for the test chip. Using the first cycle as a 

baseline (assuming no plastic deformation of the interconnects) the spring constant (k) for the 

system can be calculated with force and deflection given by the tribometer. This assumption is 

valid if the peak load reported for the first cycle matches that reported for the calibration cycle. 

 

Figure 3-2: Representative plot for loading cycles for Sn63/Pb37 solder joints. Separation during 

2409th cycle. 

With the spring constant known, the relative deflection of the chip to the substrate can be 

calculated for each subsequent cycle. The deflection of each cycle at peak load (di) is seen to 

decrease proportionally with reported force values. By using the difference between the peak 

spring deflection of two adjacent cycles (i and i-1), effective deflection (𝛿) of the interconnects 

with respect to the substrate resulting from the ith - 1 cycle can be calculated. 

      𝛿 =  (𝑑𝑖−1 − 𝑑𝑖)                                      (3.1) 

This requires the assumption that any deformation that caused reduced spring deflection was the 

result of work done during the previous cycle be valid. This value can then be used to calculate 

the plastic work (Wn) done during the ith - 1 cycle. The force value of the previous cycle (Fi-1) is 

used due to two simplifying assumptions. One, all plastic deformation occurs at the time of peak 

force. Two, it is this deformation at the time of the previous peak force (Fn-1) which caused the 
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effective deflection of the ith cycle to be smaller than that of the ith - 1 cycle. Thus, the effective 

plastic work can be calculated. 

𝐹𝑜𝑟 𝑛 = 0, 𝑊𝑛 = 0 

                    𝑊𝑛 =  𝐹𝑛−1 ∗ 𝛿, where n ≥ 1                          (3.2) 

From this equation, the total accumulated plastic work (WT) can be calculated by summation of 

the values for Wn. 

𝑊𝑇 =  ∑ 𝑊𝑖

𝑛

1

 

 Through these relationships, this testing methodology can quantify elastic and plastic 

deformation, peak and instantaneous average shear stresses, work, and cycles to failure (CTF). It 

is also possible to make several qualitative observations from the data. The ductile or brittle 

nature of the failure can be seen from visual inspection in addition to inference from analysis of 

the cyclic force data. The failure modes can also be characterized using microscopy to identify 

points of interest such as crack striations, pad failures, and the presence of solder necking. 

 Darveaux’s model is used to calculate the steady state creep strain rate and the inelastic 

shear strain [14]. According to this model, the steady state creep strain rate of solder can be 

expressed as 

                                                               
𝑑𝛾𝑠

𝑑𝑡
=  𝐶𝑠𝑠[sinh (𝛼𝜏)]𝑛𝑒𝑥𝑝 (

−𝑄𝑎

𝑘𝑇
)                                       (3.3) 

Where 
𝑑𝛾𝑠

𝑑𝑡
 is the steady state strain rate, k is Boltzmann’s constant, τ is the peak applied shear 

stress, T is the absolute temperature, 𝑄𝑎 is the activation energy, n is a stress exponent, α is the 

constant that prescribes the breakdown of the power law dependence and 𝐶𝑠𝑠 is a constant [14]. 
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The inelastic shear strain (𝛾𝑖𝑛)  (see equation 3.6) is the sum of the creep strain (𝛾𝑐) and the time-

independent plastic strain (𝛾𝑝) which are calculated using equations 3.4 and 3.5 respectively.  

                                                     𝛾𝑐 =  
𝑑𝛾𝑠

𝑑𝑡
 𝑡 +  𝜀𝑇 [1 − exp (−𝐵

𝑑𝛾𝑠

𝑑𝑡
𝑡)]                                  (3.4) 

In this equation, 𝜀𝑇 is the transient creep strain, and B is the transient creep coefficient, time (t) is 

in units of cycles for the calculations performed here.  

                                                                             𝛾𝑝 = 𝐶𝑝 (
𝜏

𝐺
)

𝑚𝑝

                                                   (3.5) 

where 𝐶𝑝 and 𝑚𝑝 are constants and G is the shear modulus. The total inelastic shear strain (𝛾𝑖𝑛) 

(see equation 6) is the sum of the creep and plastic strain. The constants used in the Darveaux 

calculations are found in Table 3-2. 

                                                                      𝛾𝑖𝑛 =  𝛾𝑐 +  𝛾𝑝                                                      (3.6) 

The thermal fatigue life (𝑁𝑓) of a device can be estimated from isothermal failure data by 

using average inelastic strain energy density (ΔW) to model the creep response.  

                                                                                𝑁𝑓 =  𝜑∆𝑊𝛷                     (3.7) 

In this equation, ϕ (always positive) and 𝛷 (always negative) are constants for solder 

interconnects [15]. These constants can be found by creating a log-log plot of isothermal CTF 

and strain energy density. Strain energy density is calculated from the difference in peak shear 

for adjacent cycles and then averaged. This is because any decrease in shear is due to a decrease 

in force resulting from chip deflection. By using the change in shear between two peaks, only the 

strain energy used to cause the chip deflection is captured in the equation. 
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                                          ∆𝑊 = ∑
(𝜏𝑖−1

2 − 𝜏𝑖
2)

2𝐺

𝑛
𝑖=1                                                 (3.8) 

Here G is the shear modulus and 𝜏𝑖 is the peak shear stress of each cycle before failure. The shear 

modulus is given by,  

                                                                    𝐺 =  
𝐸

2(1+ 𝜈)
,                                                        (3.9) 

where E is Young’s modulus and  𝜈 is Poisson’s ratio as seen in Table 3-2.  

Any reduction in shear is due to a reduction in shear force caused by decreased spring 

deflection resulting from chip deformation (the chip has been displaced toward to the neutral 

point by the spring). This plastic deformation was due to the inelastic strain generated in the 

solder material. Thus, the inelastic strain energy of that deformation is captured in the strain 

energy density equation. The strain energy density is related to plastic work through that inelastic 

strain. The plastic work is calculated from effective chip deflection between cycles and is the 

energy required to do the work of deformation due to material response to the induced strain. 

Therefore, plastic work is the inelastic strain energy. The calculations were conducted using the 

whole solder volume because all the joints were classified as effective through SEM inspection, 

meaning that there were complete bonds between pad-paste, paste-ball, ball-paste, and paste-pad 

as one goes up the interconnect from substrate pad to die pad. This classification was granted if 

there was significant cracking or necking visible on both sides, or in many cases, the solder ball 

was still solidly attached to one side (usually the die with ductile necking) and significant 

cracking occurred on the substrate side. When this was observed, the entire joint was said to have 

opposed the force and was treated as a load-bearing column. 

 



 

48 
 

TABLE 3-2 

PROPERTIES of Sn63/Pb37  SOLDER 

(@ 25  ̊C)  [11] 

Css   8.03E+04 

α (1/kPa)   6.70E-05 

n   3.3 

Qa (eV)   0.7 

εT   0.023 

B   263 

Cp   3.35E+11 

mp   5.53 

k (eV/K) 
 

8.62E-05 

Poisson's Ratio   0.35 

Young's Modulus (Pa)   7.59E+10 

Shear Modulus (Pa)   2.81E+10 

 

3.4. Experimental Methods 

The test method was demonstrated to produce solder interconnect fatigue failures through 

cycling mechanical shear loading. Peak stress per cycle for 4 sample devices can be seen in 

Figure 3-3. The ductility of the material before and during the failure can be seen from the slope 

of the graphs. Tests 1 and 2 showed a more ductile fatigue behavior than test 3 and 4. The point 

of failure can be seen by the sudden large drop in peak force. In these tests, the device was 

fatigued to complete separation. 
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Figure 3-3:  Peak force vs cycles for 4 identical test devices. 

 

Analysis of the work-averaged effective stress compared with cycle-life agreed with predictions. 

Lower values of effective stress correlated to longer cycle life as seen in Figure 3-4. 

Visual inspection of the tested samples showed crack striations and necking behavior. 

Additionally, pad adhesion failures were a common occurrence. Figure 3-5 shows two die-side 

solder bumps after cycling. Crack striations are clearly visible on the bulk material. The arrow 

indicates the direction of crack propagation.   

 

Figure 3-4:  Log plot of cycles to failure vs work-averaged effective stress. 
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Figure 3-5:  Confocal microscope with laser source image showing fatigue crack striations (in 

box) with smearing in the direction of slip (arrow) on die-side solder bumps. 

 

The plastic strain rate was calculated for the plastic region of each cycle. The plastic 

region was assumed to be the area under the force vs. cycle plot in which the force values of the 

cycle of interest where all above the maximum force value of the next consecutive peak. The 

plastic strain rate calculated for each cycle was then plotted to examine the effect of cycling on 

the strain rate (Figure 3-6). The effective plastic (inelastic) strain was calculated using 

Darveaux’s model at points along the loading curve (above the peak of the next consecutive 

cycle) and at peak load, and using the derivative of a curve fit to determine the strain rate for 

each peak. As the original strain values were quite small, a log scale was used for the curve fit. 

The bounds of the curve fit are determined by the peak load values for the cycle of interest and 

the next consecutive cycle. It is seen in the figure that strain rate increases in later cycles and 

then drops appreciably in the final cycle before failure. This increase is believed to be due to 

crack initiation and propagation in the interconnects as cycling continues. In future testing, in 

situ resistance measurements will enable observation of cracking in real-time. The resistance 

data can then be examined to determine if, and how much, cracking is occurring during the 

period of increased strain rate. 
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Figure 3-6:  Effective plastic strain rate as a function of cycles for test vehicle 7 (Sn63/Pb37). 

 

The estimated thermal fatigue life for these devices was modeled based on their 

isothermal CTF. The values used for calculating strain energy density can be seen in Table 3-2. 

Figure 3-7 shows the log-log plot of isothermal CTF and strain energy density. From the 

trendline of this graph, the constants for thermal fatigue model were determined. The thermal 

fatigue life prediction as a function of strain energy density is shown in Figure 3-8, using a 

model dependent upon Darveaux’s creep strain model.  

 

Figure 3-7:  Log-log plot of isothermal CTF and strain energy density. 
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Figure 3-8:  Thermal fatigue life prediction as a function of strain energy density. 

 

3.5. Simulation Results 

In order to better correlate the results of mechanical cycling to thermal cycling for use in 

predicting fatigue behavior in either operation or accelerated testing, it is necessary to compare 

the physical understanding of the solder interconnects’ mechanical behavior in both types of 

stress environments. To compare the damage mechanisms in solder interconnects under the 

cyclic mechanical loading versus traditional temperature cycling tests, ANSYS 17.1 was utilized 

to perform Finite Element Analysis (FEA) on the examined flip-chip test vehicle. Figure 3-9 

compares the maximum shear stress distribution under temperature cycling and cyclic shear 

loading on the most critical (i.e. highest failure risk) joint. Although there are some slight 

variations in the two, it is important to note that the peak stress locations are identical for the two 

test types, and the failure mode demonstrated in the mechanical testing (Figure 3-5) is consistent 

with both the simulation results, as well as with traditional solder fatigue failures in ball grid 

array and chip scale package (CSP) solder interconnects under thermomechanical testing.   
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Figure 3-9:  Equivalent stress distribution at the most critical solder joint during (a) temperature 

cycling and (b) shear load cycling. 

 

 

Moreover, for creating a translation of the relationship between thermal cycling damage 

to the appropriate mechanical shear test protocol, the associated key damage parameters such as 

stress and plastic work accumulation must also be related.  One key benefit of the mechanical 

approach is that it greatly reduces reliability test duration, as cyclic frequency can be increased 

up to fractional second cycle periods. As such it is important to evaluate both stress and creep-

related damage accumulation in both cases. Plastic work density for temperature cycling and 

mechanical shear cycling (at room temperature: 22°C) were simulated for different stress 

conditions as shown in Figure 3-10a and 3-10b, respectively. Five standard thermal cycling 

ranges are considered here (JEDEC Conditions, J, N, G, B, and C) and compared with a 

sinusoidal applied shear force that represents the mechanical cycling method, ranging from zero 

to varying peak shear loads. The peak applied force is indicated for each mechanical cycling test 

simulation and results are depicted for three cycles of both experiments. According to the 

(a) 

(b) 
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simulation results, the maximum plastic work occurs during the first cycle in mechanical cycling, 

after which the plastic work increase per cycle remains relatively constant, which resembles the 

trend observed for the second and third temperature cycles for all temperature ranges.  

This result appears to contradict the experimental assumption that there is no plastic work 

done in the first cycle. However, a close examination of how each method calculates this result 

can explain this contradiction. As the FEA calculations are node/element based, they do not 

account for any net deformation across the joint material and subsequent chip deflection as seen 

in the experimental tests. These FEA methods are consistent with current application in industry 

for estimating lifetimes or damage accumulation in TC, however, this is virtually impossible to 

measure experimentally. Thus, when calculating experimental plastic work, it is targeted at total 

chip displacement during applied stress cycles, and then volume averaging over the initial 

interconnect geometry. 

Figure 3-10:  (a) Temperature profile and plastic work densities per unit time for five thermal 

cycling ranges (b) Force profile and plastic work densities for cyclic shear loading. 
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Figure 3-11:  Calculated plastic work density accumulated per cycle and maximum stress 

amplitude during thermal cycling for different temperature ranges. 

 

The maximum stress amplitude and plastic work density accumulation at the 3rd cycle of 

thermal loading of the test vehicle were determined, as shown in Figure 3-11.  As the 

accumulated plastic work stays consistent after the second cycle, it represents the accumulated 

plastic work of the whole thermal cycling process. 

Additionally, Figure 3-12 depicts the corresponding accumulated plastic work per cycle 

and principal stress amplitude in the solder joints for the shear force cycling methodology for a 

range of applied cycling shear loads, with the associated accelerated temperature tests that create 

a similar effect at the critical joints. The maximum stress amplitude is the variation of principal 

stress at the critical joint (joint that tolerate the maximum stress) during one cycle. Based on 

these graphs, a correlation between the stress amplitude and plastic work density between both 

test methods can be established. The results of mechanical cycling and temperature cycling tests 

that generate same stress amplitude are also shown in the Figure 3-12.  
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Figure 3-12:  Calculated change in plastic work density per cycle and maximum principal stress 

amplitude during shearing force cycling (at room temperature, 22°C). 

 

Based on the minimum and maximum temperatures, stress in solder joints may vary for 

different thermal cycling tests and a consistent relation between the maximum stress amplitude, 

as the main driving factor of thermo-mechanical fatigue, and maximum plastic work density 

cannot be found for every thermal cycling test. It is mainly because of viscoplastic behavior of 

solder material. Therefore, to relate the plastic work density accumulation per cycle of these two 

tests, the conversion coefficient C is calculated from the following equation, 

                                           ∆𝑊𝑇𝐶 = 𝐶∆𝑊𝑀𝐶                                                     (3.10) 

Where ∆𝑊𝑇𝐶 is the increase in plastic work density (in Pa) in a thermal cycling test and 

∆𝑊𝑀𝐶 is the increase in plastic work density for mechanical cycling at 2 Hz. The conversion 

coefficient of the simulated mechanical test at room temperature is presented in Table 3-3 for 

different maximum shear stress. 15-minute dwell and ramping time is considered in all the 

thermal cycling simulations. Using this table, the number of cycles to failure for a thermal or 

mechanical cycling test can be estimated using Darveaux’s fatigue model (equations 10-12) 
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where  𝑁0 is the number of cycles required for crack nucleation and 𝑁𝑝 is the number of cycles 

where crack propagation is the main contributor to plastic work density. 𝑁𝑇 is the total number 

of cycles to failure. The equations shown below allow the calculation of equivalent mechanical 

cycles from TC data. To calculate the thermal cycles to failure from mechanical cycling data, 

∆𝑊𝑀𝐶 is used and the subscripts on the 𝑁 terms are reversed to indicate mechanical data is being 

used. The constants used in the calculations are shown in Tables 3-3 and 3-4. 

                                                       𝑁0𝑇𝐶 =  𝐾1∆𝑊𝑇𝐶
𝐾2                                                 (3.11) 

                                               𝑁𝑝𝑇𝐶 =  
𝑎

𝐾3
∆𝑊𝑇𝐶

−𝐾4                                                (3.12) 

                                                                        𝑁𝑇𝑀𝐶 =  
𝑁0𝑇𝐶

𝐶𝐾2
+  

𝑁𝑝𝑇𝐶

𝐶−𝐾4
                                                (3.13) 

 

 

Table 3-3 

DARVEAUX'S CONSTANTS FOR 

Sn63/Pb37 

            a   (m) 0.33 

      K₁ (cycles

PaK2
) 3.08E+10 

               K₂ -1.49E+00 

    K₃( m

cycles ∙ PaK4
) 1.16E-13 

                K₄ 1.16E+00 
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Table 3-4 

 

CONVERSION COEFFICIENT OF THERMAL CYCLING TO MECHANICAL CYCLING 

(@ 22°) MAX. 

SHEAR STRESS AMPLITUDE 

OF MECHANICAL CYCLING 

TEST (MPa) 

0_100°C -40_85°C -40_125°C -55_125°C -65_150°C 

4.0 2.45E+04 4.56E+04 5.23E+04 6.61E+04 7.25E+04 

7.5 1163.45 2147.04 2464.07 3112.11 3412.51 

8.9 155.32 288.77 331.41 418.57 459.0 

9.0 24.52 45.57 52.30 66.05 72.43 

10.3 7.11 13.27 15.17 19.14 20.99 

13.3 2.59 4.81 5.52 6.97 7.65 

18.8 1.0 1.86 2.14 2.70 2.96 

21.7 0.56 1.03 1.185 1.50 1.64 

20.2 0.52 0.93 1.07 1.35 1.48 

28.6 0.11 0.20 0.23 0.29 0.31 

 

For example, a Si-based mock test vehicle of a flip chip SiC MOSFET with Sn63/Pb37 

joints which was demonstrated to pass JEDEC TC-“B” condition at 1000 cycles, could 

alternatively be shown to meet the same criteria, using mechanical cycling at 2 Hz for 3110 

cycles at a 13.3 MPa loading condition, completed within ~26 minutes. The same criteria could 

also be demonstrated at 28.6 MPa for 43.9 cycles, to be completed within 0.37 minutes. The 

large time difference between these two results is due to stress selection. When conducting a test, 

the conditions must be well posed. In order to generate equivalent levels of plastic work, higher 

shear stress amplitude or more cycles are required in mechanical cycling. However, considering 

that the fastest common temperature cycling frequency (3 cycles/hr.) requires 333.3 hours to 

achieve 1000 cycles, using a mechanical cycling test to simulate temperature cycling results in 

significant time savings.
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3.6. Discussion and Results 

The preliminary results demonstrate this approach as a viable alternative to commonly 

used environmental testing methods, which require expensive equipment that can often have 

their own reliability concerns, the associated time-consuming operation, and the large degree of 

uncertainty that comes from the combination of transient temperatures applied to device designs 

and materials which do not behave consistently across electronic package designs. This method 

seeks to eliminate some of the key obstacles and challenges encountered with using TC, PC or 

TS methods. In all of these methods, there exists a thermal component. In a high temperature 

environment, many additional damaging phenomena can occur in addition to CTE mismatch 

induced stresses, and may thereby confound the failure results when attempting to create 

acceleration models to predict actual operating condition lifetimes. For instance, oxidation, 

decomposition, and diffusion simultaneously interact with thermal stresses, in addition to 

possible electromigration commonly seen in PC testing. As diffusion has been shown to follow 

thermal gradients [16], chemical interactions in thermal-based testing are magnified. These 

interactions can create failure modes that are compounded with fatigue failure which may not 

always be present in non-accelerated operation.  

In this new testing regime, the stresses are induced solely from mechanical stimuli. This 

has some advantages. By removing the temperature component completely, the complications in 

failure mechanics caused by thermal gradients are removed. As such, the effects of the 

mechanical stresses can be studied in detail. Moreover, future efforts, will evaluate elevated 

temperature (iso-thermal) mechanical testing, to further de-convolute temperature and stress 

effects, for better representation of the physical failure mechanisms taking place. With a deep 

understanding of the effects of mechanical shear stress on the solder system developed, the 
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results of this test methodology can then be paired with other testing methods (such as TC and 

PC) where non-mechanical effects are involved to create a holistic understanding of total stress 

environment. Due to the complex nature of that stress environment, the effects of each variable 

can be isolated and then utilized in the development of more accurate constitutive models, in 

determining and predicting damage accumulation leading to failure in flip-chip interconnects. 

Since there will always be a temperature component in real-world application, these 

reliability effects will have to be considered in the design. Using this integrated approach, 

damage that arises from the individual factors normally compounded together in operation and 

typical acceleration tests can be identified independently, and thereby made clearer with the 

ability to inform optimized design for reliability. This novel method allows for in-depth study of 

the relationships between design, material selection, mechanical stress and failure. Thus, the 

effects of mechanical stress can be understood in detail, which becomes even more important in 

extreme operating environments where new materials may need to be developed for high 

temperature operation where there are not any standard environmental tests.  

Simulation results show similarity in the equivalent and maximum shear stress 

distribution of the most critical joint during temperature and shear load cycling. Moreover, the 

mechanical creep behavior of the solder material can be modeled by Anand’s viscoplastic model 

[17] with acceptable accuracy. The plastic strain rate, and therefore its plastic work, is highly 

related to the temperature. So, for an equal stress amplitude, solder material in temperature 

cycling experiences higher plastic work compared to the mechanical cycling. Therefore, the 

temperature effects on plastic work need to be modeled and account for in order to find the 

relationship between temperature cycling and mechanical cycling. Accordingly, by calculating 

the maximum stress amplitude in the solder joint for a specific thermal cycling range using FEA 
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simulation, equivalent mechanical cycling that generates a similar stress profile can be found 

which means related MTTFs, in terms of cycles, yet at greatly reduced testing time.   

Additionally, when considering solder fatigue, the life time of the solder interconnects are 

often considered to be proportional to plastic strain [18-20] or plastic work (inelastic energy) 

[20-25].  Darveaux’s equations are commonly used as the accepted method to estimate the life 

cycle of the solder interconnect, which relates the failure time under cyclic load to the plastic 

work density. The similarity in increase of plastic work density per cycle makes a strong case for 

the use of mechanical loading to simulate thermal operating cycles. As such, reliability 

relationships can be expected to follow similar trends, and CTF may likely correlate well with 

the number of cycles to failure predicted by the Darveaux method. 

As Darveaux’s empirical equation has a reasonable compliance with experimental results 

in this work, even for different cyclic loading conditions [6], the presented mechanical test 

methodology has the opportunity to aid in the development of physics-based acceleration models 

in precisely relating empirical stress/energy data for a given solder material and assembly 

process. Since the stresses are directly applied and associated displacement measured, it 

represents an efficient alternative to environmental testing, which though commonly used, 

creates vast amounts of uncertainty related to thermally dependent design impacts. Future work 

will establish the effects of strain rate, isothermal temperature changes, and materials, for 

developing reliability models that can be universally applied during the design stage without 

need for expensive validation, which becomes increasingly important as electrification of 

transportation systems require high reliability for safe operation, yet costs of wide bandgap 

devices and packaging are still high.  
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3.7. Conclusion 

The methodology presented and demonstrated herein represents a significant opportunity 

to reduce the cost and time of reliability testing, particularly where new packaging methods and 

materials are needed to meet the demands of electric vehicle operation environments. In this 

work we demonstrated the opportunity to reduce testing time based on plastic work by at least 

10x, depending on the material. In developing this rapid reliability translation technique, the 

design of future power devices can be optimized to limit mechanical failure risk during design 

stage to further increase power density and performance. Furthermore, once the contributions to 

failure of mechanically induced stresses are well understood, the contributions of each of the 

other factors become more easily separated and predicted using finite element simulations. Thus, 

we can begin to deconvolute the relationship between each of the contributing factors to the 

whole of thermomechanical reliability.  
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4. Expedited Fatigue Testing with in situ Resistance Monitoring for Failure Detection 

in Flip-Chip Solder Interconnects 

To facilitate the testing methodology, two test stands were designed and fabricated to 

interface with a Nanovea T50 tribometer which acted as the prime mover within the assembly 

and supported the load cell for force measurement. Both test stands use the tribometer’s 

integrated linear stage to translate the chip, thus stretching springs which are rigidly fixed at one 

end. As discussed in the previous section, this spring deflection generates the force which is 

transmitted to the solder interconnects in the form of shear stress by the testing apparatus.  It was 

important to minimize friction within the system to ensure that the vast majority of the force 

recorded by the load cell was due to spring resistance rather than frictional resistance to the 

translation mechanism.  

4.1  Test Apparatus 1: One-Directional Translation  

The first system was capable of operation in a single mode where the shear load was only 

applied in one direction. The springs were attached to a two-part carriage that was fixed to the 

translating stage. The lower half of the carriage acted as a base, rigidly attached to the stage by 

screw type fasteners. The upper section of this carriage comprised the clamping system 

responsible for load distribution to the device, where a cap placed over the die of a test device 

(see Figure 3-1) was held in place by the vise system. This upper carriage assembly was attached 

to the lower carriage by a T-slot and flange system which ensured degrees of freedom in the 

translation direction. This freedom allowed the upper carriage to respond to deformations within 

the solder interconnects. As fatigue progresses, the solder joints deform in response to the force 

along its line of action (see Figure 4-1), thus moving the die, necessitating that the carriage move 

concurrently to maintain proper contact with the die. In this test configuration, the springs are 
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attached at one end to the free-sliding upper carriage and at the other end to a fixed arm attached 

to the load cell. As the springs are stretched, the resultant force was felt by this arm assembly and 

recorded by the load cell. 

 

Figure 4-1: (a) Position of solder joints in untested sample. (b) Deformation of solder joints and 

die deflection (δ) after prolonged stress cycling. 

 

 This system was designed to accommodate a device footprint of up to 30 mm x 30 mm 

for both die and substrate. Given the spatial limitations of the stage, larger footprint devices were 

not possible, however, the testing methodology could certainly be scaled up with the use of 

another prime mover in place of the current tribometer. Force magnitude is determined by the 

spring constant of the springs selected with the limitation that maximum resultant spring force be 

≤ 20 N which was the maximum safe load for the tribomerter load cell used in this project. All 

testing with this testing configuration was performed at room temperatures with a cyclic 

frequency of 1 Hz. Measurement resolution using this testing configuration was determined to be 

± 0.0079 N. To ensure precision between tests, it is necessary to run a calibration test of the 

springs both before and immediately after performing a fatigue test. A full procedure for the 
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calibration test can be found in Appendix A. This testing apparatus is shown in fatigue testing 

configuration in Figure 4-2. 

 

Figure 4-2: Test apparatus 1 and tribometer instrumentation. 

 

4.2  Test Apparatus 2: Bi-Directional Translation 

Given that creep is one of the main sources of fatigue in relevant solder interconnects 

under operational conditions, there was a need to emulate creep behavior within the reliability 

testing method without negatively impacting the rapid nature of the test. Leveraging the coupled 

temperature and time dependence of the creep mechanism, the second testing apparatus was 

designed to operate in elevated steady-state temperature environments to emulate room 

temperature creep behavior. This was achieved by designing the second generation apparatus to 

work inside a ring oven which was affixed to the T50 tribometer. The inclusion of the ring oven 
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resulted in a significant reduction in available space, necessitating an extensive redesign of the 

loading system. In this second iteration, the horizontal layout from the first design was flipped 

vertically, with the springs, loading cap, and free-sliding carriage all arrayed above the die of the 

test device. Additionally, a smaller stage was required that could operate within the confines of 

the oven. By switching out the stages, the effective translation distance was changed from +30 

mm to ± 12 mm with the smaller stage with a resultant reduction in spring force for a given 

spring constant.  

 
Figure 4-3: Schematic of the loading configuration for the second design iteration. 

 

 In this test configuration, the vise, upper carriage, and loading cap were replaced with a 

composite assembly where the sliding portion of the carriage and loading cap were directly 

coupled via screws. Additionally, the entire upper assemble is attached directly to the 

cantilevered load cell arm, saving space and making measurements more accurate since the 

springs engage directly with the arm via the upper assembly main bolt rather than through a 

dedicated transfer arm like that seen in the previous design iteration. Rather than the springs 

being attached outboard of the carriage, they were placed ahead of and behind the carriage, 

directly along the line of action (see Figure 4-3). Each spring is captured within the rail system 

with internal guides to prevent warping or bending of the springs as they compress and are fixed 

to the rail system at the opposite end of the spring from the carriage. This improvement ensured 
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that no rotational torque was placed on the die as the result of unbalanced springs, where one was 

slightly stiffer than the other. To reduce friction even further from the initial design, very low 

friction sleeve bearings and capture washers were used in the sliding assembly, resulting in force 

measurements which more accurately characterize the effective force experienced by the springs.  

 

Figure 4-4: Test Apparatus 2 with load cell and resistance monitoring circuitry. 
 

 Another feature incorporated in the second configuration was the ability to monitor 

device circuit resistance and device temperature in situ as the solder interconnects undergo 

fatigue testing. To enable this capability, a new baseplate was designed with room for electrical 

leads to route under the upper assembly and a channel drilled into the center of the baseplate to 

allow for a thermocouple to rest under the device for the most accurate reading of in situ 

interconnect temperature (see Figure 4-4). The supported device footprint remains 30 mm x 30 

mm with a maximum force of ± 20 N. Testing frequency remains 1 Hz for tests conducted using 

this configuration with a sensor resolution of ± 0.0092 N. This testing method can be used at 
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both ambient and elevated steady-state temperatures up to 440 °C. When testing at elevated 

temperatures, care must be taken to ensure true steady-state conditions.  

4.3  Mechanical Cycling With Test Configurations 

Both testing configurations use continuous sinusoidal loading profiles with the frequency 

set by the inputs made to the tribometer motor controller. Both testing configurations were 

designed to be as adaptable to new device geometries as possible while remaining compatible 

with the T50 tribometer hardware. The 3D printed substrate carriers and the loading caps (ABS 

and metal) can be configured to support a wide variety of devices quickly making the entire test 

stand very versatile, capable of testing many fully operational chip-scale and package-scale 

devices.  Accurate testing with both methods requires that the spring coefficients of the springs 

used must be as close to identical as possible. The spring coefficients can be determined during 

the calibration tests prior to data collection. Spring wear and fatigue can be tracked by evaluating 

the spring coefficients before and after each test. Springs should not be used once the spring 

constants have begun to degrade.  

 Initial testing was conducted using a Si test chip designed as a non-functional mechanical 

analog (dummy die) of a SiC MOSFET device on an FR4 substrate. The 3 mm x 4.4 mm test 

chips were constructed with thirteen 0.381 mm (15 mil) solder interconnects with 0.305 mm 

SMD (Solder Mask Defined) solder resist openings. Testing focused on devices with lead-free 

Sn95/Sb5 interconnects with Sn42/Bi57.6/Ag0.4 solder paste in the openings and devices with 

eutectic (Sn63/Pb37) interconnects and paste. To determine the appropriate test load, die shear 

tests were conducted with die shear strengths of the lead-free units averaging 29 MPa and the die 

shear strengths for the eutectic units averaging 35.1 MPa. Based upon these results, fatigue 

testing was targeted at 50% of the recorded die shear strengths for each material set with a 
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frequency of 60 cycles per minute (1 Hz). The weakness of using these dummy die was in being 

unable to quantify failure by means other than complete die separation since the devices were 

non-conductive. For use with the in situ resistance capabilities of Test Apparatus 2, a new test 

device was designed and fabricated which possessed an active die with full electronic 

functionality. This new Test Vehicle 2 (TV2) was designed with forty 0.254 mm solder 

interconnects connected into a symmetrical daisy chain with additional pad locations to act as 

taps between interconnects for failure localization. Details of the design and the design process 

are included in Appendix C. These devices were tested at 30% of their average die shear strength 

(52.4 MPa) due to the safety limitations of the load cell with a frequency of 1 Hz. 

4.4  Reliability Evaluation with Test Apparatus 1 

Table 4-1: Results of Experimental Fatigue Tests with Apparatus 1 

 

 

All tests conducted with Apparatus 1 were conducted at 1 Hz with the dummy die device 

under ambient conditions. Using techniques discussed in Chapter 3 and the cycles-to-failure 

(CTF) for a given device, the amount of damage that was accumulated during testing as a result 

Sample # Cycles to Failure Peak Effective Stress (MPa) Strain Energy Density (Pa)

1 4 18.4 1761.7

2 17 16.2 1319.7

3 24 15.8 1351.8

7 15 15.4 1268.3

Sample # Cycles to Failure Peak Effective Stress (MPa) Strain Energy Density (Pa)

10 100435 15.8 10196.8

11 296443 15.8 10752.0

12 39778 15.2 9951.6

13 201328 16.9 12329.7

Material Set: Sn95/Sb5 Sphere with Sn42/Bi57.6/Ag.04 Paste

Material Set: Sn63/Pb37 Sphere with Sn63/Pb37 Paste

Cyclic Loading Results
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of the applied shear stress can be assessed. Examination of Table 4-1 shows that the lead-free 

dummy die failed much more quickly than did the eutectic units. The shorter fatigue lives and 

lower strain energies recorded for the lead-free units were attributed to the lower shear strength 

of the lead-free material. The higher strain energy densities observed in the Sn63/Pb37 units 

reveal that the devices were able to survive higher accumulated strain energies most likely as a 

result of the induce shear stresses being a lower percentage of the devices’ ultimate shear 

strengths. It can be seen from Figure 4-5 that work accumulation rate is much higher in the lead-

free material for a given applied stress. When examining the relationship between accumulated 

work (damage) and CTF (Figure 4-6) it is clear that the two materials exhibit opposite trends 

with accumulated work decreasing with higher CTF for the lead-free materials, while 

accumulated work increases with higher CTF for the eutectic materials. The dissimilarity 

between these two trends may be due simply to the large difference in cycle lives between the 

two unit sets. Due to their substantially longer cycle lifetimes, the Sn63/Pb37 units were allowed 

more time to accumulate damage. Additionally, there was a large range between the fatigue 

lifetimes of the eutectic units with an early failure by unit 10 which may have been due to a 

processing defect that reduced the effective joint. A poorly bonded joint would have negatively 

impacted both the CTF and the sustained amount of plastic work before failure leading to the 

trend observed in Figure 4-6. 
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Figure 4-5: Plastic work accumulation rate versus effective stress. 

 

 SEM imagery coupled with the accumulation rate over the total test time where no force 

degradation was observed can be used to characterize the joint (see Figure 4-7). The number of 

cycles required to exceed the elastic limit can be determined and observations of joint ductility 

are readily formulated. The imagery also serves to reveal the location/s of the primary damage, 

enabling characterization of the effects of architecture, stress application rate, and damage 

accumulation on device reliability.  

Once failure had occurred, the joints of each sample were examined to ascertain failure 

modes and assess the quality of each interconnect. In the lead-free samples, many of the joints 

were found to have failed to properly bond. To account for this discrepancy, a volumetric 

approach was taken where, the amount of damage accumulation was characterized as a function 

of the total solder volume under stress. The lead-free were observed to have very little or no 

damage or deformation of the solder spheres themselves during these joint examinations. The 

majority of the damage was seen within the solder paste in the pad opening and at the interface 
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between the paste and the bulk solder spheres (Figure 4-7). The paste was identified as the 

damaged material because it was seen to be located below the lip of the solder mask in the “well” 

of the joint. By comparison, the eutectic units exhibit damage more uniformly distributed 

throughout the solder columns with damage more frequently seen within the bulk solder spheres. 

From these observations, it was concluded that the volume of the material actually under stress in 

the lead-free units was primarily that of the paste solder material near the pads, while in the 

eutectic units, the entire available solder volume was opposing the stress. On that basis, 

volumetric work calculations were undertaken considering only the past volumes as effective 

joints in the lead-free devices. The entire available solder volume, including sphere and paste, 

was used in the calculations for the Sn63/Pb37 devices.  

 

Figure 4-6: Accumulated plastic work versus log CTF. 
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Figure 4-7: Top view SEM image of a Sn42/Bi57.6/Ag0.4 joint of a Si MOSFET. Multiple crack 

fronts are visible. 

 

 Examination of the load cell outputs for each test revealed that in all cases, the majority 

of damage was accumulating within a subset of the total number of cycles, generally those near 

the point of failure. This zone was termed the “accumulation zone”; all plastic work accumulated 

during the fatigue tests were attributed to cycles within this zone. The plastic work accumulation 

rate was calculated by dividing the total work accumulated by the number of cycles in this region 

for each sample. The cause of the difference between accumulation rate trends in Figure 4-5 may 

be the comparative ductility and shear strength of the joints of each individual sample. Figure 4-8 

exhibits the load cell output for sample 7, showing a noticeable downward trend throughout the 

plastic region. A flatter trend with a shallower slope prior to failure would be expected for a 

more brittle sample with generally smaller accumulation region. Unit 3 is one such device, with 

an accumulation region that is only three cycles long.  

Crack 

Fronts 
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Figure 4-8: Load cell output for sample 7 showing force versus cycles with accumulation 

(plastic) region shown. 

 

 When these peaks were compared across material types, the eutectic material generally 

exhibited lower damage accumulation per cycle with a much flatter downward trends. For the 

eutectic devices, the apparent large accumulation regions seem to conflict with the brittle failure 

modes observed in the joints. This disagreement is resolved when the size of the accumulation 

region is considered as a percentage of the entire number of cycles prior to failure. The size of 

the accumulation regions for all dummy die samples are shown within Table 4-2 which 

illustrates that the lead-free interconnects were accumulating damage for a far longer percentages 

of their total CTF’s as compared to the eutectic units.  The size of the accumulation region for 

the Sn63/Pb37 dummy die never exceeded 0.4% of the total fatigue life in cycles. This result 

supports the conclusion that the eutectic failures were more brittle in nature, given that when the 

elastic limit was reached, and that the moment of fracture was so much shorter as a sub-set of the 

total time-to-failure (TTF). This conclusion was supported by SEM imagery taken of failed joints 

of each material (see Figure 4-9). In the case of the lead-free solder (Figure 4-9a), a more ductile 

failure, with more smearing behavior along the shear tip is observed. In the case of the 
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Sn63/Pb37 joint (Figure 4-9b), a large crack has split across the entire diameter of the bulk 

solder sphere, consistent with a much more brittle failure mode. 

 

Figure 4-9: Top view SEM image of (a) deformation of chip-side joint in Sn42/Bi57.6/Ag0.4 

solder paste of sample 2. (b) Bulk crack in Sn63/Pb37 material of die-side joint of sample 11. 

 

Table 4-2: Calculated Damage Accumulation for Dummy Die Units 

 

Sample #
Volumetric Plastic 

Work (J/mm³)

Accumumulation 

Rate (J/cyc)

Elastic Region 

(cyc)

Plastic Region 

(cyc)

Plastic cycles as 

percent of CTF

1 6.91·10⁻¹ 1.25·10⁻² 1 3 75%

2 2.39·10⁻¹ 9.57·10⁻⁴ 1 16 94%

3 1.26·10⁻¹ 2.07·10⁻³ 21 3 13%

7 9.92·10⁻² 5.44·10⁻⁴ 6 9 60%

Sample #
Volumetric Plastic 

Work (J/mm³)

Accumulation 

Rate (J/cyc)

Elastic Region 

(cyc)

Plastic Region 

(cyc)

Plastic cycles as 

percent of CTF

10 6.23·10⁻² 4.71·10⁻⁴ 100401 34 0.03%

11 1.03·10⁻¹ 2.32·10⁻⁵ 295302 1141 0.38%

12 1.20·10⁻² 1.54·10⁻⁴ 39758 20 0.05%

13 6.60·10⁻² 5.65·10⁻⁴ 201298 30 0.01%

Material Set: Sn95/Sb5 Sphere with Sn42/Bi57.6/Ag.04 Paste

Material Set: Sn63/Pb37 Sphere with Sn63/Pb37 Paste

Plastic Work Accumulation Data

(a) (b) 
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 Plotting the plastic work density against the accumulation rate (Figure 4-10) revealed that 

both the amount of plastic work accumulated by the lead-free solder paste and the rate at which it 

occurred were significantly higher than in the case of the Sn63/Pb37 solder joints. Given that the 

ultimate shear strength of Sn42/Bi58 (27 MPa) is less than that of Sn63/Pb37 (34.5 MPa), it is 

intuitive that plastic deformation occurs more rapidly on both a per-cycle and overall CTF basis 

for the lead-free units, a deduction that is confirmed by the results of the fatigue tests.  

 

 

Figure 4-10: Volumetric Plastic work accumulation versus accumulation rate. 

 

4.5  Elevated Temperature Testing with Apparatus 2 

4.5.1 Dummy Die Test Chip 

To evaluate the performance of the fatigue testing method at elevated temperature, both 

dummy die and TV2 units were tested using Apparatus 2. As stated previously, elevated 

temperatures were included to enhance the effects of creep given its coupled temperature and 

time dependence. This enhancement ensures that a device tested under accelerated conditions 

will experience failure modes more in line with expectations in the field. Additionally, elevated 

steady-state temperatures mimic operating conditions when a device is functioning at peak 
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temperatures during extended use. To extend the data set, two material sets were selected for use 

with the dummy die test chips; SAC 305 and Sn63/Pb37. Sn63/Pb37 was also used in TV2 for 

tests conducted with the in situ resistance monitoring functions enabled.  

 Using the dummy die, tests were conducted at 25 °C, 85 °C, 100 °C, and 110 °C (and 125 

°C for SAC 305) to establish failure metrics for each material at various temperatures with an eye 

toward established behavior trends as devices cycle through a temperature range. Examination of 

the plastic work density for these tests reveals a unique trend; a clustering of data points where 

the total amount of work (damage) accumulated as a function of solder volume remained within 

a narrow band for all the testing temperatures (see Figure 4-11).  

 

Figure 4-11: Plastic work density with temperature. 
 

Examining the rate of work accumulation per cycle revealed that with increasing temperature the 

damage accumulation behaviors of the two materials were very different. Figure 4-12 details the 

relationship between work accumulation rates per loading (given the bi-directional nature, on 

cycle equals two loadings) and homologous temperature for the tested temperatures. 
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Homologous temperature is the ratio of operating temperature to the material’s melting point and 

was chosen for use in this study in order to make a direct comparison between the two materials 

on the same scale. The trend for the eutectic Sn63/Pb37 dummy die show a much sharper slope 

to the curve with increasing temperature while the trend for SAC 305 units is much flatter with a 

more linear relationship between damage accumulation and increasing temperature.  

 

Figure 4-12: Work accumulation rate with increasing temperature. 
 

The clustering effect seen in Figure 4-11 with all accumulated plastic work values for 

tested units of both material sets lying within a narrow band reveals that the amount of 

damage required to generate a failure within the dummy die device is independent of material 

or temperature. Rather, while required damage is constant, the TTF is reduced as temperature 

increases. Reinforcing this finding, the shear strain energy values for all the tested units of 

either material where found to lie between 12088.41 Pa and 14408.76 Pa ± 8% irrespective 

of test temperature. There was no relationship between temperature and strain energy density 

with both high and low values occurring within each temperature zone for each material.  

Given that in this application, the shear stress accounts for all energy input into the system as 
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plastic work, the accumulated plastic work and shear strain energy density are linked. When 

this is considered, the relatively constant nature of the one value supports the findings about 

the other.  

The primary conclusion that can be drawn from Figure 4-12 is that temperature will 

have a larger effect on rates of damage accumulation in devices constructed using Sn63/Pb37 

solder interconnects, and thus a greater impact upon CTF. SAC 305 has a higher melting 

point, likely giving the material a greater ability to endure test temperatures without 

noticeable damage accumulation, ultimately resulting in longer test durations. The damage 

accumulation behavior of the tested materials is directly related to the ultimate shear strength 

and the ductility of each with the more ductile material accumulating the necessary damage 

for failure much more quickly through a predominately ductile necking /smearing 

mechanism.  

Additionally, ductility is impacted by temperature with more viscoplastic behavior 

replacing brittle cracking in units which were tested at elevated temperature. A small increase 

in temperature can have a large effect on the mechanism by which failure occurs. Figure 4-13 

illustrates this fact, detailing the effects of a 15 °C difference in temperature had on failure 

mode in two dummy die units with SAC 305 joints with one tested at 85 °C and the other at 

100 °C. This 18% increase in temperature resulted in the dominant failure mode transitioning 

from brittle void formation and cracking to extreme viscoplastic behavior exhibited by 

extensive smearing of the solder.  
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Figure 4-13: SEM Top view of (a) SAC 305 solder joint after failure when tested at 85 C. (b) 

SAC 305 solder joint after failure when tested at 110 C. 
 

4.5.2 in situ Resistance Monitoring at Elevated Temperatures 

Tests conducted using the TV2 devices confirmed that this second test unit was 

substantially stronger than the dummy die units tested previously, with much longer fatigue life 

times. Between the two test unit types, the total solder volumes are roughly the same (0.48 mm3 

or the dummy die and 0.46 mm3 for TV2) but the cross-sectional area resisting the load in TV2 

units (1.3 mm2) is double that found in the dummy die units (0.7 mm2) due to TV2 possessing 

many more solder joints. Larger joint cross-sectional area enables the TV2 units to sustain much 

higher stresses for longer periods, leading the longer fatigue lifetimes recorded. Figure 4-14 

details the CTF results for the TV2 tests for the tested temperatures. All TV2 units were 

assembled with Sn63/Pb37 solder joints and tested with a loading frequency of one cycle-per-

second (1 Hz).  
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Figure 4-14: Cycles-to-failure for all TV2 units at test temperatures. 
 

Resistance monitoring was conducted for these tests to evaluate the point of failure, defined as 

the point at which total circuit failure occurred. Total circuit failure was defined as the moment a 

high resistance event, such as a spike occurred with a resistance increase of 30% over the starting 

value. Thirty percent was chosen because in industry, a 30% increase in resistance is enough to 

seriously hamper device performance. In many cases, these high resistance events occurred in 

the form of resistance spikes which exceeded the resistance monitoring systems detection limit 

(500 Ω), indicating massive degradations in performance due to the thermomechanically induced 

damage. As would be expected, the achieved CTF for tested units decreased dramatically with 

elevated temperatures from an average of 28623.9 ± 14% CTF for the 25 °C tests to an average 

of 340.1 ± 3% for the 115 °C tests, representing an 84x reduction in reliability. The relationship 

between device reliability and temperature can be seen to be logarithmic, with temperature 

becoming increasingly impactful on fatigue lifetime.  
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Figure 4-15: Plastic work density with respect to temperature for tested TV2 units. 
 

Fatigue tests of TV2 units conducted with Apparatus 2 revealed similar trends to those 

seen with the dummy die devices. Examination of the total plastic work accumulated by the 

joints during testing at different temperatures again showed that the total energy value of 

accumulated damage required to induce circuit failure remained nearly constant irrespective of 

test temperatures. Figure 4-15 shows that for all testing temperatures, the plastic work density 

values ranged between 19.1 J and 14.6 J, a spread of 4.5 J. The slight downward trend is 

attributed more to the severely limited number of cycles before failure at the higher 

temperatures.  Due to the much earlier failure times, the solder joints did not have as much time 

to accumulate damage. The standard deviation of all the damage values across all testing 

temperatures was ± 1.2 J/mm3, a value corresponding to only 7% of the average plastic work 

accumulated across all devices; 17.3 J/mm3.  
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Figure 4-16: Average plastic work accumulation rate changes with temperature. 
 

Plotting the average plastic work accumulation of devices tested at each temperature (see 

Figure 4-16) on the homologous scale provides information about the way damage accumulation 

is effected as temperature approaches the material’s melting point. Examining the damage 

accumulation behavior, it is seen that the rate increases between the 25 °C, 85 °C, and 100 °C 

tests are relatively small followed by a very large plastic work accumulation rate increase for the 

115 °C tests. While the individual rate values are larger, the shape of the curve and relative 

positioning of the data points are nearly identical to the trend observed for the dummy die which 

also had Sn63/Pb37 solder joints (see Figure 4-12). Typical deviation of approximately ± 14 % 

from the temperature specific average accumulation rates were observed for the first three 

temperatures. However, the standard deviation for the rate values of the 115 °C test units was ± 

19%, likely due to larger variations in plasticity with the elevated temperature for those devices 

with some units experiencing slightly more plasticity in response to the higher temperature.  
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Figure 4-17: in situ resistance plot for 25 °C Test 1. Failure coincides with total circuit 

breakdown exceeding resistance detection limit (500 Ω). 

 

As mentioned above, for tests conducted with TV2, the primary metric for determining 

failure was electrical performance monitoring through in situ resistance measurement. Resistance 

monitoring while the device is under test allows for qualitative and quantitative observations 

about the state of the device at any point during the test. The resistance curve for Test 1 at 25 °C 

is shown in Figure 4-17. In this case, a 30 % failure did not occur prior to a total circuit 

breakdown resulting in a resistance spike exceeding 500 Ω, thus this point at 21,621.4 cycles was 

recorded as the point of failure. However, examination of the figure shows extensive resistance 

changes prior to the point of failure with most major resistance events occurring after the 15,000 

cycle mark. This sudden onset of significant resistance fluctuation is indicative of the onset of 

extensive cracking. From the 15,000 cycle mark onward, peaks and valleys indicate the opening 

and closing of cracks in response to changes in loading application direction.  
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Figure 4-18: in situ resistance plot for 115 °C Test 1. Greater than 30% increase occurs at 353.92 

cycles and prior to total circuit breakdown. 
 

Figure 4-18 shows the resistance changes over the course of Test 1 at 115 °C where a 

30% resistance increase did occur at 353.92 cycles and prior to total circuit failure at 359.2 

cycles. Comparing these two resistance curves, it is clear that less cracking occurred prior to 

failure in the 115 °C test. As expected, the increased temperature had a severe negative effect on 

the total fatigue lifetime of the device, however, not through brittle cracking. The relative lack of 

cracking prior to failure for the high temperature device was attributed to the predominant failure 

modes experienced by devices tested at 115 °C; ductile necking and smearing. Consistent with 

theory and behaviors observed in the dummy die tests (see Figure 4-13), TV2 devices tested at 

the higher temperatures experienced more ductile failure due to increased viscoplastic behavior 

in response to the additional thermal energy. This behavior allowed the solder joints to deform 

and stretch in response to the stress, thus maintaining the electrical connection relatively 

unchanged until the damage accumulated reached a point where joint separation finally did 

occur.  In depth analysis of the failure kinetics can reveal the mechanical principles behind these 

behaviors. 
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5. Failure Mechanics Analysis: Fatigue and Creep Induced Microstructural Changes 

 For any reliability analysis, the reasons “why” and “how” a device failed are just as 

important as the “when” at which failure occurred. By examining the microstructure and the 

fracture surfaces of the failed joints, a better understanding of the material’s response to the 

applied stress can be developed. Additionally, microstructural changes under stress can further 

clarify why the dummy die units failed so much more quickly than the TV2 units. As discussed 

previously, the total solder volumes of all interconnects per device for the dummy die and TV2 

were nearly identical (0.48 mm3 and 0.46 mm3 respectively). However, the solder volume of an 

individual interconnect of the dummy die was 0.037 mm3, over three times the volume per joint 

for TV2 (0.011 mm3). Li et. al. studied the effect of solder volume on shear fracture behavior on 

solder interconnects and found that increased joint volume led to more IMC growth at a constant 

growth rate via diffusion process where growth rate increased with increase solder volume [1]. 

The metallurgical reaction of the Cu/Sn/Cu diffusion couple which is present at the interface 

between the pad surface and the solder material was studied by Yin et. al., who determined that 

two intermetallic phases result from this diffusion phenomenon [2]. The intermetallic species 

Cu3Sn and Cu6Sn5 were reported with bulges of the single-crystalline Cu6Sn5 seen to form on the 

Cu3Sn segments. Void formation was observed at these locations with subsequent void growth 

resulting in breakage. Thus, IMC growth accelerated cracking within the solder joints 

particularly near the interface is consistent with resistance spikes associated with the presence of 

cracks which are opening and closing under load observed in tests conducted at lower 

temperatures (see Figure 4-17). Thus, the increased volume per joint rendered the dummy die 

units more susceptible to cracking, negatively impacting their fatigue life which resulted in the 

much shorter cycles-to-failure reported as compared to the TV2 units.  
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The two primary failure mechanisms inherent in solder joint failure are fatigue and creep. 

Creep is expected to dominate deformation kinetics when the material is at temperatures above 

half its absolute melting point (Tm) while under load [3-4]. Below the 50% threshold, fatigue will 

play a more active role in the overall failure mechanism at work within the joints. Examination 

of Figures 4-12 and 4-16 reveals that of the temperatures tested, only 110 °C and 125 °C for SAC 

305 and 100 °C, 110 °C, and 115 °C for Sn63/Pb37 exceeded this threshold. As a result, the 

primary failure kinetics for test temperatures below this threshold were dominated by fatigue 

failure. This is evidenced by examination of the fracture surfaces of the joints which were tested 

at the lower temperatures. Fatigue is the result of lowering material strength due to the repetitive 

mechanical loading of the joints and subsequently, the repetitive application of stress. Typically, 

fatigue failures occur when a small crack initiates at the location of maximum stress, which 

Figure 3-9 indicates is near the interface between the solder joint and the pad surface; right at the 

IMC layer. The crack then propagates over continued cyclic loading.  Figure 3-5 clearly shows 

crack striations in the fracture surface of a eutectic joint tested at ambient temperature which are 

consistent with fatigue fracture; the striations indicating the position of the crack tip for each 

cycle.   

Upon examination, the fracture surfaces observed at the lower testing temperatures are 

consistent with brittle failures due to the predominance of intergranular cracking often along a 

single plane [5]. Additionally, brittle cracking often occurs within thick sections of material, in 

this case the bulk solder spheres, and often requires very little plastic deformation. Figure 5-1 

illustrates the intergranular cracking through a bulk Sn63/Pb37 solder sphere from a TV2 unit 

tested at 25 °C. The crack front extends in an almost perfectly planar fashion, indicating that the 

crack propagated along a specific crystallographic plane.  
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Figure 5-1: Intergranular cracking in a Sn63/Pb37 joint from a TV2 unit tested at 25 °C. 

 

As the test temperature increases, approaching that 50% Tm, the fracture surfaces of failed joints 

begin to change, incorporating more aspects of ductile failure indicative of creep mechanics. 

Solders become more ductile with increasing temperature in conjunction with a decrease in 

ultimate strength. Due to the dual dependence of creep upon stress and temperature, this decrease 

in strength coupled with higher temperature leads to increased creep behavior with enhanced 

viscoplasticity leading to more extensive plastic deformation. At the intermediate temperature of 

85 °C, the fracture surfaces of failed joints begin to exhibit some of the attributes of both brittle 

and ductile failure mechanisms. Figure 5-2 depicts a SAC305 solder joint from a dummy die 

sample tested at 85 °C. A large crack front through the bulk solder sphere can be seen which is 

associated with the final fracture. However, the presence of three large, elongated voids indicate 

microvoid formation which occurred as a result of transgranular fractures at the grain boundaries. 

Deformation slip is also indicated by the elongated nature of the voids. This slip occurs when the 
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resolved shear stresses, which are highest at a 45° angle to the applied load, reach the critical 

limit. More elongation of the voids indicates a higher degree of 45° slip. 

 

Figure 5-2: Top view SEM image of the fracture surface for a SAC305 joint which failed when 

tested at 85 °C. Elongated microvoids (dashed box) and a brittle crack front (dotted line) are 

visible indicating both ductile and brittle failure behavior. 

 

 At testing temperatures over the 50% Tm threshold, the higher temperatures enable 

dislocations within the solder to climb. Dislocation climb occurs when atoms move either to or 

from the dislocation line by diffusion, causing the dislocation to move in a direction 

perpendicular to the slip plane [5]. Climb controlled dislocation creep has been reported as the 

dominate failure kinetics mechanism for solder alloys due to the high dependence of secondary 

creep on stress and temperature [4]. Higher temperatures lead to increased creep strain rates 

which result in decreased time before stress rupture occurs. Thus, the devices tested at 

temperatures above the half melting point threshold fail after significantly shorter test periods 

than those tested at lower homologous temperatures. These failures are characterized by 

extensive plastic deformation and fracture surfaces which extended shear tips (see Figure 4-9a). 
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Often the entire fracture surface is the shear face leading to large numbers of elongated dimples 

present across the entire joint indicating voids which were stretched as a result of the shear load 

(see Figure 5-3). By examining the creep strain rate for a given device as cycling progressed, a 

better understanding of the failure kinetics can be obtained. 

 

Figure 5-3: Elongated dimples in the fracture surface of a Sn63/Pb37 interconnect tested at 115 

°C which are artifacts of microvoid formation within the material. 

 

Using Darveaux’s equations for inelastic strain discussed in section 3 (equations 3.3–3.6), 

creep strain and plastic strain were plotted as a function of cycles to determine the trend behavior 

for each type of strain as testing progressed for a given device. In all cases, across all 

temperatures, the creep strain is seen to increase as cycling continues indicating that dislocation 

climb and diffusion are occurring across an increasingly large volume of the material with an 

increasing rate. This is consistent with the “damage runaway” indicated by the ever larger drops 

in force reported for each subsequent cycle such as that seen in Figure 4-8. As the creep strain 

rate increases, the amount of deformation imparted with each cycle increases at an ever higher 

rate resulting in progressively lower force values prior to fracture. Example creep curves for each 
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tested temperature are shown below (see Figure 5-4(a-d)). From the graphs, it is clear that the 

rate of increase in creep strain with additional cycling become progressively higher with each 

increase in testing temperature.  

 
 

Figure 5-4: Creep strain curves for TV2 devices tested at (a) 25 °C (b) 85 °C (c) 100 °C and (d) 

115 °C. The trendline denotes the rate of increase in creep strain as testing progressed, high 

slopes indicate high strain rate acceleration. 

 

For the test temperatures above the 50% Tm threshold, the higher values for creep strain 

rate are the culprit behind the much shorter cycle times seen at these temperatures. Increased 

creep strain in the interconnects of these devices leads to a higher propensity for damage 

accumulation through dissociation climb, slip, and diffusion processes, ultimately curtailing the 

fatigue lifetimes of devices tested at high homologous temperatures. This relationship between 

temperature and creep strain rate explains the damage accumulation trends observed in Figures 

(a) 

(d) (c) 

(b) 
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4-12 and 4-16. The plastic work accumulation rate increases with increasing temperature due to 

increases in creep strain rate per cycle. Additionally, the manner in which a material accumulates 

damage, whether brittle or ductile failure, has been shown to depend on creep strain rate. With 

increased creep strain rate, the fracture surface will transition from predominately brittle failure 

modes to more ductile modes in response to the enhanced viscoplasticity. In the transient zone 

where operating temperature approaches, but does not exceed the 50% Tm threshold, the solder 

joints will endure both brittle and ductile fracture mechanics. Thus, a device operating through a 

temperature range in a real-world application will experience both types of fracture modes as 

well as both creep and fatigue. Understanding how this agglomeration of effects impacts the 

solder material will be critical to making accurate predictions about real-world fatigue lifetime.  
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6. Summary and Conclusions 

A method was devised for evaluating the fatigue lifetime of flip-chip solder interconnects 

on a rapidly accelerated time scale through the use of applied shear stress. By utilizing the 

relationship between spring deflection and spring force, the amount of shear stress induced 

within the solder interconnects was quantified allowing for comprehensive examination of the 

failure mechanics and their effect on device reliability. In situ resistance testing enabled the 

evaluation of stress and damage accumulation on electrical performance for relevant device 

architectures. A method for calculating this damage accumulation in the form of work, was 

developed to enable accurate assessment of plastic deformation within the joints on a per cycle 

basis. 

From the test results across two device architectures and two solder material sets, a 

pattern of total damage accumulation remaining constant with increasing temperature can be 

observed. While the values of accumulate plastic work were unique to the device type, for both 

test devices the amount of plastic work accumulated prior to failure by units of that type 

remained almost constant irrespective of temperature. In the case of the dummy die, this held 

true both the Sn63/Pb37 and SAC 305 material sets; devices with SAC 305 joints accumulated 

the same amount of damage as the devices with eutectic joints. Temperature still plays a key role 

in the ultimate strength (in this case shear strength specifically) of a device with increasing 

temperatures reducing the ultimate strength of a material. In these fatigue tests however, the 

shear stress applied to the tested units is not a significant enough percentage of the ultimate 

strength of the devices at the ambient or elevated conditions for this temperature dependency to 

greatly effect fatigue performance. In the case of the dummy die units with different materials, 

the cross-sectional area of material opposing the load was the same for all tested units. The 
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consistency of work values across material sets indicated that that particular amount of work was 

required to significantly disturb the geometry, reducing cross-sectional area and creating joint 

separations but this energy value was not dependent upon material. This reality means that the 

amount of work necessary to develop failure is primarily dependent upon interconnect geometry 

when the shear load is significantly below the ultimate shear strength of the material in question 

rather than on temperature or material. The same amount of work is thus necessary to generate a 

fixed amount of damage to a given geometry which is itself necessary to greatly degrade 

performance. It is hypothesized that there exists a stress threshold above which this no longer 

holds true as applied stress approaches ultimate strength. Above this threshold, work values 

required to generate cracking and joint separation will begin to vary from temperature to 

temperature, however, additional testing at higher stresses would be necessary to determine this 

threshold.  

It is clear from the results that the rate of damage accumulation will become more severe 

as a device passes through that temperature during operation. This is where the effects of 

temperature are really felt, not in the total damage accumulated, but in how fast the device 

accumulates that damage. Temperature induced viscoplasticity results in drastic reductions in 

total CTF as increased ductility allows more plastic work to be done per cycle resulting in shorter 

fatigue lifetimes.  It is apparent from Figure 4-12 that the way plastic work accumulation (read 

damage accumulation) changes with temperature will be dependent upon the material. In this 

study, SAC 305 was the stronger material, generally reporting longer fatigue lifetimes for a given 

temperature than the eutectic units. This strength was reflected in lower cyclic damage 

accumulation rates yielding a flatter rate of work accumulation rate change curve. Thus, a SAC 

305 device will accumulate less damage as it swings through a power cycle in actual operation, 

ensuring greater reliability. However, the manner in which the solder joints accumulate damage 
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in this device will change as it achieves higher temperatures or cools down; brittle fracture at low 

temperatures and ductile fracture at high temperatures.  

Creep and fatigue are responsible for the formation of these failures. Temperature and 

stress dependent dislocation creep is accelerated in solder interconnects which are stressed while 

above 50% of their absolute melting temperature. The increased rate of damage accumulation 

seen with increasing temperature is directly correlated to this enhanced creep behavior. 

Additionally, solder volume plays a role in the manner and amount of damage accumulated, with 

interconnects that have larger solder volumes experiencing failures more quickly than low 

volume solder interconnects. In industry applications, the two predominate failure mechanisms 

will occur within the same joints each time a device passes through the associated temperature, 

likely accelerating and enhancing each other with each passing cycle. Understanding this 

phenomena is necessary to make accurate predictions about solder fatigue behavior within a 

device operating across a given temperature range. Design and material selection are of greater 

importance to device reliability when assessing the fatigue life and mechanical reliability of flip-

chip devices when operating sufficiently below the ultimate strength of the material than is the 

temperature range itself.  

In situ resistance monitoring of devices undergoing fatigue testing can provide great 

insight into the failure behavior of the interconnects within the device. It can be used to assess 

both the onset of significant damage and the point at which that damage becomes unsustainable 

informing both design and material selection. In addition to the quantitative CTF data, resistance 

monitoring can provide qualitative information about the characteristics of the failure as it 

occurs. Examining Figures 4-17 and 4-18, the absence in the 115 °C test of multiple moderate 

intensity events associated with cracking like those seen in the 25 °C tests is symptomatic of the 
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increased viscoplasticity of solder material at elevated temperatures and the resultant ductility of 

the joints. In the case of elevated temperatures, the increased ductility allows deformation which 

maintains the electrical connection until damage approaches the plastic work threshold for that 

geometry and failure occurs.  

Further research is required to answer the question; “How much acceleration is too 

much?”. Tuning acceleration to expected operating conditions would improve prediction 

accuracy and ensure more realistic failure characteristics. Furthermore, additional work is needed 

to develop translation factors between results obtained using this highly accelerated fatigue life 

testing method, and results obtained through the more traditional reliability testing methods to 

allow researchers to leverage the large body of knowledge pertaining to solder joint fatigue 

failure obtained previously. This knowledge could then be used to develop better interpretations 

of what CTF results obtained in this fashion mean for devices operating in real-world 

applications based on experience with other geometries and testing methods.  
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Appendix A 

Load Calibration and Test Procedures 

Load Calibration –  

1. Install calibration cartridge into carrier baseplate. The proper cartridge to install should 

have an extrusion on the top side with the same dimensions as the die of the test device, 

to ensure relevance to the actual test procedure. The calibration cartridge is assumed (and 

verified) to exhibit minimal deflection under loading as compared with actual devices.  

2. Mount the carrier baseplate to the stage by threading M4 screws into the center set of 

holes on the stage but do not tighten completely. 

3. Enable force plotting from the software View tab drop-down menu, disable coefficient 

plotting. Enable the stage motor motion controller in the Help > Diagnostics menu. Use 

the manual control function to move the stage to the centerline of the total stage 

translation range to set the zero point for bi-directional translation. 

4. Install the upper loading assembly to the tribometer arm by aligning the threaded hole in 

the top of the assembly with the mounting bracket on the arm. Insert the M12 screw 

through the bracket and tighten into the threads while ensuring that the assembly stays at 

a perfect 90° to the arm.  

5. Slowly lower the arm down until the loading cap touches the die. Slide the carrier 

baseplate backward or forward until the loading cap seats over the die. Tighten the 

screws securing the baseplate to the stage. (For elevated tests, install thermocouple into 

carrier baseplate TC hole). 

6. In the software, zero the load cell and select the New Test tab. Program the desired 

frequency and duration. For calibration checks, a duration of 10 minutes is sufficient. 

7. Ensure that the equipment is installed properly (see Figure A1) and all screws are tight. 

Begin the test. Note the peak force values that occur for both the positive and negative 

translation directions. These values will be used to calculate the pre-test spring constants 

which are critical to accurately calculate plastic work during testing. Additionally, the 

peak values of test devices will be compared to those of the calibration to determine 

when force degradation begins. 

8. Conduct this calibration both BEFORE and AFTER testing a device to check for spring 

degradation during the test.  
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Test Procedure – 

9. After the calibration test has stopped, save the data to a .csv file. Raise the arm and 

remove the baseplate from the stage. Remove the calibration cartridge from the baseplate 

and install a test cartridge which contains the test unit.  

10. Connect the wire leads from the device into the breadboard so that the four-point 

resistance probe leads are connected in series correctly. Note the starting resistance value 

of the device.  

11. Repeat steps 2-6 above. 

12. If conducting an elevated test, initiate heating using the oven. Ensure the device reaches 

desired steady-state temperature prior to starting test. Ensure that cooling air is flowing to 

the tribometer case using the air compressor. 

13. To begin the test, it is necessary to enable data recording of both resistance, temperature 

and force simultaneously. To do this, input a recording time in the resistance/temperature 

program with a 15 second increase over the set test duration in the force recording 

software. Begin recording resistance prior to initializing the test. Begin the test, force data 

will begin recording. Note the peak force values during the first few cycles should be 

nearly identical to the peaks of the calibration. If not, something is wrong, stop the test 

and evaluate.  

14. Monitor resistance during the test, when a 

resistance spike over 30% of the original value 

occurs, stop the test. Stop resistance/temperature 

recording. 

15. Save the resistance and force data to respective 

.csv files. Raise the arm and remove the test 

sample (be sure to allow it to cool first). 

 

 

 

 

 

 

Figure A1: Fully 

assembled Test 

Apparatus 2 with 

Dummy Die 

calibration cartridge 

installed. 
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Appendix B 

Tabulated Data for Elevated Tests 

 

Table B1: Tabulated data for Dummy Die test units 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

85C * # Loadings = 2*CTF

Sample # CTF Effective Joints Plastic Work  (J) *Work Accumulation Rate (J/# Loadings)Volumetric Plastic Work (J/mm^3)

SAC 305 - 1 30.5 13 3.20E-01 5.25E-03 1.246152029

SAC 305 - 2 166 13 2.72E+00 8.20E-03 10.59045299

SAC 305 - 3 80.5 13 2.89E-01 1.80E-03 1.125425628

SAC 305 - 4 37.66 13 2.99E-01 3.97E-03 1.162738398

SAC 305 - 5 20.25 9 3.15E-01 7.77E-03 1.768437814

Sn63/Pb37 - 1 25.54 13 3.16E-01 6.20E-03 1.231751491

Sn63/Pb37 - 2 4 8 3.82E-01 4.77E-02 2.414810533

Sn63/Pb37 - 3 17.06 10 2.82E-01 8.26E-03 1.425671671

100C

SAC 305 - 6 15.66 13 3.12E-01 9.98E-03 1.216115993

SAC 305 - 7 8 10 2.33E-01 1.46E-02 1.178461955

SAC 305 - 8 16 13 3.64E-01 1.14E-02 1.416100467

SAC 305 - 9 13.75 13 2.31E-01 8.41E-03 0.900201672

SAC 305 - 10 10.33 12 2.85E-01 1.38E-02 1.202209485

Sn63/Pb37 - 4 10.25 13 2.40E-01 1.17E-02 0.935942555

Sn63/Pb37 - 5 38 13 3.19E-01 4.19E-03 1.240961443

Sn63/Pb37 - 6 17 10 2.82E-01 8.29E-03 1.425671671

110C

SAC 305 - 11 53.28 13 5.39E-01 5.06E-03 2.09969315

SAC 305 - 12 5.63 13 2.40E-01 2.13E-02 0.932892988

Sn63/Pb37 - 7 1.7 11.5 2.13E-01 6.26E-02 0.936053985

Sn63/Pb37 - 8 3.23 9 2.23E-01 3.46E-02 1.255774113

125C

SAC 305 - 13 9.13 13 4.66E-01 2.55E-02 1.812480655

SAC 305 - 14 20.25 13 6.63E-01 1.64E-02 2.581418513

SAC 305 - 15 13 13 5.36E-01 2.06E-02 2.085945391

SAC 305 - 16 11.30 13 5.18E-01 2.29E-02 2.015428561
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Table B2: Tabulated data for Test Vehicle 2 (TV2) devices. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25C * # Loadings = 2*CTF

Sample # CTF Effective Joints Plastic Work  (J) *Work Accumulation Rate (J/# Loadings) Plastic Work Density (J/mm^3)

Sn63/Pb37 - 2 21621.4 37 313.9211977 7.26E-03 18.56928362

Sn63/Pb37 - 1 33030 40 322.8948215 4.89E-03 17.66759029

Sn63/Pb37 - 3 30393.2 40 316.9839218 5.21E-03 17.34416809

Sn63/Pb37 - 4 29451 40 317.6177349 5.39E-03 17.37884796

85C

Sn63/Pb37 - 12 5944 40 326.5450758 2.75E-02 17.86731848

Sn63/Pb37 - 13 4545.244 39 287.9568793 3.17E-02 16.15991537

Sn63/Pb37 - 14 6832.722 40 310.93758 2.28E-02 17.013335

Sn63/Pb37 - 15 93 -- 410.522751 2.207111564 --

100C

Sn63/Pb37 - 16 3065.012 40 317.7161585 5.18E-02 17.38423333

Sn63/Pb37 - 17 2277.455 36 314.9136624 6.91E-02 19.14543476

Sn63/Pb37 - 18 3351.517 40 339.0893174 5.06E-02 18.5536922

115C

Sn63/Pb37 - 8 353.92 40 267.5928712 3.78E-01 14.64167555

Sn63/Pb37 - 9 326.48 40 320.7554739 4.91E-01 17.55053323

Sn63/Pb37 - 10 334.0613 40 279.2531476 4.18E-01 15.27968202
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Appendix C 

 

Test Vehicle Design and Fabrication 

 

 

Dummy Die – 

 

Based on an existing design, dummy die test units were created using Si die that had been 

metallized with layers of copper over titanium. Dry film solder mask was applied to the die and 

patterned using photolithography on a Karl Suss MA150 aligner. Sodium carbonate was used as 

the developer, opening the SMD pads to the specified 0.254 mm diameter. The solder paste was 

then applied using vacuum EFD and the 0.381 mm solder balls were applied individually by 

hand, and then the die was passed through a Sikama reflow oven with the reflow profile 

dependent upon solder material type. Finally, the die and FR4 substrate were flip-chip bonded 

using a Finetek Die Bonder. Figure C1 shows the interconnect pattern and a completely 

assembled device.  

 

 
Figure C1: Test Vehicle Mk. I. “Dummy Die” of a POETS designed Flip-chip MOSFET 

developed by Sayan Seal and Dr. Alan Mantooth. 

 

Used primarily to prove that the concept of the accelerated test would work, these devices were 

assembled as non-conductive and thus, not a capable of providing data on electrical performance 

degradation due to test conditions. These devices were assembled with three different solder 

material sets to evaluate the effects of material selection on reliability during testing. Materials 

used were: Sn95/Pb5 balls with Sn42/Bi57.6/Ag0.4 paste, SAC 305, and Sn63/Pb37. These units 

were tested at both ambient and elevated temperature. 
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Test Vehicle 2 (TV2) –  

To fully utilize the in situ characterization capabilities of the test methodology, a fully-functional 

device which could be monitored for resistance changes was needed. A new test vehicle (TV2) 

was designed with these capabilities in mind. It was designed with an inner and outer ring of 

daisy-chains separated by a ring of platinum resistive heaters to allow on-device simulation of 

thermal loads. Additionally, temperature sensors were also included to accurately record 

interconnect temperature. However, these heaters and sensors were not used in the testing 

reported here. These devices were designed for 0.2032 mm solder balls with 0.154 mm SMD pad 

openings. The PCB, constructed of Roger’s 4000 material, was designed with taps between each 

set of interconnects within a daisy-chain to allow for failure localization after testing through the 

use of continuity testing. Figure C2 illustrates the designs for both the die and substrate.  

 

 

Figure C2: (a) Die side features (b) PCB design for test vehicle 2. 

Fabrication of the PCB was contracted to a supplier while the die were fabricated in-house at the 

High Density Electronics Center at the University of Arkansas. A 4” Si Ti/Cu/Ti wafer was 

patterned using AZ4330 photoresist, exposed using a Karl Suss MA150 and etched using Ferric 

Chloride through a multi-step etching process until only Cu features remained on the surface of 

the wafer. Attempts to use the dry film solder mask used with the dummy die did not yield 

acceptable results, so the wafer was coated with SU-8 photoresist to act as the solder mask. The 

SU-8 was then patterned and exposed using the MA150 Aligner (see Figure C3). This wafer was 

then diced with an automated dicing saw and solder was applied, again using a manual method 

of solder ball placement. The ball bumping was done using a dental pick to place each ball in the 

SMD opening while the die was held fixed by a small fixture (see Figure C4). Finally, the 

bumped die was sent through the reflow oven and then flip-chip bonded using a Finetek Die 

Bonder.  
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Figure C3: TV2 wafer after SU-8 deposition 

and patterning. 

 

Figure C4: Temporary fixture for solder 

bumping. Ceramic tiles were used to allow 

the device to be slid out of the tweezers and 

placed directly in the reflow oven without 

being picked up. 

The assembled test devices were then tested for continuity to ensure proper connections between 

interconnects. Once continuity was established, leads were soldered to the power input and 

output pads on the PCB which were connected to the four-point probe for resistance monitoring.  

These devices were tested until a 30% increase in resistance occurred, in some cases, this did not 

occur until the die was completely separated from the PCB. This behavior was confined to the 

elevated temperatures.  

 

Figure C5: Assembled TV2 device with resistance monitoring leads. 
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Appendix D 

Test Equipment Fabrication 

The equipment used to adapt the tribometer for reliability testing was machined and fabricated 

out of Al7075 using manual and CNC manufacturing processes. Aluminum was used to reduce 

the total mass suspended by the arm to reduce wear on the tribometer. Relief cuts and “speed 

holes” were also integrated into the designs to further lighten the assembly. The parts were 

designed using SolidWorks software and SolidCAM was used to program the G code for CNC 

operations. Each part was machined from stock material which itself had to be designed and cut 

to specific dimensions. Careful consideration had to be given to the orientation of each part 

within the stock material with an eye toward practicality and reducing total milling time. Prior to 

beginning the milling process, the toolpaths (see Figure D1) for each milling operation were 

optimized to reduce total cutting time, wear on the cutter, and to ensure no unintended collisions 

or cuts were made. To achieve this optimization for each operation, feed rate (IPM), cutter speed 

(RPM), total number or cuts, total number of movements, and toolpath length all had to be 

correctly tuned. 

 

 

Figure D1: (a) Toolpaths for upper vise assembly components of Apparatus 1. (b) Toolpaths for 

machining of baseplate for Apparatus 1. 

 

CNC milling operations were performed on a Lagunmatic 110 3-axis CNC mill with Mach3 

software (see Figure D2). During the cutting operations, the feeds and speeds at which the 

operation took place were tightly controlled to reduce vibration, thus ensuring accuracy. Each 
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component was milled slightly oversize and then hand fitted to achieve very tight tolerances in 

the final assembly (see Figure D3).  

 

 

Figure D2: CNC machining of arm 

attachment for Apparatus 1.

 

 

Figure D 3: Lower vise assembly on 

baseplate with large and small vises for 

Apparatus 1. 
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